KR20040079629A - Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers - Google Patents

Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers Download PDF

Info

Publication number
KR20040079629A
KR20040079629A KR1020030014602A KR20030014602A KR20040079629A KR 20040079629 A KR20040079629 A KR 20040079629A KR 1020030014602 A KR1020030014602 A KR 1020030014602A KR 20030014602 A KR20030014602 A KR 20030014602A KR 20040079629 A KR20040079629 A KR 20040079629A
Authority
KR
South Korea
Prior art keywords
weight
parts
fiber
composite material
cement
Prior art date
Application number
KR1020030014602A
Other languages
Korean (ko)
Inventor
윤현도
김규용
김재환
Original Assignee
윤현도
김재환
김규용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤현도, 김재환, 김규용 filed Critical 윤현도
Priority to KR1020030014602A priority Critical patent/KR20040079629A/en
Publication of KR20040079629A publication Critical patent/KR20040079629A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/62Pedals or like operating members, e.g. actuated by knee or hip
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • E03C1/05Arrangements of devices on wash-basins, baths, sinks, or the like for remote control of taps
    • E03C1/052Mechanical devices not being part of the tap, e.g. foot pedals

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE: A method for preparing a monofilament-reinforced cement composite material and a product using the method are provided, to improve tensile toughness, bending toughness and fatigue resistance. CONSTITUTION: The monofilament-reinforced cement composite material comprises a matrix which comprises a general portland cement or a high-early-strength portland cement, 35-60 parts by weight of water, 40-150 parts by weight of fine aggregate, 0-1.2 parts by weight of a high performance water-reducing agent, 0-20 parts by weight of silica fume, 0-30 parts by weight of fly ash, 0-50 parts by weight of furnace slag fine powder as an admixing material, and 0-1.5 parts by weight of a thickener based on 100 parts by weight of a binding material (cement and admixing materials); and 1.0-2.5 parts by volume of monofilament based on 100 parts by volume of the matrix.

Description

단섬유보강 고인성 시멘트복합재료의 제조방법{Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers}Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers}

본 발명은 기존의 시멘트콘크리트가 가진 취성적 성질을 대폭적으로 개선할 수 있을 뿐만 아니라 기존 섬유보강콘크리트의 휨 및 인장인성을 더욱 향상시킬 수 있는 단섬유보강 고인성 시멘트복합재료에 관한 것으로, 본 발명의 단섬유보강 고인성 시멘트복합재료는 매트릭스, 섬유 및 매트릭스와 섬유의 계면특성을 적절하게 개선 조절함으로서 기존의 시멘트콘크리트 또는 섬유보강콘크리트와는 달리 휨 또는 인장력을 받을 경우 초기균열발생 이후에도 응력의 급격한 저하가 발생하지 않고 변형이 증대함에 따라 응력이 증가하는 의사변형경화특성과 균열발생시 무수한 미세균열이 전체적으로 분산 발생하는 멀티플크랙 특성을 가지고 있어 휨 및 인장응력에 의한 균열폭 제어효과, 유해물질 침투억제효과, 박리저항성, 높은 에너지 흡수능력 및 피로내구성을 발휘할 수 있는 시멘트복합재료이다.The present invention relates to a short fiber reinforced high toughness cement composite material which can not only significantly improve the brittleness of the existing cement concrete but also further improve the bending and tensile toughness of the existing fiber reinforced concrete. The short-fiber reinforced high toughness cement composites are designed to improve the interfacial properties of matrices, fibers and matrices, and to improve the interfacial properties of the fibers. Pseudo-hardening hardening property that stress increases as deformation increases without deterioration, and multiple cracking property in which numerous microcracks are dispersed as a whole when cracking occurs, so crack width control effect due to bending and tensile stress and inhibition of harmful substance penetration , Peeling resistance, high energy absorption capacity and A cement composite material that exhibits durability.

지금까지 기존의 콘크리트 및 모르터와 같은 시멘트계 재료는 대부분 압축성능을 향상시키기 위한 개발만이 진행되어 매우 높은 압축강도를 발현할 수 있는 고강도의 모르터 및 콘크리트의 제조가 가능하게 되었지만 이 경우에도 휨강도 및 인장강도가 매우 낮고, 또한 강한 취성적 성질로 인해 파괴시 균열발생 후 급격한 응력저하가 발생하며, 철근 등에 의해 보강된 경우에도 균열이 일부에만 국한적으로 발생되어 구조물의 구조성능 및 내구성에 많은 문제점을 나타내고 있다. 한편 이를 보완하기 위해 최근에는 다양한 섬유보강콘크리트가 개발되고 있으나 대부분이 휨성능의 향상, 균열억제만을 목적으로 하고 있어 구조물에 높은 휨 및 인장인성을 부여하지 못하며, 또한 시공성 저하, 복잡한 제조공정 등의 이유로 일부에만 국한되어 사용되고 있는 실정이다.Until now, most cement-based materials such as concrete and mortar have been developed only to improve compressive performance, so that it is possible to manufacture high-strength mortar and concrete that can express very high compressive strength, but even in this case, bending strength and tension Due to its very low strength and strong brittleness, there is a sudden drop in stress after cracking, and even when reinforced by reinforcing bars, cracks are generated only in part, which causes many problems in structural performance and durability. It is shown. Recently, various fiber-reinforced concretes have been developed to compensate for this, but most of them are aimed only at improving bending performance and preventing cracking, and thus do not impart high bending and tensile toughness to the structure. For some reason, it is used only in part.

본 발명은 단섬유보강 고인성 시멘트복합재료의 제조방법에 관한 것으로 주요 구성재료인 매트릭스의 강도 및 파괴특성, 섬유의 강도, 섬유와 매트릭스의 부착특성, 섬유혼입량 등을 조절함으로서 휨 및 인장응력 하에서 초기균열이 발생한 후에도 균열면의 섬유가교에 의해 다수의 미세균열인 멀티플크랙을 발생시키고 수%의 변형도까지 초기균열시 응력도를 유지 또는 상승시킬 수 있는 의사변형경화거동을 발휘할 수 있다.The present invention relates to a method for producing a short fiber reinforced high toughness cement composite material, which is characterized by bending and tensile stress by controlling the strength and fracture properties of the matrix, the strength of the fiber, the adhesion properties of the fiber and the matrix, and the amount of fiber mixed. Even after the initial crack occurs, it is possible to exhibit a pseudo-strain hardening behavior that can generate multiple cracks, which are a plurality of microcracks, and maintain or increase the stress during initial cracking up to several percent by the fiber cross-linking of the cracked surface.

이러한 멀티플크랙 및 의사변형경화거동 등의 단섬유보강 고인성 시멘트복합재료의 특징에 의해 휨응력이 작용하는 구조부재에서 휨균열폭을 억제할 수 있고, 초기균열 등의 손실에 대하여 안전성의 허용도를 향상시킬 수 있으며, 에너지흡수능력의 향상, 균열분산성 및 균열폭 억제에 의해 물을 매개로 한 유해물질 침투억제, 변형성능 향상에 의한 강재 및 부재의 변형성능 향상, 굴절균열구속에 의한 박리저항성의 향상 등의 효과를 발휘할 수 있는 단섬유보강 고인성 시멘트복합재료의 제조방법을 개발하고자 한다.Due to the characteristics of short-fiber reinforced high toughness cement composite materials such as multiple cracks and pseudo-strain hardening behavior, the flexural crack width can be suppressed in structural members with flexural stress, and safety tolerance is improved against loss of initial cracking. Increasing energy absorption capacity, inhibiting crack dispersibility and crack width, inhibits penetration of harmful substances through water, improves deformation performance of steel and members by improving deformation performance, and improves peel resistance by refractive cracking. To develop a method of manufacturing short fiber reinforced high toughness cement composites that can exert such effects.

제1도는 물결합재비 40% 이하일 때의 제조순서1 is a manufacturing sequence when the water binder content is less than 40%

제2도는 물결합재비 40% 초과일 때의 제조순서2 is the manufacturing sequence when the water binder is more than 40%

제3도는 폴리에틸렌섬유의 외관3 is the appearance of polyethylene fiber

제4도는 폴리비닐알콜섬유의 외관4 is the appearance of polyvinyl alcohol fiber

제5도는 폴리프로필렌섬유의 외관5 is the appearance of polypropylene fiber

제6도는 강섬유의 외관6 is the appearance of steel fiber

제7도는 프레쉬 상태의 단섬유보강 고인성 시멘트복합재료의 외관Figure 7 shows the appearance of the short fiber reinforced high toughness cement composite material in the fresh state

제8도는 단섬유보강 고인성 시멘트복합재료의 휨성능 일례8 is an example of bending performance of short fiber reinforced high toughness cement composite material

제9도는 단섬유보강 고인성 시멘트복합재료의 멀티플크랙 일례9 is an example of multiple cracks of short fiber reinforced high toughness cement composite material

제10도는 단섬유보강 고인성 시멘트복합재료의 파단면 일례10 is an example of fracture surface of short fiber reinforced high toughness cement composite material

제11도는 단섬유보강 고인성 시멘트복합재료의 인장응력-변형성능의 일례11 is an example of tensile stress-strain capacity of short fiber reinforced high toughness cement composites.

제12도는 단섬유보강 고인성 시멘트복합재료를 이용한 수로용 흄관의 일례FIG. 12 is an example of a channel fume pipe using short fiber reinforced high toughness cement composite material

제13도는 단섬유보강 고인성 시멘트복합재료를 이용한 데크플레이트의 일례13 is an example of a deck plate using a short fiber reinforced high toughness cement composite material

본 발명의 단섬유보강 고인성 시멘트복합재료는 시멘트, 물, 잔골재 및 단섬유로 구성되며 경우에 따라 실리카흄, 플라이애시 및 고로슬래그미분말 등의 혼화재와 고성능감수제 및 증점제가 첨가되는 것을 특징으로 한다. 더욱이 본 발명의 단섬유보강 고인성 시멘트복합재료에 사용되는 매트릭스는 결합재(시멘트+혼화재) 100%중량부에 대하여 물은 35∼60%중량부, 잔골재는 40∼150%중량부, 고성능감수제는 0∼1.2%중량부, 혼화재로서 실리카흄은 0∼20%중량부, 플라이애시는 0∼30%중량부, 고로슬래그미분말은 0∼50%중량부가 사용되며, 증점제는 물 100%중량부에 대하여 0∼1.5%중량부로 구성되는 것을 특징으로 하고, 이와 같이 구성된 매트릭스 100%용적부에 대하여 단섬유는 1.0∼2.5%용적부로 구성되는 것을 특징으로 하는 한다.The short fiber reinforced high toughness cement composite material of the present invention is composed of cement, water, fine aggregates and short fibers, and is characterized in that admixtures such as silica fume, fly ash and blast furnace slag powder, and a high performance sensitizer and thickener are added. Furthermore, the matrix used in the short fiber reinforced high toughness cement composite material of the present invention is 35 to 60% by weight of water, 40 to 150% by weight of fine aggregate, and high performance water reducing agent based on 100% by weight of the binder (cement + admixture). 0 to 1.2% by weight, 0 to 20% by weight of silica fume, 0 to 30% by weight of fly ash, 0 to 50% by weight of blast furnace slag powder, and thickener to 100% by weight of water It is characterized by consisting of 0 to 1.5% by weight, characterized in that the short fiber is composed of 1.0 to 2.5% by volume with respect to the matrix 100% by volume configured in this way.

본 발명을 달성하기 위한 단섬유보강 고인성 시멘트복합재료의 사용재료, 배합 및 제조특성은 다음에 나타낸 바와 같다.The materials used, blending and manufacturing characteristics of the short fiber reinforced high toughness cement composite material for achieving the present invention are as follows.

즉, 단섬유보강 고인성 시멘트복합재료에 사용되는 시멘트는 KS규격의 보통포틀랜드시멘트 또는 조강포틀랜드시멘트이며, 매트릭스의 강도, 파괴특성 및 시공성 등을 향상시키기 위해 시멘트 100%중량부에 대하여 혼화재로서 산업부산물인 실리카흄, 플라이애시, 고로슬래그미분말이 각각 0∼20%, 0∼30%, 0∼50%중량부 대체하여 사용된다. 또한 물은 결합재(시멘트+혼화재) 100%중량부에 대하여 35∼65%중량부, 양호하게는 40∼50%중량부 사용되며, 단섬유보강 고인성 시멘트복합재료의 시공성을 고려하여 매트릭스의 유동성을 확보하기 위해 고성능감수제는 결합재 100%중량부에 대하여 0∼1.2%중량부 사용되고, 매트릭스 내 단섬유의 균일한 분산을 도모하기 위한 점성확보를 위해 증점제는 물 100%중량부에 대하여 0∼1.5%중량부가 사용되기도 한다.In other words, the cement used for short fiber reinforced high toughness cement composite material is ordinary portland cement or crude steel portland cement of KS standard, and it is used as admixture with 100% by weight of cement to improve the strength, fracture characteristics and workability of matrix. By-product silica fume, fly ash and blast furnace slag powder are used in place of 0 to 20%, 0 to 30% and 0 to 50% by weight, respectively. In addition, water is used in an amount of 35 to 65% by weight, preferably 40 to 50% by weight, based on 100% by weight of the binder (cement + admixture), and the fluidity of the matrix in consideration of the construction properties of the short fiber reinforced high toughness cement composite material. In order to ensure a high performance reducing agent is used 0 to 1.2% by weight based on 100% by weight of the binder, the thickener is 0 to 1.5 by weight of 100% by weight in order to ensure the viscosity for uniform dispersion of short fibers in the matrix % Parts by weight may be used.

잔골재는 폴리프로플렌(PP), 폴리에틸렌(PE) 및 폴리비닐알콜(PVA)과 같은 합성섬유가 사용될 경우 결합재 100%중량부에 대하여 40∼80%중량부가 사용되며, 강섬유가 사용될 경우에는 강섬유의 침적을 방지하기 위해 결합재 100%중량부에 대하여 80∼150%중량부가 사용된다. 또한 잔골재는 KS규격의 5mm 이하 강모래, 바다모래 및 부순모래가 사용되며, 단섬유보강 고인성 시멘트복합재료의 시공성, 마감성 및 섬유의 분산성 등을 고려하여 2.5mm 이하의 것을 사용하는 것이 바람직하다.The fine aggregate is 40 to 80% by weight based on 100% by weight of the binder when synthetic fibers such as polypropylene (PP), polyethylene (PE) and polyvinyl alcohol (PVA) are used. 80 to 150% by weight is used with respect to 100% by weight of the binder to prevent deposition. In addition, fine aggregates of 5mm or less of steel sand, sea sand, and crushed sand are used, and it is preferable to use 2.5mm or less in consideration of workability, finish, and fiber dispersibility of short fiber reinforced high toughness cement composite material. Do.

섬유는 매트릭스 균열면을 가교하기 위해 사용되는 것으로 매트릭스 100%용적부에 대하여 1.0∼2.5%용적부, 양호하게는 1.5∼2.0%용적부가 사용되며, 길이 30mm 이하의 단섬유가 사용된다. 또한 사용되는 섬유종류는 합성섬유인 폴리프로필렌(PP)섬유, 폴리에틸렌(PE)섬유 및 폴리비닐알콜(PVA)섬유와 강(S)섬유가 사용되며, 섬유의 형상은 단사형, 양단후크형 및 파형 등 현재 시판되고 있는 대부분의 콘크리트용 단섬유가 사용 가능하다.The fiber is used to crosslink the matrix crack surface, and 1.0 to 2.5% by volume, preferably 1.5 to 2.0% by volume is used for 100% by volume of the matrix, and short fibers of 30 mm or less in length are used. In addition, the fiber type used is polypropylene (PP) fiber, polyethylene (PE) fiber, polyvinyl alcohol (PVA) fiber and steel (S) fiber, which are synthetic fibers. Most of the short fibers for concrete currently available such as corrugation can be used.

또한 단섬유보강 고인성 시멘트복합재료의 제조에 사용되는 믹서는 일반콘크리트 및 모르터 제조에 사용되는 팬타입(Pan Type)믹서 또는 옴니(Omni)믹서가 사용되며, 재료의 제조순서는 도1에 나타낸 바와 같이 매트릭스 내 섬유의 균질한 분산 및 유동성 확보를 도모하기 위해 시멘트 및 혼화재와 잔골재 투입→물결합재비 40% 이하에 해당하는 물과 고성능감수제 또는 증점제 투입→섬유의 3회 분할투입→나머지 물량 투입→배출하는 순서로 제조한다. 또한 제조 완료된 단섬유보강 고인성 시멘트복합재료는 현장으로 운반하여 거푸집 내에 타설하거나 압출성형기 등을 이용하여 성형하는 것이 가능하며, 타설시에는 재료의 충분한 다짐을 위해 봉형 또는 테이블형의 진동기가 사용되기도 한다.In addition, the mixer used in the manufacture of short fiber reinforced high toughness cement composite material is a pan type mixer or omni mixer used for manufacturing general concrete and mortar, and the manufacturing procedure of the material is shown in FIG. In order to ensure homogeneous dispersion and fluidity of the fibers in the matrix, cement, admixture and fine aggregate input → water and high performance sensitizers or thickeners up to 40% water binder ratio → 3 times divided input of fiber → remaining amount → Prepare in the order of discharge. In addition, the finished short-fiber reinforced high toughness cement composite material can be transported to the site and placed in the formwork or molded using an extrusion molding machine.In the case of casting, a rod-type or table-type vibrator may be used for sufficient compaction of the material. do.

상술한 바와 같이 매트릭스의 강도, 유동성 및 점성, 섬유의 강도, 매트릭스와 섬유의 부착특성, 섬유의 혼입율 등을 조절하여 단섬유보강 시멘트복합재료를 제조함으로서 휨 및 인장응력 하에서 초기균열이 발생한 후에도 매트릭스 균열면의 섬유가교에 의해 다수의 미세균열인 멀티플크랙을 발생시키고 수%의 변형도까지 초기균열시 응력도를 유지 또는 상승시킬 수 있는 의사변형경화거동을 발휘할 수 있는 단섬유보강 고인성 시멘트복합재료의 제조가 가능하다.As described above, the short fiber reinforced cement composite material is prepared by controlling the strength, fluidity and viscosity of the matrix, the strength of the fiber, the adhesion properties of the matrix and the fiber, and the mixing ratio of the fiber, so that the matrix remains even after initial cracking under bending and tensile stress. Short-fiber reinforced high toughness cement composite material capable of generating multiple cracks, which are numerous microcracks by the fiber cross-linking of cracks, and exhibiting pseudo-strain hardening behavior that can maintain or increase the stress during initial cracking up to several percent of strain. It is possible to manufacture.

이러한 멀티플크랙 및 의사변형경화거동 등의 재료특성을 가진 단섬유보강 고인성 시멘트복합재료를 건축 및 토목구조물 중 휨 또는 인장응력이 크게 작용하는 구조물에 적용할 경우 기존의 일반콘크리트 및 섬유보강콘크리트와는달리 멀티플크랙의 발생에 의해 부재에 발생하는 균열 폭을 억제할 수 있고, 의사변형경화거동에 의해 초기균열 등의 손실에 대한 부재의 안전성에 관한 허용도를 크게 향상시킬 수 있으며, 에너지흡수 능력이 크게 향상되어 벽과 같은 면부재에 적용함으로서 구조물 전체의 응답변위를 저감시키고 다른 구성요소의 손실을 저감시킬 수 있다. 또한 균열분산성 및 균열폭 억제에 의해 물을 매개로 한 유해물질침투를 억제할 수 있어 염해, 동결융해, 화학적 부식 등에 대한 내구성 및 수밀성을 향상시킬 수 있으며, 높은 변형성능에 의해 강재 및 부재의 변형성능을 향상시킬 수 있고, 굴절균열구속에 의해 콘크리트파편의 박리저항성을 향상시키는 등의 효과를 발휘할 수 있다.When the short fiber reinforced high toughness cement composite material having such material characteristics as multiple cracks and pseudo-strain hardening behavior is applied to the structure in which bending or tensile stress is largely applied in the construction and civil engineering structures, it is different from the conventional concrete and fiber reinforced concrete. Alternatively, the crack width generated in the member can be suppressed by the occurrence of multiple cracks, and the pseudo-strain hardening behavior can greatly improve the tolerance of the member against loss such as initial cracking, and the energy absorption ability It is greatly improved and applied to face members such as walls to reduce the response displacement of the structure as a whole and reduce the loss of other components. In addition, it is possible to suppress the penetration of harmful substances through water by suppressing crack dispersibility and crack width, thereby improving durability and watertightness against salt, freeze-thawing, chemical corrosion, etc., and deformation of steel materials and members by high deformation performance. The performance can be improved, and the effect of improving the peeling resistance of the concrete fragments can be exerted by the refractive crack arrest.

Claims (2)

단섬유보강 고인성 시멘트복합재료를 구성하는 매트릭스로서 시멘트는 보통포틀랜드시멘트 또는 조강포틀랜드시멘트가 사용되고, 결합재(시멘트+혼화재) 100%중량부에 대하여 물은 35∼60%중량부, 잔골재는 40∼150%중량부, 고성능감수제는 0∼1.2%중량부, 혼화재로서 실리카흄은 0∼20%중량부, 플라이애시는 0∼30%중량부, 고로슬래그미분말은 0∼50%중량부가 사용되며, 증점제는 물 100%중량부에 대하여 0∼1.5%중량부로 구성되는 것을 특징으로 하고, 이와 같이 구성된 매트릭스 100%용적부에 대하여 단섬유는 1.0∼2.5%용적부로 구성되는 것을 특징으로 하는 단섬유보강 고인성 시멘트복합재료의 제조방법As a matrix constituting the short fiber reinforced high toughness cement composite material, cement is usually Portland cement or crude steel Portland cement, and it is 35 to 60% by weight of water and 40 to 30 of aggregates with respect to 100% by weight of the binder (cement + admixture). 150% by weight, high performance reducing agent 0 ~ 1.2% by weight, as a mixed material, 0 ~ 20% by weight of silica fume, 0-30% by weight of fly ash, 0-50% by weight of blast furnace slag powder, thickener Is characterized in that it is composed of 0 to 1.5% by weight relative to 100% by weight of water, and the short fiber reinforcement is characterized in that the short fiber is composed of 1.0 to 2.5% by volume with respect to 100% by volume of the matrix constructed as described above Manufacturing method of tough cement composite material 청구항 1에 있어서 잔골재는 결합재 100%중량부에 대하여 폴리프로필렌섬유, 폴리에틸렌섬유, 폴리비닐알콜섬유 등 합성섬유를 사용할 경우 40∼80%중량부, 강섬유를 사용할 경우 80∼150%중량부가 사용되며, 제조 완료된 단섬유보강 고인성 시멘트복합재료를 일정 형태를 가진 거푸집에 타설하여 제조하거나 압출성형기를 이용하여 제조하는 것을 특징으로 하는 단섬유보강 고인성 시멘트복합재료의 제조방법 및 이를 활용한 제품The fine aggregate according to claim 1 is used 40 to 80% by weight when using a synthetic fiber, such as polypropylene fiber, polyethylene fiber, polyvinyl alcohol fiber, 80 to 150% by weight when using a steel fiber with respect to 100% by weight of the binder, Manufacturing method of short fiber reinforced high toughness cement composite material characterized in that by manufacturing the finished short-fiber reinforced high toughness cement composite material in a form having a predetermined form or by using an extrusion molding machine and a product using the same
KR1020030014602A 2003-03-08 2003-03-08 Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers KR20040079629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030014602A KR20040079629A (en) 2003-03-08 2003-03-08 Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030014602A KR20040079629A (en) 2003-03-08 2003-03-08 Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers

Publications (1)

Publication Number Publication Date
KR20040079629A true KR20040079629A (en) 2004-09-16

Family

ID=37364557

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030014602A KR20040079629A (en) 2003-03-08 2003-03-08 Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers

Country Status (1)

Country Link
KR (1) KR20040079629A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568156B1 (en) * 2005-09-05 2006-04-05 홍종현 Scarlet powder concrete and pavement system using the same
KR100682406B1 (en) * 2005-06-29 2007-02-15 한국토지공사 Multi Functional Concrete Interlocking Block for Side Walk and Road Using Scarlet Powder
KR100699451B1 (en) * 2005-03-11 2007-03-26 (주)에이엠에스 엔지니어링 Paving method of bridge having the excellent waterproofing performance and fatigue resistance
KR100975671B1 (en) * 2010-05-13 2010-08-17 충남대학교산학협력단 The methods to manufacture an highly durable, environmentally friendly permeability concrete composite utilizing low carbon blended cement, performance weathered granite soil, water friendly chopped fiber, pigment, inorganic water solution and reinforcing mesh, and permeability pavement using it
KR101371380B1 (en) * 2012-08-09 2014-03-07 주식회사 아워엠알오 Shot fibers cement complex materials for decrease of carbon and life cycle cost
CN103967190A (en) * 2013-01-28 2014-08-06 南京建研科技有限公司 Lightweight composite box
CN104446250A (en) * 2014-11-27 2015-03-25 太仓顺如成建筑材料有限公司 High-toughness building material
CN106145829A (en) * 2016-07-13 2016-11-23 郭舒 A kind of heat-insulation wall plate and preparation method thereof
CN106522462A (en) * 2016-11-23 2017-03-22 东南大学 High-strength high-strain low-heat-conductivity-coefficient thermal-insulation/sound-insulation/fireproof integrated board and preparation method thereof
KR20210071458A (en) * 2019-12-06 2021-06-16 주식회사 대웅 Weak foundation treatment method
US11542197B2 (en) 2019-09-09 2023-01-03 Korea Institute Of Civil Engineering And Building Technology Textile-reinforced cement composite for suppressing occurrence of slipping and crack and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699451B1 (en) * 2005-03-11 2007-03-26 (주)에이엠에스 엔지니어링 Paving method of bridge having the excellent waterproofing performance and fatigue resistance
KR100682406B1 (en) * 2005-06-29 2007-02-15 한국토지공사 Multi Functional Concrete Interlocking Block for Side Walk and Road Using Scarlet Powder
KR100568156B1 (en) * 2005-09-05 2006-04-05 홍종현 Scarlet powder concrete and pavement system using the same
KR100975671B1 (en) * 2010-05-13 2010-08-17 충남대학교산학협력단 The methods to manufacture an highly durable, environmentally friendly permeability concrete composite utilizing low carbon blended cement, performance weathered granite soil, water friendly chopped fiber, pigment, inorganic water solution and reinforcing mesh, and permeability pavement using it
KR101371380B1 (en) * 2012-08-09 2014-03-07 주식회사 아워엠알오 Shot fibers cement complex materials for decrease of carbon and life cycle cost
CN103967190A (en) * 2013-01-28 2014-08-06 南京建研科技有限公司 Lightweight composite box
CN103967190B (en) * 2013-01-28 2016-08-24 南京建研科技有限公司 Lightweight composite box
CN104446250A (en) * 2014-11-27 2015-03-25 太仓顺如成建筑材料有限公司 High-toughness building material
CN106145829A (en) * 2016-07-13 2016-11-23 郭舒 A kind of heat-insulation wall plate and preparation method thereof
CN106522462A (en) * 2016-11-23 2017-03-22 东南大学 High-strength high-strain low-heat-conductivity-coefficient thermal-insulation/sound-insulation/fireproof integrated board and preparation method thereof
US11542197B2 (en) 2019-09-09 2023-01-03 Korea Institute Of Civil Engineering And Building Technology Textile-reinforced cement composite for suppressing occurrence of slipping and crack and method of manufacturing the same
KR20210071458A (en) * 2019-12-06 2021-06-16 주식회사 대웅 Weak foundation treatment method

Similar Documents

Publication Publication Date Title
Xu et al. Effects of coarse aggregate and steel fibre contents on mechanical properties of high performance concrete
Afroz et al. Effects of hybrid fibers on the development of high volume fly ash cement composite
US7799127B2 (en) High early strength engineered cementitious composites
US7744690B2 (en) Blast-resistant concrete also suitable for limiting penetration of ballistic fragments
US7465350B2 (en) Hydraulic composition
EP2067753A1 (en) Concrete Mix
Yang Tests on Concrete Reinforced with Hybrid or Monolithic Steel and Polyvinyl Alcohol Fibers.
KR20050018744A (en) Manufactuering method of hybrid types of ductile fiber reinforced cementitious composites reinforced with micro and macro fibers
Raza et al. Mechanical properties, flexural behavior, and chloride permeability of high-performance steel fiber-reinforced concrete (SFRC) modified with rice husk ash and micro-silica
KR20040079629A (en) Manufacturing Method of High Ductility Cement Based Reinforced with Shot Fibers
JP2011084458A (en) Cement composition
Gündüz et al. Using hooked-end fibres on high performance steel fibre reinforced concrete
Wegian et al. Influence of fly ash on behavior of fibres reinforced concrete structures
JP4451083B2 (en) Mortar manufacturing method
KR20130075334A (en) Amorphous steel fiber cement composites and mortar products using the same
Adeen Determination of mechanical properties of hybrid steel-nylon fiber reinforced concrete
JP4519252B2 (en) Seismic reinforcement panel
JP4167787B2 (en) Composite material
KR20050122153A (en) Manufacturing method of ductile fiber reinforced cementitious composites with carbon fiber and polypropylene fiber, and its productions
Umar et al. A comparative study of the performance of selfcompacting concrete using glass and polyvinyl alcohol fibers
Maher Seyam et al. Effects of polypropylene fibers on ultra high performance concrete at elevated temperature
Sounthararajan et al. Reinforcing efficiency of crimped profile of polypropylene fibres on the cementitious matrix
YILDIZEL Effects of barite sand addition on glass fiber reinforced concrete mechanical behavior
KR20050122152A (en) Ductile fiber reinforced cementitious composites with surface treated carbon fiber by fluorination and their manufacturing method
Dawood et al. Properties of high strength flowable mortar reinforced with different fibers

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination