KR100874584B1 - Low heat generation ultra high strength concrete composition - Google Patents

Low heat generation ultra high strength concrete composition Download PDF

Info

Publication number
KR100874584B1
KR100874584B1 KR20070046783A KR20070046783A KR100874584B1 KR 100874584 B1 KR100874584 B1 KR 100874584B1 KR 20070046783 A KR20070046783 A KR 20070046783A KR 20070046783 A KR20070046783 A KR 20070046783A KR 100874584 B1 KR100874584 B1 KR 100874584B1
Authority
KR
South Korea
Prior art keywords
weight
high strength
binder
aggregate
heat generation
Prior art date
Application number
KR20070046783A
Other languages
Korean (ko)
Other versions
KR20080100733A (en
Inventor
조윤구
최현국
변승호
김상윤
유동우
Original Assignee
현대건설주식회사
성신양회 주식회사
주식회사 윈플로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대건설주식회사, 성신양회 주식회사, 주식회사 윈플로 filed Critical 현대건설주식회사
Priority to KR20070046783A priority Critical patent/KR100874584B1/en
Publication of KR20080100733A publication Critical patent/KR20080100733A/en
Application granted granted Critical
Publication of KR100874584B1 publication Critical patent/KR100874584B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00068Mortar or concrete mixtures with an unusual water/cement ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00448Low heat cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 강도가 120㎫를 넘는 저발열 초고강도 콘크리트 조성물에 관한 것으로, 결합재로 시멘트에 고로슬래그 미분말, 실리카흄 및 무수석고가 적정비율로 혼합된 결합재를 사용하고 10~17중량%의 낮은 물-결합재비로 배합되도록 함으로써 일정의 시공성을 확보하면서 120㎫를 넘는 강도가 발현되는 저발열 초고강도 콘크리트 조성물에 관한 것이다. 본 발명은 단위수량 100~130㎏/㎥, 단위결합재량 750~920㎏/㎥, 단위잔골재량 410~590㎏/㎥및 단위굵은 골재량 920~1170㎏/㎥를 포함하여 조성하되, 물-결합재비가 10~17중량%, 잔골재율이 30~35중량%이며, 결합재가 시멘트, 고로슬래그 미분말, 무수석고 및 실리카흄을 포함하도록 혼합되는 것이 특징이며; 콘크리트 배합설계시 결합재로 시멘트에 고로슬래그 미분말, 실리카흄 및 무수석고를 적정비율로 혼합된 결합재를 사용하고 10~17중량%의 낮은 물-결합재비로 배합되도록 함으로써 일정의 시공성을 가지면서 120㎫를 넘는 저발열 초고강도를 가지는 콘크리트를 확보할 수 있게 된다. 그 결과 급격한 수화열 발생에 따라 균열등의 결함이 발생하였던 문제점을 해결하고 결함이 발생하지 않는 초고강도 콘크리트를 시공할 수 있다. The present invention relates to a low heat generation ultra-high strength concrete composition having a strength of more than 120 MPa, and using a binder in which cement blast furnace slag powder, silica fume, and anhydrous gypsum are mixed in an appropriate ratio and having a low water content of 10 to 17% by weight. It relates to a low heat generation ultra-high strength concrete composition in which a strength of more than 120 MPa is expressed while ensuring uniform workability by being blended in a binder ratio. The present invention comprises a unit amount of 100 ~ 130 ㎏ / ㎥, unit binding amount 750 ~ 920 ㎏ / ㎥, unit aggregate aggregate 410 ~ 590 ㎏ / ㎥ and unit coarse aggregate 920 ~ 1170 ㎏ / ㎥ The ratio is 10 to 17% by weight, the fine aggregate ratio is 30 to 35% by weight, and the binder is mixed so as to include cement, blast furnace slag fine powder, anhydrous gypsum and silica fume; When concrete mixing design is used, the binder is mixed with cement blast furnace slag powder, silica fume and anhydrous gypsum in an appropriate ratio. It is possible to secure concrete with low heat generation ultra high strength. As a result, it is possible to solve the problem that defects such as cracks occurred due to rapid heat of hydration and to construct ultra-high strength concrete without defects.

Description

저발열 초고강도 콘크리트 조성물{Low heat ultra high strength concrete composition}Low heat ultra high strength concrete composition

도 1은 본 발명에 따른 단열온도 상승 시험 결과를 나타낸 그래프이다.1 is a graph showing the results of the adiabatic temperature rise test according to the present invention.

본 발명은 강도가 120㎫를 넘는 저발열 초고강도 콘크리트 조성물에 관한 것으로, 더욱 상세하게는 결합재로 시멘트에 고로슬래그 미분말, 실리카흄 및 무수석고를 적정비율로 혼합된 결합재를 사용하고 10~17중량%의 낮은물-결합재비로 배합되도록 함으로써 일정의 시공성을 확보하면서 120㎫를 넘는 강도가 발현되는 저발열 초고강도 콘크리트 조성물에 관한 것이다.The present invention relates to a low heat generation ultra-high strength concrete composition with a strength of more than 120 MPa, more specifically, 10 to 17% by weight using a binder mixed with blast furnace slag powder, silica fume and anhydrous gypsum in an appropriate ratio as cement. By lowering the water-binding material ratio of the low heat-generating ultra-high strength concrete composition expressing strength over 120 MPa while securing a certain workability.

최근 초고층 구조물의 증가에 따라 초고강도 콘크리트의 관심이 증대되고 있다. 초고강도 콘크리트의 적용을 통해 기둥단면의 축소가 가능하게 되어 RC구조물은 물론 SRC구조물의 경우에 골조경비를 절감시킬 수 있게 되기 때문이다. 특히 SRC구조물의 경우에는 철골량을 크게 줄일 수 있어 경제성에 기여할 것이다. 나아가 초고강도 콘크리트 적용으로 기둥단면의 축소가 가능해지므로 이에 따라 넓은 내부공간을 확보할 수 있게 되어 공간 활용에 유용하다는 이점 또한 기대된다.Recently, with the increase of the high-rise structure, the interest of ultra-high strength concrete is increasing. This is because it is possible to reduce the column cross-section through the application of ultra high-strength concrete, so that it is possible to reduce the skeleton cost in the case of RC structures as well as SRC structures. In particular, in the case of SRC structures, the amount of steel frame can be greatly reduced, contributing to economic efficiency. In addition, the application of ultra-high strength concrete enables the reduction of the columnar cross-section, thereby securing a large internal space, which is also useful for space utilization.

그러나 이러한 초고강도 콘크리트를 타설할 경우 급격한 수화열 발생에 따라 결함이 발생하여 콘크리트의 내구성에 악영향을 줄 수 있다. However, when the super high strength concrete is poured, defects may occur due to rapid heat of hydration, which may adversely affect the durability of the concrete.

본 발명은 상기한 종래의 문제에 착안하여 인출된 것으로서, 본 발명의 목적은 결합재로 시멘트에 고로슬래그 미분말, 실리카흄 및 무수석고가 적정비율로 혼합된 결합재를 사용하고 10~17중량%의 낮은 물-결합재비로 배합한 저발열 초고강도 콘크리트 조성물을 제공하는 것이다.The present invention has been drawn out in view of the above-mentioned conventional problems, the object of the present invention is to use a binder mixed with blast furnace slag fine powder, silica fume and anhydrous gypsum in an appropriate ratio as a binder in a low water of 10 to 17% by weight It is to provide a low heat generation ultra-high strength concrete composition blended with a binder cost.

본 발명의 또 다른 목적은, 콘크리트 배합시 사용되는 굵은 골재의 양을 극대하고, 결합재에서 저발열 특성을 가지도록 설계함으로 경화시 발생되는 수화열을 극소화한 배합으로, 120㎫를 넘는 강도가 발현되는 저발열 초고강도 콘크리트 조성물을 제공하는데 그 목적이 있다.Another object of the present invention is to maximize the amount of coarse aggregate used in concrete mixing, and to minimize the heat of hydration generated during curing by designing to have a low heat generation characteristics in the binder, the strength over 120 MPa is expressed Its purpose is to provide a low heat generation ultra high strength concrete composition.

상기한 목적달성을 위한 수단으로,As a means for achieving the above object,

단위수량 100~130㎏/㎥과; 단위결합재량 750~920㎏/㎥과; 단위잔골재량 410~590㎏/㎥;및, 단위 굵은골재량 920~1170㎏/㎥를 포함하여 조성하되, 물-결합재비가 10~17중량%, 잔골재율이 30~35 중량%이며, 결합재가 시멘트, 고로슬래그 미분말, 무수석고 및 실리카흄을 포함하도록 혼합되는 것이 특징이다.Unit quantity of 100 to 130 kg / m 3; Unit binding material amount of 750-920 kg / m 3; Unit aggregate aggregate 410 ~ 590 ㎏ / ㎥; And, including the coarse aggregate amount of 920 ~ 1170 ㎏ / ㎥, comprising a water-binding ratio of 10 to 17% by weight, the aggregate aggregate is 30 to 35% by weight, the binder is cement It is characterized by being mixed to include blast furnace slag fine powder, anhydrous gypsum and silica fume.

또한 고로슬래그 미분말의 분말도는 3,000~6,000cm2/g 이며, 무수석고의 분말도는 3,000~6,000cm2/g 인 것이 특징이다.In addition, the powder of blast furnace slag powder is 3,000 ~ 6,000cm 2 / g, the powder of anhydrous gypsum is characterized by 3,000 ~ 6,000cm 2 / g.

또한 잔골재는 조립율이 2.6~3.2 이며, 굵은골재는 그 최대치수가 15㎜이하이면서 강도가 120㎫이상인 것이 특징이다.In addition, the fine aggregate has a granulation rate of 2.6 to 3.2, and the coarse aggregate has a maximum dimension of 15 mm or less and a strength of 120 MPa or more.

또한 폴리카르본산계 고성능 감수제가 결합재의 2.0~3.8중량% 더 혼합된 것이 특징이다.In addition, the polycarboxylic acid-based high performance water reducing agent is characterized in that 2.0 to 3.8% by weight of the binder is further mixed.

본 발명의 그 밖의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 분명해질 것이다.Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings.

이하, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 사용한다. 또한, 하기에서 본 발명을 설명함에 있어, 관련된 공지기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to components of each drawing, the same reference numerals are used for the same components as much as possible even if they are shown in different drawings. In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.

본 발명에 따른 저발열 초고강도 콘크리트는 유동성 및 장기강도 개선을 목적으로 결합재로 시멘트에 고로슬래그 미분말, 실리카흄 및 무수석고를 적정비율로 개별 혼합하거나 프리믹스한 결합재를 사용하면서, 낮은 물-결합재비로 배합된다는데 특징이 있다. 구체적인 배합범위는 [표 1]과 같다.The low heat generation ultra high strength concrete according to the present invention is mixed with low water-binder ratio while individually mixing or premixing blast furnace slag fine powder, silica fume and anhydrous gypsum into cement as binders for the purpose of improving fluidity and long-term strength. It is characterized by. Specific mixing ranges are shown in [Table 1].

초고강도 콘크리트 배합비Ultra High Strength Concrete Mixing Ratio W/B(중량%)W / B (% by weight) S/a(중량%) (a=S+G)S / a (wt%) (a = S + G) 단위재료량(kg/m2)Unit material amount (kg / m 2 ) WW BB SS GG 10~1710-17 30.0~35.030.0-35.0 100~130100-130 750~920750-920 410~590410-590 920~1170920-1170

① 물-결합재비(W/B)① Water-binding ratio (W / B)

120㎫ 이상의 초고강도 콘크리트 발현을 위하여 10~17중량%를 사용한다. 물-결합재비가 10중량%이하이면 콘크리트의 유동성 확보 및 콘크리트의 비빔에 문제가 되어 시공성이 좋지 못하게 되고, 17중량%이상이면 초고강도 발현이라는 본 발명의 목적달성에 문제가 있게 된다.10 ~ 17% by weight is used for expressing high strength concrete of 120 MPa or more. If the water-bonding material ratio is less than 10% by weight is a problem in securing the fluidity of the concrete and the concrete beam, poor construction properties, if more than 17% by weight has a problem in achieving the object of the present invention, the expression of ultra high strength.

② 잔골재율(S/a)② Fine aggregate rate (S / a)

전체 골재(모래+자갈) 체적에 대한 모래의 체적비로서 콘크리트의 유동성을 결정하는 수치이며, 잔골재의 조립율을 고려하여 30.0~35.0 중량%수준에서 설정하도록 한다. 본 발명에 따른 저발열 초고강도 콘크리트 조성물은 수화열 저감 및 초고강도 발현에 적합하며, 유동성에 문제가 되지 않는 최소의 잔골재율을 선정하였다.The ratio of sand to total aggregate (sand + gravel) is the numerical value that determines the fluidity of concrete. The low heat generation ultra high strength concrete composition according to the present invention is suitable for reducing the heat of hydration and the development of ultra high strength, and selected the minimum fine aggregate ratio that does not matter the fluidity.

③ 결합재(B)③ Binder (B)

일반 콘크리트에서 사용되는 시멘트와 고로슬래그 미분말, 실리카흄 및 무수석고등의 혼화재를 일정 비율로 개별 혼합하거나 프리믹스하여 확보하게 되며, 혼화재는 시멘트 단독으로 사용하는 경우보다 굳지 않은 콘크리트의 유동성 증진 및 장기강도 발현과 저발열에 기여한다. 이와 같은 결합재의 단위량은 750~920㎏/㎥확보되도록 하여 초고강도 발현에 문제없도록 한다.Cement used in general concrete and admixtures such as blast furnace slag fine powder, silica fume and anhydrous gypsum are secured by mixing or premixing them at a certain ratio. And contribute to low fever. The unit amount of the binder is secured to 750 ~ 920㎏ / ㎥ to ensure that the ultra-high strength is not a problem.

본 발명에서는 시멘트 수화열 저감, 수화생성물의 증대, 치밀한 조직의 형성 및 장기강도 증진의 목적으로 고로슬래그 미분말을 채택하고, 잠재수경성 재료인 고로슬래그 미분말의 자극제 역할과 함께 유효팽창에 따른 치밀한 조직형성을 목적으로 무수석고를 채택하며, 이미 초고강도 발현에 유용한 효과가 있는 것으로 알려진 실리카흄을 채택하고 있다.In the present invention, blast furnace slag fine powder is adopted for the purpose of reducing cement heat of hydration, increasing hydration products, forming dense tissue and enhancing long-term strength. Anhydrous gypsum is used for the purpose, and silica fume, which is known to have a useful effect in the development of ultra high strength, is adopted.

고로슬래그 미분말과 무수석고는 각각 분말도가 3,000~6,000㎠/g 을 만족하는 고분말도의 것을 채택한다. 그리고 이들을 충분히 믹싱하여 잘 분산시킴으로써 유동성 및 강도개선에 유리하게 작용할 것으로 기대된다.The blast furnace slag fine powder and anhydrous gypsum are selected from those of a high powder degree with a powder content of 3,000 to 6,000 cm 2 / g, respectively. In addition, it is expected to work well in improving fluidity and strength by mixing them well and dispersing them well.

시멘트와 혼화재의 혼합비율은 하기 [표 2]와 같은 비율로 설정하도록 하며, 이는 콘크리트의 유동성과 강도를 고려하여 설정된 것이다.The mixing ratio of cement and admixture is set to the ratio as shown in the following [Table 2], which is set in consideration of the fluidity and strength of concrete.

결합재의 혼합비율Mixing ratio of binder 시멘트cement 고로슬래그 미분말Blast furnace slag powder 무수석고Anhydrous gypsum 실리카흄Silica fume 10~30중량%10-30% by weight 50~70중량%50-70 wt% 1~10중량%1-10% by weight 5~15중량%5-15% by weight

④ 잔골재(S)④ Fine Aggregate (S)

잔골재(모래)는 일반 레미콘사에서 사용하는 것과 동일한 것을 사용하거나, 인조규사를 사용하며, 조립율이 2.6~3.2 수준의 것을 사용하는 것이 콘크리트의 유동성 확보 및 점성저하를 위해 바람직하다. 단위잔골재량은 410~590㎏/m3범위에서 선택하도록 한다.Fine aggregates (sand) are the same as those used in general ready-mixed concrete, or using artificial silica sand, it is preferable to use the 2.6 ~ 3.2 level of assembly rate to ensure the fluidity of the concrete and to reduce the viscosity. The amount of unit aggregate is to be selected in the range of 410 ~ 590㎏ / m 3 .

⑤ 굵은골재(G)⑤ Coarse aggregate (G)

콘크리트 강도를 고려하여 굵은골재(자갈) 최대치수는 15㎜이하로 하며 150㎫이상의 강도를 발현하는 골재를 사용하는 것이 바람직하다. 단위굵은골재량은 920~1170㎏/㎥ 범위에서 선택하도록 한다.In consideration of the concrete strength, the coarse aggregate (gravel) maximum dimension should be 15 mm or less, and it is preferable to use an aggregate that exhibits strength of 150 MPa or more. The unit coarse aggregate amount is to be selected in the range of 920 ~ 1170㎏ / ㎥.

⑥ 혼화제(AD) :폴리카르본산계 고성능 감수제⑥ Admixture (AD): Polycarboxylic acid high performance water reducing agent

본 발명에 따른 초고강도 콘크리트 조성물은 낮은 물-결합재비를 가지므로 고성능 감수제를 더 혼합하는 것이 바람직하며, 이때 고성능 감수제로는 분산력 및 감수력이 우수한 폴리카르본산계 고성능 감수제를 채택함이 좋다. 폴리카르본산계 고성능 감수제의 경우에는 결합재량의 2.0~3.8중량%로 혼합하도록 하는 것이 경제성과 성능발현을 고려할 때 바람직하다.The ultra high strength concrete composition according to the present invention has a low water-bonding ratio, so it is preferable to further mix a high performance water reducing agent, and in this case, it is preferable to adopt a polycarboxylic acid-based high performance water reducing agent having excellent dispersion and water resistance. In the case of a polycarboxylic acid-based high performance water reducing agent, it is preferable to mix at 2.0 to 3.8% by weight of the binder, in consideration of economic performance and performance expression.

이하, 본 발명을 바람직한 실시예에 따라 상세히 설명한다.Hereinafter, the present invention will be described in detail according to a preferred embodiment.

[ 실시예 1] 저발열 초고강도 콘크리트 실내 시험의 예 [Example 1] Examples of the low heat ultra-high strength concrete laboratory test

(a)실험방법(a) Experimental method

콘크리트를 40L 의 체적이 되도록 축소 배합을 작성하고 콘크리트를 실내에서 믹싱 시험을 실시하여, 시공성 및 재령별 공시체 압축강도를 측정하여 목표강도 만족여부를 검토하였다.The concrete was reduced to 40L in volume, and the mixing test was carried out in the room. The testability and compressive strength of each specimen were measured to examine the target strength.

(b)초고강도 콘크리트 배합설계(b) Ultra high strength concrete mix design

본 실시예에서의 콘크리트 배합설계 및 사용 재료원은 [표 3]과 같다.Concrete mixing design and the material source used in this embodiment is shown in Table 3.

초고강도 콘크리트 배합설계Ultra High Strength Concrete Mixing Design 구분division W/B(중량%)W / B (% by weight) S/a(중량%)S / a (% by weight) 단위재료량(㎏/㎥)Unit material amount (㎏ / ㎥) AD (Bx중량%)AD (Bx wt%) WW BB SS GG 배합 1Formulation 1 10.810.8 40.040.0 135135 12501250 451451 682682 2.42.4 배합 2Formulation 2 12.512.5 30.030.0 110110 880880 450450 10571057 3.43.4

※ 배합 1은 비교 배합임.※ Formulation 1 is comparative formulation.

(c)실험결과(c) results

상기 배합설계에 따라 배합된 콘크리트를 물성 시험한 결과 [표 4] 및 [표 5]와 같은 결과를 얻을 수 있었다.As a result of the physical property test of the concrete blended according to the blend design, the results as shown in [Table 4] and [Table 5] were obtained.

굳지 않은 콘크리트 물성시험 결과Unconsolidated Concrete Property Test Results 구분division 슬럼프 플로우 (㎝)Slump Flow (cm) 50cm 도달시간 (sec)50cm Reach Time (sec) 공기량 (%)Air volume (%) 온도 (℃)Temperature (℃) 배합 1Formulation 1 69 ㎝69 cm 15.3115.31 1.81.8 17.017.0 배합 2Formulation 2 65 ㎝65 cm 16.4216.42 1.61.6 16.016.0

경화콘크리트 시험결과Cured Concrete Test Results 구분division 압축강도(㎫)Compressive strength (MPa) 3D3D 7D7D 14D14D 28D28D 배합 1Formulation 1 90.090.0 140.5140.5 175.2175.2 200.8200.8 배합 2Formulation 2 81.081.0 125.5125.5 150.3150.3 185.4185.4

상기와 같이 굳지않은 콘크리트 물성시험에서 40분 경과 후 슬럼프 플로우는 65㎝이상으로 충분한 시공성이 확보되었으며, 경화콘크리트 시험결과도 공시체의 경우 120 ㎫을 크게 상회하였다.After 40 minutes in the concrete properties test as described above, the slump flow was secured to more than 65 ㎝, and the hardened concrete test results also significantly exceeded 120 MPa in the specimen.

도 1은 단열온도 상승 시험 결과를 나타낸 그래프이다. 도 1에 나타난 바와 같이, 단열온도 상승 시험은 출발 온도 20℃를 기준으로 시험하였다. 배합 1번은 약 44시간에 최고 온도 89℃에 도달하여 온도 변화 △T는 69℃이고, 배합 2번은 약 45시간에 55℃에 도달하여 온도 변화 △T는 35℃로 기존에 알려진 초고강도 콘크리트의 수화열과 비교하여 50% 정도의 수화열 저감 효과가 나타나고 있으며 균열 제어 효과가 탁월한 콘크리트이다.1 is a graph showing the results of the adiabatic temperature rise test. As shown in Figure 1, the adiabatic temperature rise test was tested based on the starting temperature 20 ℃. Formulation No. 1 reached the maximum temperature of 89 ° C in about 44 hours, and the temperature change ΔT was 69 ° C. Formulation No. 2 reached 55 ° C in about 45 hours, and the temperature change △ T was 35 ° C. Compared with the heat of hydration, the heat of hydration is reduced by about 50% and the concrete has excellent crack control effect.

이상 설명한 바와 같이 본 발명에 의하면, 콘크리트 배합설계시 결합재로 시멘트에 고로슬래그 미분말, 실리카흄 및 무수석고를 적정비율로 혼합된 결합재를 사용하고 10~17중량%의 낮은 물-결합재비로 배합되도록 함으로써 일정의 시공성을 가지면서 120 ㎫를 넘는 저발열 초고강도를 가지는 콘크리트를 확보할 수 있게 된다. 그 결과 급격한 수화열 발생에 따라 균열등의 결함이 발생하였던 문제점을 해결하고 결함이 발생하지 않는 초고강도 콘크리트를 시공할 수 있다. As described above, according to the present invention, by using a binder mixed with blast furnace slag fine powder, silica fume and anhydrous gypsum in an appropriate ratio as a binder in concrete mixing design, it is formulated at a low water-binder ratio of 10 to 17% by weight. It is possible to secure concrete having low heat generation ultra high strength of more than 120 MPa while having a construction property of. As a result, it is possible to solve the problem that defects such as cracks occurred due to rapid heat of hydration and to construct ultra-high strength concrete without defects.

비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어졌지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능할 것이다. 따라서, 첨부된 청구의 범위는 본 발명의 진정한 범위내에 속하는 그러한 수정 및 변형을 포함할 것이라고 여겨진다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, various other modifications and variations may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the appended claims cover such modifications and variations as fall within the true scope of the invention.

Claims (4)

단위 수량 100~130㎏/㎥;Unit quantity of 100 to 130 kg / m 3; 단위 결합재량 750~920㎏/㎥;Unit binder content of 750-920 kg / m 3; 단위 잔골재량 410~590㎏/㎥; 및Unit fine aggregate amount of 410-590㎏ / ㎥; And 단위 굵은골재량 920~1170㎏/㎥을 포함하여 조성되고,Unit coarse aggregate amount is 920 ~ 1170㎏ / ㎥, including 상기 결합재에 대하여 상기 물이 10~17중량%, 상기 잔골재와 상기 굵은 골재의 합에 대한 상기 잔골재율이 30~35중량%이며,10 to 17% by weight of the water relative to the binder, the residual aggregate ratio is 30 to 35% by weight based on the sum of the fine aggregate and the coarse aggregate, 상기 결합재는 시멘트 10~30중량%, 고로슬래그 미분말 50~70중량%, 무수석고 1~10중량% 및 실리카흄 5~15중량%를 포함하고,The binder includes 10 to 30% by weight of cement, 50 to 70% by weight of blast furnace slag, 1 to 10% by weight of anhydrous gypsum and 5 to 15% by weight of silica fume, 상기 고로슬래그 미분말의 분말도는 3,000~6,000㎠/g 이며, 상기 무수석고의 분말도는 3,000~6,000㎠/g 이고, 그리고The powder degree of the blast furnace slag fine powder is 3,000 ~ 6,000 cm 2 / g, the powder degree of the anhydrous gypsum is 3,000 ~ 6,000 cm 2 / g, and 강도는 120MPa이상인 것을 특징으로 하는 저발열 초고강도 콘크리트 조성물.Low heat generation ultra high strength concrete composition, characterized in that the strength is more than 120MPa. 삭제delete 제 1 항에 있어서,The method of claim 1, 상기 잔골재는 그 치수가 1.86~4.40mm이고, 그리고The fine aggregate has a dimension of 1.86-4.40mm, and 상기 굵은골재는 그 최대치수가 15㎜이고, 상기 굵은골재의 강도는 150㎫이상인 것을 특징으로 하는 저발열 초고강도 콘크리트 조성물.The coarse aggregate has a maximum dimension of 15 mm, the strength of the coarse aggregate is low heat generation ultra-high strength concrete composition, characterized in that more than 150MPa. 제 3 항에 있어서,The method of claim 3, wherein 폴리카르본산계 고성능 감수제가 상기 결합재의 2.0~3.8중량% 더 혼합된 것을 특징으로 하는 저발열 초고강도 콘크리트 조성물.Low heat generation ultra-high strength concrete composition, characterized in that the polycarboxylic acid-based high-performance water reducing agent is further mixed 2.0 to 3.8% by weight of the binder.
KR20070046783A 2007-05-14 2007-05-14 Low heat generation ultra high strength concrete composition KR100874584B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070046783A KR100874584B1 (en) 2007-05-14 2007-05-14 Low heat generation ultra high strength concrete composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070046783A KR100874584B1 (en) 2007-05-14 2007-05-14 Low heat generation ultra high strength concrete composition

Publications (2)

Publication Number Publication Date
KR20080100733A KR20080100733A (en) 2008-11-19
KR100874584B1 true KR100874584B1 (en) 2008-12-16

Family

ID=40287160

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070046783A KR100874584B1 (en) 2007-05-14 2007-05-14 Low heat generation ultra high strength concrete composition

Country Status (1)

Country Link
KR (1) KR100874584B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140561B1 (en) 2011-07-29 2012-05-02 아세아시멘트주식회사 High flowing-low heating concrete composition for carbon dioxide reduction
KR101238835B1 (en) 2010-12-14 2013-03-04 삼성물산 주식회사 Ultra high strength and Low Viscosity concrete composition using type I cement
WO2013089431A2 (en) * 2011-12-15 2013-06-20 삼성물산 (주) Method for controlling ultra-high strength concrete for maximized strength
KR20150049665A (en) * 2013-10-30 2015-05-08 대림산업 주식회사 Mass concrete with admixture that is low viscosity and hydration crack reducing type
US10807911B2 (en) * 2017-06-29 2020-10-20 Sumitomo Mitsui Construction Co., Ltd. Concrete composition and production method therefor
KR20210049657A (en) 2019-10-25 2021-05-06 한양대학교 산학협력단 Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101238835B1 (en) 2010-12-14 2013-03-04 삼성물산 주식회사 Ultra high strength and Low Viscosity concrete composition using type I cement
KR101140561B1 (en) 2011-07-29 2012-05-02 아세아시멘트주식회사 High flowing-low heating concrete composition for carbon dioxide reduction
WO2013089431A2 (en) * 2011-12-15 2013-06-20 삼성물산 (주) Method for controlling ultra-high strength concrete for maximized strength
WO2013089431A3 (en) * 2011-12-15 2013-08-08 삼성물산 (주) Method for controlling ultra-high strength concrete for maximized strength
KR20150049665A (en) * 2013-10-30 2015-05-08 대림산업 주식회사 Mass concrete with admixture that is low viscosity and hydration crack reducing type
KR101656853B1 (en) 2013-10-30 2016-09-12 대림산업 주식회사 Mass concrete with admixture that is low viscosity and hydration crack reducing type
US10807911B2 (en) * 2017-06-29 2020-10-20 Sumitomo Mitsui Construction Co., Ltd. Concrete composition and production method therefor
KR20210049657A (en) 2019-10-25 2021-05-06 한양대학교 산학협력단 Fiber reinforced cement composition with ultra-rapid hardening and high tensile stress and strain

Also Published As

Publication number Publication date
KR20080100733A (en) 2008-11-19

Similar Documents

Publication Publication Date Title
KR100893495B1 (en) The manufacturing method and composition of low-heat, high-strength concrete for self compaction
KR100873514B1 (en) Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder
Karatas et al. Effect of incorporation of raw vermiculite as partial sand replacement on the properties of self-compacting mortars at elevated temperature
KR100874584B1 (en) Low heat generation ultra high strength concrete composition
KR101948627B1 (en) High strength lightweight concrete composition including artificial lightweight aggregates
KR101654568B1 (en) Early strength type shotcrete composite
KR100867250B1 (en) Ultra high strength concrete containing non-sintering binder
KR100686353B1 (en) High fire resistance and ultra high strength concrete composition
JP2008120611A (en) Grout composition, grout mortar and grout construction method
JP2016030707A (en) High-strength concrete and production method of concrete member
KR100686350B1 (en) Ultra high strength concrete composition
KR101243523B1 (en) High Strength Concrete Composition for High-Rise Building
KR102447340B1 (en) Heavy mortar composition for flooring
JP5136829B2 (en) Hydraulic composition and cured product thereof
KR101390132B1 (en) high strength concrete composition using rapid hardening type portland cement
KR101252962B1 (en) Shotcrete composition comprising cement having high fineness and quick setting time
JP2007238745A (en) Grout composition and grout mortar using the same
KR100908675B1 (en) Concrete composition for revealing high early strength
KR20190108323A (en) Geopolymer Concrete Composition And Method for Manufacturing Geopolymer Concrete Using the Same
Kazempour et al. Masonry mortar with nanoparticles at a low temperature
KR100947899B1 (en) High wolume fly-ash concrete composition for high performance
JP6735068B2 (en) Method for producing cement composition and hardened cement product
JP2018531207A (en) Additives for internal post-treatment of inorganic binder compositions
JP2018531207A6 (en) Additives for internal post-treatment of inorganic binder compositions
JP4877892B2 (en) Cement admixture, cement composition, and high fluidity concrete using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120918

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130925

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151008

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171128

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181129

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20191128

Year of fee payment: 12