KR20210072217A - 안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유 - Google Patents

안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유 Download PDF

Info

Publication number
KR20210072217A
KR20210072217A KR1020190161976A KR20190161976A KR20210072217A KR 20210072217 A KR20210072217 A KR 20210072217A KR 1020190161976 A KR1020190161976 A KR 1020190161976A KR 20190161976 A KR20190161976 A KR 20190161976A KR 20210072217 A KR20210072217 A KR 20210072217A
Authority
KR
South Korea
Prior art keywords
oil
iso
mixing
fuel oil
filter
Prior art date
Application number
KR1020190161976A
Other languages
English (en)
Inventor
정해원
김철현
성대진
정용권
오현호
최현
정성호
강슬기
김영대
Original Assignee
현대오일뱅크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대오일뱅크 주식회사 filed Critical 현대오일뱅크 주식회사
Priority to KR1020190161976A priority Critical patent/KR20210072217A/ko
Priority to EP20897112.7A priority patent/EP4069804A1/en
Priority to US17/782,381 priority patent/US20230002683A1/en
Priority to PCT/KR2020/005521 priority patent/WO2021112345A1/en
Priority to AU2020396655A priority patent/AU2020396655A1/en
Priority to CA3155992A priority patent/CA3155992A1/en
Priority to JP2022533638A priority patent/JP2023505774A/ja
Priority to CN202080084326.0A priority patent/CN114761521A/zh
Publication of KR20210072217A publication Critical patent/KR20210072217A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0453Petroleum or natural waxes, e.g. paraffin waxes, asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/547Filtration for separating fractions, components or impurities during preparation or upgrading of a fuel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 2종 이상의 유분들을 혼합하여 연료유를 제조함에 있어서, (1) 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하는 혼합단계; 및 (2) 상기 혼합단계에서 얻는 유분 혼합물을 필터를 통하여 여과하는 여과단계;를 포함하여 이루어지는, 안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유에 관한 것이다.

Description

안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유{Method of producing stabilized fuel oil and the same produced therefrom}
본 발명은 2종 이상의 유분들을 혼합하여 연료유를 제조함에 있어서, 아스팔텐 함유 유분과 고-포화탄화수소 유분의 혼합에 의해 얻는 유분 혼합물을 소정의 온도와 압력하에 필터로 여과하여 제조하는 안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유에 관한 것이다.
원유는 포화탄화수소, 방향족 탄화수소, 레진, 아스팔텐으로 구성되어 있다. 이들은 각각의 극성도에 의해 서로에 대한 각기 다른 용해력을 나타내며, 이들 극성도에 따라 원유 정제에 의해 생산되는 탄화수소 오일의 안정성에 영향을 주게 된다. 포화탄화수소는 비극성이며, 방향족 탄화수소, 레진, 아스팔텐 순으로 극성도가 증가한다. 즉, 탄화수소 오일을 구성하는 포화탄화수소, 방향족 탄화수소, 레진, 아스팔텐의 4가지 성분들은 서로에 대한 친화력이 상이하며, 예를 들어, 포화탄화수소는 아스팔텐과 상호 용해되지 않는 반면에, 방향족 탄화수소와는 상호 친화력이 높아 상호 용해가 잘 이루어진다.
탄화수소 오일의 안정성에 가장 큰 영향을 미치는 아스팔텐은 극성 작용기와 비극성 작용기를 모두 갖는 레진에 의해 안정화된 마이셀 구조의 콜로이드 상태로 탄화수소 오일 중에 분산되어 존재한다.
마이셀 상태로 안정화된 콜로이드로서 존재하는 아스팔텐은 압력, 온도 및/또는 외부 환경 변화에 의해 안정화 상태가 깨지면서 아스팔텐 분자 간의 강한 π - π 결합에 의해 입자 뭉침 현상이 발생하게 되어, 결국 고체상으로 침전된다.
원유 및 탄화수소 오일의 블렌딩 조건에 따라, 아스팔텐의 침전 현상이 심화될 수 있으며, 아스팔텐의 침전 현상이 발생된 오일은 배관, 히터, 열교환기 등에서의 파울링 및 코크 발생, 연소 노즐, 필터, 원심분리기, 배관 등의 막힘, 폐색, 오일 저장 탱크 슬러리 발생 등의 문제가 있다.
정유 공정은 원유를 상압 증류 및/또는 감압 증류를 수행하여 납사, 등유, 디젤 등 연료유를 생산한다. 수첨 분해, 열 분해, 유동화 촉매 분해, 용매 추출, 수첨 탈황 등의 고도화 프로세스를 통해 상압 증류나 감압 증류에서 얻는 잔사유로부터 납사, 등유, 디젤 등 연료유를 추가적으로 더 생산할 수 있다. 상기 명시한 고도화 프로세스의 원료로 사용되는 잔사유는 상압 잔사유, 감압 잔사유, 잔사유 탈황 오일, 잔사유 촉매분해 오일, 잔사유 열분해 오일, 잔사유 수첨 분해 오일, 잔사유 용매 추출 오일, 피치 및 기타 오일 등의 제조에 사용될 수 있다.
각기 다른 공정에서 발생하는 유분(즉, 탄화수소 오일)을 혼합하여 상기 공정의 원료로 사용할 경우, 원료 혼합 탱크, 히터, 열교환기 등에서 아스팔텐 침전, 파울링, 플러깅 등의 문제가 발생할 수 있다.
최근 국제해사기구(IMO;International Marine Organization)의 선박유 황 함량 규제가 2020년부터 적용됨에 따라, 해상 선박 연료유의 황 규제가 0.5%로 강화되며, 그에 따라 정유사 및 선박유 공급사에서는 저황 선박 연료를 생산하여 선박유로 공급 해야 한다. IMO 2020 규격을 만족하는 저유황 선박유를 제조하기 위하여는, 황분이 높은 잔사유와 원유 증류 오일과의 혼합을 통해 생산 할 수 있다. 원유 증류 오일은 수소첨가 탈황공정을 거치기 때문에 황분이 현저히 낮아 선박 연료 블렌딩 오일로 적합하나, 일반 선박유에 비해 높은 가격으로 거래되고 있어서 원유 증류 오일을 선박 연료유에 블렌딩 하는 방법은 바람직하지 않다. 또한, 원유 증류 오일은 비극성도가 높은 파라핀 및 납세닉 계열의 포화탄화수소 함량이 높기 때문에 아스팔텐의 안정성이 현격히 저하되어 아스팔텐 침전을 유발시킬 수 있다.
다른 방법으로는 황분이 높은 잔사유를 탈황 공정을 통하여 황분을 감소시켜 규제에 적합한 연료유를 생산할 수 있다. 아스팔텐과 레진, 아로마틱 화합물, 포화탄화수소 등의 성분이 안정한 평형 상태에 있는 잔사유 원료를 수첨탈황 반응을 통해 황을 제거하게 되면, 아로마틱 성분과 레진 성분의 이중결합이 수소 첨가 반응이 발생하여 포화탄화수소로 전환된다. 그러나, 황분이 높은 잔사유의 수첨 탈황으로 인하여 원료 성분의 아스팔텐 안정화 평형 상태가 포화탄화수소 함량 증가로 인하여 불안정 상태로 전이되면서 아스팔텐이 침전되는 문제가 발생하게 된다. 뿐만 아니라, 잔사유 수첨 탈황 공정으로 제조된 저유황 탄화수소 오일은 포화탄화수소 함량이 높아 아스팔텐 함유 탄화수소 오일과의 혼합 시, 아스팔텐을 침전시키는 요소로 작용하여 아스팔텐이 안정화된 연료유를 제조하기 어렵다.
대한민국 등록특허공보 등록번호 제10-1886858호(발명의 명칭: 중질 탄화수소의 안정화 방법)는 저장 탱크 및/또는 운송 라인에서의 슬러지 형성을 저감하고 탄화수소 수율을 증대시키기 위한 중질 탄화수소의 안정화 방법으로서 탄소수가 10∼범위인 중질 나프타 용매 또는 파라핀계 용매와 공급원료를 혼합하여 공급원료 중에 존재하는 비교적 소량의 소정 부분의 아스팔텐을 용매로 응집시키는 단계, 침전물을 분리하고 플래싱 처리하여 경질 탄화수소 유분을 회수하는 단계, 중질 탄화수소/용매 상을 플래싱 처리하는 단계 및 용매를 회수하여 가치 있는 생성물 수율에 현저한 영향을 주지 않으면서 중질 탄화수소를 안정화시키는 단계를 포함하는 방법을 개시하고 있다.
따라서 아스팔텐이 안정화된 연료유를 간단하게 그리고 효과적으로 제조할 수 있는 방법이 요구된다.
상기 설명한 종래의 기술의 단점을 극복하기 위하여 아스팔텐이 안정화된 탄화수소 오일을 제조 하고자 한다.
본 발명에 따른 안정화된 연료유의 제조방법은, 2종 이상의 유분들을 혼합하여 연료유를 제조함에 있어서, (1) 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하는 혼합단계; 및 (2) 상기 혼합단계에서 얻는 유분 혼합물을 필터를 통하여 여과하는 여과단계;를 포함하여 이루어진다.
상기 아스팔텐 함유 유분은 원유, 상압 잔사유, 감압 잔사유, 잔사유 탈황 오일, 잔사유 촉매분해 오일, 잔사유 열분해 오일, 잔사유 수첨 분해 오일, 잔사유 용매 추출 오일, 피치 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있으나, 이들로 한정되는 것으로 의도되지 않는다.
상기 고-포화탄화수소 유분은 원유 증류 오일, 열분해 오일, 촉매 분해 오일, 수첨 분해 오일, 수첨 탈황 오일, 알칸계 오일 및 그 유도체 오일, 이소-알칸계 오일 및 그 유도체 오일, 사이클로알칸계 오일 및 그 유도체 오일 그리고 다환 납세닉계 오일 및 그 유도체 오일 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있으나, 이들로 한정되는 것으로 의도되지 않는다.
상기 알칸계 오일은 메탄, 에탄, 프로탄, 부탄, 펜탄, 헥탄, 헵탄, 옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있다.
상기 이소-알칸계 오일은 이소-프로판, 이소-부탄, 이소-펜탄, 이소-헥탄, 이소-헵탄, 이소-옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있다.
상기 사이클로알칸계 오일은 사이클로펜탄, 사이클로헥산, 사이클로헵탄, 사이클로옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있다.
상기 필터는 0.1 내지 20 ㎛의 범위 이내의 망목 내경을 갖는 것일 수 있다.
상기 여과단계에서 여과는 30 내지 200℃의 범위 이내의 온도에서 필터 전후에서의 1 mbar 내지 100 bar의 범위 이내의 압력차로 실행될 수 있다.
상기 혼합단계와 여과단계 사이에 혼합단계에서 수득되는 유분 혼합물을 정치시키는 정치단계를 더 포함할 수 있다.
정치단계는 혼합단계에서 수득되는 유분 혼합물을 0 내지 100℃의 온도범위에서 대기압 하에서 10 분 내지 72 시간 동안 방치하는 것으로 이루어질 수 있다.
본 발명에 따른 안정화된 연료유는, 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하여 얻는 유분 혼합물을 필터를 통하여 여과하여 얻어진다.
본 발명에 의해, 석유 정제의 여러 공정에서 고품질 유류를 생산하고 남는 다양한 유분들, 특히 여러 공정의 잔사유와 같이 아스팔텐 함량이 높은 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하여 얻는 유분 혼합물을 소정의 온도와 압력하에 여과하는 것에 의하여 높은 안정성을 갖는 연료유를 제조할 수 있다. 특히 아스팔텐 함유 유분이 다른 유분, 특히 고-포화탄화수소 유분과 혼합될 때 아스팔텐이 침출되는 문제를 해결할 수 있다. 또한, 유분 혼합물을 필터로 여과하는 것에 의하여 유분 혼합물을 안정화시켜 연료유를 생산하기 때문에 수율이 높고, 생산비가 저렴하며, 다종, 다양한 유분들 및 혼합비 등에 제약을 받지 않아 연료유의 생산성을 향상시킬 수 있다.
본 발명에 따른 안정화된 연료유의 제조방법은, 2종 이상의 유분들을 혼합하여 연료유를 제조함에 있어서, (1) 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하는 혼합단계; 및 (2) 상기 혼합단계에서 얻는 유분 혼합물을 필터를 통하여 여과하는 여과단계;를 포함하여 이루어짐을 특징으로 한다.
석유 정제의 여러 공정에서 고품질 유류를 생산하고 남는 다양한 유분들을 혼합하여 연료유를 제조함으로써 연료유 수율을 높이고자 하는 노력이 경주되고 있으나, 유분 중에 잔류하는 아스팔텐, 특히 아스팔텐 함량이 높은 아스팔텐 함유 유분중의 아스팔텐은 비극성도가 높은 고-포화탄화수소 유분과 혼합되는 경우, 혼합에 의해 불안정화되고, 침전되는 문제점이 있다. 즉, 안정한 상태의 유분에 포화탄화수소 함량이 높은 유분을 혼합하는 경우에서도, 혼합에 의하여 안정한 상태의 유분 중에 존재하는 아스팔텐의 마이셀 구조가 파괴되어 아스팔텐이 석출될 수 있게 된다.
원유 증류 오일과 같은 고-포화탄화수소 유분은 포화탄화수소 함량이 높아 아스팔텐 함유 유분과 혼합되는 경우, 유분 혼합물의 안정화에 불리하다. 특히 수소첨가 분해 공정을 통해 생산되는 유분은 포화탄화수소 함량이 원유 증류 오일에 비해 높아 아스팔텐의 안정화에 매우 불리한 오일이다. 반면, 열분해 오일이나 촉매 분해 오일은 상대적으로 아로마틱 화합물 함량이 높으며, 아로마틱 화합물의 아스팔텐과의 친화력이 포화탄화수소에 비해 높아 아스팔텐 함유 유분의 안정화 개선에 도움을 줄 수 있다.
정유 공정에서 C3, C5 또는 C7 용매로 추출한 아스팔텐 제거 오일과 같은 아스팔텐 제거 유분은아스팔텐을 함유하고 있지 않아 블렌딩 오일로 매우 적합하나, 황분을 다량 함유하고 있어 저유황 연료유와 같이 황분이 낮은 오일로서는 적합하지 않다. 유동화 촉매 분해 공정의 연료로 아스팔텐 제거 오일을 사용하기도 하며, 촉매 성능을 유지하기 위하여 탈황, 탈질, 탈 메탈 등의 전처리 공정을 거쳐 유동화 촉매 분해 공정의 원료로 사용된다. 유동화 촉매 분해 공정의 원료의 전처리는 수소 첨가 반응을 거치게 되므로 아스팔텐 제거 오일의 황분은 매우 낮아지며, 아로마틱 화합물이나 레진 성분 등의 수소 포화반응이 일어나 포화탄화수소 함량이 매우 높은 오일로 전환된다. 이러한 탈황 공정을 거친 아스팔텐 제거 오일은 황분이 낮아 저유황 연료유로 적합하나, 아스팔텐 함유 유분과의 혼합에 의한 연료유의 제조에는 적합하지 않다.
본 발명에서는 이러한 다종다양한 유분들을 혼합하여 연료유를 제조함에 있어서, 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하고, 이를 여과하여 안정화시킴으로써 안정화된 연료유를 제공할 수 있다. 즉, 아스팔텐은 특히 고-포화탄화수소 유분과 혼합되는 경우에 안정화된 평형 상태가 깨지면서 일부 아스팔텐은 침전되고, 일부 아스팔텐은 새로운 혼합 조성에서 평형 상태를 이루어 콜로이드 상태로 안정하게 존재할 수 있게 되며, 2종 이상의 유분의 혼합 시 침전되는 아스팔텐을 제거하여 주면 안정화된 연료유를 제조할 수 있다. 고체상으로 침전된 아스팔텐은 필터에 통과시킴으로써 제거할 수 있으며, 필터를 통과한 유분 혼합물은 아스팔텐이 안정화 되어 있기 때문에 선박유나 기타 연료유로 사용하기에 매우 적합하다.
상기 아스팔텐 함유 유분은 원유, 상압 잔사유, 감압 잔사유, 잔사유 탈황 오일, 잔사유 촉매분해 오일, 잔사유 열분해 오일, 잔사유 수첨 분해 오일, 잔사유 용매 추출 오일, 피치 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있으나, 이들로 한정되는 것으로 의도되지 않는다.
상기 고-포화탄화수소 유분은 원유 증류 오일, 열분해 오일, 촉매 분해 오일, 수첨 분해 오일, 수첨 탈황 오일, 알칸계 오일 및 그 유도체 오일, 이소-알칸계 오일 및 그 유도체 오일, 사이클로알칸계 오일 및 그 유도체 오일 그리고 다환 납세닉계 오일 및 그 유도체 오일 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있으나, 이들로 한정되는 것으로 의도되지 않는다.
상기 알칸계 오일은 메탄, 에탄, 프로탄, 부탄, 펜탄, 헥탄, 헵탄, 옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있다.
상기 이소-알칸계 오일은 이소-프로판, 이소-부탄, 이소-펜탄, 이소-헥탄, 이소-헵탄, 이소-옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있다.
상기 사이클로알칸계 오일은 사이클로펜탄, 사이클로헥산, 사이클로헵탄, 사이클로옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택될 수 있다.
원유 증류 오일, 열분해 오일, 촉매 분해 오일, 수첨 분해 오일, 수첨 탈황 오일 등에는 납사, 등유, 디젤, 미전환유 등을 포함할 수 있다.
상기 필터는 0.1 내지 20 ㎛의 범위 이내의 망목 내경을 갖는 것일 수 있다. 필터의 망목 내경이 0.1 ㎛ 미만인 경우, 필터 전후 차압이 필요 이상으로 증가하게 되어 안정화된 연료유의 제조 시간과 비용이 증가하게 되는 문제점이 있을 수 있고, 20 ㎛를 초과하는 경우, 침전된 아스팔텐이 필터에 의해 제거되지 않고 필터를 통과하게 되어 연료유가 충분히 안정화되지 못하게 되는 문제점이 있을 수 있다.
여러 가지로 시험한 결과, 여과 시의 여과 온도는 -20 내지 400℃이며, -20℃ 미만의 온도에서는 유분 혼합물의 유동성이 저하되고, 유분 혼합물 중의 왁스 성분이 결정화 됨에 따라 필터가 막히는 문제점이 있을 수 있고, 400℃를 초과하는 경우, 유분 혼합물을 구성하는 유분의 기화 및 분해가 일어나고, 유분 혼합물의 조성이 달라지는 문제점이 있을 수 있다. 여과 온도는 바람직하게는 30 내지 200℃의 범위 이내가 될 수 있으며, 여과 시의 여과 압력은 특별히 한정하지 않으며, 필터 전후에서의 압력차는 1 mbar 내지 100 bar의 범위 이내가 바람직하며, 1 mbar 미만의 압력에서는 압력차가 너무 낮아 여과가 잘 이루어지지 않을 수 있다.
본 발명에 따른 안정화된 연료유의 제조방법은, 상기 혼합단계와 여과단계 사이에 혼합단계에서 수득되는 유분 혼합물을 정치시키는 정치단계를 더 포함할 수 있으며, 상기 정치단계는 혼합단계에서 수득되는 유분 혼합물을 0 내지 100℃의 온도범위, 바람직하게는 30 내지 70℃에서 대기압 하에서 10 분 내지 72 시간 동안 방치하는 것으로 이루어질 수 있다. 상기한 바와 같은 온도와 압력 하에서 유분 혼합물을 방치하는 정치단계에 의하여 혼합단계에서 석출되는 아스팔텐이 침강되어 유분 혼합물 중의 석출된 아스팔텐 함량을 감소시키고, 후속하는 여과단계에서 여과효율을 높이고, 필터의 수명을 연장시킬 수 있다.
본 발명에 따른 안정화된 연료유는, 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하여 얻는 유분 혼합물을 필터를 통하여 여과하여 얻어진다.
이하 본 발명의 제조방법을 실시예에 의하여 상세히 설명하기로 한다.
[실시예 1 내지 3 및 비교예 1]
아스팔텐 함유 유분으로서 상압 잔사유를 수첨 탈황 공정(RDS: residue de-sulfurization)으로 처리한 탄화수소 오일(t-AR: treated atmospheric residue)과 고-포화탄화수소 유분으로서 C5 용매(n-펜탄) 추출 아스팔텐 제거 오일(DAO: de-asphalted oil)을 수첨 분해 공정으로 처리한 탄화수소 오일(t-DAO: treated de-asphalted oil)을 하기 표 1에 나타낸 혼합비로 혼합하였다. 혼합으로 얻어진 유분 혼합물을 70℃에서 5 ㎛ 및 11 ㎛의 망목 내경을 갖는 필터(여과지)를 사용하고, 필터 전후의 압력차를 1 bar로 하여 각각 여과하여 아스팔텐을 제거하여 연료유를 수득하였다. 수득된 연료유는 ASTM D 4740-02 테스트 방법에 따라 안정성을 평가하였으며, 그 결과를 하기 표 1에 나타내었다. 단, 비교예 1은 t-AR을 단독으로 사용하였으며, 따라서 혼합 단계를 거치지 않고, 바로 여과하였다.
[실시예 4 내지 6 및 비교예 2]
아스팔텐 함유 유분으로서 텍사스산 경질 원유에서 생산된 상압 잔사유(WTI-AR)와 고-포화탄화수소 유분으로서 수첨 분해 경유(HCGO, hydrocracking gas oil)를 하기 표 1에 나타낸 혼합비로 혼합하였다. 혼합으로 얻어진 유분 혼합물을 70℃에서 5 ㎛ 및 11 ㎛의 망목 내경을 갖는 필터(여과지)를 사용하고, 필터 전후의 압력차를 1 bar로 하여 각각 여과하여 아스팔텐을 제거하여 연료유를 수득하였다. 수득된 연료유는 ASTM D 4740-02 테스트 방법에 따라 안정성을 평가하였으며, 그 결과를 하기 표 1에 나타내었다. 단, 비교예 2는 WTI-AR을 단독으로 사용하였으며, 따라서 혼합 단계를 거치지 않고, 바로 여과하였다.
Figure pat00001
[실시예 7 및 8]
상압 잔사유를 수첨 탈황 공정(RDS: residue de-sulfurization)으로 처리한 탄화수소 오일(t-AR: treated atmospheric residue), 유동층 촉매 분해 공정(FCC: Fluidized catalytic cracking)에서 생산된 슬러리 오일(SLO: slurry oil), 유동층 촉매 분해 공정에서 생산된 경질 사이클 오일(LCO: light cycle oil)과, C9+ 방향족 용매(H-Aro: heavy aromatic solvent ; BTX 생산 공정에서 자일렌(xylene)을 분리하고 증류탑 바닥에 남는 heavy fraction)를 하기 표 2에 나타낸 혼합비로 혼합하였다.
혼합으로 얻어진 유분 혼합물을 70℃에서 5 ㎛, 8 ㎛ 및 11 ㎛의 망목 내경을 갖는 필터(여과지)를 사용하고, 필터 전후의 압력차를 1 bar로 하여 각각 여과하여 아스팔텐을 제거하여 연료유를 수득하였다. 수득된 연료유는 ASTM D 4740-02 테스트 방법에 따라 안정성을 평가하였으며, 그 결과를 하기 표 2에 나타내었다.
Figure pat00002
[실시예 9]
상압 잔사유를 수첨 탈황 공정(RDS: residue de-sulfurization)으로 처리한 탄화수소 오일(t-AR: treated atmospheric residue), 유동층 촉매 분해 공정(FCC: Fluidized catalytic cracking)에서 생산된 슬러리 오일(SLO: slurry oil), 유동층 촉매 분해 공정에서 생산된 경질 사이클 오일(LCO: light cycle oil)과, C9+ 방향족 용매(H-Aro: heavy aromatic solvent)를 하기 표 3에 나타낸 혼합비로 혼합하였다. 혼합으로 얻어진 유분 혼합물을 50℃에서 5 ㎛의 망목 내경을 갖는 필터(여과지)를 사용하고, 필터 전후의 압력차를 1 bar로 하여 각각 여과하여 아스팔텐을 제거하여 연료유를 수득하였다. 수득된 연료유는 ASTM D 4740-02 테스트 방법에 따라 안정성을 평가하였으며, 그 결과를 하기 표 3에 나타내었다.
[실시예 10]
상압 잔사유를 수첨 탈황 공정(RDS: residue de-sulfurization)으로 처리한 탄화수소 오일(t-AR: treated atmospheric residue), 유동층 촉매 분해 공정(FCC: Fluidized catalytic cracking)에서 생산된 슬러리 오일(SLO: slurry oil), 유동층 촉매 분해 공정에서 생산된 경질 사이클 오일(LCO: light cycle oil)과, C9+ 방향족 용매(H-Aro: heavy aromatic solvent)를 하기 표 3에 나타낸 혼합비로 혼합하였다. 혼합으로 얻어진 유분 혼합물을 100℃에서 5 ㎛의 망목 내경을 갖는 필터(여과지)를 사용하고, 필터 전후의 압력차를 1 bar로 하여 각각 여과하여 아스팔텐을 제거하여 연료유를 수득하였다. 수득된 연료유는 ASTM D 4740-02 테스트 방법에 따라 안정성을 평가하였으며, 그 결과를 하기 표 3에 나타내었다.
Figure pat00003
표 1 내지 표 3에 나타난 결과를 기준으로 본 발명의 효과를 설명하면 다음과 같다:
1. 아스팔텐 함유 유분과 고-포화탄화수소 유분의 유분 혼합물을 여과하여 얻는 실시예들의 연료유들은 모두 여과에 의하여 안정성이 크게 개선됨을 확인할 수 있었다.
2. 아스팔텐 함유 유분과 고-포화탄화수소 유분의 유분 혼합물의 안정성이 아스팔텐 함유 유분 단독에 비하여 저하되나(비교예 1과 실시예 1 및 비교예 2와 실시예 6), 여과에 의하여 안정성이 필터를 통한 여과 이전에 비해 동일하거나 향상됨을 확인할 수 있었다.
3. 아스팔텐 함유 유분과 고-포화탄화수소 유분의 유분 혼합물의 안정성은 필터의 망목 내경이 작을수록 더 높아지며, 특히 실험에 사용된 필터들 중에서는 5 ㎛ 필터를 사용하는 경우에 가장 안정성이 향상됨을 확인할 수 있었다.
4. 아스팔텐 함유 유분과 고-포화탄화수소 유분이 2종 초과 다종(실시예 7 및 8의 경우, 4종)으로 혼합되는 경우에서도 여과에 의하여 안정성이 필터를 통한 여과 이전에 비해 동일하거나 향상되었으며, 특히 실험에 사용된 필터들 중에서는 5 ㎛ 필터를 사용하는 경우에 가장 안정성이 향상됨을 확인할 수 있었다.
5. 아스팔텐 함유 유분을 방향족 함량이 높은 유분을 블렌딩 하여도 여전히 불안정한 상태로 있으나, 이를 여과하면 안정한 유분으로 전환되는 것을 확인할 수 있었다.
6. 또한, 여과 시, 온도가 높을수록 유분의 유동도가 향상되어 여과속도를 높일 수 있으나(실시예 9의 50℃에서의 30 분에서 실시예 7의 70에서의 10 분으로 그리고 실시예 10의 100℃에서의 5 분으로 여과속도 향상), 100℃를 초과하여 온도가 더 높아져도 여과속도에서는 큰 변화가 없어 가열을 위한 시간 및 에너지 소모 등을 종합적으로 고려할 때 30 내지 70℃의 온도범위가 바람직함을 확인할 수 있었다.
7. 모든 유분 혼합물들에 대하여 실험에 사용된 필터들 중에서는 5 ㎛ 필터를 사용하는 경우에 가장 안정성이 향상됨을 확인할 수 있었다(Spot Rating 1).
8. 비록, 상기 실시예들에서는 t-AR 및 t-DAO 만을 사용하여 혼합유에 관해서만 기술하였으나, 고품질 유류를 생산하고 남은, 위에 열거한 바와 같은, 다른 유분들에 대하여도 유사한 결과를 얻을 수 있었다.
지금까지 본 발명을 구체적인 실시예에 관하여 설명하였으나, 본 발명범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 청구의 범위뿐 아니라 이 청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (12)

  1. 2종 이상의 유분들을 혼합하여 연료유를 제조함에 있어서,
    (1) 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하는 혼합단계; 및
    (2) 상기 혼합단계에서 얻는 유분 혼합물을 필터를 통하여 여과하는 여과단계;
    를 포함하여 이루어지는, 안정화된 연료유의 제조방법.
  2. 제1항에 있어서, 상기 아스팔텐 함유 유분이 원유, 상압 잔사유, 감압 잔사유, 잔사유 탈황 오일, 잔사유 촉매분해 오일, 잔사유 열분해 오일, 잔사유 수첨 분해 오일, 잔사유 용매 추출 오일, 피치 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택되는, 안정화된 연료유의 제조방법.
  3. 제1항에 있어서, 상기 고-포화탄화수소 유분이 원유 증류 오일, 열분해 오일, 촉매 분해 오일, 수첨 분해 오일, 수첨 탈황 오일, 알칸계 오일 및 그 유도체 오일, 이소-알칸계 오일 및 그 유도체 오일, 사이클로알칸계 오일 및 그 유도체 오일 그리고 다환 납세닉계 오일 및 그 유도체 오일 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택되는, 안정화된 연료유의 제조방법.
  4. 제3항에 있어서, 상기 알칸계 오일이 메탄, 에탄, 프로탄, 부탄, 펜탄, 헥탄, 헵탄, 옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택되는, 안정화된 연료유의 제조방법.
  5. 제3항에 있어서, 상기 이소-알칸계 오일이 이소-프로판, 이소-부탄, 이소-펜탄, 이소-헥탄, 이소-헵탄, 이소-옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택되는, 안정화된 연료유의 제조방법.
  6. 제3항에 있어서, 상기 사이클로알칸계 오일이 사이클로펜탄, 사이클로헥산, 사이클로헵탄, 사이클로옥탄 및 이들 중 2 이상의 혼합물로 이루어지는 군으로부터 선택되는, 안정화된 연료유의 제조방법.
  7. 제1항에 있어서, 상기 필터가 0.1 내지 20 ㎛의 범위 이내의 망목 내경을 갖는 것인, 안정화된 연료유의 제조방법.
  8. 제1항에 있어서, 상기 여과단계에서 여과는 30 내지 200℃의 범위 이내의 온도에서 필터 전후에서의 1 mbar 내지 100 bar의 범위 이내의 압력차로 실행되는, 안정화된 연료유의 제조방법.
  9. 제1항에 있어서, 상기 혼합단계와 상기 여과단계 사이에 상기 혼합단계에서 수득되는 유분 혼합물을 정치시키는 정치단계를 더 포함하여 이루어지는, 안정화된 연료유의 제조방법.
  10. 제9항에 있어서, 상기 정치단계가 상기 혼합단계에서 수득되는 유분 혼합물을 0 내지 100℃의 온도범위에서 대기압 하에서 10 분 내지 72 시간 동안 방치하는 것으로 이루어지는, 안정화된 연료유의 제조방법.
  11. 아스팔텐 함유 유분과 고-포화탄화수소 유분을 혼합하여 얻는 유분 혼합물을 필터를 통하여 여과하여 얻는, 안정화된 연료유.
  12. 제1항 내지 제10항 중의 어느 한 항에 따른 초저황 연료유의 제조방법에 의하여 얻고, 총 중량을 기준으로 0.5중량% 이하의 황 함량을 가지는, 안정화된 연료유.
KR1020190161976A 2019-12-06 2019-12-06 안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유 KR20210072217A (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020190161976A KR20210072217A (ko) 2019-12-06 2019-12-06 안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유
EP20897112.7A EP4069804A1 (en) 2019-12-06 2020-04-27 Method of preparing stabilized fuel oil and the same produced therefrom
US17/782,381 US20230002683A1 (en) 2019-12-06 2020-04-27 Method of preparing stabilized fuel oil and the same produced therefrom
PCT/KR2020/005521 WO2021112345A1 (en) 2019-12-06 2020-04-27 Method of preparing stabilized fuel oil and the same produced therefrom
AU2020396655A AU2020396655A1 (en) 2019-12-06 2020-04-27 Method of preparing stabilized fuel oil and the same produced therefrom
CA3155992A CA3155992A1 (en) 2019-12-06 2020-04-27 Method of preparing stabilized fuel oil and the same produced therefrom
JP2022533638A JP2023505774A (ja) 2019-12-06 2020-04-27 安定化燃料油の製造方法およびそれから製造された安定化燃料油
CN202080084326.0A CN114761521A (zh) 2019-12-06 2020-04-27 制备稳定燃料油的方法和由其生产的稳定燃料油

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190161976A KR20210072217A (ko) 2019-12-06 2019-12-06 안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유

Publications (1)

Publication Number Publication Date
KR20210072217A true KR20210072217A (ko) 2021-06-17

Family

ID=76222001

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190161976A KR20210072217A (ko) 2019-12-06 2019-12-06 안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유

Country Status (8)

Country Link
US (1) US20230002683A1 (ko)
EP (1) EP4069804A1 (ko)
JP (1) JP2023505774A (ko)
KR (1) KR20210072217A (ko)
CN (1) CN114761521A (ko)
AU (1) AU2020396655A1 (ko)
CA (1) CA3155992A1 (ko)
WO (1) WO2021112345A1 (ko)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651877A (en) * 1996-04-16 1997-07-29 Mobil Oil Corporation Lubricating oil dewaxing with membrane separation
FR2910487B1 (fr) * 2006-12-21 2010-09-03 Inst Francais Du Petrole Procede de conversion de residus incluant 2 desasphaltages en serie
JP5840840B2 (ja) * 2007-12-20 2016-01-06 中国石油化工股▲分▼有限公司 炭化水素油を水素化し接触分解するための、改善された一体的方法
EA201390160A1 (ru) * 2010-07-26 2013-06-28 Эмиль А.Й. Визер-Линхарт Установка и способ для производства топлива из биомассы/пластических масс
FR3000097B1 (fr) * 2012-12-20 2014-12-26 Ifp Energies Now Procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre
FR3008711B1 (fr) * 2013-07-19 2015-07-31 IFP Energies Nouvelles Procede de raffinage d'une charge hydrocarbonee de type residu sous-vide mettant en œuvre un desasphaltage selectif, un hydrotraitement et une conversion du residu sous-vide pour la production d'essence et d'olefines legeres
FR3036703B1 (fr) * 2015-06-01 2017-05-26 Ifp Energies Now Procede de conversion de charges comprenant une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls

Also Published As

Publication number Publication date
AU2020396655A1 (en) 2022-05-19
JP2023505774A (ja) 2023-02-13
CN114761521A (zh) 2022-07-15
EP4069804A1 (en) 2022-10-12
WO2021112345A1 (en) 2021-06-10
US20230002683A1 (en) 2023-01-05
CA3155992A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
CA3073130C (en) Low sulfur fuel oil bunker composition and process for producing the same
RU2759287C2 (ru) Способ и система для повышения качества низкокачественной нефти
TWI486435B (zh) 殘餘物加氫裂解處理技術
WO2004074408A1 (en) Process and installation including solvent deasphalting and ebullated-bed processing
WO2006114489A1 (fr) Procede de preraffinage de petrole brut avec hydroconversion moderee en plusieurs etapes de l'asphalte vierge en presence de diluant
KR102317607B1 (ko) 특정한 수소화처리를 포함하는, 적어도 하나의 fcc 슬러리 유분으로부터 카본 블랙을 제조하기 위한 방법
EP2737021A2 (en) Process for stabilization of heavy hydrocarbons
CN105308158A (zh) 通过整合减压蒸馏与溶剂脱沥青来提高燃料产量
US8778173B2 (en) Process for producing a high stability desulfurized heavy oils stream
KR20210157454A (ko) 초저황 연료유의 제조방법 및 그로부터 얻어지는 초저황 연료유
US10745630B2 (en) Staged introduction of additives in slurry hydrocracking process
CN110446772B (zh) 使用溶剂脱沥青的氧化脱硫和砜处理方法
EP3583192B1 (en) Oxidative desulfurization of oil fractions and sulfone management using an fcc
CA2932863A1 (en) Hydroprocessing oil sands-derived, bitumen compositions
JP6937832B2 (ja) Fccを用いた油分の酸化的脱硫およびスルホンの管理
KR20210072217A (ko) 안정화된 연료유의 제조방법 및 그로부터 얻는 안정화된 연료유
CN110003948B (zh) 包括夹带床加氢转化步骤和脱沥青油的再循环的用于转化重质烃进料的方法
US9528052B2 (en) Two stage diesel aromatics saturation process using base metal catalyst
CN110799629A (zh) 高密度裂化馏分的加氢操作
US10093872B2 (en) Oxidative desulfurization of oil fractions and sulfone management using an FCC
US20230059182A1 (en) Low sulfur fuel oil bunker composition and process for producing the same
WO2020131487A1 (en) Naphthenic compositions derived from fcc process fractions
JPH0826332B2 (ja) 重油用スラッジ分散剤およびそれを含む安定化した重油組成物
US20140360922A1 (en) Producing improved upgraded heavy oil

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2022101001172; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20220518

Effective date: 20230322