KR20210029886A - Metal plated carbon fibers by non-electroplating process and manufacturing method thereof - Google Patents

Metal plated carbon fibers by non-electroplating process and manufacturing method thereof Download PDF

Info

Publication number
KR20210029886A
KR20210029886A KR1020190110882A KR20190110882A KR20210029886A KR 20210029886 A KR20210029886 A KR 20210029886A KR 1020190110882 A KR1020190110882 A KR 1020190110882A KR 20190110882 A KR20190110882 A KR 20190110882A KR 20210029886 A KR20210029886 A KR 20210029886A
Authority
KR
South Korea
Prior art keywords
carbon fiber
metal
plated
electroless
plating
Prior art date
Application number
KR1020190110882A
Other languages
Korean (ko)
Inventor
정승
지현석
박춘성
하재상
이현무
박진성
이종복
Original Assignee
(주)다인스
유신정밀공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)다인스, 유신정밀공업 주식회사 filed Critical (주)다인스
Priority to KR1020190110882A priority Critical patent/KR20210029886A/en
Priority to PCT/KR2019/018812 priority patent/WO2021045327A1/en
Publication of KR20210029886A publication Critical patent/KR20210029886A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • B01F11/02
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/34Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxygen, ozone or ozonides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Abstract

Electroless metal plated carbon fibers and a manufacturing method thereof are provided. In the electroless metal plated carbon fibers according to an embodiment of the present invention, metal is plated on carbon fibers by dipping the carbon fibers in an electroless plating solution, wherein the thickness of the metal plated on the carbon fibers is 0.3 to 1.0 μm.

Description

무전해 금속 도금 탄소섬유 및 이의 제조 방법{METAL PLATED CARBON FIBERS BY NON-ELECTROPLATING PROCESS AND MANUFACTURING METHOD THEREOF}Electroless metal plating carbon fiber and its manufacturing method {METAL PLATED CARBON FIBERS BY NON-ELECTROPLATING PROCESS AND MANUFACTURING METHOD THEREOF}

본 발명은 무전해 금속 도금 탄소섬유 및 이의 제조 방법에 관한 것이다.The present invention relates to an electroless metal plated carbon fiber and a method of manufacturing the same.

탄소섬유 재료는 고강도, 고탄성, 초경량성 및 고온 강도유지율이 우수한 물성에 비해 낮은 전기 전도성 문제로 인하여 응용 분야가 제한되고 있다. 이를 해결하여 전자파 차폐 및 발열체에 응용하기 위해 물리적 또는 화학적 방법으로 금속을 탄소섬유에 코팅하고 있다.Carbon fiber materials have limited applications due to low electrical conductivity problems compared to high strength, high elasticity, ultra-lightweight, and high-temperature strength retention compared to excellent physical properties. To solve this problem, metal is coated on carbon fiber by a physical or chemical method in order to apply it to electromagnetic wave shielding and heating elements.

물리적인 방법으로 대표적인 CVD공정 또는 스퍼터링 방식은 탄소섬유와 금속 간의 결합력을 높일수 있으나, 불균일한 금속의 코팅 및 높은 에너지 소비로 인해 생산비용이 높아 가격 경쟁력을 가지지 못하는 단점이 있다.As a physical method, a typical CVD process or sputtering method can increase the bonding strength between carbon fiber and metal, but has a disadvantage in that it does not have price competitiveness due to high production cost due to non-uniform coating of metal and high energy consumption.

한편, 화학적인 방법으로 전해 도금과 무전해 도금이 있다.On the other hand, there are electrolytic plating and electroless plating as a chemical method.

전해 도금의 경우, 전기 에너지에 의해 금속을 탄소섬유 표면에 석출시키는 방법으로 두께가 불균일하고, 제품의 형상에 따른 도금의 제약이 있다.In the case of electrolytic plating, a method of depositing metal on the surface of carbon fibers by electric energy has a non-uniform thickness, and there are restrictions on plating depending on the shape of the product.

그리고, 무전해 도금과 전해 도금을 연속적으로 하는 방법의 경우, 무전해 도금 후에 시약이 전해 도금조를 오염시킴으로써 전해 도금조의 도금욕(Plating Bath)을 자주 교체해 주어야 하는 단점이 있다.And, in the case of a method of continuously performing electroless plating and electrolytic plating, there is a disadvantage that the plating bath of the electrolytic plating bath must be frequently replaced by contaminating the electrolytic plating bath after the electroless plating.

이에, 탄소섬유를 제조하기 위해 무전해 도금이 가장 많이 사용되고 있으나, 전기 전도성을 금속막에서 담보할 필요가 있으며, 도금 두께 조절의 어려움이 있다.Thus, although electroless plating is most often used to manufacture carbon fibers, it is necessary to secure electrical conductivity in the metal film, and it is difficult to control the plating thickness.

대한민국 공개특허 2018-0006523호 (2018.01.18. 공개)Republic of Korea Patent Publication No. 2018-0006523 (published on January 18, 2018) 대한민국 등록특허 1197723호 (2012.10.30. 등록)Korean Patent Registration No. 1197723 (registered on Oct. 30, 2012)

본 발명은 상기 문제점을 해결하기 위한 것으로, 탄소섬유 표면에 일정한 두께의 도금층을 형성할 수 있는 무전해 금속 도금 탄소섬유 및 이의 제조 방법을 제공한다.The present invention is to solve the above problems, and provides an electroless metal plated carbon fiber capable of forming a plated layer having a predetermined thickness on the surface of the carbon fiber, and a method of manufacturing the same.

본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to the problems mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 무전해 금속 도금 탄소섬유는, 탄소섬유를 무전해 도금 용액에 침지시켜 상기 탄소섬유에 금속을 도금하며, 상기 탄소섬유에 도금되는 상기 금속의 두께가 0.3 ~ 1.0 ㎛인 것을 특징으로 한다.The electroless metal plated carbon fiber according to an embodiment of the present invention for achieving the above object is plated with a metal on the carbon fiber by immersing the carbon fiber in an electroless plating solution, and the metal plated on the carbon fiber It is characterized in that the thickness is 0.3 ~ 1.0 ㎛.

또한, 상기 탄소섬유는, 소정 길이의 연속 탄소섬유이며, 섬유 직경은 1~10μm인 것을 특징으로 할 수 있다.In addition, the carbon fiber may be a continuous carbon fiber having a predetermined length, and the fiber diameter may be 1 to 10 μm.

그리고, 상기 금속은, 구리(Cu), 니켈(Ni), 및 은(Ag)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 할 수 있다.In addition, the metal may be characterized in that at least one selected from the group consisting of copper (Cu), nickel (Ni), and silver (Ag).

상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 무전해 금속 도금 탄소섬유의 제조 방법은, 탄소섬유를 오존수에 침지시켜 표면 처리하는 단계; 상기 오존수에 초음파를 조사하여 분산 처리하는 단계; 및 상기 탄소섬유를 무전해 도금 용액에 침지시켜 상기 탄소섬유에 금속을 도금 처리하는 단계를 포함한다.A method of manufacturing an electroless metal plated carbon fiber according to an embodiment of the present invention for achieving the above object comprises the steps of: surface-treating the carbon fiber by immersing it in ozone water; Dispersing the ozone water by irradiating ultrasonic waves; And immersing the carbon fiber in an electroless plating solution to plate a metal on the carbon fiber.

또한, 상기 표면 처리하는 단계는, 오존 농도 10∼60ppm, 온도 5∼50°C의 오존수에 3분 이상 침지시키는 것을 특징으로 할 수 있다.In addition, the step of surface treatment may be characterized in that it is immersed in ozone water having an ozone concentration of 10 to 60 ppm and a temperature of 5 to 50 °C for 3 minutes or more.

또한, 상기 분산 처리하는 단계는, 25~35분 동안 270~290W로 19~21kHz의 초음파를 조사하는 것을 특징으로 할 수 있다.In addition, the step of performing the dispersion treatment may be characterized by irradiating ultrasonic waves of 19 to 21 kHz at 270 to 290 W for 25 to 35 minutes.

그리고, 상기 도금 처리하는 단계는, 상기 탄소섬유를 NiCl2, NiSO4, CuSO4, CuCN, AgNO3 및 AgCN 중에서 선택된 1종 이상의 금속염과, 40 ~ 150 g/ℓ 농도의 NaH2PO2과, 40 ~ 150 g/ℓ 농도의 Na3C6H5O7 또는 NaCO2CH3를 함유한 pH 5 ~ 9의 무전해 도금 용액에 침지시켜 금속을 상기 탄소섬유에 무전해 도금시키는 것을 특징으로 할 수 있다.And, the step of the plating treatment, the carbon fiber with at least one metal salt selected from NiCl2, NiSO4, CuSO4, CuCN, AgNO3 and AgCN, NaH2PO2 of 40 ~ 150 g / ℓ concentration, and 40 ~ 150 g / ℓ concentration It may be characterized in that the metal is electrolessly plated on the carbon fiber by immersing in an electroless plating solution of pH 5 to 9 containing Na3C6H5O7 or NaCO2CH3.

본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the present invention are included in the detailed description and drawings.

본 발명에 따르면, 탄소섬유를 무전해 도금하여 탄소섬유 표면에 일정한 두께의 도금층을 형성할 수 있어 경제성과 전기 전도성이 우수한 금속 도금된 탄소섬유를 제조할 수 있다.According to the present invention, it is possible to form a plated layer of a certain thickness on the surface of the carbon fiber by electroless plating carbon fiber, thereby producing a metal-plated carbon fiber excellent in economy and electrical conductivity.

도 1은 무전해 도금 방식으로 도금된 탄소섬유를 촬영한 도면이다.
도 2는 본 발명의 일 실시예에 따른 무전해 금속 도금 탄소섬유의 제조 방법의 순서도이다.
1 is a view photographing a carbon fiber plated by an electroless plating method.
2 is a flow chart of a method of manufacturing an electroless metal plated carbon fiber according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Advantages and features of the present invention, and a method of achieving them will become apparent with reference to the embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms different from each other, and only these embodiments make the disclosure of the present invention complete, and common knowledge in the technical field to which the present invention belongs. It is provided to completely inform the scope of the invention to the possessor, and the invention is only defined by the scope of the claims. The same reference numerals refer to the same elements throughout the specification.

비록 제1, 제2 등이 다양한 소자, 구성요소 및/또는 섹션들을 서술하기 위해서 사용되나, 이들 소자, 구성요소 및/또는 섹션들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 소자, 구성요소 또는 섹션들을 다른 소자, 구성요소 또는 섹션들과 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 소자, 제1 구성요소 또는 제1 섹션은 본 발명의 기술적 사상 내에서 제2 소자, 제2 구성요소 또는 제2 섹션일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various elements, components and/or sections, of course, these elements, components and/or sections are not limited by these terms. These terms are only used to distinguish one element, component or section from another element, component or section. Therefore, it goes without saying that the first element, the first element, or the first section mentioned below may be a second element, a second element, or a second section within the technical scope of the present invention.

본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "이루어지다(made of)"는 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. The terms used in the present specification are for describing exemplary embodiments and are not intended to limit the present invention. In this specification, the singular form also includes the plural form unless specifically stated in the phrase. As used in the specification, "comprises" and/or "made of" a referenced component, step, operation and/or element is one or more of the other elements, steps, operations and/or elements. It does not exclude presence or addition.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used with meanings that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not interpreted ideally or excessively unless explicitly defined specifically.

이하, 본 발명에 대하여 첨부된 도면에 따라 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 무전해 도금 방식으로 도금된 탄소섬유를 촬영한 도면이다.1 is a view photographing a carbon fiber plated by an electroless plating method.

본 발명의 일 실시예에 따른 무전해 금속 도금 탄소섬유는 무전해 금속 도금 용액에 탄소섬유를 침지시켜 상기 탄소섬유에 금속이 도금된다. 전해 도금 방식으로 도금된 탄소섬유는 탄소섬유에 도금된 금속의 불균일성, 매우 높은 탄소섬유의 저항 등을 보이는 반면에, 무전해 도금 방식으로 도금된 탄소섬유는 표면에 일정한 두께의 도금층을 형성시킬 수 있고, 우수한 전기전도도를 가질 수 있다.In the electroless metal plating carbon fiber according to an embodiment of the present invention, metal is plated on the carbon fiber by immersing the carbon fiber in an electroless metal plating solution. Carbon fiber plated by electrolytic plating method shows non-uniformity of metal plated on carbon fiber and very high resistance of carbon fiber, while carbon fiber plated by electroless plating method can form a plated layer of a certain thickness on the surface. And can have excellent electrical conductivity.

탄소섬유는 팬(PAN)계, 피치(Pitch)계 및 레이온(Rayon) 계 탄소섬유, 탄소나노섬유 중에서 선택된 적어도 하나를 사용할 수 있다. The carbon fiber may be at least one selected from PAN-based, pitch-based, and rayon-based carbon fibers, and carbon nanofibers.

또한, 탄소섬유는 1차원적으로 신장된 구조를 가질 수 있으며, 탄소섬유는 소정 길이를 가진 연속 탄소섬유일 수 있다.In addition, the carbon fiber may have a one-dimensionally elongated structure, and the carbon fiber may be a continuous carbon fiber having a predetermined length.

또한, 탄소섬유의 섬유 직경은 1~10μm일 수 있다.In addition, the fiber diameter of the carbon fiber may be 1 ~ 10μm.

특히, 무전해 도금 전에 탄소섬유의 표면을 활성화하기 위해, 무전해 도금에 사용되는 탄소섬유는 표면의 불순물을 제거하는 전처리를 수행할 수 있다.In particular, in order to activate the surface of the carbon fiber before electroless plating, the carbon fiber used in the electroless plating may be subjected to a pretreatment of removing impurities from the surface.

예를 들어, 오존을 용해시킨 용액 중에 탄소섬유를 침지시킬 수 있다. 이때, 연속 탄소섬유를 오존수에 침지시키기 위해, 탄소섬유는 원형 또는 타원형으로 말아진 형태를 가질 수 있다. 탄소섬유가 오존 처리에 의해 무전해 도금에 알맞은 표면 상태가 된다. 구체적으로, 탄소섬유가 오존과 반응하여 OH기, COOH기, CO기 등이 생성되어 친수화될 수 있다. 탄소섬유가 친수화됨에 따라 무전해 도금에 의해 금속의 부착이 쉬워지게 된다. 이와 같이, 오존수를 이용하여 전처리함으로써, 환경에 영향을 미치지 않고 저비용으로 무전해 도금이 가능하다.For example, carbon fibers can be immersed in a solution in which ozone is dissolved. At this time, in order to immerse the continuous carbon fibers in ozone water, the carbon fibers may have a shape rolled into a circular or elliptical shape. The carbon fiber becomes a surface condition suitable for electroless plating by ozone treatment. Specifically, carbon fibers react with ozone to generate OH groups, COOH groups, CO groups, and the like, and may be hydrophilic. As the carbon fiber becomes hydrophilic, the adhesion of metal becomes easier by electroless plating. In this way, by pretreatment using ozone water, electroless plating can be performed at low cost without affecting the environment.

또한, SnCl2, PdCl2 등으로 탄소섬유의 표면을 활성화시켜 표면의 불순물을 제거하는 전처리를 수행할 수 있다. 구체적으로, 주석(Sn) 또는 팔라듐(Pd) 핵이 탄소섬유의 표면에 형성되며, 이러한 핵은 금속 석출을 촉매화 시키는 역할을 할 수 있다.In addition, pretreatment of removing impurities from the surface may be performed by activating the surface of the carbon fiber with SnCl2, PdCl2, or the like. Specifically, tin (Sn) or palladium (Pd) nuclei are formed on the surface of the carbon fiber, and these nuclei may serve to catalyze metal precipitation.

이때, 탄소섬유에 도금되는 상기 금속의 두께가 0.3 ~ 1.0 ㎛인 것이 바람직하다. 0.3 ㎛ 미만의 두께에서는 충분한 전기 전도성을 얻을 수 없고, 코팅 불균일성과 표면에 코팅이 벗겨진 상태가 관찰되었다. 또한, 1.0 ㎛를 초과하는 두께에서는 탄소섬유의 유연성이 상실되고, 단단해질 수 있다. In this case, it is preferable that the thickness of the metal plated on the carbon fiber is 0.3 to 1.0 μm. At a thickness of less than 0.3 μm, sufficient electrical conductivity could not be obtained, and coating non-uniformity and a state in which the coating was peeled off the surface were observed. In addition, when the thickness exceeds 1.0 μm, the flexibility of the carbon fiber may be lost and hardened.

특히, 도 1에 도시한 바와 같이, 금속 도금된 탄소섬유의 금속층의 두께가 0.5 ~ 0.7 ㎛인 경우, 탄소섬유 1g 당 금속의 도금량이 1,000 ~ 2,000 mg이 된다. In particular, as shown in FIG. 1, when the thickness of the metal layer of the metal-plated carbon fiber is 0.5 to 0.7 µm, the amount of metal plating per 1 g of the carbon fiber is 1,000 to 2,000 mg.

그리고, 금속의 두께가 0.3 ~ 1.0 ㎛인 경우에는 탄소섬유 1g 당 금속의 도금량이 500 ~ 4,000 mg이 된다. 특히, 금속의 도금량이 500 mg/g 미만이면 탄소섬유 표면에 고르게 도금층이 형성되지 않아 전기 전도성이 떨어지며, 금속의 도금량이 4,000 mg/g 초과면 탄소섬유 표면에 형성되는 금속 도금층이 너무 두꺼워 표면이 거칠어지거나 인접한 도금 탄소섬유 간의 마찰이 발생한다. 이로부터 크랙 현상 또는 박리 현상 등이 발생할 수 있고, 금속 도금 탄소섬유의 성형성이 저하되는 문제가 발생하게 된다. 그러므로, 탄소섬유에 도금되는 금속 도금층의 두께가 0.3 ~ 1.0 ㎛인 것이 바람직하다.In addition, when the thickness of the metal is 0.3 to 1.0 ㎛, the amount of metal plating per 1 g of carbon fiber is 500 to 4,000 mg. In particular, if the amount of metal plating is less than 500 mg/g, the plating layer is not evenly formed on the surface of the carbon fiber, resulting in poor electrical conductivity. If the amount of metal plating exceeds 4,000 mg/g, the metal plating layer formed on the surface of the carbon fiber is too thick. It is roughened or friction occurs between adjacent plated carbon fibers. From this, a crack phenomenon or a peeling phenomenon may occur, and a problem of deteriorating the formability of the metal-plated carbon fiber occurs. Therefore, it is preferable that the thickness of the metal plating layer to be plated on the carbon fiber is 0.3 to 1.0 µm.

여기에서, 금속은 구리(Cu), 니켈(Ni), 및 은(Ag)으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 즉, 금속 도금층은 구리(Cu), 니켈(Ni), 및 은(Ag) 중 하나로만 이루어질 수도 있고, 이중 도금층 이상일 수도 있다. 이때, 다중 도금층의 경우, 서로 상이한 금속으로 순차적으로 도금되는 이중 도금층 또는 삼중 도금층으로 이루어질 수 있다. 예를 들어, Ni을 제1 도금층으로, Cu를 제2 도금층으로, Ag를 제3 도금층으로 구성할 수 있다.Here, the metal may be at least one selected from the group consisting of copper (Cu), nickel (Ni), and silver (Ag). That is, the metal plating layer may be formed of only one of copper (Cu), nickel (Ni), and silver (Ag), or may be a double plating layer or more. In this case, in the case of a multiple plating layer, it may be formed of a double plating layer or a triple plating layer sequentially plated with different metals. For example, Ni may be used as a first plating layer, Cu may be used as a second plating layer, and Ag may be used as a third plating layer.

구체적으로, 금속 도금층을 형성하기 위해, 탄소섬유를 구리(Cu), 니켈(Ni), 및 은(Ag) 중에서 선택된 1종 이상의 금속염과, 환원제, 착화제 등을 포함하는 무전해 금속 도금 용액에 침지시킬 수 있다. 환원제에 의해 금속염의 금속(구리, 니켈, 은 중 적어도 1종 이상) 이온이 탄소섬유 표면에 흡착되어 금속 도금층을 형성할 수 있다. 또한, 환원제는 히드라진, 수소화붕소화합물, 코발트-에틸렌디아민 착화합물, Na3C6H5O7, NaCO2CH3 등이 사용될 수 있다. 또한, 착화제는 NaH2PO2, Na3C6H5O7 등을 사용할 수 있다. 또한, 무전해 금속 도금 용액은 소량의 안정제를 더 포함할 수 있다. 이때, 안정제는 PbNO3 등을 사용할 수 있다.Specifically, in order to form a metal plating layer, carbon fibers are added to an electroless metal plating solution containing at least one metal salt selected from copper (Cu), nickel (Ni), and silver (Ag), a reducing agent, and a complexing agent. Can be immersed. Metal (at least one or more of copper, nickel, and silver) ions of the metal salt are adsorbed on the surface of the carbon fiber by the reducing agent to form a metal plating layer. In addition, the reducing agent may be hydrazine, a borohydride compound, a cobalt-ethylenediamine complex, Na3C6H5O7, NaCO2CH3, or the like. In addition, as the complexing agent, NaH2PO2, Na3C6H5O7, or the like may be used. In addition, the electroless metal plating solution may further include a small amount of a stabilizer. At this time, the stabilizer may use PbNO3 or the like.

도 2는 본 발명의 일 실시예에 따른 무전해 금속 도금 탄소섬유의 제조 방법의 순서도이다.2 is a flow chart of a method of manufacturing an electroless metal plated carbon fiber according to an embodiment of the present invention.

도 2를 참조하면, 본 발명의 일 실시예에 따른 무전해 금속 도금 탄소섬유의 제조 방법은, 탄소섬유를 오존수에 침지시켜 표면 처리하며(S10), 상기 오존수에 초음파를 조사하여 분산 처리하고(S20), 상기 탄소섬유를 무전해 도금 용액에 침지시켜 상기 탄소섬유에 금속을 도금 처리한다(S30).Referring to FIG. 2, in the method of manufacturing an electroless metal plated carbon fiber according to an embodiment of the present invention, the carbon fiber is surface-treated by immersing it in ozone water (S10), and the ozone water is irradiated with ultrasonic waves to perform dispersion treatment ( S20), the carbon fiber is immersed in an electroless plating solution to plate a metal on the carbon fiber (S30).

표면 처리하는 경우(S10), 오존 농도 10∼60ppm, 온도 5∼50°C의 오존수에 3분 이상 침지시킬 수 있다. 먼저, 오존 농도가 10ppm 미만에서는 시간이 경과하여도 오존수 처리의 효과가 없으며, 60ppm를 초과하는 경우에는 그 이상 오존을 용해시키는 것이 어렵다. 또한, 온도가 5°C 미만에서는 반응속도가 늦어지고, 충분히 오존 처리되지 않으며, 50°C를 넘으면 사전 오존 처리 효과를 발휘할 수 있도록 오존을 용해시키는 것이 어렵다. 그리고, 침지 시간이 3분 미만인 경우에는 오존에 의한 친수화가 이루어지지 않는다.In the case of surface treatment (S10), it can be immersed in ozone water having an ozone concentration of 10 to 60 ppm and a temperature of 5 to 50° C. for 3 minutes or more. First, if the ozone concentration is less than 10 ppm, there is no effect of ozonated water treatment even if time elapses, and if it exceeds 60 ppm, it is difficult to dissolve ozone further. In addition, when the temperature is less than 5° C., the reaction rate becomes slow and ozone is not sufficiently treated, and when it exceeds 50° C., it is difficult to dissolve ozone so that the pre-ozone treatment effect can be exhibited. And, when the immersion time is less than 3 minutes, hydrophilization by ozone does not occur.

여기에서, 탄소섬유의 섬유 직경은 1~10μm인 탄소섬유를 사용하는 것이 바람직하다. 즉, 가공성 및 분산성을 높이기 위해서, 소정 길이의 1~10μm 직경을 가진 연속 탄소섬유가 바람직하며, 섬유 직경이 1~10μm 벗어날 경우, 섬유와 섬유를 서로 연결하는 형태인 네트워크 형에 분산되어지고 않아 낮은 표면저항을 얻을 수 없게 된다. 그리고, 탄소섬유는 오존수에 의한 친수 효과를 위해, 오존수 100 중량부 대비 50~100 중량부인 것이 바람직하다. Here, it is preferable to use carbon fibers having a fiber diameter of 1 to 10 μm. That is, in order to increase processability and dispersibility, continuous carbon fibers having a diameter of 1 to 10 μm of a predetermined length are preferred, and if the fiber diameter deviates from 1 to 10 μm, the fibers are dispersed in a network type that connects the fibers to each other. Therefore, it is impossible to obtain a low surface resistance. In addition, the carbon fiber is preferably 50 to 100 parts by weight relative to 100 parts by weight of ozonated water for a hydrophilic effect due to ozone water.

분산 처리하는 경우(S20), 25~35분 동안 270~290W로 19~21kHz의 초음파를 조사할 수 있다. 예를 들어, 배스 타입 소니케이터(Bath type sonicator)를 사용하여 초음파로 탄소섬유를 오존수에서 분산시켜 오존에 의한 친수화를 촉진시키고, 탄소섬유 표면의 불순물을 제거할 수 있다. 이때, 270~290W로 19~21kHz의 범위 밖에서 초음파를 조사하더라도 탄소섬유 표면의 불순물 제거 효과는 나타나지 않았다. 그리고, 초음파 조사 시간의 사용 시간이 충분하지 않으면 탄소섬유에 오존수에 의한 친수 효과가 제대로 일어나지 않을 수 있으며, 사용 시간이 과도하면 과도한 초음파에 의해 탄소섬유의 표면의 불순물이 제거되는 것을 넘어 탄소섬유 표면의 파괴가 진행될 수 있다. In the case of dispersion treatment (S20), ultrasonic waves of 19 to 21 kHz can be irradiated at 270 to 290 W for 25 to 35 minutes. For example, by dispersing carbon fibers in ozone water by ultrasonic waves using a bath type sonicator, it is possible to promote hydrophilization by ozone and remove impurities on the surface of carbon fibers. At this time, even if ultrasonic waves were irradiated outside the range of 19 to 21 kHz at 270 to 290 W, the effect of removing impurities on the surface of the carbon fiber did not appear. In addition, if the usage time of the ultrasonic irradiation time is insufficient, the hydrophilic effect of ozone water may not occur properly on the carbon fiber, and if the usage time is excessive, the surface of the carbon fiber goes beyond the removal of impurities on the surface of the carbon fiber by excessive ultrasonic waves. The destruction of can proceed.

도금 처리하는 경우(S20), 탄소섬유를 NiCl2, NiSO4, CuSO4, CuCN, AgNO3 및 AgCN 중에서 선택된 1종 이상의 금속염과, 40 ~ 150 g/ℓ 농도의 NaH2PO2과, 40 ~ 150 g/ℓ 농도의 Na3C6H5O7 또는 NaCO2CH3를 함유한 pH 5 ~ 9의 무전해 도금 용액에 침지시켜 금속을 상기 탄소섬유에 무전해 도금시킬 수 있다. In the case of plating treatment (S20), carbon fibers are treated with at least one metal salt selected from NiCl2, NiSO4, CuSO4, CuCN, AgNO3 and AgCN, NaH2PO2 at a concentration of 40 ~ 150 g/ℓ, and Na3C6H5O7 at a concentration of 40 ~ 150 g/ℓ. Alternatively, metal may be electrolessly plated on the carbon fiber by immersion in an electroless plating solution containing NaCO2CH3 and pH 5 to 9.

상술한 표면 처리, 분산 처리, 도금 처리에 의해, 금속 도금된 도금층의 두께가 0.3 ~ 1.0 ㎛이 된다. 금속 도금층의 두께가 0.3 ~ 1.0 ㎛인 경우에는 탄소섬유 1g 당 금속의 도금량이 500 ~ 4,000 mg이 되어, 탄소섬유 표면에 고르게 도금층이 형성되며, 이로부터 크랙 현상이나 성형성 저하 등을 방지할 수 있다. 그러므로, 탄소섬유에 도금되는 금속 도금층의 두께가 0.3 ~ 1.0 ㎛인 것이 바람직하다.By the surface treatment, dispersion treatment, and plating treatment described above, the thickness of the metal-plated plating layer becomes 0.3 to 1.0 µm. When the thickness of the metal plating layer is 0.3 ~ 1.0 ㎛, the plating amount of metal per 1 g of carbon fiber is 500 ~ 4,000 mg, and the plating layer is formed evenly on the surface of the carbon fiber, from which it is possible to prevent cracking and deterioration of formability. have. Therefore, it is preferable that the thickness of the metal plating layer to be plated on the carbon fiber is 0.3 to 1.0 µm.

이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described with reference to the accompanying drawings, those of ordinary skill in the art to which the present invention pertains can be implemented in other specific forms without changing the technical spirit or essential features. You will be able to understand. Therefore, it should be understood that the embodiments described above are illustrative and non-limiting in all respects.

S10: 표면 처리 단계
S20: 분산 처리 단계
S30: 도금 처리 단계
S10: surface treatment step
S20: distributed processing step
S30: plating treatment step

Claims (7)

탄소섬유를 무전해 도금 용액에 침지시켜 상기 탄소섬유에 금속을 도금하며,
상기 탄소섬유에 도금되는 상기 금속의 두께가 0.3 ~ 1.0 ㎛인 것을 특징으로 하는, 무전해 금속 도금 탄소섬유.
Metal is plated on the carbon fiber by immersing the carbon fiber in an electroless plating solution,
Electroless metal plating carbon fiber, characterized in that the thickness of the metal plated on the carbon fiber is 0.3 ~ 1.0 ㎛.
제 1항에 있어서,
상기 탄소섬유는,
소정 길이의 연속 탄소섬유이며, 섬유 직경은 1~10μm인 것을 특징으로 하는, 무전해 금속 도금 탄소섬유.
The method of claim 1,
The carbon fiber,
It is a continuous carbon fiber of a predetermined length, characterized in that the fiber diameter is 1 ~ 10μm, electroless metal plated carbon fiber.
제 1항에 있어서,
상기 금속은,
구리(Cu), 니켈(Ni), 및 은(Ag)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는, 무전해 금속 도금 탄소섬유.
The method of claim 1,
The metal is,
Copper (Cu), nickel (Ni), and characterized in that at least one selected from the group consisting of silver (Ag), electroless metal plated carbon fiber.
탄소섬유를 오존수에 침지시켜 표면 처리하는 단계;
상기 오존수에 초음파를 조사하여 분산 처리하는 단계; 및
상기 탄소섬유를 무전해 도금 용액에 침지시켜 상기 탄소섬유에 금속을 도금 처리하는 단계를 포함하는, 무전해 금속 도금 탄소섬유의 제조 방법.
Surface treatment by immersing the carbon fibers in ozone water;
Dispersing the ozone water by irradiating ultrasonic waves; And
A method of manufacturing an electroless metal plated carbon fiber comprising the step of plating a metal on the carbon fiber by immersing the carbon fiber in an electroless plating solution.
제 4항에 있어서,
상기 표면 처리하는 단계는,
오존 농도 10∼60ppm, 온도 5∼50°C의 오존수에 3분 이상 침지시키는 것을 특징으로 하는, 무전해 금속 도금 탄소섬유의 제조 방법.
The method of claim 4,
The step of surface treatment,
A method for producing an electroless metal plated carbon fiber, characterized in that it is immersed in ozone water having an ozone concentration of 10 to 60 ppm and a temperature of 5 to 50 °C for 3 minutes or more.
제 4항에 있어서,
상기 분산 처리하는 단계는,
25~35분 동안 270~290W로 19~21kHz의 초음파를 조사하는 것을 특징으로 하는, 무전해 금속 도금 탄소섬유의 제조 방법.
The method of claim 4,
The step of performing the dispersion treatment,
Method for producing an electroless metal-plated carbon fiber, characterized in that irradiation of 19 to 21 kHz ultrasonic waves at 270 to 290 W for 25 to 35 minutes.
제 4항에 있어서,
상기 도금 처리하는 단계는,
상기 탄소섬유를 NiCl2, NiSO4, CuSO4, CuCN, AgNO3 및 AgCN 중에서 선택된 1종 이상의 금속염과, 40 ~ 150 g/ℓ 농도의 NaH2PO2과, 40 ~ 150 g/ℓ 농도의 Na3C6H5O7 또는 NaCO2CH3를 함유한 pH 5 ~ 9의 무전해 도금 용액에 침지시켜 금속을 상기 탄소섬유에 무전해 도금시키는 것을 특징으로 하는, 무전해 금속 도금 탄소섬유의 제조 방법.
The method of claim 4,
The plating treatment step,
PH 5 containing the carbon fiber at least one metal salt selected from NiCl2, NiSO4, CuSO4, CuCN, AgNO3 and AgCN, NaH2PO2 at a concentration of 40 to 150 g/L, and Na3C6H5O7 or NaCO2CH3 at a concentration of 40 to 150 g/L A method for producing an electroless metal plated carbon fiber, characterized in that the metal is electrolessly plated on the carbon fiber by immersing in the electroless plating solution of ~9.
KR1020190110882A 2019-09-06 2019-09-06 Metal plated carbon fibers by non-electroplating process and manufacturing method thereof KR20210029886A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190110882A KR20210029886A (en) 2019-09-06 2019-09-06 Metal plated carbon fibers by non-electroplating process and manufacturing method thereof
PCT/KR2019/018812 WO2021045327A1 (en) 2019-09-06 2019-12-31 Electroless metal plated carbon fibers and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190110882A KR20210029886A (en) 2019-09-06 2019-09-06 Metal plated carbon fibers by non-electroplating process and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20210029886A true KR20210029886A (en) 2021-03-17

Family

ID=74852306

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190110882A KR20210029886A (en) 2019-09-06 2019-09-06 Metal plated carbon fibers by non-electroplating process and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR20210029886A (en)
WO (1) WO2021045327A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197723B1 (en) 2010-08-18 2012-11-05 인하대학교 산학협력단 Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR20180006523A (en) 2016-07-07 2018-01-18 한경대학교 산학협력단 Manufacturing method of Nickel-plated and high-conductivity carbon fibers by non-electroplating process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051529B2 (en) * 1982-02-24 1985-11-14 トヨタ自動車株式会社 Heating furnace powder discharge device
KR100486962B1 (en) * 2001-12-17 2005-05-03 한국화학연구원 Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method
KR20110078254A (en) * 2009-12-31 2011-07-07 주식회사 효성 Method of preparation for copper plated carbon fiber
KR101155102B1 (en) * 2010-01-29 2012-06-11 한국기계연구원 Carbon nano-device of which surface carbon nano materials are grown on and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197723B1 (en) 2010-08-18 2012-11-05 인하대학교 산학협력단 Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR20180006523A (en) 2016-07-07 2018-01-18 한경대학교 산학협력단 Manufacturing method of Nickel-plated and high-conductivity carbon fibers by non-electroplating process

Also Published As

Publication number Publication date
WO2021045327A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
US6395402B1 (en) Electrically conductive polymeric foam and method of preparation thereof
US20180187077A1 (en) Electrically conductive metal-coated fibers, continuous process for preparation thereof, and use thereof
DE60109486D1 (en) PROCESS FOR CHEMICAL NICKELING
EP2360294A1 (en) Method for metallising objects with at least two different plastics on their surface
Li et al. Study of Ni-catalyst for electroless Ni–P deposition on glass fiber
JP2014088618A (en) Method for electroless plating and solution used for the same
KR101423169B1 (en) A Method for Manufacturing of Shield Sheet for Preventing Electromagnetic Wave
Zhao et al. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)
CN104164784A (en) Preparation method of composite fiber with high thermal conductivity through coating graphene on chemical fiber surface
US5453299A (en) Process for making electroless plated aramid surfaces
KR101197723B1 (en) Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR20210029886A (en) Metal plated carbon fibers by non-electroplating process and manufacturing method thereof
JP3925724B2 (en) Surface treatment method for non-conductive materials
US20020094433A1 (en) Electrically conductive foam and method of preparation thereof
CN1925927A (en) Enhanced metal ion release rate for anti-microbial applications
JP2987556B2 (en) Method for forming metal conductive layer on fluororesin body surface
ANDREEV et al. Three methods for PCB via metallization-investigation and discussion
KR20210001634A (en) Method of Manufacturing Metal Coated Carbon Fiber
KR20200089170A (en) High-conductivity nickel-plated carbon fibers by non-electroplating process
KR101003317B1 (en) Emi shielding conductive thin film using dry-wet plating and method for preparing the same
JP2017052975A (en) Plated fiber and production method thereof
CN109321901A (en) A kind of mantoquita sensitization activation method for nonmetallic surface chemical plating
JP2005048243A (en) Conductive plated fibrous structure, and its production method
JP2004277847A (en) Plated palm fiber and manufacturing method thereof
Dang et al. A New Environmentally Friendly Non-Destructive Activation Process of Electroless Nickel Plating on Alumina Ceramics

Legal Events

Date Code Title Description
E601 Decision to refuse application