JP3976219B2 - Method and apparatus for treating borofluoride-containing wastewater - Google Patents

Method and apparatus for treating borofluoride-containing wastewater Download PDF

Info

Publication number
JP3976219B2
JP3976219B2 JP2000222315A JP2000222315A JP3976219B2 JP 3976219 B2 JP3976219 B2 JP 3976219B2 JP 2000222315 A JP2000222315 A JP 2000222315A JP 2000222315 A JP2000222315 A JP 2000222315A JP 3976219 B2 JP3976219 B2 JP 3976219B2
Authority
JP
Japan
Prior art keywords
borofluoride
type
tower
ion exchange
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000222315A
Other languages
Japanese (ja)
Other versions
JP2002035747A5 (en
JP2002035747A (en
Inventor
仁紀 木谷
智 早川
Original Assignee
日本電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電工株式会社 filed Critical 日本電工株式会社
Priority to JP2000222315A priority Critical patent/JP3976219B2/en
Publication of JP2002035747A publication Critical patent/JP2002035747A/en
Publication of JP2002035747A5 publication Critical patent/JP2002035747A5/ja
Application granted granted Critical
Publication of JP3976219B2 publication Critical patent/JP3976219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物を形成しているホウフッ化物含有排水、及び、さらにこれらの他に界面活性剤を含有する排水を処理して再利用できる水洗水あるいは環境基準値を満たした放流水を得るための排水の処理方法および装置に関する。
【0002】
【従来の技術】
すずめっき、はんだめっき、インジュウムめっき、スズ−鉛合金めっきには、ホウフッ化物浴が用いられ、これらのメッキ工場ではフッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物(BF4 -)を形成しているホウフッ化物含有排水が発生する。また、鉛メッキ浴には、光沢剤と呼ばれる界面活性剤が用いられ、これが排水中に含まれる。
【0003】
ホウ素化合物は植物にとって必須微量元素であり、海水には4〜5mg/l程度含まれていることは周知のことである。一方、ホウ素が人体に与える影響は必ずしも明確ではないものの、低濃度の継続摂取において生殖機能の低下など健康障害を起こす可能性が指摘されている。平成11年2月、ホウ素の環境基準として1mg/1以下が定められており、おって排水規制も定められることが予想される。また、京都府では、すでに国の一律基準とは別にホウ素の排水規制を環境基準と同じ1mg/l以下としている。
【0004】
さらに、フッ素の排水基準も15mg/lよりも厳しくなることが予想される。したがって、ホウ素およびフッ素とさらにホウフッ化物を含む工程排水を処理して再利用できる水洗水あるいは環境基準値を満たした放流水を得る手段が必要になる。
【0005】
特公昭54-18064号公報には、排水中のホウフッ化物の除去方法としては、ホウフッ化物を含む排水にアルミニウム塩を加え、酸性条件下で加熱処理してホウフッ化物を分解し、生成したフッ素をカルシウム塩として除去する方法や、ホウフッ化物を含む排水にアルミニウム塩を加え、常温、常圧、強酸性条件下で反応させる方法が開示されているが、これらの方法は、反応速度が遅いという問題がある。
【0006】
