KR20210055693A - 열전도성 시트 - Google Patents

열전도성 시트 Download PDF

Info

Publication number
KR20210055693A
KR20210055693A KR1020217006560A KR20217006560A KR20210055693A KR 20210055693 A KR20210055693 A KR 20210055693A KR 1020217006560 A KR1020217006560 A KR 1020217006560A KR 20217006560 A KR20217006560 A KR 20217006560A KR 20210055693 A KR20210055693 A KR 20210055693A
Authority
KR
South Korea
Prior art keywords
thermally conductive
anisotropic material
conductive sheet
layer
heat
Prior art date
Application number
KR1020217006560A
Other languages
English (en)
Inventor
히로키 구도
치엔치아오 리
Original Assignee
세키수이 폴리머텍 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69722645&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20210055693(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 세키수이 폴리머텍 가부시키가이샤 filed Critical 세키수이 폴리머텍 가부시키가이샤
Publication of KR20210055693A publication Critical patent/KR20210055693A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D191/00Coating compositions based on oils, fats or waxes; Coating compositions based on derivatives thereof
    • C09D191/06Waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

본 발명은, 고분자 매트릭스와 이방성 재료를 포함하며, 상기 이방성 재료가 두께 방향으로 배향하면서, 또한 상기 이방성 재료가 표면에 노출하고 있는 열전도층과, 상기 열전도층의 적어도 일방의 표면에 마련되는 열연화층을 구비하고, 상기 열연화층이, 열전도층의 표면에 노출하고 있는 이방성 재료를 피복하고 있는 열전도성 시트이다. 본 발명에 의하면, 이방성 재료의 탈락을 방지할 수 있는 열전도성 시트를 제공할 수 있다.

