KR20210049702A - 코어쉘 양자점 및 이를 포함한 전자 소자 - Google Patents

코어쉘 양자점 및 이를 포함한 전자 소자 Download PDF

Info

Publication number
KR20210049702A
KR20210049702A KR1020200139438A KR20200139438A KR20210049702A KR 20210049702 A KR20210049702 A KR 20210049702A KR 1020200139438 A KR1020200139438 A KR 1020200139438A KR 20200139438 A KR20200139438 A KR 20200139438A KR 20210049702 A KR20210049702 A KR 20210049702A
Authority
KR
South Korea
Prior art keywords
core
shell
less
quantum dots
light
Prior art date
Application number
KR1020200139438A
Other languages
English (en)
Inventor
원나연
임미혜
김태곤
김택훈
박상현
전신애
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20210049702A publication Critical patent/KR20210049702A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/71Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus also containing alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • H01L51/502
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

카드뮴을 포함하지 않는 코어쉘 양자점들과 이를 포함하는 양자점 폴리머 복합체 및 전자 소자에 대한 것이다. 상기 코어쉘 양자점들은, 그램 당 extinction coefficient 가 0.3 이상 이고, 상기 코어쉘 양자점들의 UV-Vis 흡수 스펙트럼 곡선은 450 nm 에서의 양(positive)인 미분계수값을 가지고 상기 코어쉘 양자점들은, 인듐(In)과 인(P), 그리고 선택에 따라 아연을 포함하는 반도체 나노결정 코어, 상기 반도체 나노결정 코어 상에 배치되고 아연, 셀레늄 및 황을 포함하는 반도체 나노결정 쉘을 포함하고, 상기 코어쉘 양자점들은, 여기 시 녹색광을 방출하도록 구성된다.

Description

코어쉘 양자점 및 이를 포함한 전자 소자 {CORE SHELL QUANTUM DOT AND ELECTRONIC DEVICE INCLUDING THE SAME}
코어쉘 양자점, 이를 포함한 조성물 또는 복합체, 그리고 이를 포함한 전자 소자에 관한 것이다.
양자점(quantum dot) (즉, 나노크기의 반도체 나노 결정)은, 벌크 재료와 달리 나노 결정의 크기 및 조성을 조절함에 의해 상이한 에너지 밴드갭을 가질 수 있다. 양자점은, 전계 발광 및 광발광 물성을 나타낼 수 있다. 화학적 습식법에서는, 결정 성장 시 분산제 등의 유기 물질이 반도체 나노결정 표면에 배위하여 제어된 크기를 가지고 발광특성을 나타낼 수 있는 양자점을 제공할 수 있다. 양자점의 발광 물성은 다양한 분야에서 응용될 수 있다. 환경친화적이고 향상된 발광물성을 구현할 수 있는 양자점의 개발이 바람직하다.
일 구현예는 향상된 발광 물성 및 향상된 안정성을 나타낼 수 있는 코어쉘 양자점 (또는 코어쉘 양자점들, 이하 코어쉘 양자점 또는 양자점이라고도 함)에 대한 것이다.
다른 구현예는, 상기 양자점의 제조 방법에 대한 것이다.
다른 구현예는 상기 양자점을 포함하는 조성물에 대한 것이다.
다른 구현예는, 상기 양자점을 포함하는 양자점-폴리머 복합체에 대한 것이다.
또 다른 구현예는, 상기 양자점-폴리머 복합체를 포함하는 적층 구조물과 전자 소자 (표시 소자)에 대한 것이다.
일 구현예에서, 코어쉘 양자점은 인듐(In)과 인(P), 그리고 선택에 따라 아연을 포함하는 반도체 나노결정 코어, 상기 반도체 나노결정 코어 상에 배치되고 아연, 셀레늄 및 황을 포함하는 반도체 나노결정 쉘을 포함하고,
상기 코어쉘 양자점은, 카드뮴을 포함하지 않으며,
그램 당 extinction coefficient 가 0.3 이상이고, 상기 코어쉘 양자점의 UV-Vis 흡수 스펙트럼 곡선은 450 nm 에서의 양(positive)인 미분계수값 (즉, 접선 기울기)을 가진다. 일구현예에서, 상기 코어쉘 양자점은 양자 효율이 80% 이상이다.
상기 코어쉘 양자점은, 여기 시 녹색광을 방출하도록 구성된다.
상기 그램 당 extinction coefficient는 0.31 이상일 수 있다.
상기 그램 당 extinction coefficient는 0.32 이상일 수 있다.
상기 그램 당 extinction coefficient는 0.35 이상일 수 있다.
상기 그램 당 extinction coefficient는 2 이하일 수 있다. 상기 그램 당 extinction coefficient는 1 이하, 0.9 이하, 0.8 이하, 0.7 이하, 0.6 이하, 또는 0.5 이하일 수 있다.
상기 코어쉘 양자점은, 아래의 식에 의해 정의되는 밸리깊이(Valley Depth)가 0.4 이상일 수 있다:
1 - (Absvalley/ Absfirst) = VD
여기서, Absfirst 는 상기 제1 흡수 피크에서의 흡수 강도이고, Absvalley 는 상기 제1 흡수 피크에 인접한 밸리의 최저점에서의 흡수 강도이다.
상기 코어쉘 양자점들은, 밸리깊이가 0.45 이상, 또는 0.5 이상일 수 있다.
상기 코어쉘 양자점에서 셀레늄에 대한 황의 몰 비율은 3.5 이하, 3 이하, 2.5 이하, 2.4 이하, 또는 2.3 이하일 수 있다.
상기 코어쉘 양자점에서 셀레늄에 대한 황의 몰 비율은 0.5 이상, 0.6 이상, 0.7 이상, 0.8 이상, 0.9 이상, 1 이상, 1.5 이상, 또는 2 이상일 수 있다.
상기 코어쉘 양자점에서, 인듐에 대한 아연의 몰 비율은 10 이상, 11 이상, 12 이상, 13 이상, 14 이상, 15 이상, 16 이상, 또는 17 이상일 수 있다.
상기 코어쉘 양자점에서, 인듐에 대한 아연의 몰 비율은 24 이하, 23이하, 22 이하, 21 이하, 20 이하, 19 이하, 18 이하, 17 이하, 16 이하, 또는 14 이하일 수 있다.
상기 코어쉘 양자점에서, 인듐에 대한 인의 몰 비율은 0.7 이상, 0.75 이상, 0.8 이상, 0.85 이상, 또는 0.9 이상일 수 있다.
상기 코어쉘 양자점에서, 인듐에 대한 인의 몰 비율은 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 1.1 이하, 또는 1 이하일 수 있다.
상기 반도체 나노결정 코어의 평균크기는 1.5 nm 이상일 수 있다.
상기 녹색광의 최대 발광 피크 파장은 500 nm 이상, 또는 505 nm 이상일 수 있다.
상기 녹색광의 최대 발광 피크 파장은 530 nm 이하, 525 nm 이하, 520 nm 이하, 515 nm 이하, 또는 510 nm 이하일 수 있다.
상기 양자점은, 양자 효율이 81% 이상, 82 % 이상, 83% 이상, 84% 이상, 85% 이상, 또는 90% 이상일 수 있다.
상기 쉘은, 두께가 6 모노레이어 이하일 수 있다.
상기 쉘은, 상기 반도체 나노결정 코어 상에 배치되고 아연, 셀레늄, 및 황을 포함하는 제1 반도체 나노결정 쉘, 및 상기 제1 반도체 나노결정 쉘 상에 배치되고 아연 및 황을 포함하는 제2 반도체 나노결정 쉘을 포함할 수 있다.
상기 제1 반도체 나노결정 쉘의 두께는 4 모노레이어(ML) 이하, 또는 3.5ML 이하일 수 있다.
상기 제1 반도체 나노결정 쉘의 두께는 1 ML 이상, 1.5 ML 이상, 2ML 이상, 2.5 ML 이상, 또는 3 ML 이상일 수 있다.
상기 제2 반도체 나노결정 쉘의 두께는 1 nm 이하, 0.9 nm 이하, 0.8 nm 이하, 0.7 nm 이하, 또는 0.6 nm 이하일 수 있다.
상기 제1 반도체 나노결정 쉘은, 상기 반도체 나노결정 코어 바로 위에 배치될 수 있다.
상기 제2 반도체 나노결정 쉘은, 상기 제1 반도체 나노결정 쉘 바로 위에 배치될 수 있다.
상기 제2 반도체 나노결정 쉘은 상기 양자점의 최외곽층일 수 있다.
다른 구현예에 따른 조성물은, (예컨대, 복수개의) 전술한 양자점(들); 분산제; 및 (유기)용매를 포함할 수 있다. 상기 분산제는 카르복시산기 함유 바인더 고분자를 포함할 수 있다. 상기 조성물은 탄소-탄소 이중 결합을 포함하는 광중합성 단량체, 그리고 선택에 따라 (열 또는 광) 개시제를 더 포함할 수 있다.
다른 구현예에서, 양자점 폴리머 복합체는, 폴리머 매트릭스 및 상기 폴리머 매트릭스 내에 분산되어 있는 (예컨대, 복수개의) 전술한 (코어쉘) 양자점(들)을 포함한다.
상기 폴리머 매트릭스는, 선형 폴리머, 가교된 폴리머, 또는 이들의 조합을 포함할 수 있다.
가교된 폴리머는, 티올렌 폴리머, 가교된 폴리(메타)아크릴레이트, 가교된 폴리우레탄, 가교된 에폭시 수지, 가교된 비닐 폴리머, 가교된 실리콘 수지, 또는 이들의 조합을 포함할 수 있다.
상기 선형 폴리머는, 탄소탄소 불포화 결합 (예컨대, 탄소-탄소 이중결합)으로부터 유래된 반복단위를 포함할 수 있다. 상기 반복단위는 카르복시산기를 포함할 수 있다. 상기 선형 폴리머는 에틸렌 반복단위를 포함할 수 있다.
상기 카르복시산기 함유 반복단위는 카르복시산기와 탄소-탄소 이중결합을 포함하는 모노머로부터 유래된 단위, 디안하이드라이드 잔기를 가지는 모노머로부터 유래된 단위, 또는 이들의 조합을 포함할 수 있다.
상기 폴리머 매트릭스는, (예를 들어, 양자점의 분산 또는 바인더를 위해)카르복시산기 함유 화합물 (예컨대, 바인더, 바인더 폴리머, 또는 분산제)를 포함할 수 있다.상기 카르복시산기 함유 화합물은,
카르복시산기 및 탄소-탄소 이중결합을 포함하는 제1 모노머, 탄소-탄소 이중결합 및 소수성 잔기를 가지며 카르복시산기를 포함하지 않는 제2 모노머, 및 선택에 따라 탄소-탄소 이중결합을 가지고 친수성 잔기를 가지며 카르복시산기를 포함하지 않는 제3 모노머를 포함하는 모노머 조합 또는 이들의 공중합체;
주쇄 내에 2개의 방향족 고리가 다른 고리형 잔기의 구성 원자인 4급 탄소원자와 결합한 골격 구조를 가지고, 카르복시산기(-COOH)를 포함하는 다중 방향족 고리 함유 폴리머; 또는
이들의 조합을 포함할 수 있다.
상기 폴리머 매트릭스는, 말단에 적어도 1개의 티올기를 가지는 (다관능성 또는 단관능성) 티올 화합물과 탄소-탄소 불포화 결합을 가지는 ene 화합물을 포함하는 모노머 조합의 중합 생성물, 금속 산화물 미립자, 또는 이들의 조합을 더 포함할 수 있다.
상기 양자점 폴리머 복합체는 패턴화된 필름의 형태를 가질 수 있다.
상기 양자점 폴리머 복합체는, (예를 들어, 180도씨에서 30분간 열처리로부터 제조되어) 두께 6 um 의 필름의 형태를 가지고, 상기 양자점의 함량이 복합체의 총 중량을 기준으로 45% 이하일 때에, 450 nm 내지 470 nm 의 범위의 파장을 가지는 청색광에 대한 흡수율이 90% 이상일 수 있다. 상기 양자점 폴리머 복합체는 청색광 전환율이 30% 이상일 수 있다.
다른 구현예에서, 표시 소자는, 광원 및 광발광 요소를 포함하고, 상기 광발광 요소는, 전술한 양자점-폴리머 복합체를 포함하고, 상기 광원은, 상기 광발광 요소에 입사광을 제공하도록 구성된다.
상기 입사광은 440 nm 내지 460 nm 또는 450 nm 내지 455 nm의 범위에 있는 피크 파장을 가질 수 있다.
상기 광발광 요소는 상기 양자점 폴리머 복합체의 시트 (sheet)를 포함할 수 있다.
상기 광발광 요소는, 기판 및 상기 기판 상에 배치되는 광발광층을 포함하는 적층 구조물이고,
상기 광발광층은 상기 양자점 폴리머 복합체의 패턴을 포함할 수 있다.
상기 패턴은, 미리 정해진 파장의 광을 방출하는 하나 이상의 반복 구획(section)을 포함할 수 있다.
상기 패턴은 제1광을 방출하는 제1 반복 구획을 포함할 수 있다.
상기 패턴은 상기 제1광과 다른 중심 파장을 가지는 제2광을 방출하는 제2 반복 구획을 더 포함할 수 있다.
일구현예에 따른 양자점은 향상된 발광 물성 (예컨대, 향상된 청색광 흡수율 및 발광 효율)을 나타낼 수 있다. 일구현예에 따른 양자점을 포함하는 조성물은 향상된 공정성을 제공할 수 있다. 상기 양자점은, 다양한 표시소자 및 (예컨대, 바이오 센서 또는 바이오 이미징등과 같은) 생물학적 레이블링, 포토디텍터, 태양 전지, 하이브리드 콤포짓 등에 활용될 수 있다. 일구현예의 양자점이 나타낼 수 있는 향상된 청색광 흡수율은 양자점 기반의 자발광 컬러필터에서 잠재적 유용성을 가질 수 있다. 이러한 자발광 컬러필터는, 다양한 청색광원, 예컨대, 청색광 OLED, 청색광 방출 micro LED, blue 광원을 포함한 액정 표시 소자 등에서 활용될 수 있다.
도 1은 일구현예의 소자의 단면을 모식적으로 나타낸 것이다.
도 2는 일구현예의 소자의 단면을 모식적으로 나타낸 것이다.
도 3은 일구현예의 소자의 단면을 모식적으로 나타낸 것이다.
도 4는, 일구현예의 조성물을 이용한 패턴 형성 공정을 모식적으로 나타낸 것이다.
도 5는, 비교예 1 및 비교예 2와 실시예 1 및 실시예 2에서 제조된 양자점들의 UV-Vis 흡수 스펙트럼을 나타낸 것이다.
도 6은 실시예 2 및 비교예 1 에서 제조된 복합체의 여기 파장의 변화에 따른 흡수율 변화를 나타낸 그래프들이다.
도 7은 실시예 2 및 비교예 1 에서 제조된 복합체의 여기 파장의 변화에 따른 광전환율의 변화를 나타낸 그래프들이다.
이후 설명하는 기술의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 구현예들을 참조하면 명확해질 것이다. 그러나 구현되는 형태는 이하에서 개시되는 구현예들에 한정되는 것이 아니라 할 수 있다. 다른 정의가 없다면 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 해당 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
또한, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
이하에서 별도의 정의가 없는 한, "치환" 이란, 화합물 중의 수소가 C1 내지 C30의 알킬기, C2 내지 C30의 알케닐기, C2 내지 C30의 알키닐기, C6 내지 C30의 아릴기, C7 내지 C30의 알킬아릴기, C1 내지 C30의 알콕시기, C1 내지 C30의 헤테로알킬기, C3 내지 C30의 헤테로알킬아릴기, C3 내지 C30의 사이클로알킬기, C3 내지 C15의 사이클로알케닐기, C6 내지 C30의 사이클로알키닐기, C2 내지 C30의 헤테로사이클로알킬기, 할로겐(-F, -Cl, -Br 또는 -I), 히드록시기(-OH), 니트로기(-NO2), 시아노기(-CN), 아미노기(-NRR' 여기서 R과 R'은 서로 독립적으로 수소 또는 C1 내지 C6 알킬기임), 아지도기(-N3), 아미디노기(-C(=NH)NH2), 히드라지노기(-NHNH2), 히드라조노기(=N(NH2)), 알데히드기(-C(=O)H), 카르바모일기(carbamoyl group, -C(O)NH2), 티올기(-SH), 에스테르기(-C(=O)OR, 여기서 R은 C1 내지 C6 알킬기 또는 C6 내지 C12 아릴기임), 카르복실기(-COOH) 또는 그것의 염(-C(=O)OM, 여기서 M은 유기 또는 무기 양이온임), 술폰산기(-SO3H) 또는 그것의 염(-SO3M, 여기서 M은 유기 또는 무기 양이온임), 인산기(-PO3H2) 또는 그것의 염(-PO3MH 또는 -PO3M2, 여기서 M은 유기 또는 무기 양이온임) 및 이들의 조합에서 선택된 치환기로 치환된 것을 의미한다.
또한 이하에서 별도의 정의가 없는 한, "헤테로" 란, N, O, S, Si 및 P에서 선택된 헤테로 원자를 1 내지 3개 포함한 것을 의미한다.
본 명세서에서 "알킬렌기"는 하나 이상의 치환체를 선택적으로 포함하는 2 이상의 가수(valence)를 가지는 직쇄 또는 분지쇄의 포화 지방족 탄화수소기이다.
본 명세서에서 "아릴렌기"는 하나 이상의 치환체를 선택적으로 포함하고, 하나 이상의 방향족 링에서 적어도 2개의 수소의 제거에 의해서 형성된 2 이상의 가수를 가지는 작용기를 의미한다.
또한 "지방족 탄화수소기"는 C1 내지 C30의 직쇄 또는 분지쇄 알킬기, C1 내지 C30의 직쇄 또는 분지쇄 알케닐기, 또는 C1 내지 C30의 직쇄 또는 분지쇄 알키닐기를 의미하며,
"방향족 유기기"는 C6 내지 C30의 아릴기 또는 C2 내지 C30의 헤테로아릴기를 의미하며,
"지환족 유기기"는 C3 내지 C30의 사이클로알킬기, C3 내지 C30의 사이클로알케닐기 및 C3 내지 C30의 사이클로알키닐기를 의미한다.
본 명세서에서, "(메타)아크릴레이트"라 함은, 아크릴레이트 및/또는 메타크릴레이트를 포함하여 지칭하는 것이다.
여기서, 광 전환율이라 함은 양자점 복합체가 여기광(예를 들어, 청색광)으로부터 흡수한 광량에 대한 양자점 복합체의 발광량의 비율이다. 여기광의 PL 스펙트럼의 적분에 의해 여기광의 총 광량 (B)을 구하고 양자점 복합체 필름의 PL 스펙트럼을 측정하여, 양자점 복합체 필름로부터 방출된 녹색 또는 적색 파장 광의 광량(A)과 여기광의 광량(B')를 구한 다음, 하기 식에 의해 광전환율 및 청색광 흡수율을 구한다:
A/(B-B') x 100 = 광전환율 (%)
(B-B')/B x 100 = 단막의 청색광 흡수율 (%)
여기서, "분산액 (dispersion)" 이라 함은, 분산상 (dispersed phase)이 고체 (solid)이고, 연속 매질(continuous medium)이 액체 또는 상기 분산상과 다른 고체를 포함하는 분산을 말한다. 여기서 "분산액" 이라 함은 분산상이 1 nm 이상, 예컨대, 2 nm 이상, 3 nm 이상, 또는 4 nm 이상 및 수 마이크로미터(um) 이하, (예컨대 2 um 이하, 또는 1 um 이하)의 치수(dimension)를 가지는 콜로이드형 분산일 수 있다.
여기서, "그램 당 extinction coefficient" 이라 함은, 주어진 양자점들을 포함한 용액 (QD 용액)의 450 nm 에서 absorbance 와 상기 QD 용액의 부피를 곱한 값을 상기 용액 내에 포함되어 있는 양자점들의 (건조 후) 무게로 나눈 값이다. A (absorbance) = εcℓ (여기서, c 는 몰농도 mol/L (M), ε는 molar extinction coefficient (M-1 cm-1), ℓ 은 경로 길이이며) 이므로, c 가 그램 농도 (g/L) 일 경우, ε 는 gram 당 extinction coefficient (L g-1 cm-1) 를 대표할 수 있다. 따라서, ε = A / [c (g/L)* ℓ] 이므로 A * 양자점 부피(L)를 양자점 무게 (g) 와 path length (cm) =1 cm 로 나눈 값이 본 명세서에서 그램 당 extinction coefficient이다.
본 명세서에서, "족(Group) "은 원소 주기율표의 족을 말한다.
"I족"은 IA족 및 IB 족을 포함할 수 있으며, Li, Na, K, Rb, Cs을 포함하나 이에 제한되지 않는다.
여기서, "II족" 은 IIA족 및 IIB 족을 포함할 수 있으며, II족 금속의 예는 Cd, Zn, Hg 및 Mg을 포함하나 이에 제한되지 않는다.
"III 족"은 IIIA족 및 IIIB 족을 포함할 수 있으며, III족 금속의 예들은 Al, In, Ga, 및 Tl을 포함하나 이에 제한되지 않는다.
"IV 족"은 IVA족 및 IVB 족을 포함할 수 있으며, IV 족 금속의 예들은 Si, Ge, Sn을 포함할 수 있으나 이에 제한되지 않는다. 본 명세서에서, "금속"이라는 용어는 Si 와 같은 준금속도 포함한다.
"V족"은 VA 족을 포함하며 질소, 인, 비소, 안티몬, 및 비스무스를 포함하나 이에 제한되지 않는다.
"VI족"은 VIA 족을 포함하며 황, 셀레늄, 텔루리움을 포함하나 이에 제한되지 않는다.
여기서, 평균이라 함은 median 또는 mean 일 수 있다. 일구현예에서, 평균은 mean 일 수 있다.
여기서, 양자 효율은, (예컨대, 히다치 또는 하마마츠사 등으로부터) 상업적으로 입수 가능한 장비를 사용하고 예를 들어 각각의 장비 제조사들로부터 제공된 매뉴얼을 참고하여 쉽게 그리고 재현성있게 결정될 수 있다. 양자효율 (또는 양자수율)은 용액 상태 또는 (복합체 내에서) 고체 상태로 측정될 수 있다. 일구현예에서, 양자효율 (또는 양자수율)은, 나노구조물 또는 이들의 집단에 의해, 흡수된 광자(photon)대비 방출된 광자의 비율이다. 일구현예에서, 양자 효율은 임의의 방법으로 측정될 수 있다. 예를 들어, 형광 양자 수율 또는 효율을 위해서는, 절대법과 상대법 2가지의 방법이 있을 수 있다.
절대법에서는, 적분구를 통해 모든 샘플의 형광을 검출하여 양자효율을 얻는다. 상대법에서는, 표준 염료 (표준 시료)의 형광 강도를 미지의 샘플의 형광 강도와 비교하여 미지 샘플의 양자 효율을 계산한다. Coumarin 153, Coumarin 545, Rhodamine 101 inner salt, Anthracene and Rhodamine 6G 등이 이들의 PL파장에 따라 표준 염료로 사용될 수 있으나 이에 제한되지 않는다.
반치폭 및 최대 PL 피크 파장은, 예컨대, 형광 스펙트로포토미터 등과 같은 스펙트로포토미터에 의해 얻어지는 광발광 스펙트럼에 의해 측정될 수 있다.
여기서, 카드뮴 (또는 그 외 독성 중금속)을 포함하지 않는다는 기재는, 카드뮴 (또는 해당 중금속)의 농도가 100 ppm (by weight) 이하, 50 ppm 이하, 10 ppm 이하, 1 ppm 이하, 0.1 ppm 이하, 0.01 ppm 이하, 또는 거의 0 인 것를 지칭할 수 있다. 일 구현예에서, 실질적으로 카드뮴 (또는 해당 중금속)이 존재하지 않거나, 혹시 존재하는 경우에도, 주어진 검출 수단의 검출 한계 이하의 양으로 또는 불순물 수준으로 있다.
여기서 "제1 흡수 피크 파장"은 UV-Vis 흡수 스펙트럼에서 가장 낮은 에너지 영역에서 나타나는 첫번째 주 피크의 파장을 말한다.
양자점은 나노규모의 크기를 가지는 결정성 반도체 재료 (e.g.,반도체 나노결정 입자)이다. 양자점은, 단위 부피당 표면적이 넓고, 양자 구속효과를 나타내며, 동일 조성의 벌크 물질의 특성과 다른 물성을 나타낼 수 있다. 양자점은 여기원(excitation source)으로부터 광을 흡수하여 에너지 여기 상태로 되고, 그의 에너지 밴드갭에 상응하는 에너지를 방출하게 된다.
양자점은, 특유의 발광특성을 가지며, 자발광 컬러필터에 사용하기 위해 비교적 높은 발광 효율과 여기광 흡수율이 바람직할 수 있다.
현재 전자소자 등에 응용 가능한 정도의 광학적 물성을 나타내는 양자점들 대부분은 카드뮴 기반이다. 카드뮴은 심각한 환경/건강상 문제를 제기하며 규제 대상 원소 중 하나이다. 카드뮴이 없는 (cadmium-free) 양자점의 일예로서 III-V족 기반의 나노결정을 들 수 있으나 이에 제한되지 않는다. 그러나, III-V족 기반 (예컨대, InP 기반)의 비카드뮴 양자점은, 카드뮴계 양자점에 비하여 안정성 (예컨대, 화학 안정성 및 열 안정성)이 좋지 않으며, 전자 소자로의 응용을 위한 각종공정에 의해 발광 물성의 실질적 열화를 나타내기 쉽다. 이에, InP 기반의 core 를 증가된 두께의 shell 로 passivation 시켜 발광 물성과 안정성을 확보하려는 시도가 있다. 상기 쉘은 ZnS, ZnSe, ZnSeS 와 같은 II-VI족 화합물을 포함할 수 있다. 코어와 상기 쉘 재료 간의 band level 차이는 엑시톤 디퓨전의 억제를 위해 충분히 크며 InP 코어와의 결정상수 차이도 크다. 따라서, 이들 쉘을 InP 기반의 코어 상에 균일하게 제공하는 것은 쉽지 않다. 또한, 특정 이론에 의해 구속되려 함은 아니지만, In-P 는 높은 공유 결합성으로 인해 균일한 코어 입자 형성이 어렵고, 표면 결함이 많다. 이러한 코어의 단점(drawback)은 쉘의 균일한 패시베이션을 더욱 어렵게 할 수 있다.
한편, 발광물성과 관련하여, 양자점은 여기광으로서 청색광을 사용할 수 있다. 카드뮴계 양자점의 경우, 이러한 청색광에서의 흡수 강도가 높지만, 대부분의 (특히, 녹색 발광의) 비카드뮴계 양자점은 청색광에서의 흡수 강도가 높지 않다. 특정 이론에 의해 구속되려 함은 아니지만, 카드뮴 기반의 코어쉘 (예컨대, CdSe/CdS/ZnS) 양자점은 코어와 쉘이 모두 청색 영역의 흡수에 기여할 수 있으나, 인듐 포스파이드 양자점은 shell 로 많이 사용되는 ZnSe 물질이 청색 흡수에 기여하는 바가 작다. 다시 말해, ZnSe 기반의 쉘 두께가 얇은 것이 흡수율의 측면에서 유리할 수 있다. 그러나 비카드뮴계 양자점은, 발광 효율과 광안정성의 측면에서 쉘 두께를 얇게 하기 어렵다. 이 때문에, 인듐 포스파이드 기반의 양자점들의 경우, 높은 흡수율과 높은 발광 효율을 동시에 제공하는 것은 도전적 과제일 수 있다.
또한, 본 발명자들이 확인한 바에 따르면, 요구되는 수준의 안정성과 발광 물성을 위해서는 증가된 두께의 shell 이 필요한 반면, 쉘 두께 증가는 양자점 개당 무게가 크게 증가시킬 수 있는데, 이는 주어진 무게 당 양자점 개수 감소를 초래하고, 이에 따라 복합체의 여기광 흡수율도 감소하는 문제를 가져온다. 한편, 소망하는 발광효율로 녹색 발광하는 인듐 포스파이드 기반의 코어쉘 양자점들은, 대부분 그 흡수 파장 곡선이 450-470 nm 의 청색 영역에서 감소하는 모양을 가진다. 본 발명자들이 확인한 바에 따르면, 이러한 흡수 곡선은, 광원으로서 450 nm 보다 긴 파장의 OLED 를 사용하고자 할 경우 복합체 흡수율의 감소를 초래할 수 있다.
컬러필터 등 패턴화된 단막으로의 응용 시 여기광 흡수율 감소는 표시 소자에서의 blue leakage 의 직접적 원인이 될 수 있고, 색재현율 (예컨대, DCI 일치율)에도 부정적 영향을 주며, blue leakage 를 막기 위한 흡수형 칼라필터 사용시 발광 효율의 감소 원인이 될 수 있다. 또한, 양자점의 낮은 흡수강도는 이를 포함하는 소자에서 감소된 휘도로 나타날 수 있다.
일구현예에 따른 양자점은, 후술하는 구조/조성을 가짐에 의해, 카드뮴에 기초하지 않으면서도 향상된 발광물성과 안전성을 동시에 가질 수 있다. 일구현예에 따른 양자점은, 복합체 형태로 제공될 경우에도, 450 nm 이상 및 470 nm 이하의 파장의 광을 방출하는 광원에 대하여 향상된 흡수율을 제공할 수 있다.
일구현예에 따른 코어쉘 양자점 (이하, 양자점이라고도 함. "양자점"이라는 기재는 양자점들을 포함하는 것임)은, 카드뮴을 포함하지 않으며 여기 시 녹색광을 방출하도록 구성된다. 상기 양자점은, 인듐(In)과 인(P)을 포함하는 반도체 나노결정 코어, 상기 반도체 나노결정 코어 상에 배치되고 아연, 셀레늄 및 황을 포함하는 반도체 나노결정 쉘을 포함한다.
일구현예에서, 상기 반도체 나노결정 코어는 아연을 더 포함할 수 있다. 상기 반도체 나노결정 코어는, InP, InZnP, 또는 이들의 조합일 수 있다. 일구현예의 코어는 후술하는 방법에 의해 제어된 아연 농도 하에서 합성되며 이에 따라 감소된 표면 결함 및 산화를 나타낼 수 있으며, 이러한 코어 상에는, 보다 균일한 쉘의 형성이 가능해지므로 비교적 얇은 쉘에서도 향상된 발광효율과 증가된 흡수율을 나타낼 수 있다.
상기 코어의 크기는, 광발광 파장을 고려하여 적절히 선택할 수 있다. 예컨대, 코어의 크기는 1 nm 이상, 1.5 nm 이상, 또는 2 nm 이상일 수 있다. 예컨대, 코어의 크기는, 5 nm 이하, 4 nm 이하, 또는 3 nm 이하일 수 있다.
상기 쉘의 두께는 6 ML 이하, 5.5 ML 이하, 5 ML 이하, 또는 4.5 ML 이하일 수 있다. 상기 쉘의 두께는 2 ML 이상, 2.5 ML 이상, 3 ML 이상, 또는 3.5 ML 이상일 수 있다. 상기 쉘의 두께는 2.3 nm 이하, 예를 들어, 2.2 nm 이하, 2.1 nm 이하, 2 nm 이하, 1.9 nm 이하, 1.8 nm 이하, 1.7 nm 이하, 1.6 nm 이하, 1.5 nm 이하, 또는 1.4 nm 이하일 수 있다. 상기 쉘의 두께는 0.5 nm 이상, 0.6 nm 이상, 0.7 nm 이상, 0.8 nm 이상, 0.9 nm 이상, 또는 1 nm 이상일 수 있다. 상기 쉘은, 다층 구조를 가질 수 있다. 상기 반도체 나노결정 코어 상에 배치되고 아연, 셀레늄, 및 황을 포함하는 제1 반도체 나노결정 쉘, 및 상기 제1 반도체 나노결정 쉘 상에 배치되고 아연 및 황을 포함하는 제2 반도체 나노결정 쉘을 포함할 수 있다. 상기 제2 반도체 나노결정은 셀레늄을 더 포함할 수 있다. 상기 제2 반도체 나노결정의 조성은, 상기 제1 반도체 나노결정과 다를 수 있다.
상기 제1 반도체 나노결정 쉘에서, 셀레늄 및 황의 총 합에 대한 황의 비율은 0.1 이상, 0.15 이상, 0.2 이상, 0.25 이상, 또는 0.3 이상일 수 있다. 상기 제1 반도체 나노결정 쉘에서, 셀레늄 및 황의 총 합에 대한 황의 비율은 0.7 이하, 0.6 이하, 또는 0.5 이하일 수 있다. 제1 쉘이 전술한 조성 범위를 가질 경우, 일구현예의 양자점은 높은 흡수율과 함께 더 향상된 발광 효율을 나타낼 수 있다. 일구현예에서, 셀레늄 및 황의 총 합에 대한 황의 몰 비는, 0.1 내지 0.7, 0.15 내지 0.6, 또는 0.2 내지 0.5일 수 있다.
상기 제1 반도체 나노결정 쉘의 두께는 4 모노레이어(ML) 이하, 3.5ML 이하, 또는 3 ML 이하일 수 있다. 상기 제1 반도체 나노결정 쉘의 두께는 1 ML 이상, 1.5 ML 이상, 2 ML 이상, 또는 2.5 ML 이상일 수 있다.
상기 제2 반도체 나노결정 쉘의 두께는 1 nm 이하, 0.9 nm 이하, 0.8 nm 이하, 0.7 nm 이하, 또는 0.6 nm 이하일 수 있다. 상기 제2 반도체 나노결정 쉘의 두께는 1 ML 이상, 또는 1.5 ML 이상일 수 있다.
상기 제1 반도체 나노결정 쉘은, 상기 반도체 나노결정 코어 바로 위에 배치될 수 있다. 상기 제2 반도체 나노결정 쉘은, 상기 제1 반도체 나노결정 쉘 바로 위에 배치될 수 있다. 상기 제2 반도체 나노결정 쉘은 상기 양자점의 최외곽층일 수 있다.
일구현예의 양자점은, 셀레늄에 대한 황의 몰 비율이 3.5 이하일 수 있다. 일구현예의 양자점에서, 셀레늄에 대한 황의 비율이, 3.5 이하, 3.4 이하, 3.3 이하, 3.2 이하, 3.1 이하, 3 이하, 2.9 이하, 2.8 이하, 2.7 이하, 2.6 이하, 2.5 이하, 2.4 이하, 2.3 이하, 2.2 이하, 2.1 이하, 2.0 이하, 1.9 이하, 1.8 이하, 1.7 이하, 1.6 이하, 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 1.1 이하, 또는 1 이하일 수 있다. 일구현예의 양자점에서, 셀레늄에 대한 황의 비율은 0.05 이상, 0.07 이상, 0.1 이상, 0.2 이상, 0.3 이상, 0.4 이상, 0.5 이상, 0.6 이상, 0.7 이상, 0.8 이상, 또는 0.9 이상일 수 있다.
일구현예의 코어쉘 양자점에서, 인듐에 대한 아연의 몰비는, 24 이하, 23 이하, 22 이하, 21 이하, 20 이하, 19 이하, 18 이하, 17 이하, 16 이하, 15 이하, 또는 14 이하일 수 있다. 일구현예의 코어쉘 양자점에서, 인듐에 대한 아연의 몰비는, 3 이상, 4 이상, 5 이상, 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상, 12 이상, 13 이상, 14 이상, 또는 15 이상일 수 있다.
상기 코어쉘 양자점에서, 인듐에 대한 인의 몰 비율은 0.7 이상, 0.75 이상, 0.8 이상, 0.85 이상, 또는 0.9 이상일 수 있다. 상기 코어쉘 양자점에서, 인듐에 대한 인의 비율은 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 1.1 이하, 또는 1 이하일 수 있다. 일구현예에서, 코어쉘 양자점에서, 인듐에 대한 인의 몰 비는, 0.7 내지 1, 0.8 내지 1.2, 0.85 내지 1.3, 또는 0.9 내지 1일 수 있다.
상기 코어쉘 양자점에서, 칼코겐 원소 (예컨대, S 및 Se 총합)에 대한 인듐의 몰비는, 0.05 이상, 0.06 이상, 또는 0.07 이상 및 0.15 이하, 0.14 이하, 0.13 이하, 0.12 이하, 0.11 이하, 0.105 이하, 0.1 이하, 0.095 이하, 0.09 이하, 0.085 이하, 0.08 이하, 또는 0.075 이하일 수 있다.
전술한 구조 및 조성을 가지는 일구현예의 코어쉘 양자점(들)은 증가된 수준의 청색광 흡수율과 함께 향상된 발광 효율을 가지고 녹색광을 방출할 수 있다. 전술한 쉘 조성을 가짐에 의해, 일구현예에 따른 양자점은 향상된 여기광 흡수율과 향상된 발광 효율의 양자점-고분자 복합체를 제공할 수 있다.
인듐 포스파이드 기반의 양자점들은, 소망하는 수준의 발광효율과 (외부환경에 대한) 안정성을 얻기 위해 증가된 두께의 쉘을 가진다. 본 발명자들이 확인한 바에 따르면 쉘 두께는, 그 조성과 조합하여, 양자점의 흡수율에 영향을 줄 수 있다. 본 발명자들이 확인한 바에 따르면, 소정의 부피를 가지는 쉘은, 그 조성에 따라서, 흡수에 기여하는 부피가 있을 수 있으며, 전술한 조성과 구조에 의해 비교적 제한된 두께에서 향상된 흡수율을 유지할 수 있으면서 증가된 수준의 발광효율을 나타낼 수 있음을 확인하였다. 본 발명자들은, ZnSeS 쉘의 두께가 얇을수록 그리고 ZnSeS 쉘에서 S 의 비율이 높을수록 전자-정공 오버랩이 커질 수 있음을 확인하였고, 이는 흡수율의 증가에 기여할 수 있다. 한편, 본 발명자들은, 정해진 두께에서 ZnSeS 의 S 비율이 증가할수록 전자가 양자점 안쪽에 존재할 확률이 커질 수 있음을 확인하였고, 이는 표면 패시베이션에 유리하고 발광 효율 증가를 가져올 수 있다. 또한, 본 발명자들이 확인한 바에 따르면, 코어에 인접한 쉘에서의 S 비율 증가는 쉘과 코어 간의 lattice strain 에 실질적인 영향을 줄 수 있어 band gap 감소, shell 구조 변화, 효율 감소를 초래할 수 있다. 따라서, 전술한 조성과 구성을 가지는 일구현예의 양자점은, 소망하는 수준의 발광 효율과 안정성을 나타내면서도 향상된 청색광 흡수율을 나타낼 수 있다.
일구현예의 다층쉘 양자점에서, (예컨대, ZnSeS 기반의) 제1 반도체 나노결정 쉘은, 전술한 범위 내에서 양자점 발광 효율의 증가에 긍정적인 영향을 줄 수 있고, (예컨대, ZnS 기반의) 제2 반도체 나노결정 쉘은, 전술한 범위에서 발광 효율에 부정적 영향을 주지 않으면서 특히 양자점 폴리머 복합체의 단막으로 제조된 경우, 단막의 여기광 (예컨대, 청색광) 흡수율을 향상된 수준으로 유지할 수 있다.
또한, 전술한 조성의 쉘을 가짐에 의해 일구현예의 양자점은, 높은 화학적 안정성을 나타낼 수 있으므로, 다양한 화학물질 (예컨대, 유기 폴리머, 유기 용매, 모노머, 각종 첨가제)들과의 접촉이 수반되는 조성물 (예컨대, 감광성 조성물 또는 포토레지스트) 제조 과정 또는 이를 이용한 복합체 (또는 그 패턴) 형성 과정을 거친 후에도, 이를 포함하는 조성물 또는 복합체 (또는 그 패턴)가 발광 물성을 향상된 수준으로 유지할 수 있다.
상기 녹색광의 최대 발광 피크 파장은 500 nm 이상, 501 nm 이상, 504 nm 이상, 또는 505 nm 이상일 수 있다. 상기 녹색광의 최대 발광 피크 파장은 530 nm 이하, 525 nm 이하, 520 nm 이하, 515 nm 이하, 또는 510 nm 이하일 수 있다.
일구현예의 양자점은 전술한 구조 및 최적화된 조성에 의해 향상된 쉘코팅 균일성을 가질 수 있으며 비교적 얇은 쉘 두께에서도 높은 효율 및 안정성을 나타낼 수 있다. 일구현예의 양자점은, 그램 당 extinction coefficient 가 0.3 이상일 수 있다. 상기 그램 당 extinction coefficient는 0.31 이상, 0.32 이상, 0.33 이상, 0.34 이상, 0.35 이상, 0.36 이상, 0.37 이상, 또는 0.38 이상일 수 있다. 상기 그램 당 extinction coefficient는 2 이하일 수 있다. 상기 그램 당 extinction coefficient는 1.5 이하, 1 이하, 0.9 이하, 0.8 이하, 0.7 이하, 0.6 이하, 0.5 이하, 또는 0.45 이하일 수 있다. 일구현예에서, 일구현예의 양자점은, 그램 당 extinction coefficient가 0.3 내지 2, 0.33 내지 0.9, 또는 0.34 내지 0.8 일 수 있다. 또한, 일구현예의 양자점(들)은, 전술한 범위의 흡광계수와 함께, 얇은 쉘 두께를 가지므로 양자점-폴리머 복합체 형태에서 정해진 부피에 더 많은 개수의 양자점들이 포함될 수 있어 향상된 효율과 함께 더 증가된 수준의 여기광 흡수율을 달성할 수 있다.
상기 코어쉘 양자점의 UV-Vis 흡수 스펙트럼 곡선은 450 nm 에서의 양(positive)인 미분계수값 (즉, 접선 기울기)을 가진다. 상기 UV-Vis 흡수 스펙트럼 곡선에서 450 nm 에서의 미분 계수값은, 0초과, 예를 들어, 0.001 이상, 0.002 이상, 0.003 이상, 0.004 이상, 0.005 이상, 또는 0.006 이상일 수 있다. 상기 미분 계수값은 0.03 이하, 0.025 이하, 0.02 이하, 0.015 이하, 0.01 이하, 0.0095 이하, 0.009 이하, 또는 0.0085 이하일 수 있다. 일구현예의 양자점들은 450 nm 이상 및 470 nm 이하의 여기 광원에 대하여 증가된 흡수율과 함께 증가된 효율을 나타낼 수 있다. UV-Vis 흡수 곡선에서 450 nm 에서의 미분계수값 (derivative of df(x)/dx, tangential slope) 은 곡선의 단순 분석에 의해 쉽게 측정될 수 있다.
상기 양자점의 UV-Vis 흡수 스펙트럼에서, 상기 제1 흡수 피크 파장은, 450 nm 초과, 및 광발광 피크 파장 미만의 범위 내에 존재할 수 있다. 상기 제1 흡수 피크 파장은, 예컨대, 455 nm 이상, 460 nm 이상, 465 nm 이상, 470 nm 이상, 475 nm 이상, 480 nm 이상의 범위에 있을 수 있다. 상기 제1 흡수 피크 파장은, 505 nm 이하, 500 nm 이하, 495 nm 이하, 또는 490 nm 이하의 범위에 있을 수 있다.
전술한 물성 (예컨대, 그램 당 extinction coefficient 및 전술한 UV 흡수 곡선)을 가지는 상기 양자점들은, 복합체의 형태로 제공되는 경우, 예컨대, 450 nm 이상 내지 470 nm 이하의 파장 (예컨대, 450 nm 초과, 455 nm 이상 또는 460 nm 이상 및 470 nm 이하, 또는 465 nm 이하의 범위의 파장)의 여기광에 대하여, 90% 이상의 높은 흡수율을 나타낼 수 있다. 이러한 수준의 흡수율을 나타내는 복합체 또는 이를 포함하는 컬러필터는 디스플레이 소자에서, 예를 들어, 청색필터 없이도, 향상된 색재현율을 가능케할 수 있다.
상기 코어쉘 양자점은, 아래의 식에 의해 정의되는 밸리깊이(Valley Depth)가 0.4 이상일 수 있다:
1 - (Absvalley/ Absfirst) = VD
여기서, Absfirst 는 상기 제1 흡수 피크에서의 흡수 강도이고, Absvalley 는 상기 제1 흡수 피크에 인접한 밸리의 최저점에서의 흡수 강도이다.
상기 코어쉘 양자점들은, 밸리깊이가 0.45 이상, 또는 0.5 이상일 수 있다.
일구현예의 양자점은, 양자 효율이 80% 이상, 81% 이상, 82% 이상, 83% 이상, 84% 이상, 또는 85% 이상일 수 있다. 상기 양자점은 반치폭이 55 nm 이하, 예컨대, 50 nm 이하, 45 nm 이하, 44 nm 이하, 43 nm 이하, 42 nm 이하, 41 nm 이하, 또는 40 nm 이하일 수 있다.
상기 양자점의 크기는, 약 1 nm 이상, 2 nm 이상, 3 nm 이상, 4 nm 이상, 또는 5 nm 이상일 수 있다. 상기 양자점의 크기는, 약 30 nm 이하, 예컨대, 25 nm 이하, 24 nm 이하, 23 nm 이하, 22 nm 이하, 21 nm 이하, 20 nm 이하, 19 nm 이하, 18 nm 이하, 17 nm 이하, 15 nm 이하, 14 nm 이하, 13 nm 이하, 12 nm 이하, 11 nm 이하, 10 nm 이하, 9 nm 이하, 8 nm 이하, 또는 7 nm 이하일 수 있다. 상기 양자점의 크기는, 입경일 수 있다. (구형이 아닌 경우) 양자점의 크기는, 투과 전자 현미경 분석에 의해 확인되는 2차원의 면적을 원으로 전환하여 계산되는 직경일 수 있다. 본 명세서에서 크기 등 치수 (예컨대, 양자점 관련 치수)는 평균 치수 (예컨대, 평균 크기)를 지칭할 수도 있다.
상기 양자점의 형상은 특별히 한정되지 않으며, 예를 들어, 구형, 다면체, 피라미드형, 멀티포드, 또는 입방체(cubic)형, 나노튜브, 나노와이어, 나노섬유, 나노시트, 또는 이들의 조합을 포함할 수 있으나, 이에 제한되지 않는다.
상기 양자점은, 표면에 후술하는 유기 리간드 및/또는 후술하는 유기 용매를 포함할 수 있다. 상기 유기 리간드 및/또는 상기 유기 용매는 양자점 표면에 결합(bound)될 수 있다.
다른 구현예는 전술한 양자점(들)을 제조하는 방법은, 인듐(In) 및 인(P)과 선택에 따라 아연을 포함하는 반도체 나노결정 코어를 준비하는 단계; 및 상기 코어 및 제1 유기 리간드의 존재 하에, 아연 쉘 전구체와 셀레늄 전구체 및 황 전구체 중 적어도 하나를 (예컨대, 유기 용매 중에서) 동시에 또는 순차적으로 반응시켜 상기 반도체 나노결정 코어 상에 아연, 셀레늄, 및 황을 포함하는 반도체 나노결정 쉘을 형성하는 단계를 포함한다.
상기 반도체 나노결정 코어의 준비는, 인듐 화합물을 제2 유기 리간드와 유기 용매 존재 하에 가열하여 인듐 전구체 용액을 준비하는 단계; 및 상기 인듐 전구체 용액에 인 전구체를 주입하고 얻어진 혼합물을 가열하는 단계를 포함할 수 있다. 상기 방법은, 인듐 전구체 용액의 준비 전에, 아연 전구체를 먼저 얻고, 상기 인듐 전구체 용액의 준비는 상기 아연 전구체 존재 하에 수행하는 것을 더 포함할 수 있다. 종류에 따라, 상기 아연 전구체는, 아연 화합물과 유기 리간드를 유기 용매 내에서 고온 (예컨대, 100도씨 이상 및 200도씨 이하의 온도)으로 가열하여 얻을 수 있다. 코어 합성 시, 인듐에 대한 아연의 몰비는 1 이상, 1 초과, 1.1 이상, 또는 1.2 이상 및 3 이하, 2.5 이하, 또는 2 이하일 수 있다.
일구현예에서, 상기 아연 전구체 및 상기 인듐 전구체는 카르복실레이트 잔기를 포함할 수 있다. 상기 아연 전구체 (또는 상기 인듐 전구체)에서 금속 1몰에 대한 카르복시산 함유 유기 리간드의 몰비는 1몰 이상, 1.5몰 이상, 또는 2몰 이상 및 5몰 이하, 4몰 이하, 또는 3몰 이하일 수 있다.
상기 쉘 형성 단계는, 아연 쉘 전구체, 제1 유기 리간드, 및 유기 용매를 포함하는 혼합물을 가열하는 단계; 상기 가열된 혼합물에 상기 반도체 나노결정 코어를 주입하고, 셀레늄 전구체와 황 전구체를 소망하는 조성을 가지는 쉘을 형성하도록 (예컨대, 각각 독립적으로 1회 이상 또는 2회 이상) 주입하여 반응을 수행하는 것을 포함한다. 각 전구체들의 주입 방식은 특별히 제한되지 않으며, 동시에 또는 순차적으로 수행할 수 있다.
상기 쉘 형성 단계는, 상기 반도체 나노결정 코어 상에 아연, 황, 및 셀레늄을 포함하는 제1 반도체 나노결정 쉘이 형성하는 단계(이하, 제1 쉘 형성단계) 및 상기 제1 반도체 나노결정 쉘 상에 아연 및 황, 그리고 선택에 따라 셀레늄을 포함하는 제2 반도체 나노결정 쉘을 형성하는 단계 (이하, 제2쉘 형성단계)를 포함할 수 있다.
쉘 형성 동안, 각각의 전구체 (e.g., 아연 전구체, 황전구체, 및/또는 셀레늄 전구체)의 각 함량은 최종 코어쉘 양자점의 구조/조성을 고려하여 제어할 수 있다.
아연 전구체 또는 아연쉘 전구체 (이하, 아연 전구체라 함)의 종류는 특별히 제한되지 않으며 적절히 선택할 수 있다. 예컨대, 상기 아연 전구체는, Zn 금속 분말, 알킬화 Zn 화합물, Zn 알콕시드, Zn 카르복실레이트, Zn 니트레이트, Zn 퍼콜레이트, Zn 설페이트, Zn 아세틸아세토네이트, Zn 할로겐화물, Zn 시안화물, Zn 히드록시드, Zn 옥사이드, Zn 퍼옥사이드, 또는 이들의 조합일 수 있다. 상기 아연 전구체는, 디메틸아연, 디에틸아연, 아연아세테이트, 아연아세틸아세토네이트, 아연아이오다이드, 아연브로마이드, 아연클로라이드, 아연플루오라이드, 아연카보네이트, 아연시아나이드, 아연나이트레이트, 아연옥사이드, 아연퍼옥사이드, 아연퍼클로레이트, 아연설페이트, 등일 수 있다. 상기 아연 전구체는, 단독으로 또는 2종 이상의 조합으로 사용할 수 있다.
상기 (제1 및/또는 제2) 유기 리간드는 RCOOH, RNH2, R2NH, R3N, RSH, RH2PO, R2HPO, R3PO, RH2P, R2HP, R3P, ROH, RCOOR', RPO(OH)2, RHPOOH, R2POOH (여기서, R, R'는 각각 독립적으로 C1 내지 C40 (또는 C3 내지 C24)의 지방족탄화수소 (e.g., 알킬기, 알케닐기 알키닐기), 또는 C6 내지 C40 (또는 C6 내지 C24)의 방향족 탄화수소 (e.g., C6 내지 C20의 아릴기)), 또는 이들의 조합을 포함할 수 있다. 유기 유기 리간드는 제조된 나노 결정의 표면을 배위하며, 나노 결정이 용액 상에 잘 분산되어 있도록 하고/거나 양자점의 발광 및 전기적 특성에 영향을 줄 수 있다. 상기 유기 유기 리간드의 구체적인 예로서는, 메탄 티올, 에탄 티올, 프로판 티올, 부탄 티올, 펜탄 티올, 헥산 티올, 옥탄 티올, 도데칸 티올, 헥사데칸 티올, 옥타데칸 티올, 벤질 티올; 메탄 아민, 에탄 아민, 프로판 아민, 부틸 아민, 펜틸 아민, 헥실 아민, 옥틸 아민, 도데실 아민, 헥사데실 아민, 옥타데실 아민, 디메틸 아민, 디에틸 아민, 디프로필 아민; 메탄산, 에탄산, 프로판산, 부탄산, 펜탄산, 헥산산, 헵탄산, 옥탄산, 도데칸산, 헥사데칸산, 옥타데칸산, 올레인산, 벤조산; 치환 또는 미치환 메틸 포스핀 (e.g., 트리메틸 포스핀, 메틸디페닐 포스핀 등), 치환 또는 미치환 에틸 포스핀(e.g., 트리에틸 포스핀, 에틸디페닐 포스핀 등), 치환 또는 미치환 프로필 포스핀, 치환 또는 미치환 부틸 포스핀, 치환 또는 미치환 펜틸 포스핀, 치환 또는 미치환 옥틸포스핀 (e.g., 트리옥틸포스핀(TOP)) 등의 포스핀; 치환 또는 미치환 메틸 포스핀 옥사이드(e.g., 트리메틸 포스핀 옥사이드, 메틸디페닐 포스핀옥사이드 등), 치환 또는 미치환 에틸 포스핀 옥사이드(e.g., 트리에틸 포스핀 옥사이드, 에틸디페닐 포스핀옥사이드 등), 치환 또는 미치환 프로필 포스핀 옥사이드, 치환 또는 미치환 부틸 포스핀 옥사이드, 치환 또는 미치환 옥틸포스핀옥사이드 (e.g., 트리옥틸포스핀옥사이드(TOPO) 등의 포스핀 옥사이드; 다이 페닐 포스핀, 트리 페닐 포스핀 화합물, 또는 그의 옥사이드 화합물; 포스폰산(phosphonic acid), 헥실포스핀산, 옥틸포스핀산, 도데칸포스핀산, 테트라데칸포스핀산, 헥사데칸포스핀산, 옥타데칸포스핀산 등 C5 내지 C20의 알킬포스핀산, 또는 C5 내지 C20의 알킬 포스폰산(phosphonic acid); 등을 들 수 있으나, 이에 제한되는 것은 아니다. 상기 유기 리간드는, 단독으로 또는 2종 이상의 혼합물로 사용할 수 있다.
상기 유기용매는, 헥사데실아민 등의 C6 내지 C22의 1차 아민; 다이옥틸아민 등의 C6 내지 C22의 2차 아민; 트리옥틸아민 등의 C6 내지 C40의 3차 아민; 피리딘 등의 질소함유 헤테로고리 화합물; 헥사데칸, 옥타데칸, 옥타데센, 스쿠알렌(squalane) 등의 C6 내지 C40의 지방족 탄화수소 (예컨대, 알칸, 알켄, 알킨 등); 페닐도데칸, 페닐테트라데칸, 페닐 헥사데칸 등 C6 내지 C30의 방향족 탄화수소; 트리옥틸포스핀 등의 C6 내지 C22의 알킬기로 치환된 포스핀; 트리옥틸포스핀옥사이드 등의 C6 내지 C22의 알킬기로 치환된 포스핀옥사이드; 페닐 에테르, 벤질 에테르 등 C12 내지 C22의 방향족 에테르, 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다. 용매의 종류 및 사용량은 사용하는 전구체들과 유기 리간드의 종류를 고려하여 적절히 선택할 수 있다.
상기 인듐 화합물의 종류는 특별히 제한되지 않으며 적절히 선택할 수 있다. 인듐 전구체는, 인듐 분말, 알킬화 인듐 화합물, 인듐 알콕시드, 인듐 카르복실레이트, 인듐 니트레이트, 인듐 퍼콜레이트, 인듐 설페이트, 인듐 아세틸아세토네이트, 인듐 할로겐화물, 인듐 시안화물, 인듐 히드록시드, 인듐 옥사이드, 인듐 퍼옥사이드, 인듐 카보네이트, 또는 이들의 조합일 수 있다. 인듐 전구체는, 인듐 올리에이트, 인듐 미리스테이트 등 인듐 카르복실레이트, 인듐아세테이트, 인듐히드록시드, 인듐클로라이드, 인듐브로마이드, 인듐 아이오다이드를 포함할 수 있다. 인듐 전구체의 형성은, 100도씨 이상, 120도씨 이상 및 200도씨 이하의 온도에서 진공 하에 수행될 수 있다.
인 전구체의 종류는 특별히 제한되지 않으며 적절히 선택할 수 있다. 인 전구체는, 트리스 트리메틸실릴 포스핀(tris(trimethylsilyl) phosphine), tris(dimethylamino) phosphine, 트리에틸포스핀, 트리부틸포스핀, 트리옥틸포스핀, 트리페닐포스핀, 트리시클로헥실포스핀, 디메틸아미노포스핀, 디에틸아미노포스핀, 또는 이들의 조합을 포함할 수 있다.
코어 형성 과정에서 인 전구체 주입에 의해 얻어진 혼합물은, 150도씨 이상, 200도씨 이상, 250도씨 이상, 또는 270도씨 이상 및 300도씨 이하, 290도씨 이하, 280도씨 이하, 270도씨 이하, 또는 260도씨의 온도로 가열될 수 있다. 코어 형성 과정에서, 필요에 따라 전구체 (예컨대, 인듐 전구체, 인 전구체, 및/또는 아연 전구체)를 1회 이상 추가 주입할 수 있다.
코어 형성 반응 시간은 특별히 제한되지 않으며 전구체들 간의 반응성과 코어 형성 온도를 감안하여 적절히 선택할 수 있다.
상기 셀레늄 전구체의 종류는, 특별히 제한되지 않으며 적절히 선택할 수 있다. 예컨대, 상기 셀레늄 전구체는 셀렌-트리옥틸포스핀(Se-TOP), 셀렌-트리부틸포스핀(Se-TBP), 셀렌-트리페닐포스핀(Se-TPP), 텔루르-트리부틸포스핀(Te-TBP), 또는 이들의 조합을 포함하나 이에 제한되지 않는다. 셀레늄 전구체는 1회 이상 (예컨대 2회 이상) 주입할 수 있다.
상기 황 전구체의 종류는 특별히 제한되지 않으며, 적절히 선택할 수 있다. (제1 쉘 형성 및 제2 쉘 형성 등) 쉘 형성을 위해 주입되는 황 전구체는 2종 이상의 상이한 화합물을 포함할 수 있다. 일구현예에서, 쉘 형성을 위해, 티올 화합물 및 원소 황이 사용될 수 있다. 일구현예에서, 제1 쉘 형성을 위한 황 전구체는 티올 화합물 (예컨대, 알칸티올 등 탄소수 4 내지 20의 지방족 탄화수소기를 가지는 티올 화합물, e.g., 도데칸티올)을 포함할 수 있고 제2 쉘 형성을 위한 황 전구체는 황 분말의 유기용매 분산액 (예컨대, 설퍼-옥타데센 (S-ODE), 설퍼-트리옥틸포스핀(S-TOP), 설퍼-트리부틸포스핀(S-TBP), 설퍼-트리페닐포스핀(S-TPP), 설퍼-트리옥틸아민(S-TOA), 또는 트리메틸실릴 설퍼), 머캡토 프로필 실란, 트리메틸실릴 설파이드, 황화 암모늄, 황화 나트륨, 또는 이들의 조합을 포함할 수 있다. 황 전구체는 1회 이상 (예컨대 2회 이상) 주입할 수 있다.
쉘 형성 온도는 적절히 선택할 수 있다. 일구현예에서, 쉘 형성 온도는 270도씨 이상, 280도씨 이상, 290 도씨 이상, 300 도씨 이상, 310도씨 이상, 또는 315도씨 이상일 수 있다. 일구현예에서, 쉘 형성 온도는 350도씨 이하, 340도씨 이하, 330도씨 이하, 또는 325도씨 이하일 수 있다.
쉘 형성 반응 시간은, 특별히 제한되지 않으며, 적절히 선택할 수 있다. 예를 들어, 쉘 형성 반응은, 예컨대, 20분 이상, 25분 이상, 30분 이상, 35분 이상, 40분 이상, 45분 이상, 50분 이상, 55분 이상, 또는 1시간 이상의 기간 동안 수행될 수 있으나 이에 제한되지 않는다. 쉘 형성 반응시간은 3 시간 이하일 수 있다. 각 전구체/화합물은, 단일 단계로 혹은 수회에 걸쳐 부가될 수 있다. 전구체 등을 단계적으로 투입할 경우, 각각의 단계에서 소정의 시간 (예컨대, 5분 이상, 10분 이상, 또는 15분 이상) 동안 반응을 수행할 수 있다. 반응은, 불활성 기체 분위기 또는 공기 중 또는 진공 상태에서 수행될 수 있으나 이에 제한되지 않는다.
제1 쉘 형성에서, 셀레늄 전구체는 1회 이상 (예컨대, 2회 이상, 3회 이상) 투입될 수 있다. 쉘의 조성에 따라, 제2 쉘 형성은 셀레늄 전구체의 존재 또는 부존재 하에서 진행될 수 있다.
쉘 형성 단계가 제1 쉘 형성 및 제2 쉘 형성을 포함하는 경우, 각각의 반응시간은 소망하는 쉘 조성, 전구체의 종류, 및 반응 온도에 따라 적절히 선택할 수 있다. 쉘 형성 (또는 제1 쉘 형성 및 제2 쉘 형성)은, (예컨대 서로 독립적으로) 40분 이상, 예컨대, 50분 이상, 60분 이상, 70분 이상, 80 분 이상, 또는 90분 이상의 시간 동안 수행될 수 있다. 쉘 형성 (또는 제1 쉘 형성 및/또는 제2 쉘 형성)을 위한 반응 시간은, (예컨대 서로 독립적으로) 4시간 이하, 예컨대, 3시간 이하, 2시간 이하, 1시간 이하, 또는 30분 이하일 수 있다.
다층 쉘 형성 시, (예컨대, 제1 쉘 형성을 위한) 반응계에서 인듐에 대한 셀레늄 전구체의 함량은, 미리 정해진 반응시간 동안 소정의 두께를 가지는 제1 반도체 나노결정 쉘을 형성할 수 있도록 조절할 수 있다. (예컨대, 제1 쉘 형성을 위한) 반응계에서 인듐에 대한 셀레늄 전구체의 함량은, 인듐 1몰당 셀레늄의 함량은, 3몰 이상, 4몰 이상, 5몰 이상, 6몰 이상. 7몰 이상, 8몰 이상, 9몰 이상, 또는 10몰 이상 및 20몰 이하, 18몰 이하, 또는 15몰 이하일 수 있다.
쉘 형성 (예컨대, 쉘 형성 반응 초기 또는 제1쉘 형성)시 반응계에서 인듐 1몰에 대한 티올 전구체의 함량은, 0.5 몰 이상, 1몰 이상, 1.5 몰 이상, 또는 2 몰 이상 및 15 몰 이하, 10몰 이하, 9몰 이하, 6몰 이하, 4몰 이하, 또는 3몰 이하일 수 있다.
제2쉘 형성을 위한 반응계는 셀레늄 전구체를 포함하지 않을 수 있다.
일구현예에서, 쉘 형성 (예컨대, 제2쉘) 반응계에서 인듐 1몰에 대한 황 전구체 (예컨대, 원소 황의 유기용매 분산액)의 함량은, 소망하는 쉘 조성을 얻을 수 있도록 (전구체의 반응성과 반응온도 등을 감안하여) 조절할 수 있다. 예컨대, 쉘 형성 (예컨대, 제2쉘) 반응계에서 인듐 1몰에 대한 황 전구체의 함량은, 2몰 이상, 3몰 이상, 4몰 이상, 5몰 이상, 6몰 이상, 7 몰 이상, 8 몰 이상, 9몰 이상, 또는 10 몰이상 및 45몰 이하, 40몰 이하, 35몰 이하, 30몰 이하, 25몰 이하, 20몰 이하, 19몰 이하, 18몰 이하, 16몰 이하, 15몰 이하, 14몰 이하, 13몰 이하, 12몰 이하, 11몰 이하, 10몰 이하, 9몰 이하, 8몰 이하, 7몰 이하, 6몰 이하, 또는 5몰 이하일 수 있다.
제조된 최종 반응액에 비용매(nonsolvent)를 부가하면 상기 유기 리간드가 배위된 나노 결정이 분리 (e.g. 침전)될 수 있다. 상기 비용매는, 상기 반응에 사용된 상기 용매와 섞이지만 나노 결정을 분산시킬 수 없는 극성 용매일 수 있다. 상기 비용매는, 상기 반응에 사용한 용매에 따라 결정할 수 있으며, 예컨대, 아세톤, 에탄올, 부탄올, 이소프로판올, 에탄다이올, 물, 테트라히드로퓨란(THF), 디메틸술폭시드(DMSO), 디에틸에테르(diethylether), 포름 알데하이드, 아세트 알데하이드, 상기 나열된 용매들과 유사한 용해도 파라미터(solubility parameter)를 갖는 용매, 또는 이들의 조합을 포함할 수 있다. 분리는, 원심 분리, 침전, 크로마토 그래피, 또는 증류를 이용할 수 있다. 분리된 나노 결정은 필요에 따라 세정 용매에 부가되어 세정될 수 있다. 세정 용매는 특별히 제한되지 않으며, 상기 리간드와 유사한 용해도 파라미터를 갖는 용매를 사용할 수 있으며, 그 예로는 헥산, 헵탄, 옥탄, 클로로포름, 톨루엔, 벤젠 등을 들 수 있다.
상기 양자점들은, 분산 용매에 분산될 수 있다. 상기 양자점 들은, 유기용매 분산액을 형성할 수 있다. 상기 유기용매 분산액은 물 및/또는 물과 혼화 가능한 유기 용매를 포함하지 않을 수 있다. 분산 용매는, 적절히 선택할 수 있다. 분산 용매는 전술한 유기용매를 포함할 수 있다. 분산 용매는, 치환 또는 미치환의 C1 내지 C40 지방족 탄화수소, 치환 또는 미치환의 C6 내지 C40 방향족 탄화수소, 또는 이들의 조합을 포함할 수 있다.
일구현예의 조성물은, (예컨대, 복수개의) 전술한 양자점(들); 분산제; 및 (유기)용매 (및/또는 액체 비히클)를 포함할 수 있다. 상기 분산제는 양자점을 분산시키길 수 있으며, 카르복시산기 함유 바인더 고분자를 포함할 수 있다. 상기 조성물은 탄소-탄소 이중 결합을 포함하는 (광)중합성 단량체, 그리고 선택에 따라 (열 또는 광) 개시제를 더 포함할 수 있다. 상기 조성물은 감광성일 수 있다.
상기 조성물 내에서 양자점에 대한 상세 내용은 위에서 설명한 바와 같다. 조성물 내에서 양자점의 함량은, (예컨대, 컬러필터 등) 소망하는 최종 용도 등을 감안하여 적절히 조절할 수 있다. 일구현예에서, 양자점의 함량은, 조성물의 고형분을 기준으로 1 중량% 이상, 예컨대, 2 중량% 이상, 3 중량% 이상, 4 중량% 이상, 5 중량% 이상, 6 중량% 이상, 7 중량% 이상, 8 중량% 이상, 9 중량% 이상, 10 중량% 이상, 15 중량% 이상, 20 중량% 이상, 25 중량% 이상, 30 중량% 이상, 35 중량% 이상, 또는 40 중량% 이상일 수 있다. 상기 양자점의 함량은, 고형분을 기준으로 70 중량% 이하, 예컨대, 65 중량% 이하, 60 중량% 이하, 55 중량% 이하, 또는 50 중량% 이하일 수 있다. 조성물 내의 총 고형분 함량에 대하 성분의 중량 백분율은 후술하게 될 복합체 내에서의 성분의 함량을 대표할 수 있다.
일구현예에 따른 조성물은, 양자점-폴리머 복합체의 패턴을 제공하기 위해 사용 가능하다. 일구현예에 따른 조성물은, 포토리소그라피법에서 적용 가능한 양자점 함유 포토레지스트 조성물일 수 있다. 일구현예에 따른 조성물은, 인쇄법 (예컨대, 잉크젯 인쇄 등 액적 토출법)에 의해 패턴을 제공할 수 있는 잉크 조성물일 수 있다. 일구현예에 따른 조성물은, (후술하는 카도 바인더를 제외한) 공액성 (또는 전도성) 폴리머를 포함하지 않을 수 있다. 일구현예에 따른 조성물은 공액성 폴리머를 포함할 수 있다. 여기서, 공액성 폴리머라 함은 주쇄 내에 공액성 이중 결합을 가지는 폴리머 (예컨대, 폴리페닐렌비닐렌 등)을 말한다.
일구현예에 따른 조성물에서, 분산제는, 양자점의 분산성을 보장할 수 있다. 일구현예에서, 상기 분산제는, 바인더 (또는 바인더 고분자)일 수 있다. 상기 바인더는, (예컨대, 반복단위 내에) 카르복시산기를 포함할 수 있다. 상기 바인더는 절연성 폴리머일 수 있다. 바인더는 카르복시산 함유 화합물 (모너머 또는 폴리머)일 수 있다.
상기 바인더는 카르복시산기 함유 화합물을 포함할 수 있다.
상기 카르복시산기 함유 화합물은, 카르복시산기 및 탄소-탄소 이중결합을 포함하는 제1 모노머, 탄소-탄소 이중결합 및/또는 소수성 잔기를 가지며 카르복시산기를 포함하지 않는 제2 모노머, 및 선택에 따라 탄소-탄소 이중결합을 가지고 친수성 잔기를 가지며 카르복시산기를 포함하지 않는 제3 모노머를 포함하는 모노머 조합 또는 그의 공중합체;
주쇄 내에, 2개의 방향족 고리가 다른 고리형 잔기의 구성 원자인 4급 탄소원자와 결합한 골격 구조를 가지고, 카르복시산기(-COOH)를 포함하는 다중 방향족 고리(multiple aromatic ring) 함유 폴리머 (이하, 카도 바인더); 또는
이들의 조합을 포함할 수 있다.
상기 카르복시산 함유 화합물은, 50 mg KOH/g 이상의 산가를 가질 수 있다. 일구현예에서, 상기 카르복시산 함유 화합물의 산가는, 60 mg KOH/g 이상, 70 mg KOH/g, 80 mg KOH/g, 90 mg KOH/g, 100 mg KOH/g, 110 mg KOH/g 이상, 120 mg KOH/g 이상, 125 mg KOH/g 이상, 또는 130 mg KOH/g 이상일 수 있다. 상기 카르복시산 함유 화합물의 산가는, 예를 들어, 250 mg KOH/g 이하, 예를 들어, 240 mg KOH/g 이하, 230 mg KOH/g 이하, 220 mg KOH/g 이하, 210 mg KOH/g 이하, 200 mg KOH/g 이하, 190 mg KOH/g 이하, 180 mg KOH/g 이하, 160 mg KOH/g 이하일 수 있으나 이에 제한되지 않는다. 상기 카르복시산 함유 화합물의 분자량 (또는 중량평균 분자량)이, 400 g/mol 이상, 500 g/mol 이상, 1000 g/mol 이상, 2000 g/mol 이상, 3000 g/mol 이상, 또는 5000 g/mol 이상일 수 있다. 상기 카르복시산 함유 화합물은, 중량평균 분자량이 10만 g/mol 이하, 예컨대, 5만 g/mol 이하일 수 있다.
상기 조성물에서, 상기 바인더 고분자의 함량은, 조성물의 총 중량을 기준으로, 0.5 중량% 이상, 예컨대, 1 중량% 이상, 5 중량% 이상, 10 중량% 이상, 15 중량% 이상, 또는 20 중량% 이상일 수 있으나, 이에 제한되지 않는다. 상기 바인더 고분자의 함량은, 조성물의 총 중량을 기준으로, 35 중량% 이하, 예컨대, 33 중량% 이하, 또는 30 중량% 이하일 수 있다. 상기 바인더 고분자의 함량은, 조성물의 고형분의 총 중량을 기준으로, 0.5 중량% 내지 55 중량%일 수 있다.
상기 조성물에서, 상기 탄소-탄소 이중 결합을 포함하는 중합성(예컨대, 광중합성) 단량체는, (예컨대, 광중합성) (메타)아크릴계 모노머를 포함할 수 있다. 상기 모노머는, 절연성 폴리머를 위한 전구체일 수 있다.
상기 모노머의 함량은, 조성물의 총 중량을 기준으로 0.5 중량% 이상, 예를 들어, 1 중량% 이상 또는 2 중량% 이상일 수 있다. 상기 광중합성 단량체의 함량은, 조성물의 총 중량을 기준으로 30 중량% 이하, 예를 들어, 28 중량% 이하, 25 중량% 이하, 23 중량% 이하, 20 중량% 이하, 18 중량% 이하, 17 중량% 이하, 16 중량% 이하, 또는 15 중량% 이하일 수 있다.
상기 조성물에 포함되는 (광)개시제는, 전술한 모노머의 (광)중합을 위한 것이다. 상기 개시제는, 온화한 조건 하에 (예컨대, 열 또는 광에 의해) 라디칼 화학종을 생성하여 라디칼 반응 (예컨대, 모노머의 라디칼 중합)을 촉진할 수 있는 화합물이다. 상기 개시제는, 열 개시제 또는 광개시제일 수 있다. 개시제는 특별히 제한되지 않으며 적절히 선택할 수 있다.
상기 조성물에서, 개시제의 함량은 사용된 중합성 모노머의 종류 및 함량을 고려하여 적절히 조절할 수 있다. 일구현예에서, 상기 개시제의 함량은, 조성물의 총 중량 (또는 고형분의 총 중량)을 기준으로 0.01 중량%이상, 예컨대, 1 중량% 이상, 및 10 중량% 이하, 예컨대, 9 중량% 이하, 8 중량% 이하, 7 중량% 이하, 6 중량% 이하, 또는 5 중량% 이하일 수 있으나 이에 제한되지 않는다.
상기 조성물 (또는 후술하는 폴리머 매트릭스)은, 말단에 적어도 1개의 티올기를 가지는 (다중 또는 단관능성) 티올 화합물, 금속 산화물 미립자, 또는 이들의 조합을 더 포함할 수 있다.
상기 금속 산화물 미립자는, TiO2, SiO2, BaTiO3, Ba2TiO4, ZnO, 또는 이들의 조합을 포함할 수 있다. 상기 조성물 내에서 상기 금속 산화물의 함량은 조성물의 총 중량 (또는 그의 고형분 중량)을 기준으로, 1 중량% 이상, 5 중량% 이상, 또는 10 중량% 이상 및 50 중량% 이하, 40 중량% 이하, 30 중량% 이하, 25 중량% 이하, 20 중량% 이하, 15 중량% 이하, 10 중량% 이하, 또는 5 중량% 이하일 수 있다.
금속 산화물 미립자의 직경은 특별히 제한되지 않으며 적절히 선택할 수 있다. 금속 산화물 미립자의 직경은 100 nm 이상, 예컨대 150 nm 이상 또는 200 nm 이상 및 1000 nm 이하, 또는 800 nm 이하일 수 있다.
상기 다중 티올 화합물은, 디티올 화합물, 트리티올 화합물, 테트라티올 화합물, 또는 이들의 조합일 수 있다. 예를 들어, 상기 티올 화합물은, 글리콜디-3-머켑토프로피오네이트, 글리콜디머캅토 아세테이트, 트리메틸올프로판트리스(3-머캅토프로피오네이트), 펜타에리트리톨 테트라키스(3-머캅토프로피오네이트), 펜타에리트리톨 테트라키스(2-머캅토아세테이트), 1,6-헥산디티올, 1,3-프로판디티올, 1,2-에탄디티올, 에틸렌글라이콜 반복 단위를 1 내지 10개 포함하는 폴리에틸렌글라이콜 디티올, 또는 이들의 조합일 수 있다.
상기 티올 화합물의 함량은, 조성물의 총 중량 (또는 고형분의 총 중량)을 기준으로, 50 중량% 이하, 40 중량% 이하, 30 중량% 이하, 20 중량% 이하, 10 중량% 이하, 9 중량% 이하, 8 중량% 이하, 7 중량% 이하, 6 중량% 이하, 또는 5 중량% 이하일 수 있다. 상기 티올 화합물의 함량은, 조성물의 총 중량 (또는 고형분의 총 중량)을 기준으로, 0.1 중량% 이상, 예컨대, 0.5 중량% 이상, 1 중량% 이상, 5 중량% 이상, 10 중량% 이상, 또는 15 중량% 이상일 수 있다.
상기 조성물은 유기 용매 (또는 액체 비히클, 이하 용매라 함)를 더 포함할 수 있다. 사용 가능한 용매의 종류는 특별히 제한되지 않는다. 상기 유기 용매의 종류와 양은, 전술한 주요 성분 (즉, 양자점, 분산제, 중합성 단량체, 개시제, 존재하는 경우 티올 화합물,) 및 그 외 후술하는 첨가제의 종류 및 양을 고려하여 적절히 정한다. 상기 조성물은 소망하는 고형분 (비휘발성분) 함량을 제외한 나머지의 양으로 용매를 포함한다.
상기 조성물은, 전술한 성분들 이외에, 필요에 따라, 광확산제, 레벨링제, 커플링제 등의 각종 첨가제를 더 포함할 수 있다.
일구현예의 조성물에 포함되는 성분들 (바인더, 모노머, 용매, 첨가제, 티올 화합물, 카도 바인더 등)은 적절히 선택할 수 있으며, 그 구체적인 내용에 대하여는 예를 들어, US-2017-0052444-A1 에 기재된 내용을 참고할 수 있다.
일구현예에 따른 상기 조성물은, 전술한 양자점, 전술한 분산제, 및 용매를 포함한 양자점 분산액을 준비하는 단계; 및 상기 양자점 분산액에, 개시제; 중합성 단량체 (e.g., 아크릴계 모노머); 선택에 따라 티올 화합물; 선택에 따라 금속 산화물 미립자, 및 선택에 따라 전술한 첨가제를 혼합하는 단계를 포함하는 방법에 의해 제조될 수 있다. 전술한 각각의 성분들은 순차적으로 혹은 동시에 혼합될 수 있으며 그 순서가 특별히 제한되지 않는다.
상기 조성물은 (예컨대, 라디칼) 중합에 의해 양자점-폴리머 복합체를 제공할 수 있다.
다른 구현예에서, 양자점-폴리머 복합체는, 폴리머 매트릭스; 및 상기 폴리머 매트릭스 내에 분산되어 있는 전술한 코어쉘 양자점(들)을 포함한다. 상기 양자점 폴리머 복합체는, 조성물과 관련하여 앞서 설명된 성분들을 포함할 수 있다.
일구현예의 코어쉘 양자점들은 향상된 수준의 발광 효율과 함께 전술한 범위의 그램 당 흡수계수를 가지고, 그의 UV-Vis 흡수 스펙트럼이 450 nm 에서 양의 값의 미분계수를 나타낼 수 있으므로 복합체 형태로 제공될 경우에도 비교적 넓은 범위의 파장을 가지는 전술한 청색광에 대하여 향상된 흡수율 및 높은 발광 효율을 함께 나타낼 수 있다. 따라서, 일구현예에서, 상기 양자점 폴리머 복합체는, 예컨대, 두께 6 um 또는 그 이상의) 필름의 형태를 가지고, 상기 양자점의 함량이 복합체의 총 중량을 기준으로 45% 이하일 때에, 파장 450 nm 내지 470 nm의 청색광에 대한 흡수율이 89% 이상, 예컨대, 90% 이상, 91% 이상, 92% 이상, 또는 93% 이상일 수 있다.
상기 폴리머 매트릭스는, 분산제 (예컨대, 카르복시산기 함유 바인더 고분자), 탄소-탄소 이중 결합을 (1개 이상, 예컨대, 2개 이상, 3개 이상, 4개 이상, 또는 5개 이상) 포함하는 중합성 단량체의 중합 생성물 (예컨대, 절연성 폴리머), 상기 중합성 단량체와 말단에 적어도 2개의 티올기를 가지는 다중 티올 화합물 간의 중합 생성물, 및/또는 금속 산화물 미립자(들) 중 적어도 하나를 포함한다.
다른 구현예에서, 상기 폴리머 매트릭스는, 선형폴리머, 가교된 폴리머, 또는 이들의 조합을 포함할 수 있다. 상기 폴리머 매트릭스는, (카도 수지를 제외한) 공액 고분자를 포함하지 않을 수 있다. 상기 폴리머 매트릭스는, 공액 고분자를 포함할 수 있다.
상기 가교된 폴리머는, 티올렌 수지, 가교된 폴리(메타)아크릴레이트, 가교된 폴리우레탄, 가교된 에폭시 수지, 가교된 비닐 폴리머, 가교된 실리콘 수지, 또는 이들의 조합을 포함할 수 있다. 일구현예에서, 상기 가교된 폴리머는, 전술한 중합성 모노머 및 선택에 따라 다중 티올 화합물의 중합 생성물일 수 있다.
상기 선형 폴리머는, 탄소탄소 불포화 결합 (예컨대, 탄소-탄소 이중결합)으로부터 유래된 반복단위를 포함할 수 있다. 상기 반복단위는 카르복시산기를 포함할 수 있다. 상기 선형 폴리머는 에틸렌 반복단위를 포함할 수 있다.
상기 카르복시산기 함유 반복단위는 카르복시산기와 탄소-탄소 이중결합을 포함하는 모노머로부터 유래된 단위, 디안하이드라이드 잔기를 가지는 모노머로부터 유래된 단위, 또는 이들의 조합을 포함할 수 있다.
상기 폴리머 매트릭스는, (예를 들어, 양자점의 분산 또는 바인더를 위해)카르복시산기 함유 화합물 (예컨대, 바인더, 바인더 폴리머, 또는 분산제)를 포함할 수있다.
양자점, 카르복시산기 함유 화합물 (분산제 또는 바인더 고분자), 중합성 단량체, 다중 티올 화합물에 대한 기재는 전술한 바와 같다.
양자점 폴리머 복합체의 필름 또는 후술하는 바의 양자점 폴리머 복합체 패턴은 예컨대, 30 ㎛ 이하의 두께, 예컨대, 25 um 이하, 20 um 이하, 15 um 이하, 10 um 이하, 8 um 이하, 또는 7 um 이하 및 2 um 초과, 예컨대, 3 um 이상, 3.5 um 이상, 4 um 이상, 5 um 이상, 또는 6 um 이상의 두께를 가질 수 있다.
다른 구현예에서, 패턴화된 막은, 제1광을 방출하는 제1 구획을 포함하는 반복 구획을 포함하되, 상기 제1 구획은, 전술한 양자점 폴리머 복합체를 포함한다.
상기 반복 구획은, 최대 피크 파장이 상기 제1광과 다른 제2광을 방출하는 제2 구획을 포함할 수 있고, 상기 제2 구획은 양자점 폴리머 복합체를 포함할 수 있다. 상기 제2 구획의 양자점 폴리머 복합체는, 상기 제2광을 방출하도록 구성된 제2 양자점을 포함할 수 있다. 상기 제2 양자점은 전술한 양자점을 포함할 수 있다. 상기 제1광 또는 상기 제2광은 최대 발광 피크 파장이 600 nm 내지 650 nm (예컨대, 620 nm 내지 650 nm) 에 존재하는 적색광 또는 최대 발광 피크 파장이 500 nm 내지 550 nm (예컨대, 510 nm 내지 540 nm)에 존재하는 녹색광일 수 있다. 상기 패턴화된 막은, 상기 제1 광 및 상기 제2 광과 다른 제3 광 (예컨대, 청색광)을 방출하거나 통과시키는 제3 구획을 더 포함할 수 있다. 상기 제3 광의 최대 피크 파장은, 380 nm 이상 및 480 nm 이하의 범위에 있을 수 있다.
다른 구현예에서, 표시 소자는, 발광 요소 (e.g., 광발광요소) 및 선택에 따라 광원 포함하고, 상기 발광요소는, 기판 및 상기 기판의 일면에 배치되는 발광층을 포함하고, 상기 발광층은 양자점 폴리머 복합체의 필름 또는 패턴화된 막을 포함한다. 존재하는 경우, 상기 광원은, 상기 발광요소에 입사광을 제공하도록 구성된다. 상기 입사광은 440 nm 이상, 예컨대, 450 nm 이상, 455 nm 이상, 또는 460 nm 이상 및 560 nm 이하, 500 nm 이하, 예컨대, 480 nm 이하, 470 nm 이하, 또는 460 nm 이하의 범위에 있는 피크 파장을 가질 수 있다.
상기 광원은 여기광을 방출하는 요소일 수 있다. 상기 여기광은 청색광 및 선택에 따라 녹색광을 포함할 수 있다. 상기 광원은 LED를 포함할 수 있다. 상기 광원은 유기 LED (OLED)를 포함할 수 있다. 상기 제1 구획과 상기 제2 구획의 전면 (광방출면)에는 청색광 (및 선택에 따라 녹색광)을 차단 (예컨대, 반사 또는 흡수)하는 광학요소, 예를 들어 청색광 (및 선택에 따라 녹색광) 차단층 또는 후술하는 바의 제1 광학 필터가 배치될 수 있다. 상기 광원이 청색광 방출 유기발광 다이오드 및 녹색광 방출 유기 발광 다이오드를 포함하는 경우, 청색광이 투과하는 제3구획 상에는 녹색광 제거 필터가 더 배치될 수 있다.
전술한 표시 소자에서, 상기 광원은, 상기 제1 구획 및 상기 제2 구획에 각각 대응하는 복수개의 발광 단위를 포함하고, 상기 발광 단위는 서로 마주보는 제1 전극과 제2 전극, 및 상기 제1 전극과 상기 제2 전극 사이에 배치된 전계 발광층을 포함할 수 있다. 상기 전계 발광층은 유기 발광 물질을 포함할 수 있다. 예컨대, 상기 광원의 각각의 발광 단위는 소정의 파장의 광(예컨대, 청색광, 녹색광, 또는 이들의 조합)을 방출하도록 구성된 전계 발광 소자 (예컨대, 유기 발광 다이오드)를 포함할 수 있다. 전계 발광 소자 및 유기 발광 다이오드의 구조 및 재료는 알려져 있으며 특별히 제한되지 않는다. 광원은 청색광 (및 선택에 따라 녹색광)을 방출하는 유기 발광 다이오드를 포함한다.
도 1 및 도 2에 일구현예에 따른 표시 소자의 모식적 단면도를 나타낸다. 도 1 및 도 2를 참조하면, 광원은 청색광을 방출하는 유기 발광 다이오드를 포함한다. 유기 발광 다이오드는, 기판 위에 형성된 2 이상 (3개 이상)의 화소 전극, 이웃하는 화소 전극들 사이에 형성된 화소 정의막, 및 각각의 화소 전극 위에 형성된 유기발광층, 유기발광층 위에 형성된 공통 전극층을 포함할 수 있다.
유기 발광 다이오드 아래에는 박막 트랜지스터 및 기판이 배치될 수 있다.
상기 광원 상에는 양자점 폴리머 복합체의 (예컨대, 적색 양자점을 포함하는 구획 및 녹색 양자점을 포함하는 구획) 패턴 및 기판을 포함하는 적층구조물이 배치될 수 있다. 상기 구획들은 광원으로부터 방출된 여기광 (e.g., 청색광)이 입사되어각각 적색 및 녹색광을 방출한다. 광원으로부터 방출된 청색광은 제3 구획을 통과할 수 있다.
상기 광원 상에는 양자점 복합체의 (예컨대, 적색 양자점을 포함하는 제1 구획 및 녹색 양자점을 포함하는 제2 구획) 패턴 및 기판을 포함하는 적층 구조물이 배치될 수 있다. 광원으로부터 방출된 청색광은 제1 구획 및 제2 구획에 입사되어 각각 적색 및 녹색광을 방출한다. 광원으로부터 방출된 청색광은 제3 구획을 통과할 수 있다. 양자점 복합체층(R, G)과 기판 사이에는 선택에 따라 여기광을 차단하는 요소 (제1 광학필터 또는 여기광 차단층)가 배치될 수 있다. 여기광이 청색광 및 녹색광을 포함하는 경우, 제3 구획에는 녹색광 차단 필터가 추가될 수 있다. 제1 광학필터 또는 여기광 차단층에 대하여는 아래에서 더 상세히 설명한다.
이러한 소자는, 전술한 적층 구조물과 (예컨대, 청색광 방출) LED 또는 OLED를 별도로 제조한 후 결합하여 제조될 수 있다. 대안적으로, 상기 소자는, 상기 LED 또는 OLED 상에 양자점 폴리머 복합체의 패턴을 직접 형성함에 의해 제조할 수도 있다.
기판은, 절연 재료를 포함하는 기판일 수 있다. 상기 기판은, 유리; 폴리에티렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN) 등 폴리에스테르, 폴리카보네이트, 폴리아크릴레이트 등과 같은 다양한 폴리머; 폴리실록산 (e.g. PDMS); Al2O3, ZnO 등의 무기 재료; 또는 이들의 조합을 포함할 수 있으나 이에 제한되지 않는다. 기판의 두께는, 기판 재료 등을 고려하여 적절히 선택할 수 있으며 특별히 제한되지 않는다. 기판은 유연성일 수 있다. 상기 기판은 양자점으로부터 방출되는 광에 대하여 투과율이 50% 이상, 60% 이상, 70% 이상, 80% 이상, 또는 90% 이상이 되도록 구성될 수 있다.
상기 기판 위에는 박막 트랜지스터 등을 포함하는 배선층이 형성되어 있다. 배선층에는 게이트선, 유지 전압선, 게이트 절연막, 데이터선, 소스 전극, 드레인 전극, 반도체, 보호막 등을 더 포함될 수 있다. 배선층의 상세 구조는 구현예에 따라서 다양할 수 있다. 게이트선과 유지 전압선은 서로 전기적으로 분리되어 있으며, 데이터선은 게이트선 및 유지 전압선과 절연 교차하고 있다. 게이트 전극, 소스 전극 및 드레인 전극은 각각 박막 트랜지스터의 제어 단자, 입력 단자 및 출력 단자를 구성한다. 드레인 전극은 후술하는 화소 전극과 전기적으로 연결되어 있다.
화소 전극은 표시 장치의 애노드로 기능할 수 있다. 화소 전극은 인듐 주석 산화물(ITO) 또는 인듐 아연 산화물(IZO)과 같은 투명한 도전 물질로 형성될 수 있다. 화소 전극은 금(Au), 백금(Pt), 니켈(Ni), 텅스텐(W), 크롬(Cr), 몰리브덴(Mo), 철(Fe), 코발트(Co), 구리(Cu), 팔라듐(Pd), 티타늄(Ti) 등의 차광성을 갖는 물질로 형성될 수도 있다. 화소 전극은 전술한 투명한 도전 물질과 전술한 차광성을 갖는 물질이 순차 적층된 2층 구조를 가질 수도 있다.
이웃하는 두 화소 전극들 사이에는, 화소 전극 말단과 오버랩(overlap)되어 상기 화소 전극을 화소(pixel) 단위로 구분하는 화소정의층 (pixel define layer:PDL)이 형성될 수 있다. 상기 화소정의층은 절연층으로서 상기 2 이상의 화소 전극을 전기적으로 차단시킬 수 있다.
상기 화소 정의층은 화소 전극 상부면 일부분만을 덮으며, 상기 화소 정의층에 의해 덮이지 않은 화소 전극의 나머지 부분은 개구부를 형성할 수 있다. 상기 개구부로 한정된 영역 위에 후술할 유기 발광층이 형성될 수 있다.
유기 발광층은 전술한 화소 전극과 화소 정의층에 의해 각각의 화소 영역으로 정의된다. 즉, 화소 정의층에 의해 구분된 하나의 화소 전극과 접촉하는 하나의 유기발광 단위층이 형성된 영역을 하나의 화소영역으로 정의할 수 있다.
예를 들어, 일 구현예에 따른 표시 장치에서, 유기 발광층은 제1 화소영역, 제2 화소영역, 및 제3 화소영역으로 정의될 수 있으며, 각각의 화소영역은 화소정의층에 의해 소정 간격으로 이격되어 있다.
유기발광층은 가시광 영역에 속하거나, UV 영역에 속하는 제3광을 발광할 수 있다. 유기발광층의 제1 내지 제3 화소영역 각각이 모두 제3광을 발광하는 것일 수 있다. 일 구현예에서, 제3광은 가시광 영역의 광 중 높은 에너지를 갖는 광, 예를 들어 청색광일 수 있다. 유기발광층의 각 화소영역 모두가 동일한 광을 발광하도록 설계할 경우, 유기발광층의 각 화소영역이 모두 동일 내지 유사한 물질로 형성되거나, 동일 내지 유사한 물성을 나타낼 수 있다. 따라서 유기발광층 형성 공정 난이도를 대폭 낮출 수 있는 바, 이와 같은 표시 장치를 대형화/대면적화 공정에도 용이하게 적용할 수 있다. 다만, 일 구현예에 따른 유기발광층이 반드시 이에 한정되는 것은 아니고, 유기발광층이 서로 다른 2 이상의 광을 발광할 수 있도록 설정될 수도 있다.
유기발광층은 각 화소 영역별로 유기발광 단위층을 포함하며, 각 유기발광 단위층은 발광층 외에도 부대층(예를 들어 정공 주입층, 정공 수송층, 전자 수송층 등)을 더 포함할 수 있다.
공통 전극은 표시 장치의 캐소드로 기능할 수 있다. 공통 전극은 인듐 주석 산화물(ITO) 또는 인듐 아연 산화물(IZO)과 같은 투명한 도전 물질로 형성될 수 있다. 공통 전극은 유기발광층 위에 일체로 형성될 수 있다.
평탄화층 또는 패시베이션층 (미도시) 이 상기 공통전극 위에 형성될 수 있다. 평탄화층은 공통 전극과의 전기 절연성을 확보하기 위해 (예컨대, 투명한) 절연성 소재를 포함할 수 있다.
일구현예에서, 상기 표시 장치는 하부 기판, 상기 하부 기판 아래에 배치되는 편광판, 그리고, 상기 적층 구조물과 상기 하부 기판의 사이에 개재된 액정층을 더 포함하고, 상기 적층 구조물은 상기 광발광층이 상기 액정층을 대면하도록 배치될 수 있다. 상기 표시 장치는, 상기 액정층과 상기 발광층 사이에 편광판을 더 포함할 수 있다. 상기 광원은 LED 및 선택에 따라 도광판을 더 포함할 수 있다.
비제한적인 일구현예에 따른 표시 장치 (예컨대, 액정 디스플레이 장치)를 도면을 참조하여 설명한다. 도 3은 비제한적 일구현예에 따른 액정 표시 소자의 모식적 단면도를 나타낸 것이다. 도 3을 참조하면, 일 구현예의 표시 소자는, 액정 패널 (200), 상기 액정 패널(200) 아래에 배치되는 편광판 (300) 및 상기 편광판 (300) 아래에 배치된 백라이트 유닛(BLU)을 포함한다.
상기 액정 패널 (200)은, 하부 기판 (210), 적층 구조물, 상기 적층 구조물 및 상기 하부 기판의 사이에 개재된 액정층(220)을 포함한다. 상기 적층 구조물은, 투명 기판(240) 및 양자점 폴리머 복합체의 패턴을 포함하는 자발광층 (230)을 포함한다.
어레이 기판이라고도 불리우는 하부 기판(210)은 투명한 절연 재료 기판일 수 있다. 기판에 대한 내용은 전술한 바와 같다. 하부 기판 (210) 상면에는 배선판 (211)이 제공된다. 상기 배선판(211)은, 화소 영역을 정의하는 다수개의 게이트 배선 (미도시)과 데이터 배선 (미도시), 게이터 배선과 데이터 배선의 교차부에 인접하여 제공되는 박막 트랜지스터, 각 화소 영역을 위한 화소 전극을 포함할 수 있으나 이에 제한되지 않는다. 이러한 배선판의 구체적 내용은 알려져 있으며, 특별히 제한되지 않는다.
상기 배선판 (211) 위에는 액정층(220)이 제공된다. 상기 액정층(220)은 그 내부에 포함된 액정 물질의 초기 배향을 위해, 상기 층의 위와 아래에, 배향막 (221)을 포함할 수 있다. 액정 물질 및 배향막에 대한 구체적 내용 (예컨대, 액정 물질, 배향막 재료, 액정층 형성방법, 액정층의 두께 등)은 알려져 있으며, 특별히 제한되지 않는다.
상기 하부 기판 아래에는 하부 편광판(300)이 제공된다. 편광판(300)의 재질 및 구조는 알려져 있으며, 특별히 제한되지 않는다. 상기 편광판 (300) 아래에는 (예컨대, 청색광을 발하는) 백라이트 유닛이 제공된다.
액정층 (220) 과 투명 기판(240) 사이에 상부 광학소자 또는 편광판 (300) 이 제공될 수 있으나 이에 제한되지 않는다. 예컨대, 상부 편광판은 액정층 (220)과 광발광층 (230)사이에 배치될 수 있다. 편광판은 액정 디스플레이 소자에서 사용될 수 있는 임의의 편광자일 수 있다. 편광판은, 200 um 이하의 얇은 두께를 가진 TAC (triacetyl cellulose)일 수 있으나, 이에 제한되지 않는다. 다른 구현예에서, 상부 광학소자는, 편광 기능 없는 굴절률 조절 코팅일 수 있다.
상기 백라이트 유닛은 광원 (110)을 포함한다. 상기 광원은 청색광 또는 백색광을 방출할 수 있다. 상기 광원은 청색 LED, 백색 LED, 백색 OLED, 또는 이들의 조합을 포함할 수 있으나 이에 제한되지 않는다.
상기 백라이트 유닛은 도광판(120)을 더 포함할 수 있다. 일구현예에서, 상기 백라이트 유닛은 에지형일 수 있다. 예를 들어, 상기 백라이트 유닛은, 반사판(미도시), 상기 반사판 상에 제공되며 액정패널(200)에 면광원을 공급하기 위한 도광판(미도시), 및/또는 상기 도광판 상부에 위치하는 하나 이상의 광학 시트(미도시), 예컨대, 확산판, 프리즘 시트 등을 포함할 수 있으나, 이에 제한되지 않는다. 상기 백라이트 유닛은 도광판을 포함하지 않을 수 있다. 일구현예에서, 백라이트 유닛은 직하형(direct lighting)일 수 있다. 예를 들어, 상기 백라이트 유닛은, 반사판 (미도시)을 가지며 상기 반사판의 상부에 일정한 간격으로 배치된 다수의 형광 램프를 가지거나, 혹은 다수의 발광 다이오드가 배치된 LED 용 구동 기판을 구비하고, 그 위에 확산판 및 선택에 따라 하나 이상의 광학 시트를 가질 수 있다. 이러한 백라이트 유닛에 대한 상세 내용 (예컨대, 발광 다이오드, 형광 램프, 도광판과 각종 광학 시트, 반사판 등 각 부품들에 대한 상세 내용 등)은 알려져 있으며, 특별히 제한되지 않는다.
상기 투명 기판(240)의 저면에는, 개구부를 포함하고 상기 하부 기판 상에 제공된 배선판의 게이트선, 데이터선, 및 박막 트랜지스터 등을 가리는 블랙 매트릭스(241)가 제공된다. 예를 들어, 블랙 매트릭스(241)는 격자 형상을 가질 수 있다. 상기 블랙 매트릭스 (241) 의 개구부에, 제1광 (예컨대 적색광)을 방출하는 제1 구획(R), 제2광 (예컨대 녹색광)을 방출하는 제2 구획(G), 및 예컨대 청색광을 방출/투과시키는 제3 구획(B)을 포함하는 양자점-폴리머 복합체 패턴을가지는 자발광층 (230)이 제공된다. 원하는 경우, 상기 자발광층은, 하나 이상의 제4 구획을 더 포함할 수 있다. 제4 구획은, 제1-3 구획으로부터 방출되는 광과 다른 색 (예컨대, 청록색 (cyan), 자주색(magenta), 및 황색 (yellow))의 광을 방출하는 양자점을 포함할 수 있다.
상기 광발광층 (230)에서 패턴을 형성하는 구획들은 하부 기판에 형성된 화소 영역에 대응되어 반복할 수 있다. 상기 자발광 컬러필터층 위에는 투명 공통 전극(231)이 제공될 수 있다.
청색광을 투과/방출하는 제3 구획(B)은 광원의 발광스펙트럼을 변경하지 않는 투명 컬러 필터일 수 있다. 이 경우, 백라이트유닛으로부터 방출된 청색 광이 편광판 및 액정층을 거쳐 편광된 상태로 입사되어 그대로 방출될 수 있다. 필요한 경우, 상기 제3 구획은, 청색광을 방출하는 양자점을 포함할 수 있다.
원하는 경우, 상기 표시 소자는, 청색광 차단층(blue cut filter) 또는 제1 광학 필터층을 더 가질 수 있다. 상기 청색광 차단층은, 상기 제1 구획 (R) 및 상기 제2 구획 (G)의 저면과 상기 상부 기판(240) 사이에 또는 상부 기판(240)의 상면에 배치될 수 있다. 상기 청색광 차단층은, 청색을 표시하는 화소 영역(제3 구획)에 대응하는 부분에는 개구부를 가지는 시트일 수 있어서, 제1 및 제2 구획에 대응하는 부분에 형성되어 있을 수 있다. 즉, 제1 광학 필터층은 도 3에 도시된 바와 같이 제3 구획과 중첩되는 위치를 제외한 나머지 위치들에 일체로 형성되어 있을 수 있으나 이에 제한되지 않는다. 제1 및 제2 구획과 각각 중첩되는 위치에 2 이상의 제1 광학 필터층이 각각 이격 배치되어 있을 수도 있다.
제1 광학 필터층은 예컨대 가시광 영역 중 일부 파장 영역의 광을 차단시키고 나머지 파장 영역의 광을 투과시킬 수 있으며, 예컨대 청색광을 차단시키고 청색광을 제외한 광은 투과시킬 수 있다. 예컨대 녹색광, 적색광 및/또는 이들의 혼색광인 황색광은 투과시킬 수 있다.
제1 광학 필터층은 예컨대 약 500 nm 이하의 청색광을 실질적으로 차단하고 예를 들어 약 500 nm 초과 700 nm 이하의 나머지 가시광 파장 영역 사이의 파장 영역에 대한 투과능을 가질 수 있다.
예를 들어 제1 광학 필터층은 약 500 nm 초과 내지 700 nm 이하의 나머지 가시광에 대하여 약 70 % 이상, 80 % 이상, 90 % 이상, 심지어 100 %의 광 투과도를 가질 수 있다.
제1 광학 필터층은 차단하고자 하는 파장을 흡수하는 염료 및/또는 안료를 포함한 고분자 박막을 포함할 수 있으며, 예를 들어 480 nm 이하의 청색광을 80% 이상, 90% 이상, 심지어 95% 이상을 흡수하는 반면, 약 500 nm 초과 내지 700 nm 이하의 나머지 가시광에 대해서는 약 70 % 이상, 80 % 이상, 90 % 이상, 심지어 100 %의 광 투과도를 가질 수 있다.
제1 광학 필터층은 약 500 nm 이하의 청색광을 실질적으로 차단(예컨대, 흡수)하되, 예를 들어 녹색광, 또는 적색광을 선택적으로 투과하는 것일 수도 있다. 이 경우, 제1 광학 필터층은 2 이상이 제1 내지 제2 구획과 중첩되는 위치마다 각각 서로 이격 배치되어 있을 수 있다. 예를 들어, 적색광을 선택적으로 투과하는 제1 광학 필터층은 적색광 방출 구획과 중첩되는 위치에, 녹색광을 선택적으로 투과하는 제1 광학 필터층은 녹색광 방출 구획과 중첩되는 위치에 각각 배치되어 있을 수 있다. 예컨대, 제1 광학 필터층은 청색광 및 적색광을 차단 (예컨대, 흡수)하고, 소정의 범위 (예컨대, 약 500 nm 이상, 약 510 nm 이상, 또는 약 515 nm 이상 및 약 550 nm 이하, 약 545 nm 이하, 약 540 nm 이하, 약 535 nm 이하, 약 530 nm 이하, 약 525 nm 이하, 또는 약 520 nm 이하)의 광을 선택적으로 투과시키는 제1 영역 및 청색광 및 녹색광을 차단 (예컨대, 흡수)하고, 소정의 범위 (예컨대, 약 600 nm 이상, 약 610 nm 이상, 또는 약 615 nm 이상 및 약 650 nm 이하, 약 645 nm 이하, 약 640 nm 이하, 약 635 nm 이하, 약 630 nm 이하, 약 625 nm 이하, 또는 약 620 nm 이하)의 광을 선택적으로 투과시키는 제2 영역 중 적어도 하나를 포함할 수 있다. 제1 영역은 녹색광 방출 구획과 중첩되는 위치에 배치되고, 제2 영역은 적색광 방출 구획과 중첩되는 위치에 배치될 수 있다. 제1 영역과 제2 영역은 광학적으로 고립화되어 있을 수 있다. 이러한 제1 광학필터층은 표시 소자의 색 순도의 향상에 기여할 수 있다.
제1 광학 필터층은 굴절률이 상이한 복수개의 층들 (예컨대, 무기재료층)을 포함하는 반사형 필터일 수 있으며, 예컨대 굴절률이 상이한 2층이 교번적으로 적층하여 형성될 수 있고, 예컨대 고굴절률을 갖는 층과 저굴절률을 갖는 층을 교번적으로 적층하여 형성될 수 있다.
고굴절률을 갖는 층과 저굴절률을 갖는 층의 굴절률 차이가 클수록 파장 선택성이 높은 제1 광학 필터층을 형성할 수 있다. 고굴절률을 갖는 층과 저굴절률을 갖는 층의 두께 및 층의 수는 각 층의 굴절률 및 반사 파장에 따라 결정될 수 있으며, 예를 들어 각 고굴절률을 갖는 층은 3 nm 내지 300 nm의 두께를 가질 수 있고, 각 저굴절률을 갖는 층은 3 nm 내지 300 nm 의 두께를 가질 수 있다.
제1 광학 필터층의 총 두께는 예를 들어 3 nm 내지 10000 nm, 예를 들어 300 nm 내지 10000 nm, 예를 들어 1000 nm 내지 10000 nm 일 수 있다. 각각의 고굴절률을 갖는 층끼리의 두께 및 소재와, 각각의 저굴절률을 갖는 층끼리의 두께 및 소재는 서로 같을 수도 있고 상이할 수도 있다.
상기 표시소자는, 광발광층과 액정층 사이에 (예컨대, 광발광층과 상기 상부 편광자 사이에) 배치되고, 제3 광의 적어도 일부를 투과하고, 상기 제1 광 및/또는 제2 광의 적어도 일부를 반사시키는 제2 광학 필터층 (예컨대, 적색/녹색광 또는 황색광 리사이클층)을 더 포함할 수 있다. 상기 제2 광학 필터층은 500 nm 초과의 파장 영역을 갖는 광을 반사할 수 있다. 상기 제1광은 적색광이고 상기 제2광은 녹색광이며, 상기 제3광은 청색광일 수 있다.
일 구현예에 따른 표시 장치에서 제2 광학 필터층은 비교적 평탄한 면을 갖는 일체의 층으로 형성될 수 있다.
일 구현예에서, 제2 광학 필터층은 낮은 굴절률을 갖는 단일층을 포함할 수 있으며, 예컨대 굴절률이 1.4 이하, 1.3 이하, 1.2 이하인 투명 박막일 수 있다.
저굴절률을 갖는 제2 광학 필터층은 예를 들어 다공성 실리콘 산화물, 다공성 유기물, 다공성 유기/무기 복합체, 또는 이들의 조합일 수 있다.
일 구현예에서, 제2 광학 필터층은 굴절률이 상이한 복수 층을 포함할 수 있으며, 예컨대 굴절률이 상이한 2층이 교번적으로 적층하여 형성될 수 있고, 예컨대 고굴절률을 갖는 소재와 저굴절률을 갖는 소재를 교번적으로 적층하여 형성할 수 있다.
제2 광학 필터층 중, 고굴절률을 갖는 층은 예를 들어 하프늄 산화물, 탄탈륨 산화물, 티타늄 산화물, 지르코늄 산화물, 마그네슘 산화물, 세슘 산화물, 란탄 산화물, 인듐 산화물, 니오븀 산화물, 알루미늄 산화물, 실리콘 질화물 중 적어도 하나를 포함할 수 있으나, 실시예에 따라 저굴절률을 갖는 층보다 높은 굴절률을 갖는 다양한 물질을 포함할 수 있다.
제2 광학 필터층 중, 저굴절률을 갖는 층은 예를 들어 실리콘 산화물을 포함할 수 있으나, 실시예에 따라 상기 고굴절을 갖는 층보다 낮은 굴절률을 갖는 다양한 물질을 포함할 수 있다.
제2 광학 필터층 중, 고굴절률을 갖는 층과 저굴절률을 갖는 층간 굴절률 차이가 클수록, 파장 선택성이 높은 제2 광학 필터층을 형성할 수 있다.
제2 광학 필터층 중, 고굴절률을 갖는 층과 저굴절률을 갖는 층 각각의 두께 및 층의 수는 각 층의 굴절률 및 반사 파장에 따라 결정될 수 있으며, 예를 들어 제2 광학 필터층 중, 고굴절률을 갖는 층 각각은 3 nm 내지 300 nm의 두께를 가질 수 있고, 제2 광학 필터층 중, 저굴절률을 갖는 층 각각은 3 nm 내지 300 nm 의 두께를 가질 수 있다. 제2 광학 필터층의 총 두께는 예를 들어 3 nm 내지 10000 nm, 예를 들어 300 nm 내지 10000 nm, 예를 들어 1000 nm 내지 10000 nm 일 수 있다. 제2 광학 필터층 중, 고굴절률을 갖는 층 각각과 저굴절률을 갖는 층 각각의 두께 및 소재는 서로 같을 수도 있고 상이할 수도 있다.
제2 광학 필터층은 제1광(R)과 제2광(G)의 적어도 일부를 반사시킬 수 있고, 제3광(B)의 적어도 일부 (예컨대, 전부)는 투과시킬 수 있다. 예를 들어, 제2 광학필터층은 500 nm 이하의 파장 영역을 갖는 청색광 파장 영역의 제3광(B)만 투과시키고, 500 nm을 초과하는 파장 영역, 즉, 녹색광(G), 황색광, 적색광(R) 등은 제2 광학 필터층(140)을 통과하지 못하고 반사되도록 할 수 있다. 반사된 녹색광, 적색광은 제1 및 제2 구획을 통과하여 표시 장치(10) 외부로 방출될 수 있다.
제2 광학 필터층은, 예를 들어 500 nm을 초과하는 파장 영역의 70% 이상, 예를 들어 80% 이상, 예를 들어 90 % 이상, 심지어 100 %를 반사시킬 수 있다.
한편, 제2 광학 필터층은 500 nm 이하의 파장 영역에 대한 투과율이 예를 들어 90 % 이상, 92 % 이상, 94 % 이상, 96 % 이상, 98 % 이상, 99 % 이상, 심지어 100 %일 수 있다.
다른 구현예에서, 전술한 적층 구조물은, 포토레지스트 조성물 (예컨대, 일구현예의 상기 조성물)을 사용하여 제조될 수 있다. 이러한 방법은,
기판 상에 전술한 조성물의 막(film)을 형성하는 단계;
상기 막의 선택된 영역을 (예컨대, 파장 400 nm 이하의) 광에 노출시키는 단계;
상기 노출된 필름을 알칼리 현상액으로 현상하여 양자점 폴리머 복합체의 패턴을 얻는 단계를 포함한다.
상기 기판 및 상기 조성물에 대한 내용은 전술한 바와 같다. 전술한 패턴 형성을 위한 비제한적인 방법을, 도 4를 참조하여 설명한다.
전술한 조성물을 기판 위에 스핀 코팅, 슬릿 코팅 등의 적당한 방법을 사용하여, 소정의 두께로 도포하여 막을 형성한다. 형성된 막은 선택에 따라 프리베이크(PRB)를 거칠 수 있다. 프리베이크의 온도와 시간, 분위기 등 조건은 알려져 있으며 적절히 선택할 수 있다.
형성된 (또는 선택에 따라 프리베이크된) 막을 소정의 패턴을 가진 마스크 하에서 소정의 파장을 가진 광에 노출시킨다. 광의 파장 및 세기는 광 개시제의 종류와 함량, 양자점의 종류와 함량 등을 고려하여 선택할 수 있다.
노광된 필름을 알칼리 현상액으로 처리 (예컨대, 침지 또는 스프레이)하면 필름 중 미조사 부분이 용해되고 원하는 패턴을 얻는다. 얻어진 패턴은 필요에 따라 패턴의 내크랙성 및 내용제성 향상을 위해, 예컨대, 150도씨 내지 230도씨의 온도에서 소정의 시간 (예컨대 10분 이상, 또는 20분 이상) 포스트베이크(POB)할 수 있다.
양자점-폴리머 복합체 패턴이 복수개의 반복 구획들을 가지는 경우, 각 반복 구획의 형성을 위해 소망하는 발광 물성 (광발광 피크 파장 등)을 가지는 양자점 (예컨대, 적색 발광 양자점, 녹색 양자점 또는 선택에 따라 청색 양자점)을 포함하는 복수개의 조성물을 제조하고, 각각의 조성물에 대하여 전술한 패턴 형성과정을 필요한 횟수 (예컨대, 2회 이상, 또는 3회 이상)로 반복하여 원하는 패턴의 양자점-폴리머 복합체를 얻을 수 있다. 예를 들어, 상기 양자점-폴리머 복합체는, 2개 이상의 상이한 색 구획들 (예컨대, RGB 색 구획들)이 반복하는 패턴일 수 있다. 이러한 양자점-폴리머 복합체 패턴은 표시 소자에서 광발광형 컬러필터로 유리하게 사용될 수 있다.
다른 구현예에서 전술한 적층 구조물은, 잉크 조성물을 사용하여 제조될 수 있다. 이러한 방법은, 적절한 시스템 (예컨대, 잉크젯 또는 노즐 인쇄 장치 등 액적 토출 장치)을 사용하여 소망하는 기판 상에 (예컨대, 소망하는 패턴을 가지도록) 퇴적시키고 가열에 의해 용매의 제거 및 중합을 수행하는 것을 포함할 수 있다. 이러한 방법은 간단한 방식으로 짧은 시간에 고도로 정밀한 양자점-폴리머 복합체 필름 또는 패턴을 형성할 수 있다.
다른 구현예는, 전술한 양자점을 포함하는 전자 소자를 제공한다. 상기 소자는, 발광 다이오드(LED), 유기발광 다이오드(OLED), 센서(sensor), 태양전지, 이미징 센서, 또는 액정표시장치를 포함하나 이에 제한되지 않는다.
이하에서는 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로써 발명의 범위가 제한되어서는 아니된다.
[실시예]
분석 방법
[1] UV-Vis 분광분석
Agilent Cary5000 스펙트로포토미터를 사용하여 UV 분광 분석을 수행하고 UV-Visible 흡수 스펙트럼 및 그의 1차 미분값을 얻는다.
[2] Photoluminescence 분석
Hitachi F-7000 스펙트로포토미터를 이용하여 여기 파장 450 nm에서 제조된 양자점의 광발광(photoluminescence: PL) 스펙트럼을 얻는다. 양자점의 QY 또는 QE (용액 또는 복합체)는 기기의 제조사에 의헤 제공된 매뉴얼을 참조하여 측정한다.
[3] ICP 분석
Shimadzu ICPS-8100를 사용하여 유도결합 플라즈마 원자 발광 분광분석(ICP-AES)을 수행한다.
[4] QD 무게 당 extinction coefficient
합성한 QD 용액 a L 를 n배 희석한 용액을 1 cm 석영 큐벳에 넣고 Agilent Cary5000 스펙트로미터를 사용하여 UV-VIS 흡광 분석을 수행한다. 측정된 흡광 스펙트럼에서 450 nm 의 absorbance 값 (A) 을 읽는다. 합성한 QD입자를 세정하여 건조 후 QD powder의 무게를 잰다 (b gram). 측정된 aborbance 에 희석 비율을 곱하고, QD 의 농도 (g/L) 로 나누어 흡광 계수를 구한다.
Absorbance = (흡광계수) * (광 통과 길이) * (농도)
g 당 흡광계수 = A * n / (b/a) = A * n * a / b
A: absorbance as measured (측정값)
n: dilution ratio (희석비)
a: 희석전 양자점 용액 volume (L)
b: 양자점 용액 내 포함된 양자점의 weight (g).
[5] 복합체에 대한 청색광 흡수율 및 광 전환율 (CE)
절대 양자효율 측정장비 (QE-2100, Otsuka)의 적분반구를 사용하여 소정의 파장을 가지는 청색 여기광의 광량(B)을 측정한다. 이어서, QD 폴리머 복합체를 적분반구에 넣고, 청색 여기광을 조사하여 복합체로부터 나온 녹색광의 광량 (A) 및 청색광의 광량(B')을 측정한다.
측정된 값들로부터 아래의 식에 의해 청색광 흡수율 및 광전환율을 구한다.
청색광 흡수율 (%) = [(B-B')/B] x 100 (%)
광전환율 (CE, %) = [A/(B-B')] x 100 (%)
[InZnP 코어 제조]
참조예 1:
250 mL 반응 플라스크에서 아연 아세테이트 및 올레산을 1-옥타데센(octadecene)에 용해시키고 진공 하에 120 도씨로 가열한 다음 상온으로 식혀 아연 올리에이트 용액을 얻는다.
반응 플라스크에 인듐 아세테이트 및 라우릴산을 추가하고, 진공 하에 120도씨로 가열한다. 아연과 올레산의 몰 비는 1:2, 인듐과 라우릴산의 몰 비는 1:3으로 한다. 1시간 후 반응기 내 분위기를 질소로 전환한다. 반응 플라스크 내 온도를 250도씨로 올리면서 트리스(트리메틸실릴)포스핀(tris(trimethylsilyl)phosphine: TMS3P) 및 트리옥틸포스핀의 혼합 용액을 반응기에 신속히 주입하고, 샘플을 채취하여 흡광 스펙트럼을 측정하면서 목표 파장에 다다를 때까지 반응을 진행한다. 반응이 끝나면 상온으로 신속하게 식힌다. 반응 용액에 아세톤을 넣고 원심 분리하여 얻은 침전을 톨루엔에 다시 분산시킨다.
사용된 인듐, 아연, 및 인의 몰 비는, 6:7:4.5 이다. 얻어진 InZnP 코어에 대하여, 흡광스펙트럼 분석을 수행한 결과, 얻어진 코어의 제1 흡수 파장은 약 430 nm 이다.
실시예 1
[1] 양자점 합성 및 특성 분석
(1) 셀레늄을 트리옥틸포스핀에 분산시켜 Se/TOP stock solution 을 준비하고, 황을 트리옥틸포스핀에 분산시켜 S/TOP stock solution 을 준비한다.
2L 반응 플라스크에서 아연 아세테이트 (zinc acetate) 및 올레산(oleic acid)을 트리옥틸아민(trioctylamine)에 용해시키고 120도에서 10분간 진공처리한다. N2로 반응 플라스크 안을 치환한 후 얻어진 용액의 온도를 280도씨까지 올렸다가 100도씨로 낮춘 후, 참조예 1에서 제조한 InZnP 반도체 나노 결정 코어의 톨루엔 분산액을 넣은 다음, Se/TOP 및 도데칸티올을 수회에 걸쳐 상기 반응 플라스크에 주입하면서 플라스크 온도를 280도씨로 유지하여 반응을 수행하여 코어 상에 ZnSeS 쉘이 배치된 입자를 포함한 반응액을 얻는다. 총 반응 시간은 대략 30 분 정도이고, 인듐 1몰에 대하여 사용된 Se의 총 함량은 7 몰이고 사용된 도데칸티올(DDT)의 총 함량은 2 몰이다.
제조된 양자점에 대하여 ICP 분석을 수행하여 제1쉘에서 S/(S+Se) 가 0.17 정도임을 확인한다.
이어서, 상기 반응 온도에서, 상기 반응액에 S/TOP stock 용액을 주입한다. 반응을 수행하여 상기 ZnSeS 쉘 상에 ZnS 포함 쉘이 배치된 입자를 포함한 반응액을 얻는다. 총 반응 시간은 60분이고, 인듐 1몰에 대하여 사용된 S 의 총 함량은 대략 6 몰이다.
제조된 양자점을 포함한 반응물에 과량의 에탄올을 넣고 원심 분리한다. 원심 분리 후 상층액은 버리고, 침전물을 건조하고 나서 톨루엔에 분산시켜 양자점 용액 (이하, QD 용액)을 얻는다.
(2) 얻어진 QD 의 ICP-AES 분석을 수행하고 그 결과를 표 1에 나타낸다. 얻어진 QD의 UV-vis 분광 분석 및 광발광 분석을 수행하고 그 결과의 일부를 도 5 및 표 2에 나타낸다. 얻어진 QD의 QY는 90.7% 임을 확인한다.
[2] 양자점 폴리머 복합체 및 그 패턴의 제조
(1) 양자점-바인더 분산액의 제조
위에서 얻어진 양자점의 톨루엔 용액을 바인더 (메타크릴산, 벤질 메타크릴레이트, 히드록시에틸메타크릴레이트, 및 스티렌의 4원 공중합체, 산가: 130 mg KOH/g, 분자량: 8000, 메타크릴산:벤질메타크릴레이트:히드록시에틸메타크릴레이트:스티렌 (몰비) = 61.5%:12%:16.3%:10.2%)용액(농도 30 wt%의 폴리프로필렌 글리콜 모노메틸 에테르 아세테이트) 과 혼합하여 양자점-바인더 분산액을 제조한다.
(2) 감광성 조성물의 제조
상기 양자점 바인더 분산액에, 광중합성 단량체로서 하기 구조를 가지는 헥사아크릴레이트, 글리콜디-3-머캅토프로피오네이트 (이하, 2T), 개시제로서 옥심에스터 화합물, 광확산제로서 TiO2 및 PGMEA 을 혼합하여 조성물을 제조한다.
Figure pat00001
Figure pat00002
제조된 조성물은, 조성물의 고형분 중량을 기준으로, 40 중량%의 양자점, 12.5중량%의 바인더 고분자, 25중량%의 2T, 12 중량%의 광중합성 단량체, 및 0.5 중량%의 개시제와 10 중량%의 광확산제를 포함하고, Total Solid Content 는 25 % 이다.
(3) 양자점-폴리머 복합체 패턴 제조 및 열처리
상기 감광성 조성물을 유리 기판에 150 rpm 에서 5초간 스핀 코팅하여 필름을 얻는다. 얻어진 필름을 100도씨에서 프리베이크(PRB)한다. 프리베이크된 필름에 소정의 패턴 (예컨대, square dot 또는 스트라이프 패턴)을 가지는 마스크 하에서 광 (파장: 365nm 세기: 100 mJ)을 1 초간 조사하고, 이를 수산화칼륨 수용액 (농도: 0.043 %) 으로 50 초간 현상하여 양자점-폴리머 복합체 패턴 (두께: 6 um) 을 얻는다.
제조된 패턴을 180도씨 30분간 질소 분위기에서 POB 열처리한다.
얻어진 필름 패턴에 대하여, 단막의 청색광 흡수율을 측정하고 그 결과를 표 3에 나타낸다. 얻어진 필름 패턴의 광전환 효율은 33.8% 임을 확인한다.
파장을 변화시키면서 상대 광전환효율 및 여기광 흡수율을 측정하고 그 결과를 도 6과 도 7에 나타낸다.
실시예 2
[1] 인듐 1몰에 대하여 사용된 Se/TOP 의 총 사용량을 3몰, 도데칸티올과 S/TOP 의 총 사용량을 8 몰 (실시예 2) 인 것을 제외하고 실시예 1과 동일한 방식으로 InZnP 코어/ZnSeS 제1쉘/ZnS 포함 제2쉘의 구조를 가지는 코어쉘 양자점을 얻는다.
제조된 양자점에 대하여 ICP 분석을 수행하여 제1쉘에서 S/(S+Se) 가 0.32 정도임을 확인한다.
얻어진 QD 의 ICP-AES 분석 및 UV-vis 분광 분석과 광발광 분석을 수행하고 그 결과를 표 1 및 표 2와 도 5에 나타낸다. 얻어진 QD의 QY는 83.8% 임을 확인한다.
[2] 위에서 제조한 양자점을 사용하는 것을 제외하고는, 실시예 1과 동일한 방식으로 양자점-폴리머 복합체 패턴을 얻는다. 얻어진 필름 패턴에 대하여, 청색광 흡수율을 측정하고 그 결과를 표 3에 나타낸다. 얻어진 필름 패턴의 광전환 효율(CE)은 30.8% 임을 확인한다.
비교예 1 및 비교예 2
[1] 인듐 1몰에 대하여 사용된 Se의 총 사용량을 24몰, 도데칸티올 및 S 의 총 사용량을 20 몰 (비교예 1)로 하고 Se의 총 사용량을 21몰, 도데칸티올 및 S 의 총 사용량을 20 몰 (비교예 2)로 하고 총 반응 시간이 160분 인 것을 제외하고 실시예 1과 동일한 방식으로 InZnP 코어/ZnSeS 제1쉘/ZnS 포함 제2쉘의 구조를 가지는 코어쉘 양자점을 얻는다. 얻어진 QD 의 ICP-AES 분석 및 UV-vis 분광 분석과 광발광 분석을 수행하고 그 결과를 표 1 및 표 2에 나타낸다.
[2] 위에서 제조한 양자점을 사용하는 것을 제외하고는, 실시예 1과 동일한 방식으로 양자점-폴리머 복합체 패턴을 얻는다. 얻어진 필름 패턴에 대하여, 청색광 흡수율을 측정하고 그 결과를 표 3에 나타낸다.
비교예 1의 양자점을 포함하는 필름 패턴에 대하여 여기광의 파장에 따른 흡수율 및 상대 CE(%)를 측정하고 그 결과를 도 6과 도 7에 나타낸다.
  In/(S+Se) S/Se Zn/In P/In 총 쉘두께 (모노레이어ML)
실시예1 0.072 0.96 17.7 0.94 4.3
실시예2 0.105 1.97 13.3 0.92 3.5
비교예1 0.028 0.50 43.55 0.97 7
비교예2 0.032 0.52 37.90 0.90 6.7
제1흡수파장
(nm)
450nm에서의 미분계수 PL 파장(nm) QD 무게 당 extinction coefficient @450 (/g)
비교예1 498 -0.043 522 0.28
비교예2 497 -0.032 520 N.A
실시예1 486 0.0066 507 0.38
실시예2 483 0.0085 509 0.43
단막 파장 (nm) 흡수율
비교예1 534.3 87.8%
비교예2 532.8 85.8%
실시예1 532.3 91.1%
실시예2 535.8 93.7%
표 2의 결과를 참조하면, 실시예 1 및 2의 양자점은 450 nm 에서 양의 미분계수를 가지는 반면, 비교예 1과 2의 양자점은 450 nm 에서 음의 미분계수를 가짐을 확인한다.
표 3의 결과로부터 실시예 1과 실시예 2 의 양자점은 단막으로 제공 시 현저히 높은 흡수율을 나타낼 수 있음을 확인한다.
실시예 3 및 실시예 4
[1] 인듐 1몰에 대하여 사용된 Se의 총 사용량을 4몰, 도데칸티올 및 S 의 총 사용량을 8 몰 (실시예 3)로 하고 Se의 총 사용량을 4몰, 도데칸티올 및 S 의 총 사용량을 14 몰 (실시예 4)로 하는 것을 제외하고 실시예 1과 동일한 방식으로 InZnP 코어/ZnSeS 제1쉘/ZnS 포함 제2쉘의 구조를 가지는 코어쉘 양자점을 얻는다. 얻어진 QD 의 ICP-AES 분석 및 UV-vis 분광 분석과 광발광 분석을 수행하고 그 결과를 표 4 및 표 5에 나타낸다.
[2] 위에서 제조한 양자점을 사용하는 것을 제외하고는, 실시예 1과 동일한 방식으로 양자점-폴리머 복합체 패턴을 얻는다. 얻어진 필름 패턴에 대하여, 청색광 흡수율 및 광전환 효율을 측정하고 그 결과의 일부를 표 6에 나타낸다.
실시예 3 및 실시예 4의 양자점들의 그램 당 extinction coefficient은, 0.35 초과임을 확인한다. 실시예 3 및 실시예 4의 양자점들을 포함하는 폴리머복합체 단막의 흡수율은 각각 93% 및 92.4%임을 확인한다.
비교예 3 및 비교예 4
[1] 도데칸티올의 사용 없이 인듐 1몰에 대하여 사용된 Se의 총 사용량을 4몰, S의 총 사용량을 9 몰 (비교예 3)로 하고 Se의 총 사용량을 1몰, 도데칸티올 및 S 의 총 사용량을 10 몰 (비교예 4)로 하는 것을 제외하고 실시예 1과 동일한 방식으로 InZnP 코어/ZnSeS 제1쉘/ZnS 포함 제2쉘의 구조를 가지는 코어쉘 양자점을 얻는다. 얻어진 QD 의 ICP-AES 분석 및 UV-vis 분광 분석과 광발광 분석을 수행하고 그 결과를 표 4 및 표 5에 나타낸다.
[2] 위에서 제조한 양자점을 사용하는 것을 제외하고는, 실시예 1과 동일한 방식으로 양자점-폴리머 복합체 패턴을 얻는다. 얻어진 필름 패턴에 대하여, 청색광 흡수율 및 광전환 효율을 측정하고 그 결과의 일부를 표 6에 나타낸다.
  In/(S+Se) S/Se Zn/In P/In 총 쉘두께 (모노레이어)
실시예3 0.093 2.18 14.9 0.97 3.8
실시예4 0.072 2.94 17.7 0.87 4.3
비교예3 0.085 2.03 16.52 0.91 3.9
비교예4 0.102 8.40 14.23 0.99 3.9
제1흡수파장
(nm)
450nm에서의 미분계수 PL 파장(nm) QY(%)
실시예3 483 0.0073 506 83.1
실시예4 481 0.0092 506 81.9
비교예3 488 0.0000 509 73.7
비교예4 485 0.0029 509 77.0
단막 파장 (nm) 단막 CE
실시예3 534.9 31.9%
실시예4 533.2 30.8%
비교예3 531.7 24.6%
비교예4 546.2 25.2%
표 3의 결과로부터 실시예 1과 실시예 2 의 양자점은 단막으로 제공 시 현저히 높은 흡수율과 향상된 발광 효율을 나타낼 수 있음을 확인한다.
이상에서 실시예들에 대하여 상세하게 설명하였지만 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 발명의 권리 범위에 속하는 것이다.

Claims (25)

  1. 인듐(In)과 인(P), 그리고 선택에 따라 아연을 포함하는 반도체 나노결정 코어, 및 상기 반도체 나노결정 코어 상에 배치되고 아연, 셀레늄 및 황을 포함하는 반도체 나노결정 쉘을 포함하고, 카드뮴을 포함하지 않는 코어쉘 양자점들로서,
    상기 코어쉘 양자점들은, 그램 당 extinction coefficient 가 0.3 이상 이고,
    상기 코어쉘 양자점들의 UV-Vis 흡수 스펙트럼 곡선은 450 nm 에서의 양(positive)인 미분계수값을 가지고
    상기 양자점은, 양자 효율이 80% 이상이고,
    상기 코어쉘 양자점들은, 여기 시 녹색광을 방출하도록 구성된 코어쉘 양자점들.
  2. 제1항에 있어서,
    상기 그램 당 extinction coefficient는 0.35 이상인 코어쉘 양자점들.
  3. 제1항에 있어서,
    상기 그램 당 extinction coefficient는 2 이하인 코어쉘 양자점들.
  4. 제1항에 있어서,
    아래의 식에 의해 정의되는 밸리깊이(Valley Depth)가 0.4 이상인 코어쉘 양자점들:
    1 - (Absvalley/ Absfirst) = VD
    여기서, Absfirst 는 상기 제1 흡수 피크에서의 흡수율이고, Absvalley 는 상기 제1 흡수 피크에 인접한 밸리의 최저점에서의 흡수율임.
  5. 제1항에 있어서,
    상기 코어쉘 양자점들은, 셀레늄에 대한 황의 몰 비가 3.5 이하인 코어쉘 양자점들.
  6. 제1항에 있어서,
    상기 코어쉘 양자점들은, 셀레늄에 대한 황의 비율이 3 이하인 코어쉘 양자점들.
  7. 제1항에 있어서,
    상기 코어쉘 양자점들은, 셀레늄에 대한 황의 비율이 0.5 이상인 코어쉘 양자점들.
  8. 제1항에 있어서,
    상기 코어쉘 양자점들은, 셀레늄에 대한 황의 비율이 0.9 이상인 코어쉘 양자점들.
  9. 제1항에 있어서,
    상기 코어쉘 양자점들은, 인듐에 대한 아연의 몰 비율이 10 이상 및 24 이하인 코어쉘 양자점들.
  10. 제1항에 있어서,
    상기 코어쉘 양자점들은, 인듐에 대한 인의 몰 비율이 0.7 이상 및 1.5 이하인 코어쉘 양자점들.
  11. 제1항에 있어서,
    상기 반도체 나노결정 코어의 평균크기는 1.5 nm 이상인 코어쉘 양자점들.
  12. 제1항에 있어서,
    상기 녹색광은, 최대 발광 피크 파장이 500 nm 이상 및 530 nm 이하인 코어쉘 양자점들.
  13. 제1항에 있어서,
    상기 양자점은, 양자 효율이 85% 이상인 코어쉘 양자점들.
  14. 제1항에 있어서,
    상기 쉘의 두께는 6 모노레이어 이하인 코어쉘 양자점들.
  15. 제1항에 있어서,
    상기 쉘은, 상기 반도체 나노결정 코어 상에 배치되고 아연, 셀레늄, 및 황을 포함하는 제1 반도체 나노결정 쉘, 및 상기 제1 반도체 나노결정 쉘 상에 배치되고 아연 및 황을 포함하는 제2 반도체 나노결정 쉘을 포함하는 코어쉘 양자점들.
  16. 제15항에 있어서,
    상기 제1 반도체 나노결정 쉘의 두께는 4 모노레이어 이하인 코어쉘 양자점들.
  17. 제15항에 있어서,
    상기 제1 반도체 나노결정 쉘에서, 셀레늄 및 황의 총 합에 대한 황의 비율은 0.1 이상 및 0.7 이하인 코어쉘 양자점들.
  18. 제15항에 있어서,
    상기 제2 반도체 나노결정 쉘의 두께는 1 nm 이하인 코어쉘 양자점들.
  19. 제15항에 있어서,
    상기 제1 반도체 나노결정 쉘은, 상기 반도체 나노결정 코어 바로 위에 배치되고 상기 제2 반도체 나노결정 쉘은, 상기 제1 반도체 나노결정 쉘 바로 위에 배치되는 코어쉘 양자점들.
  20. 제15항에 있어서,
    상기 제2 반도체 나노결정 쉘은 상기 양자점의 최외곽층인 코어쉘 양자점들.
  21. 폴리머 매트릭스 및 상기 폴리머 매트릭스 내에 분산되어 있는 제1항의 코어쉘 양자점들을 포함하는 양자점 폴리머 복합체.
  22. 제21항에 있어서,
    상기 폴리머 매트릭스는, 말단에 적어도 1개의 티올기를 가지는 티올 화합물과 탄소-탄소 불포화 결합을 가지는 ene 화합물을 포함하는 모노머 조합의 중합 생성물, 금속 산화물 미립자, 또는 이들의 조합을 더 포함하는 양자점 폴리머 복합체.
  23. 제21항에 있어서,
    상기 양자점 폴리머 복합체는, 180도씨에서 30분간 열처리 후, 파장 450 nm 내지 470 nm 의 청색광에 대한 흡수율이 90% 이상이고, 청색광 전환율(CE)이 30% 이상인 양자점-폴리머 복합체.
  24. 발광요소 및 선택에 따라 광원을 포함하고,
    상기 발광요소는, 제21항의 양자점-폴리머 복합체를 포함하고,
    존재하는 경우, 상기 광원은, 상기 발광요소에 입사광을 제공하도록 구성되는 표시 소자.
  25. 제28항에 있어서,
    상기 입사광은 440 nm 내지 500 nm 의 범위에 있는 광발광 피크 파장을 가지는 표시 소자.
KR1020200139438A 2019-10-25 2020-10-26 코어쉘 양자점 및 이를 포함한 전자 소자 KR20210049702A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190134123 2019-10-25
KR20190134123 2019-10-25

Publications (1)

Publication Number Publication Date
KR20210049702A true KR20210049702A (ko) 2021-05-06

Family

ID=73020062

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200139438A KR20210049702A (ko) 2019-10-25 2020-10-26 코어쉘 양자점 및 이를 포함한 전자 소자

Country Status (4)

Country Link
US (3) US11621403B2 (ko)
EP (1) EP3812444B1 (ko)
KR (1) KR20210049702A (ko)
CN (1) CN112708414A (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812444B1 (en) * 2019-10-25 2023-04-26 Samsung Electronics Co., Ltd. Core shell quantum dot and electronic device including the same
KR20230015295A (ko) * 2021-07-22 2023-01-31 삼성전자주식회사 양자점, 양자점 복합체, 표시 패널, 및 전자 장치

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697511B1 (ko) 2003-10-21 2007-03-20 삼성전자주식회사 광경화성 반도체 나노결정, 반도체 나노결정 패턴형성용 조성물 및 이들을 이용한 반도체 나노결정의 패턴 형성 방법
KR101110072B1 (ko) 2005-06-02 2012-02-24 삼성전자주식회사 자발광 lcd
KR101462658B1 (ko) * 2008-12-19 2014-11-17 삼성전자 주식회사 반도체 나노 결정 및 그 제조 방법
KR101711085B1 (ko) 2009-10-09 2017-03-14 삼성전자 주식회사 나노 복합 입자, 그 제조방법 및 상기 나노 복합 입자를 포함하는 소자
KR20130015847A (ko) * 2011-08-05 2013-02-14 삼성전자주식회사 발광장치, 백라이트 유닛과 디스플레이 장치 및 그 제조방법
TWI596188B (zh) * 2012-07-02 2017-08-21 奈米系統股份有限公司 高度發光奈米結構及其製造方法
EP3274765A4 (en) * 2015-03-23 2018-10-17 Intematix Corporation Photoluminescence color display
WO2016194344A1 (ja) * 2015-05-29 2016-12-08 富士フイルム株式会社 組成物とポリマー成形用組成物、及びそれを用いて得られた波長変換体、波長変換部材、バックライトユニット、液晶表示装置
US10983433B2 (en) 2015-08-21 2021-04-20 Samsung Electronics Co., Ltd. Photosensitive compositions, preparation methods thereof, and quantum dot polymer composite prepared therefrom
US10983432B2 (en) 2015-08-24 2021-04-20 Samsung Electronics Co., Ltd. Photosensitive compositions, preparation methods thereof, quantum dot polymer composite prepared therefrom
KR102480902B1 (ko) 2015-09-18 2022-12-22 삼성전자주식회사 표시 장치
EP3163372B1 (en) 2015-10-26 2020-04-29 Samsung Electronics Co., Ltd. Quantum dot having polymeric outer layer, photosensitive compositions including the same, and quantum dot polymer composite pattern produced therefrom
US10029972B2 (en) 2015-11-13 2018-07-24 Nanosys, Inc. Use of heteroleptic indium hydroxides as precursors for INP nanocrystals
KR102618409B1 (ko) * 2015-12-23 2023-12-27 삼성전자주식회사 양자점-폴리머 복합체 및 이를 포함하는 소자
KR102648400B1 (ko) * 2016-02-22 2024-03-18 삼성디스플레이 주식회사 양자점 컬러 필터 및 이를 구비하는 표시 장치
US20170306227A1 (en) 2016-04-26 2017-10-26 Nanosys, Inc. Stable inp quantum dots with thick shell coating and method of producing the same
US20180119007A1 (en) * 2016-04-26 2018-05-03 Nanosys, Inc. Stable inp quantum dots with thick shell coating and method of producing the same
US10988865B2 (en) 2016-05-11 2021-04-27 Sason Kamer Synthetic threads and materials and garments produced therewith
US11355583B2 (en) * 2016-07-28 2022-06-07 Samsung Electronics Co., Ltd. Quantum dots and devices including the same
US11034884B2 (en) 2016-10-19 2021-06-15 Samsung Electronics Co., Ltd. Quantum dot-polymer composite film, method of manufacturing the same, and device including the same
US10889755B2 (en) * 2016-11-22 2021-01-12 Samsung Electronics Co., Ltd. Photosensitive resin composition, complex, laminated structure and display device, and electronic device including the same
EP3327813B1 (en) 2016-11-25 2021-06-30 Samsung Electronics Co., Ltd. Light emitting device and display device including quantum dot
US10689511B2 (en) 2017-01-04 2020-06-23 Samsung Electronics Co., Ltd. Compositions, composites prepared therefrom, and electronic devices including the same
KR102589860B1 (ko) 2017-02-20 2023-10-16 삼성전자주식회사 감광성 조성물, 이로부터 제조된 양자점-폴리머 복합체, 및 이를 포함하는 적층 구조물과 전자 소자
JP2020522749A (ja) * 2017-06-02 2020-07-30 ネクスドット カプセル化されたナノ粒子を含むインク
KR102648724B1 (ko) 2017-08-17 2024-03-18 삼성전자주식회사 조성물, 이로부터 제조된 양자점-폴리머 복합체와 적층 구조물, 및 이를 포함하는 전자 소자
CN110018591B (zh) 2017-12-18 2023-07-28 三星电子株式会社 层状结构体和包括其的电子装置
EP3511394B1 (en) * 2018-01-11 2021-09-08 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same
KR20200006941A (ko) 2018-07-10 2020-01-21 삼성전자주식회사 조성물, 패턴화된 막, 및 이를 포함하는 전자 소자
CN108893119B (zh) 2018-07-18 2021-06-25 纳晶科技股份有限公司 InP基合金量子点的制备方法及量子点、器件及组合物
CN117186895A (zh) * 2018-11-29 2023-12-08 三星显示有限公司 量子点、包括其的组合物或复合物以及包括其的显示装置
EP3812444B1 (en) * 2019-10-25 2023-04-26 Samsung Electronics Co., Ltd. Core shell quantum dot and electronic device including the same

Also Published As

Publication number Publication date
CN112708414A (zh) 2021-04-27
US20210126212A1 (en) 2021-04-29
EP3812444B1 (en) 2023-04-26
EP3812444A1 (en) 2021-04-28
US20230255043A1 (en) 2023-08-10
US20240172464A1 (en) 2024-05-23
US11903228B2 (en) 2024-02-13
US11621403B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
EP3660124B1 (en) Quantum dots, a composition or composite including the same, and an electronic device including the same
US11180695B2 (en) Cadmium free quantum dots, and composite and display device including the same
KR102601649B1 (ko) 양자점, 그 제조 방법, 이를 포함한 복합체 및 전자 소자
US11912920B2 (en) Quantum dots and composite and display device including the same
US11788005B2 (en) Quantum dots, a composition or composite including the same, and an electronic device including the same
KR20200006941A (ko) 조성물, 패턴화된 막, 및 이를 포함하는 전자 소자
KR20210129757A (ko) 비카드뮴 양자점, 이를 포함하는 양자점-폴리머 복합체, 및 이를 포함하는 전자 소자
US11903228B2 (en) Core shell quantum dot and electronic device including the same
KR20190138532A (ko) 양자점, 이를 포함한 조성물 또는 복합체, 그리고 이를 포함한 전자 소자
US20220246804A1 (en) Quantum dot, and a composite and an electronic device including the same
KR20210142483A (ko) 양자점 및 이를 포함한 전자 소자
EP4012003B1 (en) Color filters and devices including the same
US11530353B2 (en) Cadmium-free quantum dots, and composite and display device including the same
US20220179140A1 (en) Color filters and devices including the same
US20220282153A1 (en) Luminescent nanostrucure, and color conversion panel and electronic device including the same
KR20220125630A (ko) 발광성 나노구조체, 및 이를 포함하는 색변환패널과 전자소자
KR20220125631A (ko) 발광성 나노구조체, 및 이를 포함하는 색변환패널과 전자소자
KR20230139237A (ko) 표시 패널, 및 상기 표시 패널을 포함하는 전자 장치

Legal Events

Date Code Title Description
A201 Request for examination