この問題を解決するために、イオン交換樹脂あるいはホウ素選択吸着樹脂を用いて排水を処理する方法も提案されている。例えば、特開昭52-38772号公報には、ホウ素を含むフッ素含有排水に水溶性カルシウム化合物と鉱酸を添加して固液分離させ、得られた処理水をイオン交換樹脂に接触させることからなるホウ素を含有するフッ素排水の処理方法が開示されており、特開平11-695号公報には、フッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物を形成しているフッ素及びホウ素含有水を処理するに当たり、ホウ素選択吸着樹脂を用いてホウ素を選択的に除去するとともにホウフッ化物を分解させる方法が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、このようなN-メチルグルカミン基を有するホウ素選択吸着樹脂塔ではホウフッ化物の吸着効率が低いという問題がある。また、塩基性陰イオン交換樹脂による処理例では、排水中のフッ素イオンやホウ素が完全には除去されていないという問題がある。そのため、この方法では、規制がより厳しくなった場合に排水規制を達成できない可能性がある。また、排水が界面活性剤を含むときには、その除去をしないと処理水を再生水として再利用できないという問題がある。
【0008】
本発明は、上記課題を解決することを目的としてなされたものであって、フッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物を形成しているホウフッ化物含有排水を比較的単純な設備に通水することによりホウ素、フッ素、さらには界面活性剤を除去して環境基準を満たし、再利用できる処理水を得ることができるホウフッ化物含有排水の処理方法及び装置を提案することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係るホウフッ化物含有排水の処理方法は、フッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物を形成しているホウフッ化物含有排水を、H型に調整した強酸性陽イオン交換樹脂を充填した第1イオン交換塔、OH型に調整した弱塩基性陰イオン交換樹脂を充填した第2イオン交換塔、OH型に調整した強塩基性陰イオン交換樹脂を充填した第3イオン交換塔に順次通水することとするものである。
【0010】
また、界面活性剤を含有する場合には、まず活性炭を充填した界面活性剤除去塔に通水し、次いでH型に調整した強酸性陽イオン交換樹脂を充填した第1イオン交換塔、OH型に調整した弱塩基性陰イオン交換樹脂を充填した第2イオン交換塔、OH型に調整した強塩基性陰イオン交換樹脂を充填した第3イオン交換塔に順次通水することとするものである。
【0011】
また、本発明に係るホウフッ化物とともに界面活性剤を含有する排水の処理装置は、活性炭を充填した界面活性剤除去塔に続き、H 型に調整した強酸性陽イオン交換樹脂を充填した第1イオン交換塔と、OH 型に調整した弱塩基性陰イオン交換樹脂を充填した第2イオン交換塔と、OH 型に調整した強塩基性陰イオン交換樹脂を充填した第3イオン交換塔を順次直列に連結したものである。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を具体的に説明する。本発明において処理対象とする排水は、半田めっき液やホウフッ化物を使用する工場において発生するフッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物を形成しているホウフッ化物含有排水、及び、さらにこれらの他に界面活性剤を含有する排水である。排水の典型的な例では、フッ素が160〜400mg/l、ホウ素が20〜50mg/l含まれている。
【0013】
本発明では、上記処理対象排水を、まず、第1イオン交換塔に通水する。この第1イオン交換塔には、強酸性陽イオン交換樹脂が充填されており、この樹脂はH型に調整されている。したがって、この第1イオン交換塔を通水することによって、排水中に含有されるNa+等の陽イオンが除去される。
【0014】
第1イオン交換塔による処理水は、続いて、第2イオン交換塔に通水し、処理する。第2イオン交換塔には、OH型に調整した弱塩基性陰イオン交換樹脂が充填されている。この第2イオン交換塔に通水される処理水は、すでに第1イオン交換塔に通水することにより、Na+等の陽イオンが除去されているので、第2イオン交換塔内のOH型に調整した弱塩基性陰イオン交換樹脂がアルカリ性になることが抑制され、Cl-、F-、BF4 -等の陰イオンが吸着される。しかし、この第2イオン交換塔内では、処理液のpHは酸性側にあり、そのため、BF4 -以外のホウ素は電離せず、H3BO3の形で処理液中に溶解しており、吸着されずに漏出する。F-も選択性が低いため容易に漏出する。また、後に実施例で示すように、通水量が多くなるとBF4 -も除去できなくなる。
【0015】
上記第2イオン交換塔を出た処理水は、続いて第3イオン交換塔により通液し、処理する。第3イオン交換塔には、OH型に調整した強塩基性陰イオン交換樹脂(I型又はII型)が充填されている。この第3イオン交換塔は、第2イオン交換塔から漏出するホウ酸およびBF4 -を除去する。このように、第2イオン交換塔、続いて第3イオン交換塔の順に通水するのは、一般的に強塩基性陰イオン交換樹脂に比べて弱塩基性陰イオン交換樹脂の総交換容量は大きいため、事前に総交換量が多くコストメリットが高い第2イオン交換塔で大部分の陰イオンを除去し、続いて第3イオン交換塔を用いて純水化するのが経済的だからである。
【0016】
このように第1イオン交換塔、第2イオン交換塔さらに第3イオン交換塔に順次通水することにより、排水中のホウ素、フッ素ならびにホウフッ化物は他のイオンとともに除去される。しかしながら、排水中に界面活性剤が含まれていると、イオン交換塔出口水が発泡し、通液に支障が生ずる。したがって、界面活性剤が含まれている排水を処理するときには、あらかじめ、界面活性剤を除去しておく必要がある。そのための手段は特に問わないが、例えば活性炭等の吸着剤を充填した界面活性剤除去塔に通水し、後の工程に支障がない程度に界面活性剤濃度を低下させておく必要がある。
【0017】
【実施例】
(実施例1)
図1に示すように、内径20mm、高さ500mmのアクリル性カラムを3本用意し、第1塔4にはH型に調整した強酸性陽イオン交換樹脂25mlを充填し、第2塔5にはOH型に調整した弱塩基性陰イオン交換樹脂25mlを充填し、第3塔6にはOH型に調整した強塩基性陰イオン交換樹脂25mlを充填した。
【0018】
この3塔直列の樹脂床にイオン交換水を流速500ml/hで1h通液してイオン交換樹脂に残存する薬剤を抽出、洗浄した後、表1に示す成分を含むホウフッ化物含有排水を、排水受槽1からポンプ2を経て、流速500 ml/hで通液したときの通液量と第2塔5の出口と第3塔6の出口の電気伝導率とホウ素とフッ素の漏出曲線を測定した。測定結果は、表2、表3に示した。
【0019】
ここに示されているように、第2塔の出口では約2mg/lのホウ素の初期リークが認められた。また、表2は第2塔出口側におけるホウ素濃度、フッ素濃度およびノニオン界面活性剤濃度と通液量との関係を示したものであるが、ここに示すように、通液量が160BVに達するまでは、フッ素が0.8mg/l未満であり、環境基準を満たすが、300BV以上ではフッ素濃度が16mg/l以上となる。
【0020】
表3は、第3塔出口側におけるホウ素濃度、フッ素濃度およびノニオン界面活性剤濃度と通液量との関係を示したものである。ここに示すように、第3塔の出口側では、処理水のホウ素およびフッ素の濃度は、通液量が470BVに達するまで、同時に除去され、環境基準値以下となっている。第2塔でホウフッ化物の大部分が除去され、第3塔で第2塔から漏出したホウ素とフッ素が完全に除去されたためである。
【0021】
【表1】

Figure 0003976219
【0022】
【表2】
Figure 0003976219
【0023】
【表3】
Figure 0003976219
【0024】
(実施例2)
表4は、内径20mm、高さ500mmのアクリル製カラムに活性炭50mlを充填した界面活性剤除去塔に表1に示す組成を有する界面活性剤を含むホウフッ化物含有排水を流速1000ml/lで通液した時の通液量と界面活性剤除去塔出口側処理水のノニオン界面活性剤の濃度の関係を示したものである。表4から理解できるように、界面活性剤除去塔によって通液量380BVまではノニオン界面活性剤が十分に除去可能である。
【0025】
【表4】
Figure 0003976219
【0026】
このような界面活性剤除去塔3を先頭にもつ4搭式のプラントの1例は、図2に示される。活性炭塔3が先頭に連結して構成されている点を除いて、図1に示したものと同じである。なお、図1、2において本発明によって処理された処理水は処理水受槽7に貯留され、ポンプ8、バルブV2を経て排水受槽1に送られる他、バルブV1を経て水洗水として使用される。
【0027】
上記実施例から明らかなように、H 型に調整した強酸性陽イオン交換塔、OH 型に調整した弱塩基性陰イオン交換塔、OH 型に調整した強塩基性陰イオン交換塔とを直列に接続して排水を通液することにより、環境基準を満たすホウ素及びフッ素濃度とすることができ、また、これらイオン交換塔の先頭に界面活性剤除去塔を付加することにより、処理水を水洗水として再利用することができる。
【0028】
なお、上記発明において、最終の強塩基性陰イオン交換塔の出口水、あるいは、その直前の弱塩基性陰イオン交換塔の出口水の電気伝導率を管理することにより、排水処理プラントの終点管理をすることができる。また、最終の強塩基性陰イオン交換塔の出口水のホウ素濃度とフッ素濃度を、例えば、共立理化学研究所製パックテストを用いて分析することができる。これにより、極めて簡易かつ経済的にホウ素とフッ素の漏出を確認できる。
【0029】
【発明の効果】
本発明により、フッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物を形成しているホウフッ化物含有排水を環境基準を満たすホウ素及びフッ素濃度の処理水とすることができ、また、これらイオン交換塔の先頭に界面活性剤除去塔を付加することにより、処理水を水洗水として再利用することができるようになる。
【図面の簡単な説明】
【図1】 本発明を実施するためのプラントの1例を示す概念図である。
【図2】 本発明を実施するためのプラントの他の例を示す概念図である。
【符号の説明】
1:排水受槽
2:ポンプ
3:活性炭充填塔
4:強酸性陽イオン交換樹脂充填塔
5:弱塩基性陰イオン交換樹脂充填塔
6:強塩基性陰イオン交換樹脂充填塔
7:処理水受槽
8:ポンプ
V1,V2:バルブ[0001]
BACKGROUND OF THE INVENTION
