KR20210052674A - Method for preparing ion exchange resin with reduced metal impurity content - Google Patents

Method for preparing ion exchange resin with reduced metal impurity content Download PDF

Info

Publication number
KR20210052674A
KR20210052674A KR1020190136212A KR20190136212A KR20210052674A KR 20210052674 A KR20210052674 A KR 20210052674A KR 1020190136212 A KR1020190136212 A KR 1020190136212A KR 20190136212 A KR20190136212 A KR 20190136212A KR 20210052674 A KR20210052674 A KR 20210052674A
Authority
KR
South Korea
Prior art keywords
exchange resin
ion exchange
acid solution
metal impurities
less
Prior art date
Application number
KR1020190136212A
Other languages
Korean (ko)
Other versions
KR102346812B1 (en
Inventor
박석일
김민준
신대철
이승윤
정윤서
최승민
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Priority to KR1020190136212A priority Critical patent/KR102346812B1/en
Publication of KR20210052674A publication Critical patent/KR20210052674A/en
Application granted granted Critical
Publication of KR102346812B1 publication Critical patent/KR102346812B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties

Abstract

The present invention relates to a method for preparing an ion exchange resin with a reduced metal impurity content, and more particularly, to a method for preparing an ion exchange resin of which the content of metal ions is extremely low and total organic carbon (TOC) elution is low, and has excellent resistivity to be used in the manufacture of ultrapure water for semiconductors. The method comprises the following steps of: (1) making an ion exchange resin contact with a mineral acid solution at 30°C or higher; and (2) washing the ion exchange resin obtained in the step (1) with ultrapure water.

Description

금속 불순물 함량이 감소된 이온 교환수지의 제조방법{METHOD FOR PREPARING ION EXCHANGE RESIN WITH REDUCED METAL IMPURITY CONTENT}Manufacturing method of ion exchange resin with reduced metal impurity content{METHOD FOR PREPARING ION EXCHANGE RESIN WITH REDUCED METAL IMPURITY CONTENT}

본 발명은 금속 불순물 함량이 감소된 이온 교환수지의 제조방법에 관한 것으로, 더욱 상세하게는, 금속 이온의 함유량이 극히 적고 총 유기탄소(TOC) 용출이 낮으며, 비저항 값이 우수하여 반도체용 초순수의 제조에 사용되는 이온 교환수지를 제조하는 방법에 관한 것이다. The present invention relates to a method of manufacturing an ion exchange resin having a reduced content of metal impurities, and more specifically, an extremely low content of metal ions, a low total organic carbon (TOC) elution, and an excellent resistivity value, resulting in ultrapure water for semiconductors. It relates to a method for producing an ion exchange resin used in the manufacture of.

최근 반도체 제조 분야에서는 종래부터 반도체 소자의 고집적도화에 수반하여 반도체 제조 공정에서 적용되는 생산 기계나 가스 등과 함께 세척 및 약품에 대해서도 고순도화가 요구되었으며, 함께 사용되는 초순수(경우에 따라 극도 순수라고도 칭해진다) 등 또한 매우 고순도의 용수에 대한 관심이 높아 지고 있다In recent years, in the field of semiconductor manufacturing, high purity has been required for cleaning and chemicals along with production machines or gases applied in the semiconductor manufacturing process, along with high integration of semiconductor devices. ), etc. Also, interest in very high purity water is increasing.

초순수 등의 세척수 또는 레지스트액으로 대표되는 각종 액상제 등이 이온성 불순물인 나트륨 이온, 칼슘 이온, 마그네슘 이온, 철 이온, 구리 이온 및 아연 이온 등의 다양한 금속 이온을 다량 포함할 경우에는 생산되는 전기·전자 제품의 품질에 큰 악영향을 초래할 수 있다. 이러한 이유 때문에 전기·전자 제품 제조에 사용되는 액상제는 불순물 및 금속 이온을 거의 포함하지 않는 고순도의 것이 요구되고 있다. Electricity generated when washing water such as ultrapure water or various liquid agents represented by resist solutions contain large amounts of various metal ions such as sodium ions, calcium ions, magnesium ions, iron ions, copper ions, and zinc ions, which are ionic impurities. · It can cause a great adverse effect on the quality of electronic products. For this reason, liquid agents used in the manufacture of electric and electronic products are required to have high purity that hardly contain impurities and metal ions.

이러한 금속 이온 함유량이 적은 액상제는 이온 교환수지에 의해 정제되어 제조되고 있다. 그러나 이온 교환수지 중에도 다량의 금속 불순물이 포함될 경우, 금속 이온이 액상제에 용출되어 고순도의 액상제를 얻기가 어려운 문제가 있다.Liquid agents having a small content of such metal ions are manufactured by being purified by ion exchange resin. However, when a large amount of metal impurities are included in the ion exchange resin, metal ions are eluted into the liquid agent, making it difficult to obtain a high-purity liquid agent.