Description

열전도성 시트
본 발명은, 열전도성 시트에 관한 것으로서, 예를 들면, 발열체와 방열체의 사이에 배치하여 사용되는 열전도성 시트에 관한 것이다.
컴퓨터, 자동차 부품, 휴대전화 등의 전자기기에서는, 반도체 소자나 기계 부품 등의 발열체로부터 생기는 열을 방열하기 위하여 히트 싱크 등의 방열체가 일반적으로 이용된다. 방열체로의 열의 전열 효율을 높일 목적으로, 발열체와 방열체의 사이에는, 열전도성 시트가 배치되는 것이 알려져 있다.
열전도성 시트는, 전자기기 내부에 배치시킬 때 압축하여 이용되는 것이 일반적이며, 높은 유연성이 요구된다. 따라서, 고무나 겔 등의 유연성이 높은 고분자 매트릭스에, 열전도성을 가지는 충전재가 배합되어서 구성된다. 열전도성 시트는, 두께 방향의 열전도성을 높이기 위해서, 탄소 섬유 등의 열전도성의 이방성 재료를 두께 방향으로 배향시키는 것이 널리 알려져 있다(예를 들면, 특허문헌 1, 2 참조).
일본국 공개특허 특개2018-056315호 공보 일본국 공개특허 특개2018-014534호 공보
상기한 바와 같이, 열전도성의 이방성 재료를 두께 방향으로 배향시킴으로써, 열전도성 시트의 열전도성을 향상시킬 수 있다. 이러한 이방성 재료는, 제조 방법에도 의하지만, 열전도성 시트의 표면에 노출하고 있는 경우가 있다. 노출한 이방성 재료가 많은 열전도성 시트는, 열전도성은 양호하지만, 사용 시에, 이방성 재료의 탈락이 생겨, 전자기기 등에 문제가 생기는 경우가 있다.
본 발명은, 이상의 문제점을 감안하여 이루어진 것이며, 이방성 재료가 두께 방향으로 배향하고 있는 열전도성 시트에 있어서, 이방성 재료의 탈락을 억제하는 것이 가능한 열전도성 시트를 제공하는 것을 과제로 한다.
본 발명자는, 예의 검토한 결과, 열전도성을 가지는 이방성 재료가 두께 방향으로 배향하면서, 또한 표면에 노출하고 있는 열전도층의 적어도 일방의 표면에, 열연화층을 마련함으로써, 상기 과제를 해결할 수 있는 것을 발견하여, 본 발명을 완성시켰다. 본 발명은, 이하의 [1]~[13]을 제공한다.
[1] 고분자 매트릭스와 이방성 재료를 포함하며, 상기 이방성 재료가 두께 방향으로 배향하면서, 또한 상기 이방성 재료가 표면에 노출하고 있는 열전도층과, 상기 열전도층의 적어도 일방의 표면에 마련되는 열연화층을 구비하고, 상기 열연화층이, 열전도층의 표면에 노출하고 있는 이방성 재료를 피복하고 있는 열전도성 시트.
[2] 상기 이방성 재료가, 섬유 재료 및 편평 재료 중 적어도 일방을 함유하는, 상기 [1]에 기재된 열전도성 시트.
[3] 상기 이방성 재료가 섬유 재료를 함유하며, 당해 섬유 재료의 평균 섬유 길이가 5~600㎛인 상기 [1] 또는 [2]에 기재된 열전도성 시트.
[4] 상기 섬유 재료가 탄소 섬유인, 상기 [2] 또는 [3]에 기재된 열전도성 시트.
[5] 상기 이방성 재료가 편평 재료를 함유하며, 당해 편평 재료의 평균 장축 길이가 5~300㎛인 상기 [1] 또는 [2]에 기재된 열전도성 시트.
[6] 상기 편평 재료가 인편상(鱗片狀) 흑연인, 상기 [2] 또는 [5]에 기재된 열전도성 시트.
[7] 상기 열연화층이, 상기 열전도층의 양 표면에 마련되어 있는, 상기 [1]~[6] 중 어느 것에 기재된 열전도성 시트.
[8] 상기 열연화층이, 상기 열전도층의 단면(端面)에도 마련되어 있는, 상기 [1]~[7] 중 어느 것에 기재된 열전도성 시트.
[9] 상기 열연화층을 가지지 않는 열전도성 시트와 비교하여, 열저항값의 상승률이 10% 이하인, 상기 [1]~[8] 중 어느 것에 기재된 열전도성 시트.
[10] 상기 열연화층이, 비(非)실리콘계 재료로 이루어지는, 상기 [1]~[9] 중 어느 것에 기재된 열전도성 시트.
[11] 상기 열연화층이, 융점 35~120℃의 왁스상(狀) 물질을 함유하는, 상기 [1]~[10] 중 어느 것에 기재된 열전도성 시트.
[12] 상기 왁스상 물질이, 파라핀계 왁스, 에스테르계 왁스, 폴리올레핀계 왁스로 이루어지는 군에서 선택되는 적어도 1종인, 상기 [1]~[11] 중 어느 것에 기재된 열전도성 시트.
[13] 상기 열연화층이, 비이방성 재료를 함유하는, 상기 [1]~[12] 중 어느 것에 기재된 열전도성 시트.
본 발명에 의하면, 열전도성을 가지는 이방성 재료의 탈락을 억제하는 것이 가능한 열전도성 시트를 제공할 수 있다.
도 1은 제 1 실시형태의 열전도성 시트를 나타내는 모식적인 단면도이다.
도 2는 제 2 실시형태의 열전도성 시트를 나타내는 모식적인 단면도이다.
도 3은 제 3 실시형태의 열전도성 시트를 나타내는 모식적인 단면도이다.
도 4는 제 4 실시형태의 열전도성 시트를 나타내는 모식적인 단면도이다.
도 5는 열저항 측정기의 개략도이다.
이하, 본 발명의 실시형태와 관련되는 열전도성 시트에 대하여 자세하게 설명한다.
[제 1 실시형태]
도 1은, 제 1 실시형태의 열전도성 시트를 나타낸다. 제 1 실시형태와 관련되는 열전도성 시트(10)는, 열전도층(16)과, 열전도층(16)의 표면(16A,16B)에 마련되는 열연화층(17)을 구비하고 있다. 열전도층(16)은, 고분자 매트릭스(12)와, 충전재로서 이방성 재료(13)를 포함하며, 이방성 재료(13)가 두께 방향으로 배향하고 있다. 열전도층(16)의 각 표면(16A,16B)에는, 노출하는 이방성 재료(13)가 존재한다. 또한, 노출하고 있는 이방성 재료(13)의 일부는, 쓰러지도록 배치되어 있다. 이방성 재료(13)는 열전도성을 가지기 때문에, 열전도층은, 두께 방향의 열전도성이 우수하다.
본 실시형태에 있어서, 열전도층(16)은, 추가로 이방성 재료(13)와는 다른 충전재로서, 비이방성 재료(14)를 함유한다. 열전도성 시트(10)는, 비이방성 재료(14)를 함유함으로써 열전도성이 더욱 양호하게 된다.
열전도층(16)을 단독으로, 방열체나 발열체 등의 접촉 대상물의 사이에 삽입하여 사용하는 경우에는, 표면에 노출한 이방성 재료(13)가, 접촉 대상물과 접촉하기 쉬운 것, 및 이방성 재료(13)가 두께 방향으로 배향하고 있는 것에 의해, 열전도층(16)의 두께 방향의 열전도율이 높아져, 방열성이 우수하다. 그러나, 표면에 노출한 이방성 재료(13)는, 접촉 대상물과의 접촉 등을 통하여 탈락하여, 접촉 대상물의 표면에 부착되는 등 하여, 전자기기의 성능에 악영향을 끼쳐버린다. 특히, 도 1 에 나타내는 바와 같이, 쓰러지도록 배치되어 있는 이방성 재료(13X,13Y) 등이 많으면, 열전도층(16)의 열전도성은 양호하게 되지만, 이방성 재료가 탈락하기 쉽다.
제 1 실시형태에서는, 표면에 노출한 이방성 재료(13)의 탈락을 방지하기 위해서, 열전도층(16)의 표면에 열연화층(17)을 마련하고 있다. 열연화층(17)은, 열전도층(16)의 표면에 노출하고 있는 이방성 재료(13)를 피복하고 있기 때문에, 열전도층(16)의 표면으로부터, 이방성 재료(13)가 탈락하는 것을 억제할 수 있다.
또한, 열전도층(16)의 적어도 일방의 표면에 열연화층(17)을 구비하는 양태이면, 이방성 재료(13)의 탈락을 억제하는 것은 가능하지만, 제 1 실시형태와 같이, 열전도층(16)의 양 표면에 열연화층(17)을 구비하는 양태이면, 보다 효과적으로 이방성 재료(13)의 탈락을 억제할 수 있다.
열연화층(17)이란, 열을 가하면 연화되는 성질을 가지는 층이며, 상온(25℃)에서는 고체상(狀)이다. 열연화층(17)에 의해, 표면에 노출하고 있는 이방성 재료(13)는 피복되어 있지만, 열연화층(17)과 열전도층(16)의 계면에, 부분적으로 공극(15)이 생겨 있는 경우가 있다. 단, 열연화층(17)은, 열전도층(16)의 표면의 형상에 비교적 추종성 좋게 적층되기 때문에, 예를 들면, 열연화층 대신에, 알루미늄박 등의 금속층을 마련하는 경우 등과 비교하여, 공극(15)의 체적은 현격히 감소한다. 이 때문에, 열연화층(17)을 이용함으로써, 다른 재료를 이용하는 경우보다도, 유효하게 이방성 재료(13)의 탈락을 유효하게 방지할 수 있으며, 또한 열전도성도 양호한 것이 된다.
열연화층(17)을 가지는 열전도성 시트(10)를, 발열체 및 방열체의 사이에 배치하였을 경우에는, 발열체 및 방열체와 열연화층(17)의 사이에 빈틈이 생겨 있는 경우가 있다. 이러한 경우에도, 발열체에 의해 생기는 열에 의해, 열연화층(17)이 연화 또는, 유동화하여, 빈틈이 감소 또는, 존재하지 않게 되는 것을 통해서, 방열성이 높아진다. 추가로, 열연화층(17)이 연화 또는, 유동화함으로써, 상기한 열연화층(17)과 열전도층(16)의 계면의 공극(15)이 열연화층에 의해 메워지기 쉬워진다. 그 때문에, 이방성 재료(13)의 탈락을 유효하게 방지할 수 있으며, 또한 열전도성도 양호하게 된다.
열연화층(17)은, 도시하지 않은 충전재를 함유하고 있는 것이 바람직하다. 충전재로서는, 높은 열전도성을 가지는 금속, 금속 산화물, 금속 질화물, 금속 수산화물, 탄소 재료, 금속 이외의 산화물, 질화물, 탄화물 등의 분말이 바람직하고, 이러한 충전재를 함유함으로써, 열연화층(17)의 열전도율이 향상하여, 열전도성 시트(10) 전체의 열전도율이 양호하게 된다.
<열전도층>
(고분자 매트릭스)
열전도층에 있어서 사용되는 고분자 매트릭스(12)는, 엘라스토머나 고무 등의 고분자 화합물이며, 바람직하게는 주제(主劑)와 경화제와 같은 혼합계로 이루어지는 액상의 고분자 조성물(경화성 고분자 조성물)을 경화하여 형성한 것을 사용하면 된다. 경화성 고분자 조성물은, 예를 들면, 미가교 고무와 가교제로 이루어지는 것이어도 되고, 모노머, 프리폴리머 등과 경화제 등을 포함하는 것이어도 된다. 또한, 상기 경화 반응은 상온 경화여도, 열경화여도 된다.
경화성 고분자 조성물로부터 형성되는 고분자 매트릭스는, 실리콘 고무가 예시된다. 실리콘 고무의 경우, 고분자 매트릭스(경화성 고분자 조성물)로서는, 바람직하게는, 부가 반응 경화형 실리콘을 사용한다. 또한, 보다 구체적으로는, 경화성 고분자 조성물로서, 알케닐기 함유 오르가노폴리실록산과 하이드로젠오르가노폴리실록산을 포함하는 것을 사용하면 된다.
고무로서는, 상기 이외에도 각종의 합성 고무를 사용 가능하며, 구체예에는, 예를 들면, 아크릴 고무, 니트릴 고무, 이소프렌 고무, 우레탄 고무, 에틸렌프로필렌 고무, 스티렌·부타디엔 고무, 부타디엔 고무, 불소 고무, 부틸 고무 등을 들 수 있다. 이들 고무를 사용하는 경우, 합성 고무는, 열전도성 시트에 있어서, 가교되어도 되고, 미가교(즉, 미경화)인채여도 된다. 미가교의 고무는, 주로 유동 배향으로 사용된다.
또한, 가교(즉, 경화)되는 경우에는, 상기에서 설명한 바와 같이, 고분자 매트릭스는, 이들 합성 고무로부터 이루어지는 미가교 고무와, 가교제로 이루어지는 경화성 고분자 조성물을 경화한 것으로 하면 된다.
또한, 엘라스토머로서는, 폴리에스테르계 열가소성 엘라스토머, 폴리우레탄계 열가소성 엘라스토머 등 열가소성 엘라스토머나, 주제와 경화제로 이루어지는 혼합계의 액상의 고분자 조성물을 경화하여 형성하는 열경화형 엘라스토머도 사용 가능하다. 예를 들면, 수산기를 가지는 고분자와 이소시아네이트를 포함하는 고분자 조성물을 경화하여 형성하는 폴리우레탄계 엘라스토머를 예시할 수 있다.
상기한 것 중에서는, 예를 들면 경화 후의 고분자 매트릭스가 특히 유연하고, 상기한 이방성 재료(13), 비이방성 재료(14) 등의 충전성이 좋은 점에서, 실리콘 고무, 특히 부가 반응 경화형 실리콘을 이용하는 것이 바람직하다.
또한, 고분자 매트릭스를 형성하기 위한 고분자 조성물은, 고분자 화합물 단체(單體)로부터 이루어지는 것이어도 되지만, 고분자 화합물과 가소제로 이루어지는 것이어도 된다. 가소제는, 합성 고무를 사용하는 경우에 적합하게 사용되며, 가소제를 포함함으로써, 미가교 시의 고분자 매트릭스의 유연성을 높이는 것이 가능하다.
가소제는, 고분자 화합물과 상용성(相溶性)을 가지는 것이 사용되며, 구체적으로는, 에스테르계 가소제나 실리콘 오일인 것이 바람직하다. 에스테르계 가소제의 구체예로서, 예를 들면, 프탈산 에스테르, 아디프산 에스테르, 트리멜리트산 에스테르, 인산 에스테르, 세바스산 에스테르, 아젤라산 에스테르, 말레산 에스테르, 벤조산 에스테르 등을 들 수 있다. 실리콘 오일로서는, 폴리디메틸실록산을 들 수 있다.
고분자 화합물에 대한 가소제의 함유량은, 가소제/고분자 화합물이 질량비로 5/95~60/40인 것이 바람직하고, 10/90~55/45인 것이 보다 바람직하다. 가소제/고분자 화합물의 질량비를 60/40 이하로 함으로써, 고분자 화합물에 의해, 충전재를 보지하기 쉬워진다. 또한, 5/95 이상으로 함으로써, 고분자 매트릭스의 유연성이 충분하게 된다. 가소제는, 후술하는 유동 배향에 의해 이방성 재료를 배향시키는 경우에 적합하게 사용된다.
고분자 매트릭스의 함유량은, 체적 기준의 충전율(체적 충전율)로 나타내면, 열전도층 전량(全量)에 대하여, 바람직하게는 20~50체적%, 보다 바람직하게는 25~45체적%이다.
(첨가제)
열전도층에 있어서, 고분자 매트릭스(12)에는, 추가로 열전도층으로서의 기능을 손상하지 않는 범위에서 다양한 첨가제를 배합시켜도 된다. 첨가제로서는, 예를 들면, 분산제, 커플링제, 점착제, 난연제, 산화 방지제, 착색제, 침강 방지제 등에서 선택되는 적어도 1종 이상을 들 수 있다. 또한, 상기한 바와 같이 경화성 고분자 조성물을 가교, 경화 등 시키는 경우에는, 첨가제로서, 가교, 경화를 촉진시키는 가교 촉진제, 경화 촉진제 등이 배합되어도 된다.
(이방성 재료)
고분자 매트릭스(12)에 배합되는 이방성 재료(13)는, 배향이 가능한 열전도성 충전재이다. 이방성 재료는, 애스펙트비가 높은 것이며, 구체적으로는 애스펙트비가 2를 초과하는 것이며, 애스펙트비는 5 이상인 것이 바람직하다. 애스펙트비를 2보다 크게 함으로써, 이방성 재료(13)를 두께 방향으로 배향시키기 쉬워져, 열전도성 시트의 열전도성을 높이기 쉽다. 또한, 애스펙트비의 상한은, 특별하게 한정되지 않지만, 실용적으로는 100이다. 또한, 애스펙트비란, 이방성 재료(13)가 후술하는 섬유 재료인 경우에는 섬유 길이/섬유의 직경을 의미하고, 이방성 재료(13)가 후술하는 편평 재료일 경우에는 장축의 길이/단축의 길이를 의미한다.
열전도층에 있어서의 이방성 재료(13)의 함유량은, 체적 기준의 충전율(체적 충전율)로 나타내면, 열전도층 전량에 대하여, 바람직하게는 5~35체적%, 보다 바람직하게는 8~30체적%이다.
이방성 재료(13)의 함유량을 5체적% 이상으로 함으로써, 열전도성을 높이기 쉬워지고, 35체적% 이하로 함으로써, 후술하는 혼합 조성물의 점도가 적절해지기 쉬워져, 이방성 재료(13)의 배향성이 양호하게 된다.
이방성 재료(13)가 섬유 재료일 때에는, 그 평균 섬유 길이가, 바람직하게는 5~600㎛, 보다 바람직하게는 10~200㎛, 더 바람직하게는 70~180㎛이다. 평균 섬유 길이를 5㎛ 이상으로 하면, 열전도층 내부에 있어서, 이방성 재료(13)끼리가 적절하게 접촉하여, 열의 전달 경로가 확보된다. 한편, 평균 섬유 길이를 600㎛ 이하로 하면, 이방성 재료(13)의 부피가 낮아져, 고분자 매트릭스 중에 고충전할 수 있게 된다.
또한, 이방성 재료(13)가 편평 재료일 때에는, 그 평균 장축 길이가 바람직하게는 5~300㎛, 보다 바람직하게는 10~200㎛, 더 바람직하게는 40~135㎛이다.
평균 장축 길이를 5㎛ 이상으로 하면, 열전도층 내부에 있어서, 이방성 재료(13)끼리가 적절하게 접촉하여, 열의 전달 경로가 확보된다. 한편, 평균 장축 길이를 300㎛ 이하로 하면, 이방성 재료(13)의 부피가 낮아져, 고분자 매트릭스 중에 고충전할 수 있게 된다.
또한, 상기의 평균 섬유 길이나 섬유의 직경, 평균 장축 길이나 평균 단축 길이는, 이방성 재료(13)를 현미경으로 관찰하여 산출할 수 있다. 보다 구체적으로는, 예를 들면 전자현미경이나 광학현미경을 이용하여, 임의의 이방성 재료 100개의 섬유 길이를 측정하고, 그 평균값(상가 평균값)을 평균 섬유 길이로 할 수 있다. 또한, 섬유의 직경, 평균 장축 길이, 및 평균 단축 길이에 대해서도 마찬가지로 구할 수 있다.
또한, 이방성 재료(13)의 평균 섬유 길이 또는, 평균 장축 길이는, 열전도층의 두께보다도 짧은 것이 바람직하다. 두께보다도 짧음으로써, 이방성 재료(13)가 열전도층(16)의 표면(16A,16B)으로부터 필요 이상으로 돌출하거나 하는 것을 방지하여, 이방성 재료(13)의 탈락을 억제하기 쉬워진다.
또한, 이방성 재료(13)는, 특별하게 한정되지 않지만, 장축방향을 따른 열전도율이, 일반적으로 60W/m·K 이상이며, 바람직하게는 400W/m·K 이상이다. 이방성 재료(13)의 열전도율은, 그 상한은 특별하게 한정되지 않지만, 예를 들면 2000W/m·K 이하이다. 열전도율의 측정 방법은, 레이저 플래시법이다.
이방성 재료(13)는, 1종 단독으로 사용하여도 되고, 2종 이상을 병용하여도 된다. 예를 들면, 이방성 재료(13)로서, 적어도 2개의 서로 다른 평균 섬유 길이 또는, 평균 장축 길이를 가지는 이방성 재료(13)를 사용하여도 된다. 크기가 다른 이방성 재료를 사용하면, 상대적으로 큰 이방성 재료의 사이에 작은 이방성 재료가 인입됨으로써, 이방성 재료를 고분자 매트릭스 중에 고밀도로 충전할 수 있는 것과 함께, 열의 전도 효율을 높일 수 있다고 생각된다.
이방성 재료(13)는, 열전도성을 가지는 공지된 재료를 사용하면 되지만, 후술하는 바와 같이 자장 배향할 수 있도록, 반자성(反磁性)을 구비하는 것이 바람직하다.
이방성 재료(13)로서는, 상기한 애스펙트비를 만족하는 것이면 되지만, 섬유 재료 및 편평 재료 중 적어도 일방을 포함하는 것이 바람직하다.
또한, 이방성 재료(13)는, 섬유 재료, 편평 재료 이외의 것을 포함하여도 되지만, 섬유 재료 및 편평 재료 중 어느 일방만으로 이루어지는 것, 또는, 섬유 재료 및 편평 재료의 양방만으로 이루어지는 것이 바람직하다.
이방성 재료(13)의 구체예로서는, 철, 구리, 은, 알루미늄, 스테인리스 등으로 이루어지는 금속 섬유, 탄소 섬유 등의 섬유 재료나, 인편상 흑연이나 질화 붕소 등의 편평 재료를 들 수 있다. 상기 섬유 재료 중에서는, 비중이 작으며, 고분자 매트릭스(12) 중에서의 분산성이 양호하기 때문에, 탄소 섬유가 바람직하고, 탄소 섬유 중에서도 흑연화 탄소 섬유가 바람직하다. 또한, 상기 편평 재료 중에서는 인편상 흑연이 바람직하다.
흑연화 탄소 섬유나 인편상 흑연은 열전도율이 높기 때문에, 그라파이트면이 소정 방향으로 가지런하게 됨으로써 반자성을 구비한다.
이방성 재료(13)로서 이용하는 탄소 섬유는, 상기한 바와 마찬가지로 흑연화 탄소 섬유가 바람직하다.
흑연화 탄소 섬유는, 그라파이트의 결정면이 섬유축방향으로 이어지고 있으며, 그 섬유축방향으로 높은 열전도율을 구비한다. 그 때문에, 그 섬유축방향을 소정의 방향으로 가지런하게 함으로써, 특정 방향의 열전도율을 높일 수 있다. 흑연화 탄소 섬유는, 높은 흑연화도를 가지는 것이 바람직하다.
흑연화 탄소 섬유로서는, 이하의 원료를 흑연화한 것을 이용할 수 있다. 예를 들면, 나프탈렌 등의 축합 다환 탄화수소 화합물, PAN(폴리아크릴로니트릴), 피치 등의 축합 복소환 화합물 등을 들 수 있지만, 특히 흑연화도가 높은 흑연화 메소페이즈 피치나 폴리이미드, 폴리벤즈아졸을 이용하는 것이 바람직하다. 예를 들면 메소페이즈 피치를 이용함으로써, 후술하는 방사(紡絲) 공정에 있어서, 피치가 그 이방성에 의해 섬유축방향으로 배향되어, 그 섬유축방향으로 우수한 열전도성을 가지는 흑연화 탄소 섬유를 얻을 수 있다.
흑연화 탄소 섬유에 있어서의 메소페이즈 피치의 사용 양태는, 방사 가능하면 특별하게 한정되지 않으며, 메소페이즈 피치를 단독으로 이용하여도 되고, 다른 원료로 조합시켜서 이용하여도 된다. 단, 메소페이즈 피치를 단독으로 이용하는 것, 즉, 메소페이즈 피치 함유량 100%의 흑연화 탄소 섬유가, 고열전도화, 방사성 및 품질의 안정성의 면으로부터 가장 바람직하다.
흑연화 탄소 섬유는, 방사, 불(不)융화 및 탄화의 각 처리를 순차 행하여, 소정의 입경으로 분쇄 또는, 절단한 후에 흑연화한 것이나, 탄화 후에 분쇄 또는, 절단한 후에 흑연화한 것을 이용할 수 있다. 흑연화 전에 분쇄 또는, 절단하는 경우에는, 분쇄에 의해 새롭게 표면으로 노출한 표면에 있어서 흑연화 처리 시에 축중합 반응, 환화(環化) 반응이 진행되기 쉬워지기 때문에, 흑연화도를 높이고, 한층 더 열전도성을 향상시킨 흑연화 탄소 섬유를 얻을 수 있다. 한편, 방사한 탄소 섬유를 흑연화한 후에 분쇄하는 경우에는, 흑연화 후의 탄소 섬유가 딱딱하기 때문에 분쇄하기 쉬워, 단시간의 분쇄에 의해 비교적 섬유 길이 분포가 좁은 탄소 섬유 분말을 얻을 수 있다.
흑연화 탄소 섬유의 평균 섬유 길이는, 상기한 바와 마찬가지로, 바람직하게는 5~600㎛, 보다 바람직하게는 10~200㎛, 더 바람직하게는 70~180㎛이다. 또한, 흑연화 탄소 섬유의 애스펙트비는 상기한 바와 마찬가지로 2를 초과하고 있으며, 바람직하게는 5 이상이다. 흑연화 탄소 섬유의 열전도율은, 특별하게 한정되지 않지만, 섬유축방향에 있어서의 열전도율이, 바람직하게는 400W/m·K 이상, 보다 바람직하게는 800W/m·K 이상이다.
이방성 재료(13)로서 이용하는 편평 재료로서는, 인편상 흑연이 바람직하다.
인편상 흑연은, 그라파이트의 결정면이 인편면 내 방향으로 이어지고 있으며, 그 면 내 방향으로 높은 열전도율을 구비한다. 그 때문에, 그 인편면을 소정의 방향으로 가지런하게 함으로써, 특정 방향의 열전도율을 높일 수 있다. 인편상 흑연은, 높은 흑연화도를 가지는 것이 바람직하다.
인편상 흑연으로서도, 상기 흑연화 탄소 섬유와 같은 원료 외, 천연 흑연을 이용할 수 있다. 그 중에서도, 예를 들면 나프탈렌 등의 축합 다환 탄화수소 화합물이나 폴리이미드 필름을 흑연화하여 분쇄한 것이 바람직하다.
인편상 흑연의 평균 장축 길이는, 상기한 바와 마찬가지로, 바람직하게는 5~300㎛, 보다 바람직하게는 10~200㎛, 더 바람직하게는 40~135㎛이다. 또한, 인편상 흑연의 애스펙트비는 상기한 바와 마찬가지로 2를 초과하고 있으며, 바람직하게는 5 이상이다. 인편상 흑연의 열전도율은, 특별하게 한정되지 않지만, 인편면 방향에 있어서의 열전도율이, 바람직하게는 400W/m·K 이상, 보다 바람직하게는 800W/m·K 이상이다.
또한, 인편상 흑연의 장축의 길이는, 인편면 내 중 가장 길게 되는 방향의 길이를 나타내고, 인편상 흑연의 단축의 길이는, 흑연의 두께를 나타내는 것으로 한다.
이방성 재료(13)는, 상기한 바와 같이 두께 방향으로 배향하는 것이지만, 장축방향이 엄밀하게 두께 방향으로 평행할 필요는 없으며, 장축방향이 다소 두께 방향에 대하여 경사져 있어도 두께 방향으로 배향하는 것이라고 한다. 구체적으로는, 장축방향이 20° 미만 정도 경사져 있는 것도 두께 방향으로 배향하고 있는 이방성 재료(13)라고 하고, 그러한 이방성 재료(13)가, 열전도층에 있어서, 대부분이면(예를 들면, 전체 탄소 섬유의 수에 대하여 60% 초과, 바람직하게는 80% 초과), 두께 방향으로 배향하는 것이라고 한다.
또한, 이방성 재료(13)의 배향 방향(각도)이나 배향하고 있는 이방성 재료(13)의 비율은, 열전도성 시트(10)의 표면에 대하여 수직한 임의의 단면(斷面)을 전자현미경이나 광학현미경으로 관찰하여, 임의의 이방성 재료 100개의 배향 각도를 측정하는 것으로 추측할 수 있다.
(이방성 재료 이외의 충전재)
열전도층은, 상기한 이방성 재료 이외의 충전재로서, 비이방성 재료(14)를 포함하여도 된다.
비이방성 재료(14)는, 이방성 재료(13)와는 별도로 열전도성 시트에 함유되는 열전도성 충전재이며, 이방성 재료(13)와 함께 열전도성 시트(10)에 열전도성을 부여하는 재료이다. 비이방성 재료(14)를 충전함으로써, 열전도층으로 경화하기 전단계에 있어서, 점도 상승을 억제할 수 있어, 분산성이 양호하게 된다. 또한, 이방성 재료(13)끼리에서는, 예를 들면 섬유 길이가 커지면 이방성 재료끼리의 접촉 면적을 높게 하기 어렵지만, 그 사이를 비이방성 재료(14)로 메움으로써 전열 패스를 형성할 수 있어, 열전도율이 높은 열전도성 시트(10)가 얻어진다.
비이방성 재료(14)는, 형상에 이방성을 실질적으로 가지지 않는 충전재이며, 후술하는 자력선 발생 하 또는, 전단력 작용 하 등, 이방성 재료(13)가 소정의 방향으로 배향하는 환경 하에 있어서도, 그 소정의 방향으로 배향하지 않는 충전재이다.
비이방성 재료(14)는, 그 애스펙트비가 2 이하이며, 1.5 이하인 것이 바람직하다. 본 실시형태에서는, 이처럼 애스펙트비가 낮은 비이방성 재료(14)가 함유됨으로써, 이방성 재료(13)의 간극에 열전도성을 가지는 충전재가 적절하게 개재되어, 열전도율이 높은 열전도성 시트가 얻어진다. 또한, 애스펙트비를 2 이하로 함으로써, 후술하는 혼합 조성물의 점도가 상승하는 것을 방지하여, 고충전으로 하는 것이 가능하게 된다.
비이방성 재료(14)의 구체예는, 예를 들면, 금속, 금속 산화물, 금속 질화물, 금속 수산화물, 탄소 재료, 금속 이외의 산화물, 질화물, 탄화물 등을 들 수 있다. 또한, 비이방성 재료(14)의 형상은, 구상(球狀), 부정형(不定形)의 분말 등을 들 수 있다.
비이방성 재료(14)에 있어서, 금속으로서는, 알루미늄, 구리, 니켈 등, 금속 산화물로서는, 알루미나로 대표되는 산화알루미늄, 산화마그네슘, 산화아연 등, 금속 질화물로서는 질화알루미늄 등을 예시할 수 있다. 금속 수산화물로서는, 수산화알루미늄을 들 수 있다. 추가로, 탄소 재료로서는 구상 흑연 등을 들 수 있다. 금속 이외의 산화물, 질화물, 탄화물로서는, 석영, 질화 붕소, 탄화 규소 등을 들 수 있다.
비이방성 재료(14)는, 상기한 중에서도, 알루미나, 알루미늄, 산화아연, 질화 붕소, 및 질화알루미늄에서 선택되는 것이 바람직하고, 특히 충전성이나 열전도율의 관점에서 알루미나가 바람직하다.
비이방성 재료(14)는, 상기한 것을 1종 단독으로 사용하여도 되고, 2종 이상을 병용하여도 된다.
비이방성 재료(14)의 평균 입경은 0.1~50㎛인 것이 바람직하고, 0.5~35㎛인 것이 보다 바람직하다. 또한, 1~15㎛인 것이 특히 바람직하다. 평균 입경을 50㎛ 이하로 함으로써, 이방성 재료(13)의 배향을 어지럽히는 등의 문제가 생기기 어려워진다. 또한, 평균 입경을 0.1㎛ 이상으로 함으로써, 비이방성 충전재(14)의 비표면적이 필요 이상으로 커지지 않으며, 다량으로 배합하여도 혼합 조성물의 점도는 상승되기 어려우며, 비이방성 충전재(14)를 고충전하기 쉬워진다.
비이방성 재료(14)는, 예를 들면, 비이방성 충전재(14)로서, 적어도 2개의 서로 다른 평균 입경을 가지는 비이방성 충전재(14)를 사용하여도 된다.
또한, 비이방성 재료(14)의 평균 입경은, 전자현미경 등으로 관찰하여 측정할 수 있다. 보다 구체적으로는, 예를 들면 전자현미경이나 광학현미경을 이용하여, 임의의 충전재 50개의 입경을 측정하고, 그 평균값(상가 평균값)을 평균 입경으로 할 수 있다.
비이방성 재료(14)의 함유량은, 고분자 매트릭스 100질량부에 대하여, 200~800질량부의 범위인 것이 바람직하고, 300~700질량부의 범위인 것이 보다 바람직하다.
비이방성 재료(14)의 함유량은, 체적 기준의 충전율(체적 충전율)로 나타내면, 열전도층 전량에 대하여, 30~60체적%가 바람직하고, 40~55체적%가 보다 바람직하다.
비이방성 재료(14)는, 30체적% 이상으로 함으로써, 이방성 재료(13)끼리의 간극에 개재하는 비이방성 재료(14)의 양이 충분하게 되고, 열전도성이 양호하게 된다. 한편, 60체적% 이하로 함으로써, 함유량에 따른 열전도성을 높이는 효과를 얻을 수 있고, 또한, 비이방성 충전재(14)에 의해 이방성 재료(13)에 의한 열전도를 저해하거나 하는 일도 없다. 추가로, 40~55체적%의 범위 내로 함으로써, 열전도성 시트의 열전도성이 우수하고, 혼합 조성물의 점도도 적절하게 된다.
비이방성 재료(14)의 체적 충전율에 대한, 이방성 재료(13)의 체적 충전율의 비는, 2~5인 것이 바람직하고, 2~3인 것이 보다 바람직하다. 체적 충전율의 비율의 범위를 상기 범위 내로 함으로써, 비이방성 충전재(14)가, 이방성 재료(13)의 사이에 적절하게 충전되어, 효율적인 전열 패스를 형성할 수 있기 때문에, 열전도성 시트의 열전도성을 향상시킬 수 있다.
열전도층의 두께는, 열전도성 시트가 탑재되는 전자기기의 형상이나 용도에 따라, 적절히 조정되면 되기 때문에, 특별히 한정되는 것은 아니지만, 예를 들면, 0.1~5㎜의 범위로 하면 된다.
열전도층의 두께는, 열전도성 시트의 단면을 주사형 전자현미경이나 광학현미경에 의해 관찰함으로써, 구할 수 있다.
<열연화층>
열연화층은, 상온(25℃)에서는 고체이며, 예를 들면, 35~120℃정도의 열을 가하면 연화되는 성질을 가지는 층이다.
열연화층의 조성은 특별하게 한정되지 않지만, 비실리콘계 재료로 이루어지는 것이 바람직하다. 여기에서, 비실리콘계란, 실록산 결합을 가지는 화합물을 실질적으로 함유하지 않는 것을 의미하고, 실질적으로 함유하지 않는다란, 실록산 결합을 가지는 화합물을 의도적으로 배합하지 않는 것을 의미한다.
열연화층이, 비실리콘계 재료로 이루어지는 것에 의해, 저분자 실록산의 발생에 기인하는 접점 불량을 방지할 수 있다.
열연화층은, 융점 35~120℃의 왁스상 물질을 함유하는 것이 바람직하다. 이에 의해, 열전도층의 표면에 노출한 이방성 재료의 탈락을 억제하기 쉬워진다. 융점이 35℃ 이상인 것에 의해, 열연화층이 상온에서 과도하게 유연하게 되고, 취급성이 악화되는 것을 방지할 수 있고, 융점이 120℃ 이하인 것에 의해, 적절한 온도로 열연화층이 연화 또는, 유동화하여, 범용성이 향상한다.
왁스상 물질의 융점은, 바람직하게는 35~80℃이며, 보다 바람직하게는 40~60℃이다.
왁스상 물질은, 용융 시작부터 용융 종료까지의 온도 범위가 좁은 것이 바람직하다. 이 온도 범위가 좁은 쪽이 조속히 상(相)변화하여 접촉 대상물에 밀착하기 때문이다. 이 온도 범위가 좁은 재료로서는, 분자량 분포가 좁은 물질이나, 결정성을 가지는 물질을 들 수 있다. 왁스상 물질에 있어서, 용융 종료의 온도와 용융 시작의 온도의 차(용융 종료의 온도-용융 시작의 온도)는 바람직하게는 15℃ 이하이며, 보다 바람직하게는 10℃ 이하이며, 더 바람직하게는 8℃ 이하이다.
또한, 본 명세서에 있어서, 융점이란, 시차 주사 열량 분석(DSC)으로 측정한 DSC 곡선의 흡열 피크의 온도이다. 또한, 용융 시작부터 용융 종료까지의 온도 범위란, DSC 곡선의 베이스라인과, 베이스라인으로부터 흡열 피크로 향하는 변곡점에 있어서의 접선과의 교점의 온도와, 흡열 피크로부터 베이스라인으로 향하는 변곡점에 있어서의 접선과의 교점의 온도의 범위이다.
상기 왁스상 물질은, 비실리콘계인 것이 바람직하고, 파라핀계 왁스, 에스테르계 왁스, 폴리올레핀계 왁스로 이루어지는 군에서 선택되는 적어도 1종의 왁스상 물질인 것이 바람직하다. 이러한 왁스상 물질은, 용융 시작부터 용융 종료까지의 온도 범위가 비교적 좁으며, 또한 가열 시의 유동성이 높은 경향이 있기 때문에, 당해 왁스상 물질을 함유한 열연화층을 이용함으로써, 이방성 재료(13)의 탈락을 유효하게 억제할 수 있다. 상기 왁스상 물질 중에서도, 파라핀계 왁스가 바람직하다.
열연화층이 왁스상 물질을 함유하는 경우에는, 열연화층의 전체가 왁스상 물질이어도 되지만, 바람직하게는, 왁스상 물질과 후술하는 충전재와 병용하는 것이 바람직하다. 따라서, 열연화층에 있어서의 왁스상 물질의 체적 충전율은, 열연화층 전량에 대하여, 15~80체적%인 것이 바람직하고, 20~60체적%인 것이 보다 바람직하고, 30~50체적%인 것이 더욱 바람직하다.
열연화층은, 충전재를 함유하는 것이 바람직하다. 충전재를 함유함으로써, 열연화층의 열전도율이 향상하여, 열전도성 시트 전체의 열전도율이 향상한다.
충전재로서는, 특별하게 한정되지 않지만, 열연화층으로부터 탈락하기 어려운 것이 바람직하고, 구체적으로는, 상기 서술한 비이방성 재료(14)를 이용할 수 있다. 열연화층에 배합되는 충전재로서는, 상기 서술한 비이방성 재료(14)와 동종의 것을 이용하여도 되고, 다른 것을 이용하여도 되지만, 동종의 것을 사용하는 것이 바람직하다.
열연화층에 배합되는 충전재는, 알루미나, 알루미늄, 산화아연, 질화붕소, 및 질화알루미늄에서 선택되는 것이 바람직하고, 특히 충전성이나 열전도율의 관점에서 알루미나가 바람직하다.
열연화층에 배합되는 충전재의 평균 입경은 0.1~50㎛인 것이 바람직하고, 0.5~35㎛인 것이 보다 바람직하고, 1~15㎛인 것이 특히 바람직하다.
열연화층에 있어서의 충전재의 체적 충전율은, 열연화층 전량에 대하여, 20~85체적%인 것이 바람직하고, 40~80체적%인 것이 보다 바람직하다. 이러한 범위이면, 열연화층의 가열 시의 연화의 용이함을 저해하는 일 없이, 열전도성을 향상시킬 수 있다. 또한, 후술하는 열전도성 시트의 열저항값의 상승률을 원하는 범위로 조정하기 쉬워진다.
열연화층의 두께는, 이방성 재료(13)의 탈락을 방지하는 관점에서는, 두꺼운 쪽이 좋지만, 열전도성 시트의 열전도성을 양호하게 하면서, 이방성 재료(13)의 탈락을 억제하는 관점에서, 5~45㎛인 것이 바람직하고, 10~40㎛인 것이 보다 바람직하고, 10~30㎛인 것이 더욱 바람직하다. 열연화층의 두께가, 5㎛ 이상이면 이방성 재료의 탈락을 방지하기 쉬우며, 45㎛ 이하이면, 열전도성 시트의 열전도율이 높게 유지되기 쉬우며, 후술하는 열전도성 시트의 열저항값 및 열저항값의 상승률을 원하는 범위로 조정하기 쉬워진다.
열연화층을 열전도층의 양면에 마련하는 경우에는, 적어도 편면에 마련되는 열연화층의 두께를 상기의 범위로 하는 것이 바람직하고, 양면에 마련되는 각 열연화층의 두께를 각각 상기의 범위로 하는 것이 보다 바람직하다.
열연화층의 두께는, 열전도성 시트의 열전도성을 양호하게 하는 관점에서, 열전도층의 두께보다도 얇은 것이 바람직하고, 열전도층의 두께의 0.1배 이하인 것이 바람직하고, 0.02배 이하인 것이 더욱 바람직하고, 그리고, 바람직하게는 0.005배 이상이다.
열연화층의 두께는, 열전도성 시트(10)의 단면을 주사형 전자현미경에 의해 관찰하고, 열연화층의 부분에 대하여 등간격으로 10점의 두께를 측정하고, 그 값을 평균한 평균 두께를 의미한다. 또한, 상기 열연화층의 두께는, 제조 직후의 두께여도, 발열체와 방열체의 사이에 장착한 것을 제거하였을 때의 두께여도 된다.
열연화층은, 그 기능을 해치지 않는 범위에서, 상기한 왁스상 물질 및 충전재 이외의 다른 성분을 함유하여도 되고, 다른 성분으로서는, 예를 들면, 계면활성제, 보강재, 착색제, 내열향상제, 커플링제, 난연제, 열화 방지제 등을 들 수 있다.
<열전도성 시트>
본 발명의 열전도성 시트의 10% 압축 시의 열저항값은, 0.15℃in2/W 이하인 것이 바람직하고, 0.10℃in2/W 이하인 것이 보다 바람직하다. 열저항값을 상기한 바와 같이 하는 것에 의해, 열전도성 시트의 열전도성을 높일 수 있다.
또한, 열전도성 시트의 10% 압축 시의 열저항값은, 낮으면 낮을수록 좋지만, 실용상은, 0.01℃in2/W 이상이다.
또한, 열저항값은, 실시예에 기재된 방법으로 측정할 수 있다.
본 발명의 열전도성 시트의 열저항값은, 열연화층을 가지지 않는 열전도성 시트와 비교하였을 경우의 열저항값의 상승률이 10% 이하인 것이 바람직하다. 본 열저항값의 상승률은, 열연화층을 마련한 것에 의한 열저항값의 상승률을 나타내고, 이것이 10% 이하인 것에 의해, 본 발명의 열전도성 시트는, 이방성 재료의 탈락을 방지하면서, 열전도성 시트의 열전도성을 높게 유지할 수 있다.
열저항값의 상승률은 5% 이하인 것이 보다 바람직하고, 3% 이하인 것이 바람직하다.
열저항값의 상승률은, 부의 값(예를 들면 -5% 이하 등)이 되어도 된다. 열저항값의 상승률이 부의 값이 되는 경우에는, 열연화층을 마련한 것에 의해, 열저항값이 감소하는 것을 의미한다. 예를 들면, 열전도층의 표면이 연마되어 있지 않은 상태, 혹은 연마되어 있어도 연마의 정도가 약한 경우에는, 표면의 요철이 크고, 적절한 두께의 열연화층을 열전도층의 표면에 마련함으로써, 요철이 감소하고, 열저항값이 낮아진다.
열저항값의 상승률은, 낮으면 낮을수록 좋지만, 실용상은 -50% 이상이다.
또한, 열저항값의 상승률은, 열전도성 시트의 열저항값을 A, 열연화층을 가지지 않는 열전도성 시트의 열저항값을 B라고 하였을 때, 100×(A-B)/B의 식으로 구할 수 있다.
구체적으로 상기 열저항값의 상승률은, 예를 들면 열연화층을 구비하는 열전도성 시트의 열저항값 A를 측정하고, 이 열전도성 시트로부터 열연화층을 제거한 열전도성 시트의 열저항값 B를 측정함으로써 구할 수 있다. 여기에서, 열연화층을 제거하는 방법으로서는, 열연화층이 용해되며 열전도성이 용해되지 않는 용제로 열연화층을 녹여서 제거하는 방법이나, 소정 온도로 가열하여 열연화층이 용융한 상태로 하여 열연화층을 닦아내는 방법 등을 채용할 수 있다.
열전도성 시트의 40% 압축 시의 하중은, 50N 이하인 것이 바람직하고, 30N 이하인 것이 바람직하다. 압축 시의 하중을 이처럼 조정함으로써, 열전도성 시트 사용 시의 접촉 대상물로의 부하가 저감되어, 접촉 대상물의 파손이 억제된다.
열전도성 시트의 40% 압축 시의 하중은, 열전도성 시트의 두께가 압축하기 전의 60%가 될 때까지 압축한 상태의 압축 하중을 측정하는 것에 의해 구할 수 있다. 열전도성 시트의 40% 압축 시의 하중은, 열전도층의 조성, 두께 등에 의해 주로 영향 받기 때문에, 이들을 조정함으로써, 원하는 범위로 조정할 수 있다.
<열전도성 시트의 제조 방법>
본 실시형태의 열전도성 시트는, 특별하게 한정되지 않지만, 예를 들면, 이하의 공정(A), (B) 및 (C)를 구비하는 방법에 의해 제조할 수 있다.
공정(A) : 열전도층에 있어서 두께 방향이 되는 일방향을 따라, 이방성 재료가 배향된 배향 성형체를 얻는 공정
공정(B) : 배향 성형체를 절단하여 시트상으로 하여, 열전도층을 얻는 공정
공정(C) : 열전도층의 표면에, 열연화층을 형성하는 공정
이하, 각 공정에 대해서, 보다 상세하게 설명한다.
[공정(A)]
공정(A)에서는, 이방성 재료(13)와, 비이방성 재료(14)와, 고분자 매트릭스의 원료가 되는 고분자 조성물을 포함하는 혼합 조성물로부터 배향 성형체를 성형한다. 혼합 조성물은, 바람직하게는 경화하여 배향 성형체로 한다. 배향 성형체는, 보다 구체적으로는 자장 배향 제법, 유동 배향 제법에 의해 얻을 수 있지만, 이들 중에서는, 자장 배향 제법이 바람직하다.
(자장 배향 제법)
자장 배향 제법에서는, 경화 후에 고분자 매트릭스가 되는 액상의 고분자 조성물과, 이방성 재료(13) 및 비이방성 재료(14)를 포함하는 혼합 조성물을 금형 등의 내부에 주입한 다음 자장에 두고, 이방성 재료(13)를 자장을 따라 배향시킨 후, 고분자 조성물을 경화시킴으로써 배향 성형체를 얻는다. 배향 성형체로서는 블록상(狀)의 것으로 하는 것이 바람직하다.
또한, 금형 내부에 있어서, 혼합 조성물에 접촉하는 부분에는, 박리 필름을 배치하여도 된다. 박리 필름은, 예를 들면, 박리성이 좋은 수지 필름이나, 편면이 박리제 등으로 박리 처리된 수지 필름이 사용된다. 박리 필름을 사용함으로써, 배향 성형체가 금형으로부터 이형(離型)되기 쉬워진다.
자장 배향 제법에 있어서 사용하는 혼합 조성물의 점도는, 자장 배향시키기 위해서, 10~300Pa·s인 것이 바람직하다. 10Pa·s 이상으로 함으로써, 이방성 재료(13)나 비이방성 재료(14)가 침강하기 어려워진다. 또한, 300Pa·s 이하로 함으로써 유동성이 양호해지고, 자장에서 이방성 재료(13)가 적절하게 배향되어, 배향에 시간이 지나치게 걸리거나 하는 문제도 생기지 않는다. 또한, 점도란, 회전점도계(브룩필드 점도계 DV-E, 스핀들 SC4-14)를 이용하여 25℃에 있어서, 회전 속도 10rpm으로 측정된 점도이다.
단, 침강하기 어려운 이방성 재료(13)나 비이방성 재료(14)를 이용하거나, 침강 방지제 등의 첨가제를 조합시키거나 할 경우에는, 혼합 조성물의 점도는, 10Pa·s 미만으로 하여도 된다.
자장 배향 제법에 있어서, 자력선을 인가하기 위한 자력선 발생원으로서는, 초전도 자석, 영구 자석, 전자석 등을 들 수 있지만, 높은 자속 밀도의 자장을 발생할 수 있는 점에서 초전도 자석이 바람직하다. 이들의 자력선 발생원으로부터 발생하는 자장의 자속 밀도는, 바람직하게는 1~30테슬라이다. 자속 밀도를 1테슬라 이상으로 하면, 탄소 재료 등으로 이루어지는 상기한 이방성 재료(13)를 용이하게 배향시키는 것이 가능하게 된다. 또한, 30테슬라 이하로 함으로써, 실용적으로 제조하는 것이 가능하게 된다.
고분자 조성물의 경화는, 가열에 의해 행하면 되지만, 예를 들면, 50~150℃정도의 온도로 행하면 된다. 또한, 가열 시간은, 예를 들면 10분~3시간 정도이다.
(유동 배향 제법)
유동 배향 제법에서는, 혼합 조성물에 전단력을 가해서, 면방향으로 이방성 재료가 배향된 예비적 시트를 제조하고, 이를 복수매 적층하여 적층 블록을 제조하고, 그 적층 블록을 배향 성형체로 하면 된다.
보다 구체적으로는, 유동 배향 제법에서는, 우선, 고분자 조성물에 이방성 재료(13)와 비이방성 재료(14), 필요에 따라 다양한 첨가제를 혼입하여 교반하고, 혼입시킨 고형물이 균질하게 분산된 혼합 조성물을 조제한다. 여기에서, 고분자 조성물에 사용하는 고분자 화합물은, 상온(23℃)에서 액상의 고분자 화합물을 포함하는 것이어도 되고, 상온에서 고체상의 고분자 화합물을 포함하는 것이어도 된다. 또한 고분자 조성물은, 가소제를 함유하고 있어도 된다.
혼합 조성물은, 시트상으로 신장시킬 때에 전단력이 가해지도록 비교적 고점도이며, 혼합 조성물의 점도는, 구체적으로는 3~50Pa·s인 것이 바람직하다. 혼합 조성물은, 상기 점도를 얻기 위해서, 용제가 배합되는 것이 바람직하다.
다음으로, 혼합 조성물에 대하여 전단력을 부여하면서 평평하게 신장시켜서 시트상(예비적 시트)으로 성형한다. 전단력을 가함으로써, 이방성 재료(13)를 전단 방향으로 배향시킬 수 있다. 시트의 성형 수단으로서, 예를 들면, 바 코터나 독터 블레이드 등의 도포용 애플리케이터, 혹은, 압출 성형이나 노즐로부터의 토출 등에 의해, 기재 필름 상에 혼합 조성물을 도공하고, 그 후, 필요에 따라 건조하거나, 혼합 조성물을 반경화시키거나 하면 된다. 예비적 시트의 두께는, 50~250㎛정도로 하는 것이 바람직하다. 예비적 시트에 있어서, 이방성 재료는 시트의 면방향을 따른 일방향으로 배향하고 있다. 구체적으로는, 이방성 재료가 섬유 재료일 때는 섬유축방향이 도포 방향을 향하고, 이방성 재료가 편평 재료일 때는 장축이 도포 방향을 향하고, 단축이 시트면의 법선 방향을 향하도록 배향한다.
이어서, 예비적 시트를, 배향 방향이 같아지도록 복수매 겹쳐서 적층한 후, 가열, 자외선 조사 등에 의해 혼합 조성물을 필요에 따라 경화시키면서, 열 프레스 등에 의해 예비적 시트를 서로 접착시킴으로써 적층 블록을 형성하고, 그 적층 블록을 배향 성형체로 하면 된다.
[공정(B)]
공정(B)에서는, 공정(A)에서 얻어진 배향 성형체를, 이방성 재료(13)가 배향하는 방향에 대하여 수직으로, 슬라이스 등에 의해 절단하여, 열전도층을 얻는다. 슬라이스는, 예를 들면 전단 칼날 등으로 행하면 된다. 열전도층은, 슬라이스 등의 절단에 의해, 절단면인 각 표면에 있어서 고분자 매트릭스로부터 이방성 재료(13)의 선단이 노출된다. 또한, 노출한 이방성 재료(13) 중 적어도 일부는, 각 표면으로부터 돌출한다. 노출하는 이방성 재료는, 거의 쓰러지지 않고 두께 방향으로 배향한 것이 된다.
공정(B) 후에, 열전도층의 이방성 재료가 노출된 표면을 연마하여도 된다. 열전도층의 표면을 연마함으로써, 노출한 이방성 재료(13)의 일부가 쓰러진다. 이에 의해, 열전도층의 두께 방향의 열전도율은 향상한다. 쓰러진 이방성 재료(13)는, 탈락하기 쉽지만, 열연화층을 이용하기 때문에, 쓰러진 이방성 재료(13)의 탈락을 억제할 수 있다. 쓰러진 이방성 재료(13)의 양은, 예를 들면, 연마 강도, 연마 횟수 등에 의해 조절할 수 있다.
[공정(C)] 열전도층의 표면에, 열연화층을 형성하는 공정
공정(C)에서는, 열전도층의 표면에, 열연화층을 형성하는 공정이다. 열연화층을 형성하는 수단은, 특별하게 한정되지 않으며, 예를 들면, 왁스상 물질, 충전재 등의 열연화층의 원료가 되는 각 성분을 혼합한 후, 시트상으로 성형하고, 열연화 시트를 형성시켜, 당해 열연화 시트를 열전도층의 표면에 압착하고, 열전도층의 표면에 열연화층을 형성하여도 되지만, 이하와 같은 방법이 바람직하다.
열연화층의 원료인, 왁스상 물질, 충전재 등의 각 성분에 용제를 첨가하고, 페이스트상 조성물을 조제한다. 당해 페이스트상 조성물을 상기 열전도층의 표면에, 도포하고, 용제를 휘발시킴으로써, 열전도층 표면에, 열연화층을 형성시킬 수 있다.
용제로서는, 특별하게 한정되지 않으며, 도포성, 휘발성 등을 고려하여, 적절히 선택하면 되지만, 왁스상 물질로서, 파라핀계 왁스나 폴리올레핀계 왁스를 이용하는 경우에는, 탄화수소계 용제, 방향족계 용제, 케톤계 용제, 에스테르계 용제 등을 이용하는 것이 바람직하다.
또한, 이상의 설명에서는, 열전도층의 양 표면(16A,16B)에 이방성 재료(13)가 노출된 양태를 나타냈다. 단, 본 발명에서는, 양 표면(16A,16B) 중 일방에만 있어서, 이방성 재료(13)가 노출되고, 타방은, 이방성 재료(13)가 고분자 매트릭스(12) 내부에 메워진 표면으로 하여도 된다. 상기한 자장 배향 제법에 의해 제조된 배향 성형체는, 그 최외면이, 이방성 재료(13)의 충전 비율이 다른 부분보다도 낮은, 전형적으로는, 이방성 재료(13)가 함유되지 않은 스킨층이 된다. 따라서, 예를 들면, 배향 성형체의 최외면을, 열전도층의 양 표면(16A,16B) 중 타방으로 함으로써, 양 표면(16A,16B) 중 타방을, 이방성 재료(13)가 고분자 매트릭스(12) 내부에 메워진 표면으로 할 수 있다. 양 표면(16A,16B) 중 일방에만 있어서, 이방성 재료(13)가 노출되고, 타방은, 이방성 재료(13)가 고분자 매트릭스(12) 내부에 메워진 표면으로 한 경우에는, 이방성 재료(13)가 노출된 표면에만, 열연화층을 형성시키는 것이 바람직하다.
[제 2 실시형태]
도 2는, 제 2 실시형태의 열전도성 시트를 나타낸다. 제 2 실시형태와 관련되는 열전도성 시트(20)는, 상기 제 1 실시형태의 열전도성 시트(10)의 양태에 추가하여, 추가로 열전도층(16)의 단면에도, 열연화층(27)이 마련되어 있다. 이러한 양태에 의해, 열전도층의 단면으로부터의 이방성 재료(13)의 탈락을 억제하기 쉬워진다. 특히, 열전도성 시트(20)를 압축하여 사용하는 경우에는, 열전도층의 단면으로부터 이방성 재료가 탈락하기 쉬워지기 때문에, 단면에 열연화층을 마련하는 것이 바람직하다.
열전도층의 단면에 열연화층(27)을 마련하는 경우에는, 적어도 일방의 단면에 열연화층(27)을 마련하면 되지만, 단면으로부터의 이방성 재료의 탈락을 유효하게 억제하는 관점에서, 도 2 에 나타내는 바와 같이, 전(全)외주 단면에 열연화층(27)을 마련하는 양태가 바람직하다.
또한, 열연화층(27)이, 열전도층(16)의 단면에 마련되는 경우, 그 두께는, 열전도층(16)의 표면에 마련한 열연화층의 두께와 동일한 정도로 할 수도 있지만, 두껍게 할 수도 있다. 또한, 열전도층의 전외주 단면에 열연화층 마련하는 경우에는, 외주의 각 부위의 열연화층의 두께는 동일한 정도여도, 달라도 된다.
열연화층(27)이, 열전도층(16)의 단면에도 마련되어 있는 열전도성 시트(20)를 얻기 위해서는, 열전도층의 단면에도, 열연화층을 형성시키면 된다. 열전도층의 단면에 열연화층을 형성시키는 방법은, 이하의 방법을 채용할 수 있다.
열전도층의 두께가 얇을 경우에는, 열전도층의 표면에 열연화층을 형성하는 것과 동시에, 비어져 나온 열연화층으로 열전도층의 단면도 덮을 수 있다. 또한, 열전도층이 두꺼울 경우에는, 열전도층의 표면에 열연화층을 형성시키는 방법과 마찬가지의 방법으로 열전도층의 단면에 열연화층을 형성할 수 있다.
[제 3 실시형태]
다음으로, 본 발명의 제 3 실시형태의 열전도성 시트에 대해서, 도 3을 이용하여 설명한다.
제 1 실시형태에 있어서는, 열전도성 시트(30)에는, 이방성 재료(13)에 추가하여, 비이방성 재료(14)가 함유되어 있었지만, 본 실시형태의 열전도성 시트(30)는, 도 3 에 나타내는 바와 같이, 비이방성 재료(14)가 함유되지 않는다. 즉, 제 1 실시형태의 열전도성 시트에 있어서는, 충전재로서 예를 들면 탄소 섬유만을 사용하여도 된다.
제 3 실시형태의 열전도성 시트(30)의 그 외의 구성은, 비이방성 재료(14)가 함유되지 않는 점 이외에는, 상기한 제 1 실시형태의 열전도성 시트(10)와 마찬가지이므로, 그 설명은 생략한다.
본 실시형태에 있어서도, 제 1 실시형태와 마찬가지로, 열연화층을 열전도층의 표면에 마련함으로써, 열전도층의 표면에 노출한 이방성 재료의 탈락을 방지할 수 있다.
[제 4 실시형태]
다음으로, 본 발명의 제 4 실시형태의 열전도성 시트에 대해서, 도 4를 이용하여 설명한다.
제 2 실시형태에 있어서는, 열전도성 시트(20)에는, 이방성 재료(13)에 추가하여, 비이방성 재료(14)가 함유되어 있었지만, 본 실시형태의 열전도성 시트(40)는, 도 4 에 나타내는 바와 같이, 비이방성 재료(14)가 함유되지 않는다. 즉, 제 4 실시형태의 열전도성 시트에 있어서는, 충전재로서 예를 들면 탄소 섬유만을 사용하여도 된다.
제 4 실시형태의 열전도성 시트(40)의 그 외의 구성은, 비이방성 재료(14)가 함유되지 않는 점 이외에는, 상기한 제 2 실시형태의 열전도성 시트(20)와 마찬가지이므로, 그 설명은 생략한다.
본 실시형태에 있어서도, 제 2 실시형태와 마찬가지로, 열연화층을 열전도층의 표면 및 단면에 마련함으로써, 열전도층의 표면에 노출한 이방성 재료의 탈락을 방지할 수 있다.
[열전도성 시트의 사용]
본 발명의 열전도성 시트는, 바람직하게는, 전자기기 중의 발열체와 방열체의 사이에 배치하여 사용할 수 있다. 발열체로서는, 예를 들면, 전자 소자 등을 들 수 있으며, 방열체로서는, 예를 들면, 히트 싱크, 히트 파이프 등을 들 수 있다. 본 발명의 열전도 시트를 발열체와 방열체의 사이에 배치하여, 사용하였을 경우에는, 열에 의해, 열연화층이 연화 또는, 유동화하여, 열전도성 시트와 발열체 및 방열체와의 밀착성이 높아지고, 또한, 이방성 재료의 탈락이 억제되어, 전자기기의 문제의 발생을 방지할 수 있다.
(실시예)
이하, 본 발명을 실시예에 의해 더욱 상세하게 설명하지만, 본 발명은 이들의 예에 의해 조금도 한정되는 것은 아니다.
본 실시예에서는, 이하의 방법에 의해 열전도성 시트의 물성을 평가하였다.
[40% 압축 시의 하중]
각 시료에 대하여 그 두께가 초기 두께의 60%의 두께가 될 때까지 압축하였을 때의 압축 하중을, 하중 측정기에 의해 측정하였다.
[10% 압축 시 열저항값]
열저항값은, 도 5에 나타나 있는 바와 같은 열저항 측정기를 이용하여, 이하에 나타내는 방법으로 측정하였다. 구체적으로는, 각 시료에 대해서, 본 시험용으로 크기가 30㎜×30㎜의 시험편(S)을 제조하였다. 그리고 각 시험편(S)을, 측정면이 25.4㎜×25.4㎜이며 측면이 단열재(21)로 덮어진 구리제 블록(22) 상에 첩부(貼付)하고, 상방의 구리제 블록(23)으로 끼워, 로드셀(26)에 의해 하중을 가하여, 두께가 원래의 두께의 90%가 되도록 설정하였다. 여기에서, 하방의 구리제 블록(22)은 히터(24)와 접하고 있다. 또한, 상방의 구리제 블록(23)은, 단열재(21)에 의해 덮어지며, 또한 팬을 구비한 히트 싱크(25)에 접속되어 있다. 이어서, 히터(24)를 발열량 25W로 발열시키고, 온도가 거의 정상 상태가 되는 10분 후에, 상방의 구리제 블록(23)의 온도(θj0), 하방의 구리제 블록(22)의 온도(θj1), 및 히터의 발열량(Q)을 측정하고, 이하의 식 (1)로부터 각 시료의 열저항값을 구하였다.
열저항=(θj1j0)/Q …식 (1)
식 (1)에 있어서, θj1은 하방의 구리제 블록(22)의 온도, θj0은 상방의 구리제 블록(23)의 온도, Q는 발열량이다.
[이방성 재료의 탈락의 정도]
이방성 재료의 탈락의 정도는, 백지 및 열전도성 시트를 이용한 이방성 재료의 탈락 시험에 의해 평가하였다. 구체적으로는, 이방성 재료의 탈락에 의해 착색한 백지의 착색 농도의 고저에 의해, 이방성 재료의 탈락의 정도를 평가하였다. 탈락 시험은, 이하와 같이 행하고, 백지의 착색 농도의 고저는, 분광 측색계로 행하였다.
(관찰)
백색의 상질지에 30㎜×30㎜의 열전도성 시트를 얹고, 하중 29.4N으로 30초 방치한 후에, 상기 열전도성 시트를 상기 상질지로부터 벗기고, 상기 상질지의 표면에 남은 이방성 재료에 의한 상기 상질지의 착색 농도를 CIE-L*a*b*표색계의 L*값으로서, 분광 측색계((주)컬러테크노시스템제 「JX777」)로 추측하였다.
이 때, 상기 상질지로서는 L*값이 98 이상의 것을 이용하고, 열전도성 시트를 재치한 범위 내의 임의의 짙은 착색 부분 3개소의 L*값 및 임의의 옅은 착색 부분 3개소를 측정하고, 그들의 상가 평균을 각 시료의 L*값으로 하였다. 또한, L*가 큰 값일수록, 이방성 재료의 탈락의 정도가 작은 것을 의미한다.
(평가)
A : L*값이 95 이상이었던 것.
B : L*값이 88~95였던 것.
C : L*값이 88 미만이었던 것.
[실시예 1]
고분자 매트릭스(고분자 조성물)로서, 알케닐기 함유 오르가노폴리실록산과 하이드로젠오르가노폴리실록산과, 이방성 재료로서 흑연화 탄소 섬유(평균 섬유 길이 100㎛, 애스펙트비 10, 열전도율 500W/m·K)와, 비이방성 재료로서, 산화알루미늄 분말(구상, 평균 입경 10㎛, 애스펙트비 1.0)을 혼합하여 혼합 조성물을 얻었다. 각 성분의 배합량은, 열전도층에 있어서 표 1의 체적%가 되도록 배합하였다.
계속해서, 열전도층보다도 충분히 큰 두께로 설정된 금형에 상기 혼합 조성물을 주입하고, 8T의 자장을 두께 방향으로 인가하여 흑연화 탄소 섬유를 두께 방향으로 배향한 후에, 80℃로 60분간 가열함으로써 매트릭스를 경화하여, 블록상의 배향 성형체를 얻었다.
다음으로, 전단 칼날을 이용하여, 블록상의 배향 성형체를 두께 2㎜의 시트상으로 슬라이스함으로써, 탄소 섬유가 노출되어 있는 열전도층을 얻었다. 계속해서, 열전도층의 양 표면을, 연마 입자의 입경이 10㎛인 연마지를 이용하여 10왕복 연마하고, 양 표면을 연마한 열전도층을 얻었다.
파라핀계 왁스(융점 46℃, 용융 시작부터 용융 종료까지의 온도 범위 40~50℃), 산화알루미늄(구상, 평균 입경 10㎛, 애스펙트비 1.0) 및 용제로서 이소파라핀을 혼합하여, 페이스트상의 조성물을 얻었다. 파라핀계 왁스와 산화알루미늄은, 열연화층을 형성시켰을 때에, 표 1 에 기재된 체적%가 되는 양으로 배합하였다. 당해 페이스트상의 조성물을, 양 표면을 연마한 열전도층의 양면에 도포하고, 건조시킴으로써, 열전도층의 양면에 각각 평균 두께 12.5㎛의 열연화층을 형성시켜, 열전도성 시트를 얻었다. 결과를 표 1에 나타냈다.
[실시예 2]
열전도층의 양면 및 전외주 단면에 페이스트상의 조성물 도포하고, 건조시켜서, 열전도층의 양면 및 전외주 단면에 열연화층을 형성시킨 것, 및 열연화층의 평균 두께를 변경한 것 이외에는, 실시예 1의 방법과 마찬가지로 하여, 열전도성 시트를 얻었다. 결과를 표 1에 나타냈다.
[실시예 3]
열연화층의 평균 두께를 변경한 것 이외에는, 실시예 1과 마찬가지로 하여, 열전도성 시트를 얻었다. 결과를 표 1에 나타냈다.
[실시예 4]
실시예 1에서는 10왕복으로 한 연마 조건을 5왕복으로 변경한 것 이외에는, 실시예 1과 마찬가지로 하여, 열전도성 시트를 얻었다. 결과를 표 1에 나타냈다.
[실시예 5]
실시예 1에서 행한 연마를 행하지 않은 것 이외에는, 실시예 1과 마찬가지로 하여, 열전도성 시트를 얻었다. 결과를 표 1에 나타냈다.
[비교예 1]
열전도층의 양면에 열연화층을 형성시키지 않은 것 이외에는, 실시예 1과 마찬가지로 열전도성 시트를 얻었다. 비교예 1의 열전도성 시트는, 열전도층만으로 이루어지는 열전도성 시트이다. 결과를 표 1에 나타냈다.
[실시예 6, 11]
열연화층의 조성을 각각 표 2, 표 3대로 변경한 것 이외에는, 실시예 1과 마찬가지로 하여 열전도성 시트를 얻었다. 결과를 표 2 및 3에 나타냈다.
또한, 표 2에서 나타낸 폴리올레핀계 왁스는, 결정성 폴리올레핀(결정성폴리알파올레핀:CPAO)이며, 융점이 42℃이며, 용융 시작부터 용융 종료까지의 온도 범위가 39~45℃이다. 표 3에서 나타낸 에스테르계 왁스는, 융점이 46℃이며, 용융 시작부터 용융 종료까지의 온도 범위가 40~50℃이다.
[실시예 7, 12]
열연화층의 조성을 각각 표 2, 표 3대로 변경한 것 이외에는, 실시예 2와 마찬가지로 하여 열전도성 시트를 얻었다. 결과를 표 2 및 3에 나타냈다.
[실시예 8, 13]
열연화층의 조성을 각각 표 2, 표 3대로 변경한 것 이외에는, 실시예 3과 마찬가지로 하여 열전도성 시트를 얻었다. 결과를 표 2 및 3에 나타냈다.
[실시예 9, 14]
열연화층의 조성을 각각 표 2, 표 3대로 변경한 것 이외에는, 실시예 4와 마찬가지로 하여 열전도성 시트를 얻었다. 결과를 표 2 및 3에 나타냈다.
[실시예 10, 15]
열연화층의 조성을 각각 표 2, 표 3대로 변경한 것 이외에는, 실시예 5와 마찬가지로 하여 열전도성 시트를 얻었다. 결과를 표 2 및 3에 나타냈다.
Figure pct00001
Figure pct00002
Figure pct00003
이상의 실시예의 결과로부터 명백하게 되는 바와 같이, 본 발명의 열전도성 시트는, 열전도층의 표면에 열연화층을 마련함으로써, 이방성 재료의 탈락을 방지할 수 있는 것을 알았다. 또한, 열연화층을 열전도층의 표면 및 단면에 마련함으로써, 이방성 재료의 탈락을 방지하는 효과가 높아지는 것을 알았다.
한편, 열연화층을 마련하고 있지 않은 비교예 1의 열전도성 시트는, 이방성 재료가 탈락하기 쉬웠다.
연마 횟수가 적은 열전도성 시트나 연마 공정을 행하고 있지 않은 열전도성 시트에서는, 열전도층의 표면의 요철이 큰 것으로 생각되고, 열연화층을 적층함으로써, 열저항값을 저감하는 효과를 예상할 수 있는 것을 알았다.
10,20,30,40 열전도성 시트
12 고분자 매트릭스
13,13X,13Y 이방성 재료
14 비이방성 재료
15 공극
16,36 열전도층
16A,16B 열전도층의 표면
17 열연화층
21 단열재
22 하방의 구리제 블록
23 상방의 구리제 블록
24 히터
25 히트 싱크
26 로드셀
S 시험편
θj0 상방의 구리제 블록의 온도
θj1 하방의 구리제 블록의 온도

Claims (13)

  1. 고분자 매트릭스와 이방성 재료를 포함하며, 상기 이방성 재료가 두께 방향으로 배향하면서, 또한 상기 이방성 재료가 표면에 노출하고 있는 열전도층과,
    상기 열전도층의 적어도 일방의 표면에 마련되는 열연화층을 구비하고,
    상기 열연화층이, 열전도층의 표면에 노출하고 있는 이방성 재료를 피복하고 있는 열전도성 시트.
  2. 제 1 항에 있어서,
    상기 이방성 재료가, 섬유 재료 및 편평 재료 중 적어도 일방을 함유하는, 열전도성 시트.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 이방성 재료가 섬유 재료를 함유하며, 당해 섬유 재료의 평균 섬유 길이가 5~600㎛인 열전도성 시트.
  4. 제 2 항 또는 제 3 항에 있어서,
    상기 섬유 재료가 탄소 섬유인, 열전도성 시트.
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 이방성 재료가 편평 재료를 함유하며, 당해 편평 재료의 평균 장축 길이가 5~300㎛인 열전도성 시트.
  6. 제 2 항 또는 제 5 항에 있어서,
    상기 편평 재료가 인편상 흑연인, 열전도성 시트.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 열연화층이, 상기 열전도층의 양 표면에 마련되어 있는, 열전도성 시트.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 열연화층이, 상기 열전도층의 단면에도 마련되어 있는, 열전도성 시트.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 열연화층을 가지지 않는 열전도성 시트와 비교하여, 열저항값의 상승률이 10% 이하인, 열전도성 시트.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
    상기 열연화층이, 비실리콘계 재료로 이루어지는, 열전도성 시트.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 열연화층이, 융점 35~120℃의 왁스상 물질을 함유하는, 열전도성 시트.
  12. 제 11 항에 있어서,
    상기 왁스상 물질이, 파라핀계 왁스, 에스테르계 왁스, 폴리올레핀계 왁스로 이루어지는 군에서 선택되는 적어도 1종인, 열전도성 시트.
  13. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 열연화층이, 비이방성 재료를 함유하는, 열전도성 시트.
KR1020217006560A 2018-09-07 2019-09-04 열전도성 시트 KR20210055693A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-168241 2018-09-07
JP2018168241 2018-09-07
PCT/JP2019/034847 WO2020050334A1 (ja) 2018-09-07 2019-09-04 熱伝導性シート

Publications (1)

Publication Number Publication Date
KR20210055693A true KR20210055693A (ko) 2021-05-17

Family

ID=69722645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217006560A KR20210055693A (ko) 2018-09-07 2019-09-04 열전도성 시트

Country Status (7)

Country Link
US (1) US20210324255A1 (ko)
EP (1) EP3848960A4 (ko)
JP (1) JP7281093B2 (ko)
KR (1) KR20210055693A (ko)
CN (1) CN112655085B (ko)
TW (1) TWI825168B (ko)
WO (1) WO2020050334A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137762A1 (ja) * 2020-12-23 2022-06-30 積水ポリマテック株式会社 熱伝導性シート、その装着方法及び製造方法
JP7089322B1 (ja) * 2020-12-23 2022-06-22 積水ポリマテック株式会社 熱伝導性シート、その装着方法及び製造方法
JPWO2022163192A1 (ko) * 2021-01-29 2022-08-04
JP6960554B1 (ja) * 2021-06-16 2021-11-05 デクセリアルズ株式会社 熱伝導シート及び熱伝導シートの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014534A (ja) 2013-09-06 2018-01-25 バンドー化学株式会社 熱伝導性樹脂成形品
JP2018056315A (ja) 2016-09-28 2018-04-05 デクセリアルズ株式会社 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435097B2 (ja) * 1999-05-25 2003-08-11 富士高分子工業株式会社 熱伝導性組成物
JP4447718B2 (ja) * 2000-01-24 2010-04-07 旭化成テクノプラス株式会社 導電性キャリアテープ
JP4046623B2 (ja) * 2003-02-19 2008-02-13 三菱電機株式会社 パワー半導体モジュールおよびその固定方法
CN100404242C (zh) * 2005-04-14 2008-07-23 清华大学 热界面材料及其制造方法
JP4897360B2 (ja) * 2006-06-08 2012-03-14 ポリマテック株式会社 熱伝導性成形体及びその製造方法
JP5768786B2 (ja) * 2008-03-18 2015-08-26 富士通株式会社 シート状構造体及び電子機器
CN101768427B (zh) * 2009-01-07 2012-06-20 清华大学 热界面材料及其制备方法
JP5272866B2 (ja) * 2009-04-15 2013-08-28 信越化学工業株式会社 熱圧着用シリコーンゴムシート
CN101989583B (zh) * 2009-08-05 2013-04-24 清华大学 散热结构及使用该散热结构的散热系统
TWI482245B (zh) * 2011-06-24 2015-04-21 Chuan Fa Chen 散熱元件及其製備方法
JP5953160B2 (ja) * 2012-07-27 2016-07-20 ポリマテック・ジャパン株式会社 熱伝導性成形体の製造方法
US20140138854A1 (en) * 2012-11-21 2014-05-22 Hitesh Arora Thermal interface material for integrated circuit package assembly and associated techniques and configurations
CN104754913B (zh) * 2013-12-27 2018-06-05 华为技术有限公司 导热复合材料片及其制作方法
TW201639706A (zh) * 2015-05-13 2016-11-16 蔡承恩 散熱積層結構及其製造方法
EP3437128B1 (en) * 2016-03-30 2021-12-29 Parker-Hannifin Corporation Thermal interface material
EP3419399B1 (en) * 2016-04-11 2020-08-26 Sekisui Polymatech Co., Ltd. Heat conductive sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018014534A (ja) 2013-09-06 2018-01-25 バンドー化学株式会社 熱伝導性樹脂成形品
JP2018056315A (ja) 2016-09-28 2018-04-05 デクセリアルズ株式会社 電磁波吸収熱伝導シート、電磁波吸収熱伝導シートの製造方法及び半導体装置

Also Published As

Publication number Publication date
TWI825168B (zh) 2023-12-11
TW202029430A (zh) 2020-08-01
EP3848960A1 (en) 2021-07-14
JPWO2020050334A1 (ja) 2021-09-24
US20210324255A1 (en) 2021-10-21
WO2020050334A1 (ja) 2020-03-12
CN112655085A (zh) 2021-04-13
EP3848960A4 (en) 2022-06-01
CN112655085B (zh) 2024-05-31
JP7281093B2 (ja) 2023-05-25

Similar Documents

Publication Publication Date Title
JP2019186555A (ja) 熱伝導性シートおよび熱伝導性シートの製造方法
KR20210055693A (ko) 열전도성 시트
US11702579B2 (en) Thermally conductive composition, thermally conductive sheet, and method for producing thermally conductive sheet
KR102614679B1 (ko) 열전도성 시트
CN111699090B (zh) 导热性片
US11987687B2 (en) Heat conductive sheet
JP6650175B1 (ja) 熱伝導性シート
WO2022137762A1 (ja) 熱伝導性シート、その装着方法及び製造方法
WO2022163192A1 (ja) 熱伝導性シート、その装着方法及び製造方法
JP7089322B1 (ja) 熱伝導性シート、その装着方法及び製造方法
WO2022210419A1 (ja) 熱伝導性シートの製造方法
WO2023190587A1 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
WO2022070568A1 (ja) 熱伝導性シート、その装着方法及び製造方法