KR20210049657A - Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain - Google Patents

Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain Download PDF

Info

Publication number
KR20210049657A
KR20210049657A KR1020200042956A KR20200042956A KR20210049657A KR 20210049657 A KR20210049657 A KR 20210049657A KR 1020200042956 A KR1020200042956 A KR 1020200042956A KR 20200042956 A KR20200042956 A KR 20200042956A KR 20210049657 A KR20210049657 A KR 20210049657A
Authority
KR
South Korea
Prior art keywords
weight ratio
fiber
cement
ultra
strain
Prior art date
Application number
KR1020200042956A
Other languages
Korean (ko)
Other versions
KR102336118B1 (en
Inventor
류두열
전부기
김민재
신원식
최홍준
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of KR20210049657A publication Critical patent/KR20210049657A/en
Application granted granted Critical
Publication of KR102336118B1 publication Critical patent/KR102336118B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/162Cement kiln dust; Lime kiln dust
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

Disclosed is a super-velocity high strength-high tenacity fiber-reinforced cement composite. The super-velocity high-strength high-tenacity fiber-reinforced cement composite includes CSA-based cement, blast furnace slag, limestone fine powder, cement kiln dust, silica fume, silica sand, and fibers.

Description

초속경 고강도-고인성 섬유보강 시멘트 복합체{Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain}Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain}

본 발명은 초속경 고강도-고인성 섬유보강 시멘트 복합체에 관련된 것이다. The present invention relates to an ultra-fast hardness high strength-high toughness fiber-reinforced cement composite.

조적조 내진보강 기술은 이미 사람이 사용하고 있는 비보강 조적조에 시멘트 복합체 분사를 통해 내진성능을 확보하는 기술이다. 따라서 재건축이나 리모델링 등과 달리 사용자가 지속적으로 거주할 수 있도록 공사기간의 단축이 필수적이다. 이 경우 공사기간의 단축은 시멘트 또는 콘크리트의 수화반응의 시기와 얼마나 목표치에 가까운 강도를 발현하는 지에 따라 결정되며, 공사 현장에서는 이를 적절하게 조절하기 위해 조강 시멘트, 지연제, 급결제 등을 활용한다.Masonry tank seismic reinforcement technology is a technology that secures seismic performance by spraying cement composites into unreinforced masonry tanks already used by humans. Therefore, unlike reconstruction or remodeling, it is essential to shorten the construction period so that users can live continuously. In this case, the reduction of the construction period is determined by the timing of the hydration reaction of cement or concrete and how much strength close to the target value is expressed, and at the construction site, crude steel cement, retardant, and rapid setting agent are used to appropriately control this. .

이에 본 발명은 수화반응을 촉진시켜 공사기간을 획기적으로 줄이고자 타설 후 4시간 이내에 최종 목표 인장성능을 발현할 수 있는 초속경 고강도-고인성 섬유보강 시멘트 복합체를 제안한다.Accordingly, the present invention proposes an ultra-fast hardness high strength-high toughness fiber-reinforced cement composite capable of expressing a final target tensile performance within 4 hours after pouring in order to drastically reduce the construction period by accelerating the hydration reaction.

한국등록특허 제10-874584호Korean Patent Registration No. 10-874584

본 발명은 타설 후 4시간 이내에 최종 목표 인장성능을 발현할 수 있는 초속경 고강도-고인성 섬유보강 시멘트 복합체를 제공한다.The present invention provides an ultra-fast hardness high strength-high toughness fiber-reinforced cement composite capable of expressing a final target tensile performance within 4 hours after pouring.

본 발명에 따른 초속경 고강도-고인성 섬유보강 시멘트 복합체는 CSA계 시멘트, 고로슬래그, 석회석 미분말, 시멘트 킬른 더스트, 실리카퓸, 실리카샌드, 그리고 섬유를 포함한다.The ultrafast hardness high strength-high toughness fiber-reinforced cement composite according to the present invention includes CSA-based cement, blast furnace slag, limestone fine powder, cement kiln dust, silica fume, silica sand, and fibers.

또한, 상기 CSA계 시멘트 중량 대비 상기 고로슬래그의 중량비가 0.5이고, 상기 석회석미분말의 중량비가 0.25이고, 상기 시멘트 킬른 더스트의 중량비가 0.1 내지 0.5이고, 상기 실리카퓸의 중량비가 0.2 내지 0.4이고, 상기 실리카샌드의 중량비가 0.7이고, 상기 섬유의 중량비가 0.02일 수 있다.In addition, the weight ratio of the blast furnace slag to the weight of the CSA-based cement is 0.5, the weight ratio of the limestone fine powder is 0.25, the weight ratio of the cement kiln dust is 0.1 to 0.5, the weight ratio of the silica fume is 0.2 to 0.4, the The weight ratio of the silica sand may be 0.7, and the weight ratio of the fibers may be 0.02.

또한, 상기 CSA계 시멘트 중량 대비 상기 시멘트 킬른 더스트의 중량비가 0.1 내지 0.2이고, 상기 실리카퓸의 중량비가 0.2일 수 있다.In addition, the weight ratio of the cement kiln dust to the weight of the CSA-based cement may be 0.1 to 0.2, and the weight ratio of the silica fume may be 0.2.

또한, 상기 섬유는 폴리에틸린 섬유일 수 있다.In addition, the fiber may be a polyethylin fiber.

또한, 상기 섬유는 18mm 길이와 0.032mm의 직경, 3000MPa의 인장강도, 그리고 200GPa의 탄성계수를 가질 수 있다.In addition, the fiber may have a length of 18 mm and a diameter of 0.032 mm, a tensile strength of 3000 MPa, and a modulus of elasticity of 200 GPa.

본 발명에 따른 초속경 고강도-고인성 섬유보강 시멘트 복합체는 타설 후 4시간 후 인장강도 7.85MPa, 인장변형률 4.547% 성능을 발현할 수 있다.The ultra-fast hardness high strength-high toughness fiber-reinforced cement composite according to the present invention can exhibit a tensile strength of 7.85 MPa and a tensile strain of 4.547% 4 hours after pouring.

도 1은 제1 내지 제6실시 예에 따른 인장 시편의 응력 및 변형률 그래프이다.
도 2는 제7 내지 제11실시 예에 따른 인장 시편의 응력 및 변형률 그래프이다.
도 3은 제1 내지 제11실시 예에 따른 인장 시편의 최대 인장 강도를 나타내는 그래프이다.
도 4는 제2실시 예에 따른 인장 시편의 응력 및 변형률 그래프와 초속경 시멘트의 기준 범위를 비교하기 위한 도면이다.
1 is a graph of stress and strain of tensile specimens according to the first to sixth embodiments.
2 is a graph of stress and strain of tensile specimens according to the 7th to 11th embodiments.
3 is a graph showing the maximum tensile strength of tensile specimens according to the first to eleventh embodiments.
4 is a view for comparing the stress and strain graph of the tensile specimen according to the second embodiment and the reference range of the ultrafast cement.

이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical idea of the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed contents may be thorough and complete, and the spirit of the present invention may be sufficiently conveyed to those skilled in the art.

본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is referred to as being on another component, it means that it may be formed directly on the other component or that a third component may be interposed therebetween. In addition, in the drawings, thicknesses of films and regions are exaggerated for effective description of technical content.

또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various elements, but these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Accordingly, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, in the present specification,'and/or' has been used to mean including at least one of the elements listed before and after.

명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다. In the specification, expressions in the singular include plural expressions unless the context clearly indicates otherwise. In addition, terms such as "comprise" or "have" are intended to designate the presence of features, numbers, steps, components, or a combination thereof described in the specification, and one or more other features, numbers, steps, or configurations. It is not to be understood as excluding the possibility of the presence or addition of elements or combinations thereof. In addition, in the present specification, "connection" is used to include both indirectly connecting a plurality of constituent elements and direct connecting.

또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.

본 발명에 따른 초속경 고강도-고인성 섬유보강 시멘트 복합체는 수화반응을 촉진시켜 공사기간을 획기적으로 줄일 수 있다. 초속경 고강도-고인성 섬유보강 시멘트 복합체는 건재료, 배합수, 혼화제, 증점제, 지연제, 그리고 섬유가 배합된다. 건재료는 CSA계 시멘트, 고로슬래그(Ground granulated blast furnace slag, GGBFS), 석회석 미분말(Limestone powder), 시멘트 킬른 더스트(Cement kiln dust, CKD), 실리카퓸(Silica fume), 그리고 실리카샌드(Silica dust)를 포함한다.The ultra-fast hardness high strength-high toughness fiber-reinforced cement composite according to the present invention accelerates the hydration reaction and can significantly reduce the construction period. The ultra-fast-hardening, high-strength and high-toughness fiber-reinforced cement composite is formulated with a dry material, blending water, admixture, thickener, retardant, and fiber. The building materials are CSA-based cement, ground granulated blast furnace slag (GGBFS), limestone powder, cement kiln dust (CKD), silica fume, and silica sand. ).