상기의 이온 교환수지 내에 함유된 금속에 의한 문제를 해결하기 위해, 일본 특허공개공보 제2007-117781호에서는 금속 이온을 함유하는 이온 교환수지에 금속 불순물량이 1 ㎎/L(ppm) 이하인 고순도의 광산 수용액을 하향류로 통액시켜 이온 교환수지의 금속 이온의 불순물량을 감소시키는 방법이 개시되어 있다. 그러나 불순물인 금속 이온의 함유량이 적은 광산(불순물량 1 ㎎/L 이하의 고순도의 광산) 용액은 추가적인 정제 공정을 통해 제조되므로, 매우 고가이며, 또한 이온 교환수지의 정제 조작에 있어 광산 용액이 접촉하는 펌프나 배관 등도 금속 이온에 의해 오염되어 있지 않은 특수 재질의 코팅이 포함되어야 하기 때문에 이온 교환수지 정제 장치 구축을 위해 고비용이 발생하고, 또한 이들 장치가 오염되지 않도록 유지 및 관리함에 있어 어려움이 있다. 또한 다량의 고순도의 광산 수용액을 통수하는 과정에서 처리액의 발생량이 많아지며, 발생된 처리액의 중화 처리/폐기 처리에 대한 비용적 손실이 발생될 수 있다.In order to solve the problem caused by the metal contained in the ion exchange resin, Japanese Patent Laid-Open Publication No. 2007-117781 discloses a high-purity mine in which the amount of metal impurities is 1 mg/L (ppm) or less in the ion exchange resin containing metal ions. Disclosed is a method of reducing the amount of impurities of metal ions in an ion exchange resin by passing an aqueous solution in a downward flow. However, since a mineral acid solution with a low content of impurities metal ions (high purity mines with an impurity amount of 1 mg/L or less) is manufactured through an additional purification process, it is very expensive, and the photo acid solution comes into contact in the purification operation of the ion exchange resin. Because the pumps and pipes that are used must also contain a coating made of a special material that is not contaminated by metal ions, high cost is incurred for the establishment of ion exchange resin purification equipment, and there is difficulty in maintaining and managing these equipment so that they are not contaminated . In addition, in the process of passing through a large amount of high-purity mineral acid aqueous solution, the amount of treatment liquid is increased, and a cost loss for neutralization treatment/disposal treatment of the generated treatment liquid may occur.

이 때문에 보다 경제적인 처리 방식을 통한 반도체용 초순수의 제조에 사용되는 이온 교환수지 내의 금속 이온 함량을 저비용으로 감소시킬 수 있는 방법이 요구되고 있다.For this reason, there is a need for a method capable of reducing the metal ion content in the ion exchange resin used in the production of ultrapure water for semiconductors through a more economical treatment method at low cost.

본 발명은 상기와 같은 종래기술의 문제점을 해결하고자 한 것으로, 금속 이온의 함유량이 극히 적고 총 유기탄소(TOC) 용출이 낮으며, 비저항 값이 우수하여 반도체용 초순수의 제조에 사용되는 이온 교환수지를 제조하는 방법을 기술적 과제로 한다.The present invention is to solve the problems of the prior art as described above, the content of metal ions is extremely low, total organic carbon (TOC) elution is low, and the specific resistance value is excellent, so that the ion exchange resin used in the manufacture of ultrapure water for semiconductors. The method of manufacturing is made into a technical problem.

상기한 기술적 과제를 해결하고자 본 발명은, (1) 이온 교환수지와 30℃ 이상의 광산 용액을 접촉시키는 단계; 및 (2) 상기 (1) 단계로부터 얻어진 이온 교환수지를 초순수로 세정하는 단계;를 포함하며, 세정된 이온 교환수지 내의 금속 불순물 총 함량이 5 ㎎/L-R 이하인, 금속 불순물 함량이 감소된 이온 교환수지의 제조방법을 제공한다.In order to solve the above technical problem, the present invention includes the steps of: (1) contacting an ion exchange resin with a photo acid solution of 30° C. or higher; And (2) washing the ion exchange resin obtained from the step (1) with ultrapure water, wherein the total content of metal impurities in the washed ion exchange resin is 5 mg/LR or less. Provides a method of manufacturing a resin.

본 발명의 다른 측면에 따르면, 상기 방법으로 제조된 이온 교환수지가 제공된다. According to another aspect of the present invention, an ion exchange resin prepared by the above method is provided.

본 발명의 방법에 따라 제조된 이온 교환수지(바람직하게는 양이온 교환수지, 보다 바람직하게는 강산성 양이온 교환수지)는 이온 교환수지 자체 내의 금속 불순물 함량이 매우 낮아 용출 금속 불순물이 적으며, 총 유기탄소(TOC) 용출이 낮고, 비저항 값이 우수하여, 반도체용 초순수 제조에 적합하게 사용될 수 있다. The ion exchange resin (preferably a cation exchange resin, more preferably a strongly acidic cation exchange resin) prepared according to the method of the present invention has a very low content of metal impurities in the ion exchange resin itself, so that there are few eluted metal impurities, and total organic carbon. (TOC) The elution is low and the specific resistance value is excellent, so it can be suitably used for manufacturing ultrapure water for semiconductors.

이하, 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명은 (1) 이온 교환수지와 30℃ 이상의 광산 용액을 접촉시키는 단계; 및 (2) 상기 (1) 단계로부터 얻어진 이온 교환수지를 초순수로 세정하는 단계;를 포함하며, 세정된 이온 교환수지 내의 금속 불순물 총 함량이 5 ㎎/L-R 이하인, 금속 불순물 함량이 감소된 이온 교환 수지의 제조방법에 관한 것이다. The present invention comprises the steps of (1) contacting an ion exchange resin with a photo acid solution of 30° C. or higher; And (2) washing the ion exchange resin obtained from the step (1) with ultrapure water, wherein the total content of metal impurities in the washed ion exchange resin is 5 mg/LR or less. It relates to a method of manufacturing a resin.

본 발명의 제조 방법에 의해 수득되는 이온 교환 수지(바람직하게는 양이온 교환수지, 보다 바람직하게는 강산성 양이온 교환수지)는 총 유기탄소(TOC) 용출량이 5 ppb 이하 (바람직하게는 4.5 ppb 이하, 보다 바람직하게는 4.3 ppb 이하, 보다 더 바람직하게는 4.2 ppb 이하)이고, 비저항이 16 ㏁·㎝ 이상 이며, 이온 교환 수지 내 존재하는 금속 불순물(나트륨 이온, 칼슘 이온, 마그네슘 이온, 철 이온, 구리 이온 및 아연 이온 등)의 총 함량이 5 ㎎/L-R(수팽윤 상태의 이온 교환수지 1 L 단위부피 당 금속 ㎎ 의 양) 이하 (바람직하게는 4 ㎎/L-R 이하, 보다 바람직하게는 3 ㎎/L-R 이하)일 수 있다. The ion exchange resin (preferably a cation exchange resin, more preferably a strongly acidic cation exchange resin) obtained by the production method of the present invention has a total organic carbon (TOC) elution amount of 5 ppb or less (preferably 4.5 ppb or less, more Preferably it is 4.3 ppb or less, even more preferably 4.2 ppb or less), has a specific resistance of 16 ㏁·cm or more, and metal impurities (sodium ions, calcium ions, magnesium ions, iron ions, copper ions) present in the ion exchange resin And zinc ions, etc.) having a total content of 5 mg/LR (amount of metal mg per 1 L unit volume of the ion exchange resin in water swelling state) or less (preferably 4 mg/LR or less, more preferably 3 mg/LR). Or less).

본 발명의 제조방법은, (1) 이온 교환 수지와 30℃ 이상의 광산 용액을 접촉시키는 단계를 포함한다.The manufacturing method of the present invention includes the step of (1) contacting an ion exchange resin with a photoacid solution of 30°C or higher.

상기 (1) 단계에서 사용되는 광산 용액으로는 수용액이 바람직하고, 구체적인 예로서는 염산 수용액, 황산 수용액, 질산 수용액, 인산 수용액 또는 이들의 혼합 용액 등을 사용할 수 있고, 저비용으로 취급이 용이한 염산 수용액을 이용하는 것이 바람직할 수 있다. As the photoacid solution used in step (1), an aqueous solution is preferable, and as a specific example, an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, an aqueous nitric acid solution, an aqueous phosphoric acid solution, or a mixed solution thereof may be used, and an aqueous hydrochloric acid solution that is easy to handle at low cost is used. It may be desirable to use.

상기 (1) 단계에서, 이온 교환 수지와 광산 용액의 “접촉”은 이온 교환수지에 광산 용액을 통과시키는 것을 포함할 뿐만 아니라, 이온 교환수지를 광산 용액 중에 침지시키는 것도 포함한다. 상기 단계 (1)에서 이온 교환 수지를 광산 용액과 접촉시켜 가열시키는 배치법을 이용하여 이온 교환 수지를 광산 용액에 접촉시키는 것이 바람직하다.In step (1), the "contact" between the ion exchange resin and the photoacid solution includes not only passing the photoacid solution through the ion exchange resin, but also immersing the ion exchange resin in the photoacid solution. In the above step (1), it is preferable to contact the ion exchange resin with the photoacid solution using a batch method in which the ion exchange resin is heated by contacting the photoacid solution.

본 발명의 제조 방법에 사용되는 이온 교환 수지는 예를 들면, 강산성 양이온 교환수지, 약산성 양이온 교환수지, 강염기성 음이온 교환수지 또는 약염기성 음이온 교환 수지일 수 있으나, 바람직하게는 강산성 양이온 교환수지일 수 있다. 또한, 상기 이온 교환수지는 이온 교환기가 Na형, H형 또는 NH형인 이온 교환수지일 수 있으며, 바람직하게는 H형 이온 교환수지를 사용할 수 있다. The ion exchange resin used in the manufacturing method of the present invention may be, for example, a strong acid cation exchange resin, a weak acid cation exchange resin, a strong basic anion exchange resin or a weak basic anion exchange resin, but preferably a strong acid cation exchange resin. have. In addition, the ion exchange resin may be an ion exchange resin having an ion exchange group of Na type, H type or NH type, and preferably H type ion exchange resin may be used.

상기 (1) 단계에서 사용되는 광산 용액의 총 금속 불순물의 함량은 0.01 ㎎/L 내지 3 ㎎/L 를 사용할 수 있으며, 광산 용액의 총 금속 불순물의 함량이 10 ㎎/L 이상일 경우, 이온 교환수지 내의 금속 불순물을 저감 시킬 수 없을 뿐만 아니라 반대로 금속 불순물이 이온 교환수지에 흡착될 수 있다.The total content of metal impurities in the mineral acid solution used in step (1) may be 0.01 mg/L to 3 mg/L, and when the total content of metal impurities in the photo acid solution is 10 mg/L or more, the ion exchange resin Metal impurities in the inside cannot be reduced, and on the contrary, metal impurities may be adsorbed to the ion exchange resin.

상기 (1) 단계에서 사용되는 광산 용액의 온도는 30℃ 이상, 예를 들면, 35 ℃ 이상, 40 ℃ 이상 또는 45 ℃ 이상일 수 있다. 상기 광산 용액의 온도가 30℃ 미만일 경우에는 이온 교환수지 내부의 팽창이 제대로 이루어지지 않아, 가교 결합 내에 존재하는 금속 불순물들을 효과적으로 제거할 수 없다. 다만 상기 광산 용액의 온도가 50 ℃ 초과일 경우에는 이온 교환수지를 구성하고 있는 화학적 결합이 깨져 방출되는 총 유기탄소의 양이 증가될 수 있으며, 승온에 따른 비용 증가가 발생할 수 있다. The temperature of the photoacid solution used in step (1) may be 30°C or higher, for example, 35°C or higher, 40°C or higher, or 45°C or higher. When the temperature of the photoacid solution is less than 30° C., the ion exchange resin does not expand properly, and metal impurities present in the cross-linking cannot be effectively removed. However, when the temperature of the mineral acid solution exceeds 50° C., chemical bonds constituting the ion exchange resin may be broken, resulting in an increase in the amount of total organic carbon emitted, and cost increase due to temperature increase may occur.

이온 교환수지에 광산 용액을 통과시키는 경우에는 광산 용액을 30℃ 이상으로 승온시킨 후, 이온 교환수지에 광산 용액을 통과시킴으로써, 이들을 접촉시킬 수 있고, 이온 교환수지를 광산 용액에 침지시키는 경우에는 침지 후에 30℃ 이상으로 승온시키거나, 광산 용액을 30℃ 이상으로 승온시킨 후에 이온 교환수지를 상기 승온된 광산 용액에 침지시킬 수 있다. When passing the photoacid solution through the ion exchange resin, the photoacid solution is heated to 30℃ or higher, and then the photoacid solution is passed through the ion exchange resin to make them contact. When the ion exchange resin is immersed in the photoacid solution, immersion After raising the temperature to 30° C. or higher, or after raising the temperature of the photoacid solution to 30° C. or higher, the ion exchange resin may be immersed in the elevated photo acid solution.

상기 (1) 단계에서 사용되는 광산 용액의 농도는 1 내지 10 중량%일 수 있고, 예를 들면, 1 중량% 이상, 2 중량% 이상, 3 중량% 이상 또는 4 중량% 이상일 수 있고, 10 중량% 이하, 8 중량% 이하, 7 중량% 이하 또는 6 중량% 이하일 수 있다. 광산 용액의 농도가 너무 높을 경우에는, 이온 교환수지의 처리에 이용하는 장치가 산에 의한 부식을 받거나 이온 교환수지를 구성하고 있는 화학적 결합의 분해를 일으킬 수 있고, 광산 용액의 농도가 너무 낮을 경우에는, 금속 불순물 제거 효과가 미미할 수 있다. The concentration of the photoacid solution used in step (1) may be 1 to 10% by weight, for example, 1% by weight or more, 2% by weight or more, 3% by weight or more, or 4% by weight or more, and 10% by weight % Or less, 8% by weight or less, 7% by weight or less, or 6% by weight or less. If the concentration of the mineral acid solution is too high, the device used for the treatment of the ion exchange resin may be corroded by acid or decomposition of the chemical bonds constituting the ion exchange resin, and if the concentration of the mineral solution is too low , The effect of removing metal impurities may be insignificant.

본 발명의 제조방법은, (2) 상기 (1) 단계로부터 얻어진 이온 교환수지를 초순수로 세정하는 단계를 포함한다.The manufacturing method of the present invention includes the step of (2) washing the ion exchange resin obtained from step (1) with ultrapure water.

상기 (2) 단계에서는, 상기 (1) 단계로부터 얻어진 이온 교환수지를 1 ppb 이하의 총 유기탄소(TOC) 및 18.2 ㏁·㎝ 이상의 비저항을 갖는 초순수를 사용하여 SV=20 hr-1 내지 30 hr-1의 유속으로 15시간 내지 20 시간 동안 하향류로 통액함으로써, 광산 용액 및 유기물을 제거함과 동시에 금속 불순물의 재 오염을 방지할 수 있다.In the step (2), the ion exchange resin obtained from the step (1) is 1 ppb or less of total organic carbon (TOC) and ultrapure water having a specific resistance of 18.2 ㏁·cm or more is used, and SV = 20 hr -1 to 30 hr By passing the liquid in a downward flow for 15 to 20 hours at a flow rate of -1 , it is possible to prevent re-contamination of metal impurities while removing the mineral acid solution and organic matter.

본 발명의 방법에 의하면, 이온 교환수지를 반응기 내에서 30℃ 이상으로 승온시킨 광산 용액과 접촉시키는 간단한 조작에 의해 이온 교환수지의 금속 불순물을 제거함으로써, 이온 교환수지의 사용 시에 용출될 수 있는 금속 불순물을 저감시킬 수 있으며, 총 유기탄소(TOC) 용출이 낮고 비저항값이 높은 양질의 이온 교환 수지를 제조할 수 있다.According to the method of the present invention, metal impurities in the ion exchange resin are removed by a simple operation of contacting the ion exchange resin with a photoacid solution heated to 30° C. or higher in a reactor, which can be eluted when the ion exchange resin is used. Metal impurities can be reduced, total organic carbon (TOC) elution is low, and a high-quality ion exchange resin can be prepared.

본 발명은 또한 본 발명의 제조 방법에 의해 제조된 이온 교환수지에 관한 것이다. The present invention also relates to an ion exchange resin produced by the production method of the present invention.

본 발명의 제조 방법에 따라 제조된 이온 교환수지는 총 유기탄소(TOC) 용출량이 5 ppb 이하 (바람직하게는 4.5 ppb 이하, 보다 바람직하게는 4.3 ppb 이하, 보다 더 바람직하게는 4.2 ppb 이하)이고, 비저항이 16 ㏁·㎝ 이상이며, 금속 불순물 총 함량이 5 ㎎/L-R 이하 (바람직하게는 4 ㎎/L-R 이하, 보다 바람직하게는 3 ㎎/L-R 이하)일 수 있다. The ion exchange resin prepared according to the production method of the present invention has a total organic carbon (TOC) elution of 5 ppb or less (preferably 4.5 ppb or less, more preferably 4.3 ppb or less, even more preferably 4.2 ppb or less). , The specific resistance may be 16 ㏁·cm or more, and the total content of metal impurities may be 5 mg/LR or less (preferably 4 mg/LR or less, more preferably 3 mg/LR or less).

이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples. However, the scope of the present invention is not limited to these.

[[ 실시예Example ]]

실시예Example 1 One

(1) 단계: 이온 교환수지와 (1) Step: Ion exchange resin and 가온된Warmed 광산 용액을 접촉시키는 단계 Contacting the mineral solution

테플론 재질의 1 L의 반응기에 H형 양이온 교환수지(TRILITE MC-08HUP, 삼양사(제)) 200 ml를 넣고, 상기 양이온 교환수지의 체적에 대해서 2.5배의 염산 수용액(3 중량%)을 투입한 다음, 상기 반응기 내 온도를 35℃로 승온시킨 후, 3시간 동안 상기 승온 온도를 유지하면서 교반하였다. 이후 상기 염산 수용액을 배수(Drain)하였으며, 상기 양이온 교환수지의 pH를 조절하기 위하여, 상기 양이온 교환수지의 체적에 대해서 2.5배의 초순수를 반응기에 투입하고, 30분 동안 교반한 다음, 초순수를 배수(Drain)하는 과정을 3차례 반복 실시하였다. Into a 1 L reactor made of Teflon, 200 ml of H-type cation exchange resin (TRILITE MC-08HUP, Samyang Corporation (manufactured by Samyang Corporation)) was added, and an aqueous hydrochloric acid solution (3% by weight) of 2.5 times the volume of the cation exchange resin was added. Next, after raising the temperature in the reactor to 35° C., the mixture was stirred while maintaining the elevated temperature for 3 hours. Thereafter, the hydrochloric acid aqueous solution was drained, and in order to adjust the pH of the cation exchange resin, 2.5 times the volume of ultrapure water was added to the reactor, stirred for 30 minutes, and then the ultrapure water was drained. The process of (Drain) was repeated 3 times.

(2) 단계: 초순수를 이용하여 이온 교환수지를 세정하는 단계(2) Step: Washing the ion exchange resin using ultrapure water

상기 (1) 단계에서 얻어진 양이온 교환수지 100 ml를 컬럼(L 500mm X D 20mm)에 충전한 후, 초순수를 사용하여 SV=20 hr-1(단위 시간당 이온 교환수지 체적을 기준으로 통과되는 유체의 체적비)의 속도의 하향류로 20 시간 동안 통수함으로써, 상기 양이온 교환수지를 세정하였다. 이때, 상기 초순수의 총 유기탄소(TOC)가 1 ppb이하였고, 비저항이 18.2 ㏁·㎝ 이상이었다.After filling 100 ml of the cation exchange resin obtained in step (1) into a column (L 500mm XD 20mm), SV = 20 hr -1 using ultrapure water (the volume ratio of the fluid passing through the ion exchange resin volume per unit time) The cation exchange resin was washed by passing water for 20 hours at a downward flow rate of ). At this time, the total organic carbon (TOC) of the ultrapure water was 1 ppb or less, and the specific resistance was 18.2 ㏁·cm or more.

상기 수득된 양이온 교환수지의 비저항, 총 유기탄소(TOC) 및 금속 불순물 함량을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. The specific resistance, total organic carbon (TOC), and metal impurity content of the obtained cation exchange resin were measured, and the results are shown in Table 1 below.

실시예Example 2 2

실시예 1의 (1) 단계의 승온 온도를 35℃에서 30℃로 변경한 것을 제외하고는, 실시예 1의 (1) 단계 및 (2) 단계와 동일한 방법으로 수행하여, 양이온 교환수지를 수득하였다. 상기 수득된 양이온 교환수지의 비저항, 총 유기탄소(TOC) 및 금속 불순물 함량을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. A cation exchange resin was obtained by performing the same method as in Steps (1) and (2) of Example 1, except that the temperature-raising temperature in Step (1) of Example 1 was changed from 35°C to 30°C. I did. The specific resistance, total organic carbon (TOC), and metal impurity content of the obtained cation exchange resin were measured, and the results are shown in Table 1 below.

실시예Example 3 3

실시예 1의 (1) 단계의 승온 온도를 35℃에서 40℃로 변경한 것을 제외하고는, 실시예 1의 (1) 단계 및 (2) 단계와 동일한 방법으로 수행하여, 양이온 교환수지를 수득하였다. 상기 수득된 양이온 교환수지의 비저항, 총 유기탄소(TOC) 및 금속 불순물 함량을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. A cation exchange resin was obtained by performing the same method as in Steps (1) and (2) of Example 1, except that the temperature rising temperature in Step (1) of Example 1 was changed from 35°C to 40°C. I did. The specific resistance, total organic carbon (TOC), and metal impurity content of the obtained cation exchange resin were measured, and the results are shown in Table 1 below.

비교예Comparative example 1 One

실시예 1의 (1) 단계 및 (2) 단계가 실시되지 않은, H형 양이온 교환수지(TRILITE MC-08HUP, 삼양사(제))의 비저항, 총 유기탄소(TOC) 및 금속 불순물 함량을 측정하였으며, 그 결과를 하기 표 1에 나타내었다.The specific resistance, total organic carbon (TOC), and metal impurity content of the H-type cation exchange resin (TRILITE MC-08HUP, Samyang Corporation (manufactured by Samyang Corporation)) of Example 1 in which steps (1) and (2) were not performed were measured. , The results are shown in Table 1 below.

비교예Comparative example 2 2

실시예 1의 (1) 단계를 실시하지 않는 것을 제외하고는, 실시예 1과 동일한 방법으로 수행하여 양이온 교환수지를 수득하였다. 상기 수득된 양이온 교환수지의 비저항, 총 유기탄소(TOC) 및 금속 불순물 함량을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. A cation exchange resin was obtained in the same manner as in Example 1, except that step (1) of Example 1 was not performed. The specific resistance, total organic carbon (TOC), and metal impurity content of the obtained cation exchange resin were measured, and the results are shown in Table 1 below.

비교예Comparative example 3 3

실시예 1의 (1) 단계의 승온 온도를 35℃에서 28℃로 변경한 것을 제외하고는, 실시예 1의 (1) 단계 및 (2) 단계와 동일한 방법으로 수행하여, 양이온 교환수지를 수득하였다. 상기 수득된 양이온 교환수지의 비저항, 총 유기탄소(TOC) 및 금속 불순물 함량을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. A cation exchange resin was obtained in the same manner as in Steps (1) and (2) of Example 1, except that the temperature rising temperature in Step (1) of Example 1 was changed from 35°C to 28°C. I did. The specific resistance, total organic carbon (TOC), and metal impurity content of the obtained cation exchange resin were measured, and the results are shown in Table 1 below.

비교예Comparative example 4 4

실시예 1의 (1) 단계의 반응기 내 온도를 승온시키지 않고, 상온(25±2℃)으로 유지한 것을 제외하고는, 실시예 1의 (1) 단계 및 (2) 단계와 동일한 방법으로 수행하여, 양이온 교환수지를 수득하였다. 상기 수득된 양이온 교환수지의 비저항, 총 유기탄소(TOC) 및 금속 불순물 함량을 측정하였으며, 그 결과를 하기 표 1에 나타내었다. Except that the temperature in the reactor of step (1) of Example 1 was not raised and maintained at room temperature (25±2°C), it was carried out in the same manner as steps (1) and (2) of Example 1 Thus, a cation exchange resin was obtained. The specific resistance, total organic carbon (TOC) and metal impurity content of the obtained cation exchange resin were measured, and the results are shown in Table 1 below.

<물성 측정 방법><Method of measuring physical properties>

비저항 및 총 Resistivity and total 유기탄소Organic carbon (( TOCTOC ) 측정 방법) How to measure

컬럼(L 500mm X D 20mm)에 실시예 1 내지 3 및 비교예 1 내지 4에서 수득된 양이온 교환수지를 충전시키고, 0.5 내지 1 ㎍/L(ppb)의 총 유기탄소(TOC)를 갖는 초순수를 하향류로 SV=30 hr-1로 3시간 동안 통수하였고, 상기 컬럼에서 유출되는 초순수 처리수의 비저항(㏁·㎝) 및 총 유기탄소(TOC)(ppb)를 측정하였다.The cation exchange resins obtained in Examples 1 to 3 and Comparative Examples 1 to 4 were filled in a column (L 500 mm XD 20 mm), and ultrapure water having a total organic carbon (TOC) of 0.5 to 1 μg/L (ppb) was lowered. The flow was passed through SV=30 hr -1 for 3 hours, and the specific resistance (㏁·cm) and total organic carbon (TOC) (ppb) of the ultrapure water discharged from the column were measured.

양이온 이온 교환Cation ion exchange 수지 내 금속 불순물 함량 측정 방법 How to measure the content of metal impurities in the resin

오염이 되지 않은 테플론 재질의 초자를 사용하여 실시예 1 내지 3 및 비교예 1 내지 4에서 수득된 양이온 교환 수지로부터 고순도의 분석용 염산(금속 불순물 함량이 1 ㎎/L 이하인 것)을 사용하여 양이온 교환 수지 내부의 금속 불순물을 용리시키고, 그 용리액을 ICP-MS를 사용하여 분석을 실시하였다. 상기 분석 결과값으로부터 단위 수지량 당 금속 이온 함유량을 산출하였다.Cations using high purity analytical hydrochloric acid (metal impurity content of 1 mg/L or less) from the cation exchange resins obtained in Examples 1 to 3 and Comparative Examples 1 to 4 using a non-contaminated Teflon glassware Metal impurities inside the exchange resin were eluted, and the eluent was analyzed using ICP-MS. The metal ion content per unit resin amount was calculated from the analysis result value.

[표 1][Table 1]

Figure pat00001
Figure pat00001

상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예 1 내지 3의 경우, 30℃ 이상으로 승온됨에 따라 이온 교환수지 내부가 팽창되어, 가교 결합 내에 존재하는 금속 불순물까지 효과적으로 제거할 수 있어, 금속 불순물 합계 함량이 매우 낮아졌으며, 이에 따라 비저항 값이 16.3 ㏁·㎝ 이상이었으며, 총 유기탄소 유출량(△TOC)이 4.2 ppb 이하로 매우 낮음을 알 수 있다. As shown in Table 1, in the case of Examples 1 to 3 according to the present invention, the inside of the ion exchange resin expands as the temperature is raised to 30° C. or higher, so that even metal impurities present in the cross-linking can be effectively removed. It can be seen that the total content of impurities was very low, and accordingly, the specific resistance value was 16.3 ㏁·cm or more, and the total organic carbon outflow (ΔTOC) was very low as 4.2 ppb or less.

그러나 시판되는 이온 교환수지의 경우 (비교예 1), 금속 불순물 합계 함량이 매우 높아 비저항 값이 낮아졌으며, 총 유기탄소 유출량(△TOC)도 매우 높았고, 시판되는 이온 교환수지에 대해 초순수 세정 처리만 된 경우 (비교예 2), 금속 불순물 합계 함량이 매우 높아 비저항 값이 낮아졌고, 총 유기탄소 유출량(△TOC)도 상대적으로 높은 편이었으며, 28℃의 광산 용액이 사용된 경우 (비교예 3)와 상온의 광산 용액이 사용된 경우 (비교예 4), 금속 불순물 합계 함량이 상대적으로 높아 반도체용 초순수 제조에 사용하기에 적합하지 않았고, 비저항 값이 낮아졌으며, 총 유기탄소 유출량(△TOC)도 상대적으로 높은 편이었음을 알 수 있다. However, in the case of a commercially available ion exchange resin (Comparative Example 1), the total content of metal impurities was very high, so the specific resistance value was low, the total organic carbon outflow (△TOC) was also very high, and only ultrapure water washing treatment was performed on the commercially available ion exchange resin. In the case of (Comparative Example 2), the total content of metal impurities was very high, so the specific resistance value was lowered, and the total organic carbon outflow (△TOC) was relatively high, and a photo-acid solution at 28°C was used (Comparative Example 3). When and room temperature photoacid solution was used (Comparative Example 4), the total content of metal impurities was relatively high, so it was not suitable for use in manufacturing ultrapure water for semiconductors, the specific resistance value was low, and the total organic carbon outflow (△TOC) was also It can be seen that it was relatively high.

Claims (7)

(1) 이온 교환수지와 30℃ 이상의 광산 용액을 접촉시키는 단계; 및
(2) 상기 (1) 단계로부터 얻어진 이온 교환수지를 초순수로 세정하는 단계;를 포함하며,
세정된 이온 교환수지 내의 금속 불순물 총 함량이 5 ㎎/L-R 이하인,
금속 불순물 함량이 감소된 이온 교환수지의 제조방법.
(1) contacting an ion exchange resin with a photo acid solution of 30° C. or higher; And
(2) washing the ion exchange resin obtained from step (1) with ultrapure water; including,
The total content of metal impurities in the washed ion exchange resin is 5 mg/LR or less,
A method of manufacturing an ion exchange resin with reduced metal impurities
제1항에 있어서,
광산 용액은 염산 수용액, 황산 수용액, 질산 수용액, 인산 수용액 또는 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 금속 불순물 함량이 감소된 이온 교환수지의 제조 방법.
The method of claim 1,
The mineral acid solution is selected from the group consisting of an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, an aqueous nitric acid solution, an aqueous phosphoric acid solution, or a combination thereof.
제1항에 있어서,
광산 용액의 농도가 1 내지 10 중량%인, 금속 불순물 함량이 감소된 이온 교환수지의 제조 방법.
The method of claim 1,
A method for producing an ion exchange resin having a reduced content of metal impurities, wherein the concentration of the mineral acid solution is 1 to 10% by weight.
제1항에 있어서,
(2) 단계의 초순수가 1 ppb 이하의 총 유기탄소(TOC) 및 18.2 ㏁·㎝ 이상의 비저항을 갖는, 금속 불순물 함량이 감소된 이온 교환수지의 제조 방법.
The method of claim 1,
(2) A method for producing an ion exchange resin having a reduced content of metal impurities, having a total organic carbon (TOC) of 1 ppb or less and a resistivity of 18.2 MΩ·cm or more.
제1항에 있어서,
이온 교환수지가 양이온 교환수지인, 금속 불순물 함량이 감소된 이온 교환수지의 제조 방법.
The method of claim 1,
A method for producing an ion exchange resin having a reduced content of metal impurities, wherein the ion exchange resin is a cation exchange resin.
제1항 내지 제5항 중 어느 한 항의 방법으로 제조된 이온 교환수지.The ion exchange resin prepared by the method of any one of claims 1 to 5. 제6항에 있어서, 총 유기탄소(TOC) 용출량이 5 ppb 이하이고, 비저항이 16 ㏁·㎝ 이상이며, 금속 불순물 총 함량이 5 ㎎/L-R 이하인, 이온 교환수지.The ion exchange resin according to claim 6, wherein the total organic carbon (TOC) elution amount is 5 ppb or less, the specific resistance is 16 MΩ·cm or more, and the total content of metal impurities is 5 mg/L-R or less.
KR1020190136212A 2019-10-30 2019-10-30 Method for preparing ion exchange resin with reduced metal impurity content KR102346812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190136212A KR102346812B1 (en) 2019-10-30 2019-10-30 Method for preparing ion exchange resin with reduced metal impurity content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190136212A KR102346812B1 (en) 2019-10-30 2019-10-30 Method for preparing ion exchange resin with reduced metal impurity content

Publications (2)

Publication Number Publication Date
KR20210052674A true KR20210052674A (en) 2021-05-11
KR102346812B1 KR102346812B1 (en) 2022-01-04

Family

ID=75914739

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190136212A KR102346812B1 (en) 2019-10-30 2019-10-30 Method for preparing ion exchange resin with reduced metal impurity content

Country Status (1)

Country Link
KR (1) KR102346812B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171058B2 (en) * 1995-06-15 2001-05-28 住友化学工業株式会社 Hydrogen peroxide water purification method
JP2003315496A (en) * 2002-04-25 2003-11-06 Japan Organo Co Ltd Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP2007117781A (en) * 2005-10-24 2007-05-17 Japan Organo Co Ltd Ion exchange resin, ion exchange resin column, method for reducing metallic impurity content contained in ion exchange resin, purification apparatus and purification method
JP5556046B2 (en) * 2009-03-31 2014-07-23 栗田工業株式会社 Treatment liquid for purification of crude ion exchange resin
JP2016022477A (en) * 2014-07-18 2016-02-08 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method for removing metal ion in phosphoric acid solution
JP7071668B2 (en) * 2020-05-27 2022-05-19 ダイキン工業株式会社 Fluoroethylene manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171058B2 (en) * 1995-06-15 2001-05-28 住友化学工業株式会社 Hydrogen peroxide water purification method
JP2003315496A (en) * 2002-04-25 2003-11-06 Japan Organo Co Ltd Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP2007117781A (en) * 2005-10-24 2007-05-17 Japan Organo Co Ltd Ion exchange resin, ion exchange resin column, method for reducing metallic impurity content contained in ion exchange resin, purification apparatus and purification method
JP5556046B2 (en) * 2009-03-31 2014-07-23 栗田工業株式会社 Treatment liquid for purification of crude ion exchange resin
JP2016022477A (en) * 2014-07-18 2016-02-08 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method for removing metal ion in phosphoric acid solution
JP7071668B2 (en) * 2020-05-27 2022-05-19 ダイキン工業株式会社 Fluoroethylene manufacturing method

Also Published As

Publication number Publication date
KR102346812B1 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
KR101600184B1 (en) Purification of phosphoric acid
JP5887279B2 (en) Method for producing tetraalkylammonium salt and method for producing tetraalkylammonium hydroxide using the same as raw material
JP7265867B2 (en) Purification process for hydrolyzable organic solvents
KR20060114711A (en) Selective fluoride and ammonia removal by chromatographic separation of wastewater
JP6165882B2 (en) Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, method for producing them, and method for purifying hydrogen peroxide water
JP2017119234A (en) Process for refining hydrophilic organic solvent
KR102346812B1 (en) Method for preparing ion exchange resin with reduced metal impurity content
JPH08337405A (en) Method for refining hydrogen peroxide water
KR102499164B1 (en) Method for preparing ion exchange resin with reduced content of metallic impurities
US5614165A (en) Process for purification of hydrogen peroxide
KR20230091247A (en) Method for preparing cation exchange resin with reduced impurities and cation exchange resin prepared thereby
JP2016153373A (en) Manufacturing method of high concentration tetraalkylammonium salt solution
KR20120103633A (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JP3727212B2 (en) Apparatus and method for treating wastewater containing boron
KR102346921B1 (en) Mixed bed ion exchange resin comprising anion exchange resin and cation exchange resin, method for preparing the same and method for purifying hydrogen peroxide solution using the same
JP2008073644A (en) Pure water production method and apparatus
KR102483372B1 (en) Method for processing a boron selective adsorption resin for use in the production of ultrapure water
US8680164B2 (en) Method for recovering a boron adsorbent
JP3976219B2 (en) Method and apparatus for treating borofluoride-containing wastewater
JPH11239792A (en) Production of pure water
JP2002233773A (en) Method for recovering water containing high purity boron and device for treating boron eluting solution eluted from resin selectively adsorbing boron
JP4264702B2 (en) Ion exchange resin ion composition measurement method
JP2005296839A (en) Method and apparatus for making ultrapure water, and cleaning electronic components and members using the same
EP3510020B1 (en) Purification of flow sodium 5- nitrotetrazolate solutions with copper modified cation exchange resin

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant