KR20210087175A - Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi - Google Patents

Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi Download PDF

Info

Publication number
KR20210087175A
KR20210087175A KR1020200000111A KR20200000111A KR20210087175A KR 20210087175 A KR20210087175 A KR 20210087175A KR 1020200000111 A KR1020200000111 A KR 1020200000111A KR 20200000111 A KR20200000111 A KR 20200000111A KR 20210087175 A KR20210087175 A KR 20210087175A
Authority
KR
South Korea
Prior art keywords
seedlings
culturing
weeks
germination
japanese
Prior art date
Application number
KR1020200000111A
Other languages
Korean (ko)
Other versions
KR102408810B1 (en
Inventor
김태동
이나념
김지아
김용욱
박소희
Original Assignee
대한민국(산림청 국립산림과학원장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(산림청 국립산림과학원장) filed Critical 대한민국(산림청 국립산림과학원장)
Priority to KR1020200000111A priority Critical patent/KR102408810B1/en
Publication of KR20210087175A publication Critical patent/KR20210087175A/en
Application granted granted Critical
Publication of KR102408810B1 publication Critical patent/KR102408810B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/001Culture apparatus for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/002Culture media for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/12Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing soil minerals
    • A01G24/15Calcined rock, e.g. perlite, vermiculite or clay aggregates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/28Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing peat, moss or sphagnum
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C11/00Other nitrogenous fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G1/00Mixtures of fertilisers belonging individually to different subclasses of C05
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • C12N5/0025Culture media for plant cell or plant tissue culture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/40Afforestation or reforestation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pest Control & Pesticides (AREA)
  • Soil Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Disclosed in the present invention is a method for producing tissue cultured seedling of Larix kaempferi having highly improved productivity through a somatic embryo germination and redifferentiation acceleration process and an acclimatized seedling growth acceleration process. The method for producing tissue cultured seedling of Larix kaempferi according to the present invention can be efficiently applied to a mass production system of tissue cultured seedling of Larix kaempferi for forest plantation. Also, the seedling of Larix kaempferi according to the present invention is strong acclimated seedling with good growth, thereby being highly used for forest plantation.

Description

생산성이 현저히 증진된 일본잎갈나무 조직배양 묘목의 생산방법{Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi}TECHNICAL FIELD [0002] Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi}

본 발명은 생산성이 현저히 증진된 일본잎갈나무 조직배양 묘목의 생산방법에 관한 것으로, 더 상세하게는 체세포배의 발아 및 재분화 촉진 공정과 순화묘 생장 촉진 공정을 통하여 생산성이 현저히 증진된 일본잎갈나무 조직배양 묘목의 생산방법에 관한 것이다.The present invention relates to a production method of Japanese oak tissue-cultured seedlings with significantly improved productivity, and more particularly, Japanese maple tissue with significantly improved productivity through a process for promoting germination and re-differentiation of somatic embryos and a process for promoting growth of domesticated seedlings It relates to a method for producing cultured seedlings.

일본잎갈나무[Larix kaempferi (Lamb.) Carriere; 낙엽송]는 낙엽침엽교목으로 1904년에 일본으로부터 처음 도입되었으며, 빨리 크면서도 수간이 통직하고 짧은 기간 내에 많은 목재를 생산할 수 있기 때문에 우리나라 주요 용재 수종의 하나이다. 하지만 종자결실의 풍흉주기가 불규칙하여 조림용 묘목 수급에 어려움을 겪고 있다. Japanese larch [ Larix kaempferi (Lamb.) Carriere; Larch] is a deciduous coniferous tree that was first introduced from Japan in 1904, and is one of the major lumber species in Korea because it grows quickly, has a straight trunk, and can produce a lot of wood within a short period of time. However, it is difficult to supply and supply seedlings for afforestation due to the irregular cycle of harvest and harvest.

이러한 어려움을 해결하기 위한 대안으로 조직배양기술을 이용하여 일본잎갈나무 체세포배 배양을 통한 번식방법이 개발되었다 (특허등록 10-0720338호). 그러나 상기 방법은 체세포배 발아 및 재분화 효율이 떨어지고, 인공토양에서 환경순화시 재분화된 발아체로부터 식물체의 순화묘로의 생장이 잘 이루어지지 않는 문제점들로 인해 일본잎갈나무 조직배양 묘목의 대량생산 효율이 매우 낮아서 실용화에 어려움이 크다. As an alternative to solving these difficulties, a propagation method through the culture of Japanese larch somatic cells using tissue culture technology was developed (Patent Registration No. 10-0720338). However, in the method, the efficiency of somatic embryo germination and redifferentiation is low, and the mass production efficiency of Japanese larch tissue culture seedlings due to the problems that the growth from the redifferentiated germination body to the purified seedling of the plant is not performed well when the environment is acclimatized in artificial soil. It is very low, so it is difficult to put it into practical use.

따라서 체세포배 발아 및 재분화 촉진 공정과 순화묘 생장 촉진 공정을 개발하여 산지조림용 일본잎갈나무 조직배양 묘?의 대량생산 시스템으로 활용할 수 있는 생산성이 현저히 증진된 일본잎갈나무 조직배양 묘목의 생산방법의 개발이 절실히 요구되고 있는 실정이다.Therefore, by developing a process for promoting somatic embryo germination and re-differentiation and a process for promoting the growth of domesticated seedlings, the production method of Japanese oak tissue-cultured seedlings with significantly improved productivity that can be used as a mass production system for Japanese oak tissue-cultured seedlings for afforestation in mountainous areas. There is an urgent need for development.

이에 본 발명자들은 종래 기술에서의 요구에 부응하기 위해 지속적으로 연구한 결과, 특정 조건의 건조처리를 통한 일본잎갈나무 체세포배의 발아 및 재분화 공정과 특정 조건의 일본잎갈나무 발아식물체의 순화 공정을 조합할 경우, 일본잎갈나무 묘목의 생산성이 현저히 증진될 수 있다는 것을 확인하여 본 발명을 완성하게 되었다. Accordingly, as a result of continuous research to meet the needs of the prior art, the present inventors combined the process of germination and redifferentiation of Japanese oak somatic embryos through drying treatment under specific conditions and the purification process of germinating Japanese oaks under specific conditions. In this case, it was confirmed that the productivity of Japanese oak seedlings can be significantly improved, thereby completing the present invention.

따라서 본 발명의 목적은 생산성이 현저히 증진된 일본잎갈나무 조직배양 묘목의 생산방법을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a method for producing Japanese larch tissue culture seedlings with significantly improved productivity.

본 발명의 또 다른 목적은 상기 방법에 의해 생산된 일본잎갈나무 묘목을 제공하는 것이다.Another object of the present invention is to provide a Japanese larch seedling produced by the above method.

상기 본 발명의 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object of the present invention, the present invention

i) 일본잎갈나무 체세포배를 준비하는 단계; i) preparing Japanese larch somatic embryos;

ii) 발아배지 상에 필터페이퍼를 올려놓은 후 일본잎갈나무 체세포배를 치상하여 배양하여 발아시키는 단계; ii) placing a filter paper on the germination medium and then fertilizing and culturing the Japanese Larch somatic embryo;

iii) 발아체를 필터페이퍼가 없는 발아배지 상에 옮겨서 배양하여 재분화된 유식물체를 얻는 단계; 및iii) culturing by transferring the germination medium on a germination medium without filter paper to obtain a redifferentiated seedling; and

iv) 유식물체를 80~90%의 습도가 유지되는 순화용기 내 인공토양에 이식하여 하이포넥스를 처리하여 배양하여 건전한 순화묘를 얻는 단계;를 포함하는 일본잎갈나무 조직배양 묘목의 생산방법을 제공한다. iv) transplanting the seedlings into artificial soil in an acclimatization container maintained at 80 to 90% humidity, and culturing them with Hyponex to obtain healthy domesticated seedlings; providing a method for producing Japanese larch tissue culture seedlings, including do.

본 발명의 생산방법은, 필요에 따라서, 단계 iv) 후에, 순화묘를 토양에 이식하여 증식시키는 단계를 추가로 포함할 수 있다. The production method of the present invention may further include, if necessary, the step of propagating by transplanting the domesticated seedlings into soil after step iv).

단계 i) 일본잎갈나무 체세포배 준비Step i) Preparation of Japanese larch somatic cells

본 발명에서 일본잎갈나무 체세포배로는 일본잎갈나무 조직으로부터 배발생 세포를 유도하여 얻을 수 있는 일본잎갈나무 체세포배 라인을 사용할 수 있다. In the present invention, as the Japanese L. somatic cell embryo, a J. L. somatic cell line obtained by inducing embryonic cells from the Japanese L. L. tissue may be used.

일본잎갈나무 조직으로부터 배발생 세포 및 체세포배의 유도는 통상적인 방법에 의해 수행할 수 있다. Induction of embryogenic cells and somatic embryos from Japanese larch tissue can be performed by a conventional method.

본 발명에서 일본잎갈나무 조직은 종자배, 자엽, 절간 절편 등이며, 바람직하게는 종자배이다. In the present invention, the Japanese larch tissue is a seed embryo, a cotyledon, an internode section, etc., and preferably a seed embryo.

본 발명에서 일본잎갈나무 체세포배는 바람직하게는 자엽단계 체세포배를 사용하나, 이에 제한되지는 않는다. In the present invention, the Japanese larch somatic embryo is preferably, but is not limited to, a cotyledon stage somatic embryo.

가장 바람직하게는, 본 발명에서 일본잎갈나무 체세포배로는 일본잎갈나무 미숙종자로부터 유도된 배발생세포를 16.0mg/L ABA, 54g/L 말토오스, 0.8% 젤라이트가 첨가된 LM(Litvay Medium) 배지에서 7~8 주간 배양함으로서 얻어진 자엽단계의 체세포배를 사용한다.Most preferably, in the present invention, the embryogenic cells derived from the immature seed of the Japanese L. L. japonica are LM (Litvay Medium) medium to which 16.0 mg/L ABA, 54 g/L maltose, and 0.8% gelite are added. Cotyledon-stage somatic embryos obtained by culturing for 7-8 weeks in

단계 ii) 체세포배 발아step ii) somatic embryo germination

발아배지 상에 필터페이퍼를 올려놓은 후 상기 일본잎갈나무 체세포배를 치상하여 배양하여 발아시킨다. After placing the filter paper on the germination medium, the Japanese Larch somatic embryos are dented and cultured to germinate.

본 단계에서 발아배지는 2~4% 수크로스 및 0.2~0.4% 젤라이트가 첨가된 고체상의 LM(Litvay Medium)를 사용하고, 가장 바람직하게는 3% 수크로스 및 0.3% 젤라이트가 첨가된 LM 배지를 사용한다.In this step, the germination medium uses solid LM (Litvay Medium) with 2~4% sucrose and 0.2~0.4% gelite added, and most preferably LM with 3% sucrose and 0.3% gelite added. Use the medium.

본 발명에서 필터페이퍼는 정량여과지를 사용하는 것이 바람직하다.In the present invention, it is preferable to use a quantitative filter paper as the filter paper.

본 단계에서 체세포배의 배양은 25±1℃에서 1일 15~17시간, 50~70 μmol·m-2·s-1 조명이 유지되는 조건하에 배양한다.At this stage, the culture of somatic embryos is maintained at 25±1° C. for 15 to 17 hours a day, and 50 to 70 μmol·m -2 ·s -1 illumination is maintained.

상기 배양의 기간은 2~4 주간이 바람직하고, 보다 바람직하게는 2~3 주간이며, 가장 바람직하게는 3 주간이다. The period of the culture is preferably 2 to 4 weeks, more preferably 2 to 3 weeks, and most preferably 3 weeks.

필터페이퍼로 건조처리되고 상기와 같은 조건으로 배양시 일본잎갈나무 체세포배는 발아체로의 발아율이 현저히 증가되었다 (도 1b).When dried with filter paper and cultured under the same conditions as described above, the germination rate of Japanese larch somatic embryos was significantly increased (FIG. 1b).

단계 iii) 재분화Step iii) Redifferentiation

단계 ii)로부터의 발아체를 필터페이퍼가 없는 발아배지 상에 옮겨서 배양하여 재분화하여 유식물체를 얻는다. The germinal body from step ii) is transferred to a germination medium without filter paper, cultured and redifferentiated to obtain a seedling.

상기 발아배지는 2~4% 수크로스 및 0.2~0.4% 젤라이트가 첨가된 고체상의 LM 배지를 사용하고, 가장 바람직하게는 3% 수크로스 및 0.3% 젤라이트가 첨가된 LM 배지를 사용한다.The germination medium uses a solid LM medium to which 2-4% sucrose and 0.2-0.4% gelite are added, and most preferably, an LM medium supplemented with 3% sucrose and 0.3% gelite is used.

본 단계에서 체세포배의 배양은 25±1℃에서 1일 15~17시간, 50~70 μmol·m-2·s-1 조명이 유지되는 조건하에 배양한다. 바람직하게는 25℃에서 1일 16시간 60 μmol·m-2·s-1 범위 내에서 조명이 유지되는 조건하에 배양한다.At this stage, the culture of somatic embryos is maintained at 25±1° C. for 15 to 17 hours a day, and 50 to 70 μmol·m -2 ·s -1 illumination is maintained. Preferably, it is cultured under conditions in which illumination is maintained within the range of 60 μmol·m -2 ·s -1 for 16 hours a day at 25°C.

상기 배양의 기간은 4 ~ 8 주간이 바람직하고, 가장 바람직하게는 6 주간이다.The period of the culture is preferably 4 to 8 weeks, and most preferably 6 weeks.

상기와 같은 조건으로 배양시 일본잎갈나무 발아체(도 3A)는 재분화가 잘 진행되어 줄기 및 뿌리가 제대로 발달된 유식물체로 생장하였다(도 3B).When cultured under the same conditions as described above, the germination of Japanese larch (FIG. 3A) proceeded well with re-differentiation and grew into a seedling with properly developed stems and roots (FIG. 3B).

단계 iv) 순화Step iv) Purification

단계 iii)으로부터의 유식물체를 80~90%의 습도가 유지되는 순화용기 내 인공토양에 이식하여 하이포넥스를 처리하여 배양하여 순화묘를 얻는다. The seedlings from step iii) are transplanted into artificial soil in an acclimatization container maintained at 80-90% humidity, treated with Hyponex, and cultured to obtain purified seedlings.

순화용기는 80~90%의 습도 유지가 가능하면 특별히 제한되지 않고 사용될 수 있다. The acclimatization container can be used without particular limitation as long as it can maintain a humidity of 80 to 90%.

인공토양은 버미큘라이트, 피트모스 및 펄라이트 혼합된 것을 사용할 수 있으며, 바람직하게는 버미큘라이트 : 피트모스 : 펄라이트가 1 : 1 : 1(v:v:v)의 비로 혼합된 것을 사용한다. The artificial soil may be a mixture of vermiculite, peat moss and perlite, preferably vermiculite: peat moss: perlite mixed in a ratio of 1:1: 1 (v:v:v).

본 단계에서 하이포넥스 처리는 1,000배액으로 희석하여 1주일에 1회 관수 및 엽면 살포로 처리한다. 하이포넥스 처리는 4~8회 수행할 수 있다. In this step, Hyponex treatment is diluted with 1,000-fold solution and treated with watering and foliar spraying once a week. Hyponex treatment can be performed 4 to 8 times.

본 단계에서 배양은 25±1℃에서 1일 15~17시간, 50~70 μmol·m-2·s-1 조명이 유지되는 조건하에 배양한다.In this stage, the culture is carried out at 25±1°C for 15-17 hours a day, and 50-70 μmol·m -2 ·s -1 lighting is maintained.

상기 배양의 기간은 4~8 주간이 바람직하고, 가장 바람직하게는 6 주간이다.The period of the culture is preferably 4 to 8 weeks, and most preferably 6 weeks.

상기와 같은 조건으로 배양시 일본잎갈나무 유식물체는 환경 순화가 잘 이루어져서 생장이 양호한 건전 순화묘로 되었다 (도 5).When cultured under the same conditions as described above, the Japanese larch seedlings were well acclimatized to the environment, resulting in healthy and acclimated seedlings with good growth (FIG. 5).

단계 v) 토양 이식Step v) Soil Transplantation

필요에 따라서, 단계 iv)로부터의 순화묘를 토양에 이식하여 증식시킨다. If necessary, the acclimated seedlings from step iv) are transplanted into soil and propagated.

본 발명의 또 다른 목적에 따라서, 본 발명은 상기 방법에 의해 생산된 일본잎갈나무 묘목을 제공한다.According to another object of the present invention, the present invention provides a Japanese larch seedling produced by the above method.

본 발명에 따른 일본잎갈나무 묘목은 생장이 양호한 건전 순화묘이므로 대량 산지조림용으로 적합하다. The Japanese larch seedlings according to the present invention are healthy and domesticated seedlings with good growth, so they are suitable for mass afforestation.

본 발명에 따른 일본잎갈나무 조직배양 묘목의 생산방법에 의하면, 일본잎갈나무 체세포배의 발아체로의 발아율이 현저히 증가하고, 재분화가 잘 진행되어 줄기 및 뿌리가 제대로 발달된 유식물체로 생장하고, 환경 순화가 잘 이루어져서 생장이 양호한 건전 순화묘를 얻을 수 있게 함에 따라서, 산지조림용 일본잎갈나무 조직배양묘 대량생산 시스템으로 효율적인 적용이 가능하다. According to the production method of Japanese oak tissue culture seedlings according to the present invention, the germination rate of Japanese maple somatic embryos is significantly increased, redifferentiation proceeds well, and stems and roots are properly developed to grow into seedlings, and the environment It can be efficiently applied as a system for mass production of Japanese oak tissue cultured seedlings for plantation in mountainous areas, as it is well acclimatized and it is possible to obtain healthy domesticated seedlings with good growth.

또한 본 발명에 따른 일본잎갈나무 묘목은 생장이 양호한 건전 순화묘이므로 대량 산지조림용에 활용할 수 있다.In addition, the Japanese larch seedlings according to the present invention are healthy and domesticated seedlings with good growth, so they can be used for mass afforestation.

도 1a는 본 발명에 따른 건조처리된 조건에서 배양된 일본잎갈나무 체세포배의 발아 상태를 보여주는 사진이다.
도 1b는 본 발명에 따른 건조처리된 조건에서 배양된 일본잎갈나무 체세포배의 발아율을 나타내는 그래프이다 (LK-1, LK-2).
도 2a는 본 발명에 따른 건조처리된 조건에서 배양된 일본잎갈나무 체세포배의 배양기간에 따른 수분함량을 나타내는 그래프이다.
도 2b는 본 발명에 따른 건조처리된 조건에서 배양된 일본잎갈나무 체세포배의 해부학적 특성을 보여주는 사진이다.
도 3은 본 발명에 따라 재분화된 유식물체를 보여주는 사진이다.
도 4는 본 발명의 순화조건에 따라 순화용기 (오른쪽), 순화용기 내 인공토양에 이식되어 배양된 순화묘를 보여주는 사진이다.
도 5a 및 도 5b는 본 발명에 따라 배양된 순화묘(실시예 2)를 보여주는 사진이다.
1A is a photograph showing the germination state of Japanese larch somatic embryos cultured in the dry-treated condition according to the present invention.
Figure 1b is a graph showing the germination rate of Japanese larch somatic embryos cultured in the dried conditions according to the present invention (LK-1, LK-2).
Figure 2a is a graph showing the water content according to the culture period of Japanese larch somatic embryos cultured in the dried conditions according to the present invention.
Figure 2b is a photograph showing the anatomical characteristics of Japanese larch somatic embryos cultured in the dried conditions according to the present invention.
3 is a photograph showing a redifferentiated plant according to the present invention.
4 is an acclimatization container (right) according to the acclimatization conditions of the present invention, a photograph showing the acclimatized seedlings transplanted into artificial soil in the acclimatization container.
5A and 5B are photographs showing domesticated seedlings (Example 2) cultured according to the present invention.

이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예를 통하여 본 발명의 구성 및 효과를 보다 상세히 설명하기로 한다. 그러나 하기 실시예는 본 발명을 보다 명확하게 이해시키기 위하여 예시한 것일 뿐이며, 본 발명의 권리범위가 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the configuration and effects of the present invention will be described in more detail through specific examples to help the understanding of the present invention. However, the following examples are merely illustrative in order to understand the present invention more clearly, and the scope of the present invention is not limited by the following examples.

실시예 1: 일본잎갈나무 체세포배의 건조처리에 따른 발아 분석Example 1: Germination analysis according to drying treatment of Japanese larch somatic embryos

일본잎갈나무 체세포배로는 공시재료인 일본잎갈나무 체세포배 2개 라인(LK-1, LK-2; 국립산림과학원 클론개발연구실 제공)을 준비하였으며, 이들 체세포배 라인들은 자엽발달이 이루어진 체세포배(자엽단계 체세포배)이었다. As the somatic embryos of Japanese oak, two lines (LK-1, LK-2; provided by the Clone Development Lab of the National Institute of Forest Science) were prepared as test materials, and these somatic cell embryo lines were cotyledon-developed somatic embryos ( cotyledon stage somatic embryo).

3% 수크로스 및 0.3% 젤라이트가 첨가된 고체상 LM 배지(Duchefa, Netherlands)를 발아배지로 준비한 후, 그 위에 필터페이퍼(정량여과지, Advantec 55mm)를 올려놓고 그 위에 상기에 준비된 자엽단계 체세포배를 치상한 후 온도 25±1℃에서 1일 16시간 조명(냉백색 형광등, 60 μmol·m-2·s-1)으로 유지되는 배양환경에서 각각 1주, 2주, 3주 및 4주 배양한 후 필터페이퍼가 없는 동일한 새 발아배지로 옮겨서 총 배양 기간이 9주가 되도록 배양하였고 (실시예 1), 그 결과 사진을 도 1a에 나타냈다. After preparing a solid LM medium (Duchefa, Netherlands) with 3% sucrose and 0.3% gelite as a germination medium, a filter paper (quantitative filter paper, Advantec 55mm) was placed on it, and the cotyledon stage somatic cell culture medium prepared above was placed thereon. After implantation, culture for 1 week, 2 weeks, 3 weeks and 4 weeks, respectively, in a culture environment maintained with illumination (cold white fluorescent lamp, 60 μmol·m -2 ·s -1 ) at a temperature of 25±1°C for 16 hours a day. After that, it was transferred to the same new germination medium without filter paper and cultured for a total incubation period of 9 weeks (Example 1), and the results are shown in FIG. 1A .

비교를 위하여, 종래 기술에서와 같이, 필터페이퍼를 올려놓지 않은 3% 수크로스 및 0.3% 젤라이트가 첨가된 고체상 LM 배지인 발아배지 상에 상기에서 준비된 자엽단계 체세포배를 치상한 후 9주간 온도 25±1℃에서 1일 16시간 조명(냉백색 형광등, 60 μmol·m-2·s-1)으로 유지되는 배양환경에서 배양하였고 (비교예 1), 그 결과 사진을 도 1a에 나타냈다.For comparison, as in the prior art, as in the prior art, after placing the prepared cotyledon stage somatic embryos on the germination medium which is a solid LM medium containing 3% sucrose and 0.3% gelite without filter paper, the temperature for 9 weeks It was cultured in a culture environment maintained with illumination (cold white fluorescent lamp, 60 μmol·m -2 ·s -1 ) at 25±1° C. for 16 hours a day (Comparative Example 1), and the resulting photograph is shown in FIG. 1a.

또한 건조처리 기간별 (1주~4주) 실시예 1 및 비교예 1의 일본잎갈나무 체세포배 발아율 (발아체 생성률)을 산출하였고, 그 결과를 도 1b에 나타냈다. In addition, the germination rate (germination body production rate) of Japanese larch somatic cells of Example 1 and Comparative Example 1 for each drying treatment period (1 week to 4 weeks) was calculated, and the results are shown in FIG. 1B.

도 1a에 나타낸 바와 같이, 필터페이터로 건조처리된 본 발명에 따른 실시예 1의 경우는 일본잎갈나무 체세포배가 발아하여 유근이 정상적으로 발달하는 것이 관찰되었으나, 비교예 1에서는 일본잎갈나무 체세포배의 대부분이 캘러스처럼 탈분화되어 발아가 제대로 되지 않고 유근의 정상적인 발달이 관찰되지 않았다. As shown in FIG. 1A, in Example 1 according to the present invention, dried with a filter paper, it was observed that Japanese L. somatic cell embryos germinated and the papillae developed normally, but in Comparative Example 1, most of Japanese L. somatic cell embryos germinated. Like this callus, it was dedifferentiated and germination did not work properly, and the normal development of the rhizome was not observed.

도 1b에 나타낸 바와 같이, 필터페이퍼를 이용하여 건조처리되어 배양된 일본잎갈나무 체세포배의 발아율은 현저히 증진되었고, 건조처리 기간에 따라서 큰 차이를 보여주었다.As shown in Fig. 1b, the germination rate of Japanese larch somatic embryos dried and cultured using filter paper was significantly improved, showing a significant difference according to the drying treatment period.

구체적으로 살펴보면, 비교예 1의 건조처리 없이 배양된 일본잎갈나무 체세포배 라인 LK-1 및 LK-2의 발아율은 각각 7.69%, 14.25%에 불과하였으나, 본 발명에 따라서 필터페이퍼를 이용하여 2 ~ 4주간 건조처리되어 배양된 일본잎갈나무 체세포배 라인 LK-1 및 LK-2의 발아율은 약 30 ~ 60% (약 3~4배)로 증진되었다. 특히 필터페이퍼를 이용하여 3주간 건조처리되어 배양된 일본잎갈나무 체세포배 라인 LK-1 및 LK-2의 발아율은 각각 59.4% (약8배) 및 43.5% (약3.1배)로 가장 높게 나타났다. Specifically, the germination rates of Japanese larch somatic embryo lines LK-1 and LK-2 cultured without drying treatment of Comparative Example 1 were only 7.69% and 14.25%, respectively, but according to the present invention, 2 ~ The germination rate of LK-1 and LK-2 somatic cell lines LK-1 and LK-2 cultured after drying for 4 weeks was improved to about 30 to 60% (about 3 to 4 times). In particular, the germination rates of LK-1 and LK-2 somatic cell lines LK-1 and LK-2, which were dried and cultured for 3 weeks using filter paper, were the highest at 59.4% (about 8 times) and 43.5% (about 3.1 times), respectively.

상기 결과들로부터 필터페이퍼를 이용하여 건조처리는 일본잎갈나무 체세포배의 발아를 촉진시키는데 상당한 효과가 있다는 것을 알 수 있다. From the above results, it can be seen that the drying treatment using filter paper has a significant effect in promoting the germination of Japanese Larch somatic embryos.

실시예 2: 일본잎갈나무 체세포배의 건조처리에 따른 수분함유량 분석Example 2: Analysis of water content according to drying treatment of Japanese larch somatic embryos

본 발명에 따른 일본잎갈나무 체세포배의 필터페이퍼를 이용한 건조처리가 효과가 있는지 조사하기 위해 배양 기간에 따른 수분함유량 변화를 비교분석하였다. In order to investigate whether the drying treatment using the filter paper of Japanese larch somatic embryos according to the present invention is effective, the change in water content according to the culture period was comparatively analyzed.

구체적으로는 3% 수크로스 및 0.3% 젤라이트가 첨가된 고체상 LM 배지인 발아배지 위에 필터페이퍼를 올려놓고 그 위에 자엽단계 일본잎갈나무 체세포배 라인 LK-1 및 LK-2를 치상한 후 온도 25±1℃에서 1일 16시간 조명(냉백색 형광등, 60 μmol·m-2·s-1)으로 유지되는 배양환경에서 4주 동안 배양하였고 (실시예 1), 수분함유량 분석장비(SARTORIUS MA150)를 이용하여 배양기간 중 3, 7, 10, 14, 21, 28일에 일본잎갈나무 체세포배 생중량 1g당 수분함유량을 측정하였고, 그 결과를 도 2a에 나타냈다.Specifically, a filter paper was placed on a germination medium, which is a solid LM medium containing 3% sucrose and 0.3% gelite, and the cotyledon stage LK-1 and LK-2 somatic cell lines LK-1 and LK-2 were placed thereon, followed by a temperature of 25 It was cultured for 4 weeks in a culture environment maintained with illumination (cold white fluorescent lamp, 60 μmol·m -2 ·s -1 ) at ±1°C for 16 hours a day (Example 1), and water content analysis equipment (SARTORIUS MA150) was used to measure the water content per 1 g of fresh Japanese larch somatic embryo on days 3, 7, 10, 14, 21, and 28 during the incubation period, and the results are shown in FIG. 2A.

비교를 위하여, 종래 기술에서와 같이, 필터페이퍼를 올려놓지 않은 3% 수크로스 및 0.3% 젤라이트가 첨가된 고체상 LM 배지인 발아배지 상에 상기에 준비된 자엽단계 체세포배를 치상한 후 4주간 온도 25±1℃에서 1일 16시간 조명(냉백색 형광등, 60 μmol·m-2·s-1)으로 유지되는 배양환경에서 배양하였고 (비교예 1), 상기와 동일한 방식으로 일본잎갈나무 체세포배 생중량 1g당 수분함유량을 측정하였고, 그 결과를 도 2a에 나타냈다.For comparison, as in the prior art, after placing the prepared cotyledon stage somatic embryos on the germination medium, which is a solid LM medium containing 3% sucrose and 0.3% gelite, without filter paper, the temperature for 4 weeks It was cultured in a culture environment maintained with illumination (cold white fluorescent lamp, 60 μmol·m -2 ·s -1 ) at 25±1° C. for 16 hours a day (Comparative Example 1), and Japanese larch somatic cells in the same manner as above. The water content per 1 g of fresh weight was measured, and the results are shown in FIG. 2A.

아울러 배양 전과 1주간 배양 후 실시예 1과 비교예 1의 발아체를 광학현미경으로 촬영한 해부학적인 사진을 각각 도 2b에 나타냈다. In addition, anatomical photographs taken with an optical microscope of the germinal bodies of Example 1 and Comparative Example 1 before culturing and after culturing for one week are shown in FIG. 2B , respectively.

도 2a에 나타낸 바와 같이, 본 발명에 따른 실시예 1에서는 체세포배 라인 LK-1의 체세포배 수분함유량은 배양 14일 후 54.59%, 21일 후 53.04%, 28일 후 48.73%로 배양 2주후부터 배양 기간에 따라 점진적으로 감소되었고, 체세포배 라인 LK-2의 체세포배 수분함유량도 마찬가지로 배양 2주부터 점진적으로 감소되기 시작하여 배양 21일 후 64.87%, 28일 후 59.80%로 감소되었다.As shown in FIG. 2A , in Example 1 according to the present invention, the somatic embryo water content of the somatic cell line LK-1 was 54.59% after 14 days of culture, 53.04% after 21 days, and 48.73% after 28 days after 2 weeks of culture. It gradually decreased according to the culture period, and the water content of the somatic cell line LK-2 in the somatic cell line LK-2 also started to gradually decrease from the second week of culture, and decreased to 64.87% after 21 days of culture and 59.80% after 28 days.

상기와 같은 결과에 의하면, 본 발명에 따라서 2~4주 건조처리 배양된 일본잎갈나무 체세포배는 발아하기에 적합한 수분 함량을 가짐을 확인할 수 있다. According to the above results, according to the present invention, it can be confirmed that Japanese larch somatic embryos cultured for 2 to 4 weeks dry treatment have a moisture content suitable for germination.

이와는 반대로, 비교예 1에서는 체세포배 라인 LK-1 및 LK-2의 체세포배의 수분함유량은 각각 배양 7일 후 60.48% 및 58.74%, 배양 21일 후 69.04% 및 70.62%, 배양 28일 후 75.43% 및 77.06%로 배양 1주후부터 지속적으로 증가하였다. 따라서 건조처리 없이 종래 기술로 배양시 일본잎갈나무 체세포배는 수분함량이 과도하여 발아가 잘 이루어지지 않음을 확인할 수 있다.Conversely, in Comparative Example 1, the water content of the somatic embryos of the somatic embryo lines LK-1 and LK-2 was 60.48% and 58.74% after 7 days of culture, 69.04% and 70.62% after 21 days of culture, and 75.43% after 28 days of culture, respectively. % and 77.06%, which continued to increase after 1 week of culture. Therefore, it can be confirmed that, when cultured in the prior art without drying treatment, the somatic cell embryo of Japanese Larch is not well germinated due to excessive moisture content.

도 2b에 도시한 바와 같이, 실시예 1의 체세포배는 배양 후 유근이 정상적으로 발달하여 발아가 이루어졌음을 확인할 수 있으나, 이에 비하여 비교예 1의 체세포배는 배양 후 탈분화가 이루어져 유근이 제대로 발달하지 않았음을 알 수 있다. As shown in FIG. 2B , in the somatic embryo of Example 1, it can be confirmed that germination was achieved due to the normal development of the papilla after culturing. In contrast, the somatic embryo of Comparative Example 1 was dedifferentiated after culturing, so that the papillae did not develop properly. It can be seen that it was not

결과적으로, 본 발명에 따른 상기와 같은 건조처리된 배양조건은 일본잎갈나무 체세포배의 발아율을 현저히 증진하는 효과가 있다는 것을 알 수 있다. As a result, it can be seen that the drying-treated culture conditions as described above according to the present invention have the effect of remarkably enhancing the germination rate of Japanese larch somatic embryos.

실시예 3: 발아체 재분화Example 3: Germination body redifferentiation

실시예 1에서 3주간 필터페이퍼를 이용하여 건조처리되어 배양된 일본잎갈나무 체세포배의 발아체를 필터페이퍼가 없는 새로운 발아배지 (3% 수크로스 및 0.3% 젤라이트가 첨가된 고체상 LM 배지) 상에 치상한 후, 온도 25±1℃에서 1일 16시간 조명(냉백색 형광등, 60 μmol·m-2·s-1)으로 유지되는 배양환경에서 6주간 배양함으로써 재분화된 유식물체를 얻었고, 그 결과 유식물체 사진을 도 3에 나타냈다.In Example 1, the germinal bodies of Japanese larch somatic embryos dried and cultured using filter paper for 3 weeks were placed on a new germination medium without filter paper (solid LM medium with 3% sucrose and 0.3% gelite added). After implantation, redifferentiated seedlings were obtained by culturing for 6 weeks in a culture environment maintained at a temperature of 25±1° C. and illuminated for 16 hours a day (cold white fluorescent lamp, 60 μmol·m -2 ·s -1 ), and the The resulting plant photograph is shown in FIG. 3 .

도 3에 도시된 바와 같이, 본 발명에 따라 일정기간 필터페이퍼를 이용하여 건조처리하여 배양한 후 건조처리없이 다시 배양시, 일본잎갈나무 발아체는 재분화가 잘 진행되어 줄기 및 뿌리가 제대로 발달된 유식물체로 생장하였음을 확인할 수 있다 (줄기길이 0.3~0.6 cm, 뿌리길이 3.1~3.6 cm). As shown in FIG. 3, when cultured by drying treatment using filter paper for a certain period of time according to the present invention and culturing again without drying treatment, the Japanese larch germination proceeds well with re-differentiation so that the stem and roots are properly developed. It can be confirmed that it has grown as a seedling (stem length 0.3-0.6 cm, root length 3.1-3.6 cm).

실시예 4: 유식물체의 순화를 통한 순화묘 생산Example 4: Production of purified seedlings through acclimatization of seedlings

실시예 3으로부터의 일본잎갈나무 유식물체(3~4cm)를 순화용기에 담긴 인공토양[버미큘라이트 : 피트모스 : 펄라이트 = 1 : 1 : 1(v:v:v)]에 이식하였다 (도 4 왼쪽). 이식 후 충분히 관수하고 순화용기 덮개로 덮어줌으로써 (도 4 오른쪽) 순화용기 내 습도를 80%~90%로 유지되게 하고 순화실 배양환경은 온도 25±1℃에서 1일 16시간 조명(냉백색 형광등, 60 μmol·m-2·s-1)으로 유지하면서 8주간 배양하였다. 또한 순화용기 내 유식물체의 생장 촉진을 위해 하이포넥스(NPK 7-10-6)를 1,000배액으로 희석하여 주 1회 관수 및 엽면 살포하여 배양하였고 그 결과를 표 1 및 도 5a, 도 5b (실시예 2)에 나타냈다. Japanese larch seedlings (3 to 4 cm) from Example 3 were transplanted into artificial soil [vermiculite: peat moss: perlite = 1: 1: 1 (v: v: v)] contained in a acclimatization container (left of Fig. 4) . After transplantation, irrigate sufficiently and cover with the acclimatization vessel cover (Fig. 4 right) to maintain the humidity in the acclimatization vessel at 80% to 90%, and the acclimatization chamber culture environment is illuminated for 16 hours a day at a temperature of 25±1℃ , 60 μmol·m -2 ·s -1 ) and cultured for 8 weeks. In addition, in order to promote the growth of seedlings in the acclimatization container, Hyponex (NPK 7-10-6) was diluted with a 1,000-fold solution and cultured by watering and foliar spraying once a week, and the results are shown in Table 1 and FIGS. 5a and 5b (implemented). Example 2).

비교를 위하여, 종래 기술에서와 같이, 실시예 3으로부터의 일본잎갈나무 유식물체(3~4cm)를 순화용기에 담긴 인공토양[버미큘라이트 : 피트모스 : 펄라이트 = 1 : 1 : 1(v:v:v)]에 이식한 후 (도 4 왼쪽) 충분히 관수하고 순화용기 덮개로 덮어주었다 (도 4 오른쪽). 순화실 배양환경은 상기와 동일하게 유지하면서 8주간 배양하였다. 하이포넥스(NPK 7-10-6)가 첨가되지 않은 수돗물을 이용하여 관수 및 엽면 살포하여 배양하였고 그 결과를 표 1 및 도 5a, 도 5b (비교예 2)에 나타냈다. For comparison, as in the prior art, the Japanese larch seedlings (3 to 4 cm) from Example 3 were placed in artificial soil [vermiculite: peat moss: perlite = 1: 1: 1 (v: v: v) in a acclimatization container. )] after transplantation (left side of Fig. 4), it was sufficiently watered and covered with a acclimatization container cover (Fig. 4 right side). The culture environment in the acclimatization chamber was maintained for 8 weeks while maintaining the same as above. Hyponex (NPK 7-10-6) was not added to the culture by irrigation and foliar spraying using tap water, and the results are shown in Table 1 and FIGS. 5A and 5B (Comparative Example 2).

체세포배
라인
somatic embryo
line
생존율
(%)
survival rate
(%)
유식물체seedlings 순화묘 (8주후)Pure flower seedlings (8 weeks later)
줄기길이
(cm)
stem length
(cm)
뿌리길이
(cm)
root length
(cm)
줄기길이
(cm)
stem length
(cm)
뿌리길이
(cm)
root length
(cm)
비교예 2Comparative Example 2 LK-1LK-1 85.785.7 0.40.4 3.53.5 0.90.9 11.911.9 LK-2LK-2 61.361.3 0.30.3 3.23.2 0.60.6 7.17.1 실시예 2Example 2 LK-1LK-1 91.291.2 0.40.4 3.13.1 2.42.4 12.612.6 LK-2LK-2 78.178.1 0.60.6 3.63.6 1.51.5 9.59.5

표 1에 나타낸 바와 같이, 본 발명에 따른 순화조건으로 순화된 실시예 2의 경우, 일본잎갈나무 유식물체의 순화율은 체세포배 라인 LK-1 및 LK-2 각각 91.2% 및 78.1%로 측정되어, 비교예 2의 경우 (85.7% 및 61.3%)에 비하여 유의하게 증진되었음을 확인할 수있다. 또한 본 발명에 따른 실시예 2의 순화묘의 줄기와 뿌리 길이도 각각 평균 2.4cm와 1.5cm, 12.6cm와 9.5cm로 측정되어, 비교예 2의 경우 (0.9cm와 0.6cm, 11.9cm와 7.1cm)에 비하여 생장이 유의하게 양호함을 확인할 수 있다.As shown in Table 1, in the case of Example 2 acclimatized to the acclimatization conditions according to the present invention, the acclimatization rates of Japanese larch seedlings were measured to be 91.2% and 78.1% for somatic embryo lines LK-1 and LK-2, respectively. , it can be confirmed that the significant improvement compared to the case of Comparative Example 2 (85.7% and 61.3%). In addition, the stem and root lengths of the domesticated seedlings of Example 2 according to the present invention were measured to be 2.4 cm, 1.5 cm, 12.6 cm, and 9.5 cm, respectively, respectively, in Comparative Example 2 (0.9 cm and 0.6 cm, 11.9 cm and 7.1 cm). ), it can be seen that the growth is significantly better.

도 5a 및 도 5b에 도시된 바와 같이, 본 발명에 따른 실시예 2의 순화묘들은 비교예 2에 비하여 전반적으로 생장이 양호하여 건전 순화묘로 생장하였음을 확인할 수 있다. As shown in FIGS. 5A and 5B , it can be confirmed that the domesticated seedlings of Example 2 according to the present invention had better overall growth than those of Comparative Example 2, and thus grew into healthy purified seedlings.

따라서 상기와 같은 본 발명에 따른 순화조건에 따라 순화시 생육이 양호하여 산지조림용으로 활용할 수 있는 건전 일본잎갈나무 순화묘를 생산할 수 있음을 알 수 있다. Therefore, it can be seen that, according to the acclimatization conditions according to the present invention as described above, it is possible to produce healthy Japanese larch seedlings that can be used for afforestation because of good growth during acclimatization.

Claims (12)

i) 일본잎갈나무 체세포배를 준비하는 단계;
ii) 발아배지 상에 필터페이퍼를 올려놓은 후 일본잎갈나무 체세포배를 치상하여 배양하여 발아시키는 단계;
iii) 발아체를 필터페이퍼가 없는 발아배지 상에 옮겨서 배양하여 재분화하여 유식물체를 얻는 단계; 및
iv) 유식물체를 80~90%의 습도가 유지되는 순화용기 내 인공토양에 이식하여 하이포넥스를 처리하여 배양하여 순화묘를 얻는 단계;를 포함하는 일본잎갈나무 조직배양 묘목의 생산방법.
i) preparing Japanese larch somatic embryos;
ii) placing a filter paper on the germination medium and then fertilizing and culturing the Japanese Larch somatic embryo;
iii) transferring the germination body onto a germination medium without filter paper, culturing and re-differentiation to obtain a seedling; and
iv) transplanting the seedlings into artificial soil in an acclimatization container maintained at a humidity of 80 to 90%, and culturing them with Hyponex to obtain purified seedlings; a method of producing Japanese larch tissue culture seedlings, including.
제 1항에 있어서, 단계 ii)에서 배양은 2~4 주간 수행하는 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 1, wherein the culturing in step ii) is performed for 2 to 4 weeks.
제 2항에 있어서, 단계 ii)에서 배양은 3 주간 수행하는 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 2, wherein the culturing in step ii) is performed for 3 weeks.
제 1항에 있어서, 발아배지는 2~4% 수크로스 및 0.2~0.4% 젤라이트가 첨가된 고체상의 LM 배지인 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 1, wherein the germination medium is a solid LM medium to which 2-4% sucrose and 0.2-0.4% gelite are added.
제 1항에 있어서, 필터페이퍼는 정량여과지인 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 1, wherein the filter paper is a quantitative filter paper.
제 1항에 있어서, 배양은 24~26℃에서 1일 15~17시간 50~70 μmol·m-2·s-1 범위 내에서 조명이 유지되는 조건하에 수행하는 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The Japanese larch tissue according to claim 1, wherein the culturing is carried out under conditions in which illumination is maintained within the range of 50-70 μmol·m -2 ·s -1 for 15 to 17 hours a day at 24 to 26°C. A method for producing cultured seedlings.
제 1항에 있어서, 단계 iii)에서 배양은 4~8 주간 수행하는 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 1, wherein the culturing in step iii) is performed for 4 to 8 weeks.
제 1항에 있어서, 체세포배는 자엽단계 체세포배인 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 1, wherein the somatic embryo is a cotyledon stage somatic embryo.
제 1항에 있어서, 인공토양은 버미큘라이트, 피트모스 및 펄라이트가 1 : 1 : 1(v:v:v)의 비로 혼합된 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 1, wherein the artificial soil is a mixture of vermiculite, peat moss and perlite in a ratio of 1:1:1 (v:v:v).
제 1항에 있어서, 하이포넥스 처리는 하이포넥스를 1,000배 희석하여 1주일에 1회 관수나 엽면 살포로 처리하는 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 1, wherein the Hyponex treatment is performed by watering or foliar spraying once a week by diluting the Hyponex 1,000 times.
제 1항에 있어서, 단계 iv)에서 배양 기간은 4~8 주간인 것을 특징으로 하는 일본잎갈나무 조직배양 묘목의 생산방법.
The method according to claim 1, wherein the culture period in step iv) is 4 to 8 weeks.
제 1항 내지 제 11항 중 어느 한 항에 따른 방법에 의해 생산된 일본잎갈나무 묘목.A Japanese larch seedling produced by the method according to any one of claims 1 to 11.
KR1020200000111A 2020-01-02 2020-01-02 Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi KR102408810B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200000111A KR102408810B1 (en) 2020-01-02 2020-01-02 Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200000111A KR102408810B1 (en) 2020-01-02 2020-01-02 Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi

Publications (2)

Publication Number Publication Date
KR20210087175A true KR20210087175A (en) 2021-07-12
KR102408810B1 KR102408810B1 (en) 2022-06-15

Family

ID=76858993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200000111A KR102408810B1 (en) 2020-01-02 2020-01-02 Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi

Country Status (1)

Country Link
KR (1) KR102408810B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115088618A (en) * 2022-07-11 2022-09-23 中国科学院分子植物科学卓越创新中心 Method for efficiently regenerating larch and establishing in-vitro cutting orchard

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890009242A (en) * 1987-12-31 1989-08-01 이정오 Dried seed and its manufacturing method
JPH04222528A (en) * 1990-12-20 1992-08-12 Japan Tobacco Inc Method for rearing plant seedling
KR20070049889A (en) * 2005-11-09 2007-05-14 대한민국(관리부서 : 산림청 국립산림과학원장) Propagation method of japanese larch(larix leptolepis) through somatic embryogenesis technique
KR100889342B1 (en) * 2007-10-15 2009-03-20 대한민국 Propagation method of liriodendron tulipifera using somatic embryogenesis technique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890009242A (en) * 1987-12-31 1989-08-01 이정오 Dried seed and its manufacturing method
JPH04222528A (en) * 1990-12-20 1992-08-12 Japan Tobacco Inc Method for rearing plant seedling
KR20070049889A (en) * 2005-11-09 2007-05-14 대한민국(관리부서 : 산림청 국립산림과학원장) Propagation method of japanese larch(larix leptolepis) through somatic embryogenesis technique
KR100889342B1 (en) * 2007-10-15 2009-03-20 대한민국 Propagation method of liriodendron tulipifera using somatic embryogenesis technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115088618A (en) * 2022-07-11 2022-09-23 中国科学院分子植物科学卓越创新中心 Method for efficiently regenerating larch and establishing in-vitro cutting orchard
CN115088618B (en) * 2022-07-11 2023-03-07 中国科学院分子植物科学卓越创新中心 Method for efficiently regenerating larch and establishing in-vitro cutting orchard

Also Published As

Publication number Publication date
KR102408810B1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
CN103190344B (en) Tissue culture method of fargesii
CN113348954A (en) Sweet cherry root zone limited cultivation method in warm and humid regions in south
Abbaszadeh et al. An effective nutrient media for asymbiotic seed germination and in vitro seedling development of phalaenopsis ‘Bahia Blanca’
CN114424732A (en) Winter wheat breeding method for multiple generations in one year
KR20080113322A (en) Induction method of protocorm like body from paphiopedilum young plant and proliferation method thereof
KR102408810B1 (en) Production method having high improved productivity for tissue cultured seedlings of Larix kaempferi
WO2022127107A1 (en) Indoor planting method for preventing soybean vines from climbing to accelerate soybean growth
CN101743908A (en) Tissue culture, rapid propagation and cultivation method of grevillea banksii
KR101641301B1 (en) Method for producing apple tree
CN106879473B (en) A kind of method that larch Vitro Plant occurs
KR102612091B1 (en) Promoting methods for rooting of in vitro shoots of Diospyros kaki and mass propagation of plants through these techniques
KR20140037510A (en) Multiple propagation methods of in vitro plantlets derived from node cultures of aronia using tissue culture techniques
KR102475410B1 (en) Method for mass propagation of tissue culture-derived plants of Tilia mandshurica Rupr. & Maxim.
CN114027040B (en) Method for raising seedlings of old branches of hydrangea by cutting
CN116058236A (en) Rapid propagation method of Botrytis cinerea spores
CN115316247A (en) Plant factory sponge block water culture seedling method
CN112931207B (en) Seedling growing method of virus-free test-tube taro
KR101064947B1 (en) The mass producing method of regenerated plant from the leaf segment of calanthe discolor
CN101341846B (en) Same-root continuous cultivation method for lianas vegetables in greenhouse
CN109769676B (en) Soilless culture method for promoting rapid flowering of rhododendron lapponicum good seedlings
CN108552057B (en) Method for establishing efficient recycling system of topaz
Modgil et al. Commercially feasible protocol for rooting and acclimatization of micropropagated apple rootstocks
KR20210156449A (en) Method for culturing cucumber scion and rootstock in plant factory using artificial lights
MacVicar et al. A further investigation of the replacement of boron by indoleacetic acid
KR20150012566A (en) Regenerating Method of watermelon variety

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right