초속경 고강도-고인성 섬유보강 시멘트 복합체는 CSA계 시멘트 중량 대비 고로슬래그의 중량비가 0.5이고, 석회석미분말의 중량비가 0.25이고, 시멘트 킬른 더스트의 중량비가 0.1 내지 0.5이고, 실리카퓸의 중량비가 0.2 내지 0.4이고, 실리카샌드의 중량비가 0.7이고, 섬유의 중량비가 0.02이다.The ultra-fast hardness high strength-high toughness fiber-reinforced cement composite has a weight ratio of blast furnace slag to the weight of CSA-based cement is 0.5, the weight ratio of limestone fine powder is 0.25, the weight ratio of cement kiln dust is 0.1 to 0.5, and the weight ratio of silica fume is 0.2 to 0.4, the weight ratio of silica sand is 0.7, and the weight ratio of fibers is 0.02.

일 예에 의하면, CSA계 시멘트 중량 대비 상기 시멘트 킬른 더스트의 중량비가 0.1 내지 0.2이고, 상기 실리카퓸의 중량비가 0.2일 수 있다.According to an example, the weight ratio of the cement kiln dust to the weight of the CSA-based cement may be 0.1 to 0.2, and the weight ratio of the silica fume may be 0.2.

CSA계 시멘트는 시멘트의 구성성분 중 초기 수화반응을 담당하는 C3A의 함량이 월등히 높아 초속경 시멘트로 분류된다. C3A는 물과 반응하여 준안정상태인 C32AH19와 C2AH8을 생성하고, 이후에 안정상태인 C3AH6로 변화하며 그 반응식은 아래와 같다. CSA-based cements are classified as super-fast-hardening cements because of the remarkably high content of C 3 A, which is responsible for the initial hydration reaction, among the cement constituents. C 3 A reacts with water to produce metastable C 32 AH 19 and C 2 AH 8 , and then changes to C 3 AH 6 , which is a stable state, and the reaction formula is as follows.

2(3CaO·Al2O3)+27H2O4CaO·Al2O3·19H2O+2CaO·Al2O3·8H2O [식 1]2(3CaO·Al 2 O 3 )+ 27H 2 O4CaO·Al 2 O 3 ·19H 2 O+2CaO·Al 2 O 3 ·8H 2 O [Equation 1]

4CaO·Al2O3·19H2O+2CaO·Al2O3·8H2O2(3CaO·Al2O3·6H2O)+15H2O [식 2]4CaO·Al 2 O 3 ·19H 2 O+2CaO·Al 2 O 3 ·8H 2 O2(3CaO·Al 2 O 3 ·6H 2 O)+15H 2 O [Equation 2]

3CaO·Al2O3+6H2O3CaO·Al2O3·6H2O [식 3]3CaO·Al 2 O 3 +6H 2 O3CaO·Al 2 O 3 ·6H 2 O [Equation 3]

섬유는 소수성인 폴리에틸렌 섬유가 사용된다. 본 발명에 사용된 폴리에틸렌 섬유는 표 1의 특성을 갖는다.The fibers are hydrophobic polyethylene fibers. The polyethylene fibers used in the present invention have the properties of Table 1.

길이Length 직경diameter 밀도density 인장강도The tensile strength 탄성계수Modulus of elasticity 18mm18mm 0.032mm0.032mm 0.97g/cm3 0.97g / cm 3 3000MPa3000MPa 20GPa20GPa

표 2는 본 발명의 다양한 실시 예에 따른 초속경 고강도-고인성 섬유보강 시멘트 복합체에 포함된 건재료의 성분비를 나타내는 표이다. 건재료의 성분비는 CSA계 시멘트에 대한 다른 성분들의 중량비로 표현하였다.Table 2 is a table showing the component ratios of dry materials included in the ultrafast hardness high strength-high toughness fiber-reinforced cement composite according to various embodiments of the present invention. The component ratio of the dry material was expressed as the weight ratio of the other components to the CSA-based cement.

실시예Example CSA계 시멘트CSA-based cement 고로슬래그Blast Furnace Slag 석회석 미분말Limestone fine powder 시멘트 킬른 더스트Cement kiln dust 실리카퓸Silica fume 실리카샌드Silica sand 1One 1One 0.50.5 0.250.25 0.10.1 0.20.2 0.70.7 22 0.150.15 33 0.20.2 44 0.30.3 55 0.40.4 66 0.50.5 77 0.10.1 0.40.4 88 0.20.2 99 0.30.3 1010 0.40.4 1111 0.50.5

상기 제1 내지 제11실시 예에 따른 건재료로 시멘트 복합체의 시편을 제작하여 인장 시험을 수행하였다. 시멘트 보합체의 시편에는 CSA계 시멘트 중량 대비 배합수가 0.4 중량비로 배합되었고, 혼화제가 0.0193 중량비, 증점제가 0.0136 중량비, 지연제가 0.0050 중량비, 그리고 섬유가 0.02 중량비로 배합되었다.Tensile tests were performed by fabricating specimens of cement composites using the dry materials according to the first to eleventh embodiments. In the specimen of the cement composite, the blending water was blended at a weight ratio of 0.4 to the weight of CSA-based cement, and the admixture was blended at a weight ratio of 0.0193, a thickener at a weight ratio of 0.0136, a retardant at a weight ratio of 0.0050, and a fiber at a weight ratio of 0.02.

시편의 제작은 먼저, 건재료들을 표 2의 중량비로 배합하고, 배합수와 혼화제, 증점제, 그리고 지연제가 섞인 액상 용액을 천천히 혼입하였다. 이후 건재료들이 물과 반응하여 점성을 나타내기 시작하면 섬유를 조금씩 혼입하였다. 섬유가 몰탈과 충분히 섞이면 인장시편 몰드에 타설을 진행하고, 기건양생으로 양생을 진행하였다. 타설후 4시간 이후에 인장시험을 진행하였다.In the preparation of the specimen, first, the dry materials were mixed in the weight ratio of Table 2, and a liquid solution mixed with the water, admixture, thickener, and retarder was slowly mixed. After that, when the dry materials reacted with water and started to become viscous, the fibers were gradually mixed. When the fiber was sufficiently mixed with the mortar, it was poured into the tensile specimen mold and cured by pre-dry curing. Tensile tests were conducted 4 hours after placement.

도 1은 제1 내지 제6실시 예에 따른 인장 시편의 응력 및 변형률 그래프이고, 도 2는 제7 내지 제11실시 예에 따른 인장 시편의 응력 및 변형률 그래프이고, 도 3은 제1 내지 제11실시 예에 따른 인장 시편의 최대 인장 강도를 나타내는 그래프이고, 도 4는 제1 내지 제11실시 예에 따른 인장 시편의 최대 변형률을 나타내는 그래프이다.1 is a graph of stress and strain of tensile specimens according to first to sixth embodiments, FIG. 2 is a graph of stress and strain of tensile specimens according to seventh to eleventh embodiments, and FIG. 3 is a graph of first to eleventh. It is a graph showing the maximum tensile strength of the tensile specimen according to the embodiment, Figure 4 is a graph showing the maximum strain of the tensile specimen according to the first to eleventh embodiments.

표 2에 나타난 바와 같이, 제1 내지 제6실시 예에 따른 인장 시편은 실리카 퓸이 0.2 중량비로 함유되었고, 제7 내지 제11실시 예에 따른 인장 시편은 실리카 퓸이 0.4 중량비로 함유되었다.As shown in Table 2, the tensile specimens according to Examples 1 to 6 contained silica fume in a weight ratio of 0.2, and the tensile specimens according to Examples 7 to 11 contained silica fume in a weight ratio of 0.4.

도 1 내지 도 4를 참조하면, 제1 내지 제4실시 예에 따른 인장 시편은 다른 실시 예에 따른 인장 시편보다 큰 인장 강도와 변형률을 보이고 있다. 특히, 시멘트 킬른 더스트가 0.1 내지 0.2 중량비로 함유되는 경우, 상대적으로 높은 인장 강도와 변형률을 보이고 있다. 시멘트 킬른 더스트가 0.15 중량비로 함유되는 경우 최대 인장 강도와 변형률을 보이고 있다.1 to 4, tensile specimens according to the first to fourth embodiments exhibit greater tensile strength and strain than tensile specimens according to other embodiments. In particular, when the cement kiln dust is contained in a weight ratio of 0.1 to 0.2, it exhibits relatively high tensile strength and strain. When the cement kiln dust is contained in a weight ratio of 0.15, it shows the maximum tensile strength and strain.

도 5는 제2실시 예에 따른 인장 시편의 응력 및 변형률 그래프와 초속경 시멘트의 기준 범위를 비교하기 위한 도면이다.5 is a view for comparing the stress and strain graph of the tensile specimen according to the second embodiment and the reference range of the ultrafast cement.

도 5를 참조하면, 타설 후 4시간 이내에 목표 인장성능인 인장강도 5.6MPa, 인장변형률 2.8%이상의 초속경 특성이 발현될 경우, 초속경 시멘트로 사용가능하다.Referring to FIG. 5, if the target tensile strength, tensile strength of 5.6 MPa and tensile strain of 2.8% or more, is expressed within 4 hours after pouring, it can be used as a super fast-hardening cement.

제2실시 예에 따른 인장 시편의 경우, 타설 후 4시간 이후 인장강도 7.85MPa, 인장변형률 4.547%를 보였다. 이러한 특성은 초속경 목표범위를 초과하는 수치이다. 따라서, 본 발명의 실시 예들에 따른 초속경 고강도-고인성 섬유보강 시멘트 복합체는 초속경 특성을 충분히 만족하는 것을 확인할 수 있다.In the case of the tensile specimen according to the second embodiment, the tensile strength was 7.85 MPa and the tensile strain was 4.547% after 4 hours after pouring. This characteristic is a value that exceeds the target range of initial speed. Accordingly, it can be seen that the ultrafast hardness high strength-high toughness fiber-reinforced cement composite according to the embodiments of the present invention sufficiently satisfies the ultrafast hardness characteristics.

이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As described above, the present invention has been described in detail using preferred embodiments, but the scope of the present invention is not limited to specific embodiments, and should be interpreted by the appended claims. In addition, those who have acquired ordinary knowledge in this technical field should understand that many modifications and variations are possible without departing from the scope of the present invention.

Claims (5)

실리카샌드, 그리고 섬유를 포함하는 초속경 고강도-고인성 섬유보강 시멘트 복합체.Ultra-fast hardness high strength-high toughness fiber-reinforced cement composite containing silica sand and fibers. 제 1 항에 있어서,
상기 CSA계 시멘트 중량 대비 상기 고로슬래그의 중량비가 0.5이고, 상기 석회석미분말의 중량비가 0.25이고, 상기 시멘트 킬른 더스트의 중량비가 0.1 내지 0.5이고, 상기 실리카퓸의 중량비가 0.2 내지 0.4이고, 상기 실리카샌드의 중량비가 0.7이고, 상기 섬유의 중량비가 0.02인 초속경 고강도-고인성 섬유보강 시멘트 복합체.
The method of claim 1,
The weight ratio of the blast furnace slag to the weight of the CSA-based cement is 0.5, the weight ratio of the limestone fine powder is 0.25, the weight ratio of the cement kiln dust is 0.1 to 0.5, the weight ratio of the silica fume is 0.2 to 0.4, the silica sand The weight ratio of is 0.7, the weight ratio of the fiber is 0.02 ultra-fast diameter high strength-high toughness fiber-reinforced cement composite.
제 2 항에 있어서,
상기 CSA계 시멘트 중량 대비 상기 시멘트 킬른 더스트의 중량비가 0.1 내지 0.2이고, 상기 실리카퓸의 중량비가 0.2인 초속경 고강도-고인성 섬유보강 시멘트 복합체.
The method of claim 2,
The weight ratio of the cement kiln dust to the weight of the CSA-based cement is 0.1 to 0.2, and the weight ratio of the silica fume is 0.2.
제 2 항에 있어서,
상기 섬유는 폴리에틸린 섬유인 초속경 고강도-고인성 섬유보강 시멘트 복합체.
The method of claim 2,
The fiber is a polyethylin fiber, super fast-diameter high strength-high toughness fiber-reinforced cement composite.
제 4 항에 있어서,
상기 섬유는 18mm 길이와 0.032mm의 직경, 3000MPa의 인장강도, 그리고 200GPa의 탄성계수를 갖는 초속경 고강도-고인성 섬유보강 시멘트 복합체.
The method of claim 4,
The fiber has a length of 18mm, a diameter of 0.032mm, a tensile strength of 3000 MPa, and a modulus of elasticity of 200 GPa.
KR1020200042956A 2019-10-25 2020-04-08 Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain KR102336118B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190133508 2019-10-25
KR1020190133508 2019-10-25

Publications (2)

Publication Number Publication Date
KR20210049657A true KR20210049657A (en) 2021-05-06
KR102336118B1 KR102336118B1 (en) 2021-12-09

Family

ID=75916235

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200042956A KR102336118B1 (en) 2019-10-25 2020-04-08 Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain

Country Status (1)

Country Link
KR (1) KR102336118B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050081782A (en) * 2004-02-16 2005-08-19 한국건설기술연구원 Steel fiber reinforced cementitious composites and manufacturing method thereof
KR100874584B1 (en) 2007-05-14 2008-12-16 현대건설주식회사 Low heat generation ultra high strength concrete composition
KR101760230B1 (en) * 2017-01-11 2017-07-20 김선영 Reinforcement concrete structure and methods for repairing concrete structure using low contraction―high early strength type repairing mortar and flowable connector
KR20180010529A (en) * 2016-07-21 2018-01-31 대구대학교 산학협력단 High performance cementitious composites containing aggregate powder and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050081782A (en) * 2004-02-16 2005-08-19 한국건설기술연구원 Steel fiber reinforced cementitious composites and manufacturing method thereof
KR100874584B1 (en) 2007-05-14 2008-12-16 현대건설주식회사 Low heat generation ultra high strength concrete composition
KR20180010529A (en) * 2016-07-21 2018-01-31 대구대학교 산학협력단 High performance cementitious composites containing aggregate powder and manufacturing method thereof
KR101760230B1 (en) * 2017-01-11 2017-07-20 김선영 Reinforcement concrete structure and methods for repairing concrete structure using low contraction―high early strength type repairing mortar and flowable connector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Korea structure diagnosis maintenance engineering society, Vol. 2009 No. 1, pp 237-240(2009.) *

Also Published As

Publication number Publication date
KR102336118B1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
Chen et al. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures
Wang et al. Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content
Beglarigale et al. Flexural performance of SIFCON composites subjected to high temperature
Tosun-Felekoglu et al. Effects of fibre hybridization on multiple cracking potential of cement-based composites under flexural loading
Feng et al. Mechanical behaviour of micro-fine steel fibre reinforced sulphoaluminate cement composite
KR20050081782A (en) Steel fiber reinforced cementitious composites and manufacturing method thereof
KR101246114B1 (en) Concrete composition for manufacturing by the use of tbm method and the high-performance concrete segment
KR20120060439A (en) Ultra-high performance fiber reinforced cementitious composites and manufacturing method
JP2005067945A (en) Super-high strength high toughness mortar
KR100659458B1 (en) Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling
Lee et al. Evaluation of the design mix proportion on mechanical properties of engineered cementitious composites
US10590039B2 (en) Formulation and method for producing ultra-high-performance concretes
KR20040079629A (en) Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers
KR101953151B1 (en) Light-weight concrete composition for ocean having salt resistance
KR20080013350A (en) A method for preparing high-early-strength fiber reinforced cement composites and high-early-strength fiber reinforced cement composites preparing from the method
KR20210049657A (en) Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain
KR102024036B1 (en) Composition for repair mortar comprising mineral fiber
KR20130075334A (en) Amorphous steel fiber cement composites and mortar products using the same
JP6207935B2 (en) Method for producing high-strength concrete
JP4451083B2 (en) Mortar manufacturing method
KR101671206B1 (en) High ductility engineered cementitious composite reinforced with pva fiber and amorphous steel fiber
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
JP2007063103A (en) Quick hardening type high toughness fiber-reinforced ceramic material and method of formulating the same
KR101253761B1 (en) Fiber reinforced concrete and manufacture method thereof
KR102226013B1 (en) Concrete composition for enhancing impact resistance and reinforcement structure of concrete member

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right