The present invention treats and reuses borofluoride-containing wastewater containing fluorine and boron, and a part of fluorine and boron forming borofluoride, and wastewater containing surfactants in addition to these. The present invention relates to a wastewater treatment method and apparatus for obtaining flush water or effluent water that satisfies environmental standard values.
[0002]
[Prior art]
Tin plating, solder plating, indium plating, tin - the lead alloy plating, fluoroborate compound bath is used, in these plating plant comprises a fluorine and boron, and a part of the fluorine and boron fluoroborate compound (BF 4 -) Borofluoride-containing wastewater is formed. In the lead plating bath, a surfactant called a brightener is used, and this is contained in the waste water.
[0003]
It is well known that boron compounds are essential trace elements for plants, and seawater contains about 4 to 5 mg / l. On the other hand, although the effect of boron on the human body is not necessarily clear, it has been pointed out that it may cause health problems such as a decrease in reproductive function when continuously ingested at low concentrations. In February 1999, 1 mg / 1 or less was established as an environmental standard for boron, and it is expected that wastewater regulations will also be established. In addition, Kyoto Prefecture has already set the boron drainage regulations to 1 mg / l or less, which is the same as the environmental standards, apart from the national uniform standards.
[0004]
Furthermore, the wastewater standard for fluorine is expected to be stricter than 15 mg / l. Accordingly, there is a need for a means for obtaining flush water that can be reused by treating process wastewater containing boron and fluorine and further borofluoride, or effluent water that satisfies environmental standard values.
[0005]
In Japanese Examined Patent Publication No. 54-18064, as a method for removing borofluoride in wastewater, aluminum salt is added to wastewater containing borofluoride, and heat treatment is performed under acidic conditions to decompose the borofluoride. There are disclosed methods of removing as calcium salts and methods of adding aluminum salts to waste water containing borofluoride and reacting them at room temperature, normal pressure, and strongly acidic conditions, but these methods have a slow reaction rate. There is.
[0006]
In order to solve this problem, a method of treating waste water using an ion exchange resin or a boron selective adsorption resin has also been proposed. For example, JP-A-52-38772 discloses that a water-soluble calcium compound and a mineral acid are added to fluorine-containing wastewater containing boron to cause solid-liquid separation, and the resulting treated water is brought into contact with an ion exchange resin. A method for treating fluorine wastewater containing boron is disclosed, and JP-A-11-695 discloses fluorine and boron containing fluorine and boron, and fluorine and part of boron forming a borofluoride. In treating the contained water, a method for selectively removing boron using a boron selective adsorption resin and decomposing borofluoride is disclosed.
[0007]
[Problems to be solved by the invention]
However, the boron selective adsorption resin tower having such an N-methylglucamine group has a problem that the adsorption efficiency of borofluoride is low. Moreover, in the processing example by basic anion exchange resin, there exists a problem that the fluorine ion and boron in waste_water | drain are not removed completely. Therefore, with this method, there is a possibility that the drainage regulation cannot be achieved when the regulation becomes more stringent. Moreover, when drainage contains a surfactant, there is a problem that treated water cannot be reused as reclaimed water unless it is removed.
[0008]
The present invention has been made for the purpose of solving the above-mentioned problems, and it is a relatively simple wastewater containing borofluoride containing fluorine and boron, and a part of the fluorine and boron forms a borofluoride. The purpose is to propose a treatment method and apparatus for borofluoride-containing wastewater that can remove treated boron, fluorine, and surfactants by passing water through the facility to meet environmental standards and obtain reusable treated water. And
[0009]
[Means for Solving the Problems]
The method for treating borofluoride-containing wastewater according to the present invention is a strongly acidic cation exchange in which a borofluoride-containing wastewater containing fluorine and boron and part of the fluorine and boron forming borofluoride is adjusted to an H type. 1st ion exchange tower packed with resin, 2nd ion exchange tower filled with weakly basic anion exchange resin adjusted to OH type, 3rd ion exchange packed with strongly basic anion exchange resin adjusted to OH type The water will be sequentially passed through the tower.
[0010]
When a surfactant is contained, the water is first passed through a surfactant removal tower packed with activated carbon , and then the first ion exchange tower filled with a strongly acidic cation exchange resin adjusted to H type, OH type. Water is sequentially passed through the second ion exchange column filled with the weakly basic anion exchange resin adjusted to 1 and the third ion exchange column filled with the strongly basic anion exchange resin adjusted to the OH type. .
[0011]
Moreover, the waste water treatment apparatus containing a surfactant together with a borofluoride according to the present invention is a first ion filled with a strongly acidic cation exchange resin adjusted to H type following a surfactant removal tower filled with activated carbon. an exchange column, a second ion-exchange tower filled with weakly basic anion exchange resin adjusted to OH type, a third ion exchange column sequentially serially filled was adjusted to OH-type strong basic anion exchange resin Concatenated.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. The wastewater to be treated in the present invention includes borofluoride-containing wastewater containing fluorine and boron generated in a factory that uses a solder plating solution and borofluoride, and a part of the fluorine and boron forms borofluoride, and In addition to these, the waste water contains a surfactant. A typical example of wastewater contains 160 to 400 mg / l fluorine and 20 to 50 mg / l boron.
[0013]
In the present invention, the waste water to be treated is first passed through the first ion exchange tower. The first ion exchange tower is filled with a strongly acidic cation exchange resin, and this resin is adjusted to an H type. Therefore, by passing water through the first ion exchange tower, cations such as Na + contained in the waste water are removed.
[0014]
The treated water from the first ion exchange tower is subsequently passed through the second ion exchange tower for treatment. The second ion exchange column is filled with a weakly basic anion exchange resin adjusted to OH type. The treated water passed through the second ion exchange tower has already been passed through the first ion exchange tower, so that cations such as Na + have been removed. Therefore, the OH type in the second ion exchange tower It is suppressed that the weakly basic anion exchange resin adjusted to be alkaline, and anions such as Cl , F and BF 4 are adsorbed. However, in this second ion exchange tower, the pH of the treatment liquid is on the acidic side, so that boron other than BF 4 is not ionized and dissolved in the treatment liquid in the form of H 3 BO 3 , Leaks without being adsorbed. F - also leaks easily due to low selectivity. In addition, as will be shown later in Examples, BF 4 cannot be removed when the water flow rate increases.
[0015]
The treated water exiting the second ion exchange tower is then passed through the third ion exchange tower for treatment. The third ion exchange column is filled with a strongly basic anion exchange resin (I type or II type) adjusted to OH type. This third ion exchange column removes boric acid and BF 4 leaking from the second ion exchange column. Thus, in general, the passage of water through the second ion exchange column and then the third ion exchange column is such that the total exchange capacity of the weakly basic anion exchange resin is generally larger than that of the strongly basic anion exchange resin. Because it is large, it is economical to remove most of the anions in the second ion exchange column with a large total exchange amount and high cost merit in advance, and then to purify the water using the third ion exchange column. .
[0016]
By sequentially passing water through the first ion exchange tower, the second ion exchange tower, and the third ion exchange tower in this manner, boron, fluorine, and borofluoride in the waste water are removed together with other ions. However, if a surfactant is contained in the waste water, the ion-exchange tower outlet water is foamed, causing troubles in liquid flow. Therefore, when the waste water containing the surfactant is treated, it is necessary to remove the surfactant in advance. The means for this is not particularly limited, but it is necessary to pass the water through a surfactant removing tower packed with an adsorbent such as activated carbon and reduce the surfactant concentration to such an extent that the subsequent steps are not hindered.
[0017]
【Example】
Example 1
As shown in FIG. 1, three acrylic columns with an inner diameter of 20 mm and a height of 500 mm are prepared. The first column 4 is filled with 25 ml of a strongly acidic cation exchange resin adjusted to an H type, and the second column 5 Was filled with 25 ml of weakly basic anion exchange resin adjusted to OH type, and the third tower 6 was filled with 25 ml of strongly basic anion exchange resin adjusted to OH type.
[0018]
Ion exchange water is passed through the resin towers in series at a flow rate of 500 ml / h for 1 h to extract and wash the chemicals remaining on the ion exchange resin, and then drain borofluoride-containing wastewater containing the components shown in Table 1 The amount of liquid that passed through the receiving tank 1 through the pump 2 at a flow rate of 500 ml / h, the electrical conductivity at the outlet of the second tower 5 and the outlet of the third tower 6, and the leakage curves of boron and fluorine were measured. . The measurement results are shown in Tables 2 and 3.
[0019]
As shown here, an initial leak of about 2 mg / l boron was observed at the outlet of the second tower. Table 2 shows the relationship between the boron concentration, the fluorine concentration and the nonionic surfactant concentration at the outlet side of the second tower and the flow rate. As shown here, the flow rate reaches 160 BV. Until then, fluorine is less than 0.8 mg / l and satisfies the environmental standard, but at 300 BV or more, the fluorine concentration is 16 mg / l or more.
[0020]
Table 3 shows the relationship between the boron concentration, the fluorine concentration and the nonionic surfactant concentration on the third tower outlet side and the liquid flow rate. As shown here, on the outlet side of the third tower, the concentrations of boron and fluorine in the treated water are simultaneously removed until the liquid flow rate reaches 470 BV, and are below the environmental standard value. This is because most of the borofluoride was removed in the second tower, and boron and fluorine leaked from the second tower were completely removed in the third tower.
[0021]
[Table 1]
Figure 0003976219
[0022]
[Table 2]
Figure 0003976219
[0023]
[Table 3]
Figure 0003976219
[0024]
(Example 2)
Table 4 shows the flow of borofluoride-containing wastewater containing a surfactant having the composition shown in Table 1 through a surfactant removal tower in which 50 ml of activated carbon is packed in an acrylic column having an inner diameter of 20 mm and a height of 500 mm at a flow rate of 1000 ml / l. The relationship between the liquid flow rate and the concentration of the nonionic surfactant in the treated water at the outlet side of the surfactant removal tower is shown. As can be understood from Table 4, the nonionic surfactant can be sufficiently removed by the surfactant removal tower up to the flow rate of 380 BV.
[0025]
[Table 4]
Figure 0003976219
[0026]
An example of a four-column plant having such a surfactant removal tower 3 at the head is shown in FIG. 1 is the same as that shown in FIG. 1 except that the activated carbon tower 3 is connected to the head. 1 and 2, the treated water treated by the present invention is stored in the treated water receiving tank 7 and sent to the drain receiving tank 1 through the pump 8 and the valve V2, and is also used as flush water through the valve V1.
[0027]
As apparent from the above examples, a strongly acidic cation-exchange column was adjusted to H-type weakly basic anion exchange column was adjusted to OH type, and a strongly basic anion exchange column was adjusted to OH type in series By connecting and flowing waste water, the concentration of boron and fluorine that meet environmental standards can be achieved, and by adding a surfactant removal tower at the head of these ion exchange towers, the treated water can be washed with water. Can be reused as
[0028]
In the above invention, the end point management of the wastewater treatment plant is performed by managing the electrical conductivity of the outlet water of the final strong basic anion exchange tower or the outlet water of the weak basic anion exchange tower immediately before it. Can do. Moreover, the boron concentration and fluorine concentration of the outlet water of the final strongly basic anion exchange tower can be analyzed using, for example, a pack test manufactured by Kyoritsu Riken. Thereby, leakage of boron and fluorine can be confirmed extremely simply and economically.
[0029]
【The invention's effect】
According to the present invention, borofluoride-containing wastewater containing fluorine and boron, and a part of fluorine and boron forming borofluoride can be treated water having boron and fluorine concentrations that meet environmental standards. By adding a surfactant removal tower at the head of the ion exchange tower, the treated water can be reused as washing water.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a plant for carrying out the present invention.
FIG. 2 is a conceptual diagram showing another example of a plant for carrying out the present invention.
[Explanation of symbols]
1: Drain receiving tank 2: Pump 3: Activated carbon packed tower 4: Strong acidic cation exchange resin packed tower 5: Weak basic anion exchange resin packed tower 6: Strong basic anion exchange resin packed tower 7: Treated water receiving tank 8 :pump
V1, V2: Valve

Claims (3)

フッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物を形成しているホウフッ化物含有排水を、H型に調整した強酸性陽イオン交換樹脂を充填した第1イオン交換塔、OH型に調整した弱塩基性陰イオン交換樹脂を充填した第2イオン交換塔、OH 型に調整した強塩基性陰イオン交換樹脂を充填した第3イオン交換塔に順次通水することを特徴とするホウフッ化物含有排水の処理方法。A first ion-exchange tower filled with strongly acidic cation exchange resin adjusted to H type from borofluoride-containing wastewater containing fluorine and boron and a part of fluorine and boron forming borofluoride into OH type A borofluoride characterized by passing water sequentially through a second ion exchange column filled with the adjusted weakly basic anion exchange resin and a third ion exchange column filled with the strongly basic anion exchange resin adjusted to the OH type. Treatment method of contained wastewater. フッ素及びホウ素を含み、かつフッ素及びホウ素の一部がホウフッ化物を形成しているホウフッ化物含有排水を、まず活性炭を充填した界面活性剤除去塔に通水し、次いでH型に調整した強酸性陽イオン交換樹脂を充填した第1イオン交換塔、OH型に調整した弱塩基性陰イオン交換樹脂を充填した第2イオン交換塔、OH 型に調整した強塩基性陰イオン交換樹脂を充填した第3イオン交換塔に順次通水することを特徴とするホウフッ化物と界面活性剤含有排水の処理方法。A borofluoride-containing wastewater containing fluorine and boron, and a part of the fluorine and boron forming a borofluoride, is first passed through a surfactant removal tower filled with activated carbon, and then strongly acidic adjusted to H type. 1st ion exchange column filled with cation exchange resin, 2nd ion exchange column filled with weak basic anion exchange resin adjusted to OH type, No. 1 packed with strong basic anion exchange resin adjusted to OH type 3. A method for treating borofluoride and surfactant-containing wastewater, wherein water is sequentially passed through three ion exchange towers. 活性炭を充填した界面活性剤除去塔に続き、H 型に調整した強酸性陽イオン交換樹脂を充填した第1イオン交換塔と、OH 型に調整した弱塩基性陰イオン交換樹脂を充填した第2イオン交換塔と、OH 型に調整した強塩基性陰イオン交換樹脂を充填した第3イオン交換塔を順次直列に連結したものであることを特徴とするホウフッ化物とともに界面活性剤を含有する排水の処理装置。Following the surfactant removal tower packed with activated carbon, the first ion exchange tower filled with strongly acidic cation exchange resin adjusted to H type and the second filled with weak basic anion exchange resin adjusted to OH type An ion exchange tower and a third ion exchange tower filled with a strongly basic anion exchange resin adjusted to OH type are sequentially connected in series. Processing equipment.
JP2000222315A 2000-07-24 2000-07-24 Method and apparatus for treating borofluoride-containing wastewater Expired - Fee Related JP3976219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000222315A JP3976219B2 (en) 2000-07-24 2000-07-24 Method and apparatus for treating borofluoride-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000222315A JP3976219B2 (en) 2000-07-24 2000-07-24 Method and apparatus for treating borofluoride-containing wastewater

Publications (3)

Publication Number Publication Date
JP2002035747A JP2002035747A (en) 2002-02-05
JP2002035747A5 JP2002035747A5 (en) 2005-02-24
JP3976219B2 true JP3976219B2 (en) 2007-09-12

Family

ID=18716572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000222315A Expired - Fee Related JP3976219B2 (en) 2000-07-24 2000-07-24 Method and apparatus for treating borofluoride-containing wastewater

Country Status (1)

Country Link
JP (1) JP3976219B2 (en)

Also Published As

Publication number Publication date
JP2002035747A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
JPH01153509A (en) Production of high-purity hydrogen peroxide
JP2007181833A (en) Method for treating tetraalkylammonium ion-containing solution
JP6165882B2 (en) Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, method for producing them, and method for purifying hydrogen peroxide water
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
JP3976219B2 (en) Method and apparatus for treating borofluoride-containing wastewater
JP5564967B2 (en) Regeneration method of ion exchange resin used for regeneration of amine liquid
JP3727212B2 (en) Apparatus and method for treating wastewater containing boron
JP3968678B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JP4691276B2 (en) Method and apparatus for recovering high purity boron-containing water
TWI399360B (en) Recovery equipment for tetramethylammonium hydroxide and its method
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JP2003094051A (en) Method for regenerating boron selective adsorption resin
JP7105619B2 (en) Method for recovering boron from wastewater containing boron
JP2003053342A (en) Method and device for removing impurity in boron- containing solution
KR102346812B1 (en) Method for preparing ion exchange resin with reduced metal impurity content
JPH06285368A (en) Regenerating method of zeolite for removing ammonia
JP2001340851A (en) Method and apparatus for treating boron-containing wastewater
JPS6357799A (en) Treatment of plating solution
JPS5939517B2 (en) Method for recovering and reusing selenium components from electrolytic coloring process wastewater
JP2018058010A (en) Purification method of boron eluent
JPS59160585A (en) Process for disposing waste liquid containing thiourea
CN209226732U (en) A kind of efficient DI water production device
JP2005296953A (en) Treating device for waste water containing boron and treating method therefor
JP2002233773A (en) Method for recovering water containing high purity boron and device for treating boron eluting solution eluted from resin selectively adsorbing boron
JPS6035198B2 (en) Waste incinerator smoke cleaning wastewater treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees