JP2017052975A - Plated fiber and production method thereof - Google Patents

Plated fiber and production method thereof Download PDF

Info

Publication number
JP2017052975A
JP2017052975A JP2015175390A JP2015175390A JP2017052975A JP 2017052975 A JP2017052975 A JP 2017052975A JP 2015175390 A JP2015175390 A JP 2015175390A JP 2015175390 A JP2015175390 A JP 2015175390A JP 2017052975 A JP2017052975 A JP 2017052975A
Authority
JP
Japan
Prior art keywords
fiber
plating
organic polymer
metal
elastomer resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015175390A
Other languages
Japanese (ja)
Inventor
米澤 修一
Shuichi Yonezawa
修一 米澤
智朗 奥野
Tomoaki Okuno
智朗 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2015175390A priority Critical patent/JP2017052975A/en
Publication of JP2017052975A publication Critical patent/JP2017052975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an electroless plating film excellent in adhesion between fibers and a metallic film.SOLUTION: A production method of plated fibers includes a first step for coating the surface of organic polymer fibers with metal particle-containing polyester elastomer resin solution, a second step for drying the organic polymer fibers coated with the metal particle-containing polyester elastomer resin solution to thereby form a sheath structure, and a third step for immersing the organic polymer fibers (core sheath structure fibers) on which the sheath structure is formed by drying into electroless plating solution, to thereby form a metal film.SELECTED DRAWING: Figure 1

Description

本発明は、高分子繊維材料のめっき方法において、めっき皮膜の密着性を向上させる技術に関する。   The present invention relates to a technique for improving the adhesion of a plating film in a method for plating a polymer fiber material.

通常の高分子材料へめっきする工程は、脱脂工程(表面に付着している油脂成分を除去し、濡れ性の改善をする)、エッチング工程(クロム酸等で表面を化学的に粗化(凹凸)した後、残ったクロム化合物を塩酸等で除去する)キャタリスト工程(Pd−Sn錯体等の触媒金属を吸着させる)、アクセレーター工程(酸化還元反応により活性化処理する)、めっき工程(金属皮膜を生成する)からなっている。   The process of plating on ordinary polymer materials is a degreasing process (removes oil and fat components adhering to the surface to improve wettability), an etching process (chemical roughening of the surface with chromic acid, etc.) ) And then removing the remaining chromium compound with hydrochloric acid or the like) Catalyst process (adsorbing a catalytic metal such as Pd-Sn complex), accelerator process (activation treatment by oxidation-reduction reaction), plating process (metal) To produce a film).

また、高分子繊維材料へめっきする工程も、前記高分子材料へめっきする工程とほぼ同様な工程を経て製造されるが、特許文献1では、フィラメント束にプラズマ処理又は電子線照射する第一工程と、有機金属錯体を含む超臨界流体に浸漬しフィラメント表面に有機金属錯体を付着させる第二工程と、フィラメント表面に付着した有機金属錯体を還元して活性化する第三工程と、このフィラメントをめっき液に浸漬して無電解めっき処理を行い、金属めっき層を形成する第四工程を含むことを特徴とする導電繊維糸の製造方法が開示されている。   In addition, the process of plating on the polymer fiber material is also manufactured through substantially the same process as the process of plating on the polymer material. However, in Patent Document 1, the first process of plasma treatment or electron beam irradiation on the filament bundle is performed. A second step of immersing in a supercritical fluid containing an organometallic complex and attaching the organometallic complex to the filament surface; a third step of reducing and activating the organometallic complex attached to the filament surface; A method for producing a conductive fiber yarn is disclosed, which includes a fourth step of forming a metal plating layer by performing an electroless plating treatment by dipping in a plating solution.

さらに、特許文献2では、有機高分子繊維にシランカップリング剤を繊維表面に固着させる工程、繊維表面に固着したシランカップリング剤をメタライズ処理して金属粒子がシランカップリング剤を介して繊維表面に固着した有機高分子繊維を造る工程、そしてメタライズ処理した有機高分子繊維を上記金属よりもイオン化傾向が大であるめっき金属の化合物を用いて無電解めっき処理する工程を含むことを特徴とする金属めっきの施された有機高分子繊維の製造方法が開示されている。   Furthermore, in Patent Document 2, the step of fixing the silane coupling agent to the fiber surface with the organic polymer fiber, the silane coupling agent fixed to the fiber surface is metallized, and the metal particles are transferred to the fiber surface via the silane coupling agent. And a step of forming an organic polymer fiber fixed to the metal, and a step of electroless plating the metallized organic polymer fiber using a plating metal compound having a higher ionization tendency than the above metal. A method for producing metal-plated organic polymer fibers is disclosed.

また、特許文献3では、超臨界状態となった二酸化炭素流体に有機金属錯体を溶解し、高分子繊維材料に含浸させ、その後ヒーターで還元温度に設定することで含浸した有機金属錯体が還元されて材料表面にめっき用金属触媒を析出せしめ、これをめっきの核としてめっきする技術が開示されている。   Further, in Patent Document 3, an organometallic complex is dissolved in a supercritical carbon dioxide fluid, impregnated in a polymer fiber material, and then the impregnated organometallic complex is reduced by setting the reduction temperature with a heater. A technique is disclosed in which a metal catalyst for plating is deposited on the surface of the material, and this is used as a plating nucleus.

しかしながら、これらの技術では、繊維と金属皮膜の密着性が悪く、金属皮膜が容易に剥がれたり、繊維の強度が低下することもあり改善が求められている。
特開2010−100934 特開2003−171869 特開2007−56287
However, in these techniques, the adhesion between the fiber and the metal film is poor, and the metal film is easily peeled off or the strength of the fiber is lowered.
JP2010-1000093 JP2003-171869 JP2007-56287A

本発明は、かかる技術的背景に鑑みてなされたものであって、その目的は、繊維と金属皮膜の密着性の優れた無電解めっき皮膜を形成することにある。   This invention is made | formed in view of this technical background, The objective is to form the electroless-plating membrane | film | coat excellent in the adhesiveness of a fiber and a metal membrane | film | coat.

本発明者は、このような課題を解決するために鋭意検討の結果、有機高分子繊維の表面に金属粒子含有ポリエステルエラストマ樹脂溶液を塗布して、その後乾燥処理することで鞘構造を形成し、次に前記乾燥処理により鞘構造が形成された有機高分子繊維(芯鞘構造繊維)を無電解めっき溶液に浸漬し金属被膜を形成することによって、有機高分子繊維と金属皮膜の密着性の優れた無電解めっき皮膜を形成させることができることを見出し本発明に到達した。本発明は以下の手段を提供する。   As a result of intensive studies to solve such problems, the present inventor applied a metal particle-containing polyester elastomer resin solution to the surface of the organic polymer fiber, and then dried to form a sheath structure, Next, the organic polymer fiber (core-sheath structure fiber) having a sheath structure formed by the drying treatment is immersed in an electroless plating solution to form a metal film, thereby providing excellent adhesion between the organic polymer fiber and the metal film. The present inventors have found that an electroless plating film can be formed and have reached the present invention. The present invention provides the following means.

[1]有機高分子繊維の表面に金属粒子含有ポリエステルエラストマ樹脂溶液を塗布する第一工程と、前記金属粒子含有ポリエステルエラストマ樹脂溶液が塗布され有機高分子繊維を乾燥処理して鞘構造を形成する第二工程と、前記乾燥処理により鞘構造が形成された有機高分子繊維(芯鞘構造繊維)を、温度40℃〜100℃の範囲の無電解めっき溶液に浸漬し金属被膜を形成する第三工程とを含むことを特徴とするめっき繊維の製造方法。   [1] A first step of applying a metal particle-containing polyester elastomer resin solution to the surface of the organic polymer fiber, and applying the metal particle-containing polyester elastomer resin solution to dry the organic polymer fiber to form a sheath structure. A second step and a third step in which an organic polymer fiber (core-sheath structure fiber) having a sheath structure formed by the drying treatment is immersed in an electroless plating solution in a temperature range of 40 ° C. to 100 ° C. to form a metal film. A process for producing a plated fiber, comprising: a step.

[2]前記第一工程において、前記ポリエステルエラストマ樹脂が、ポリエステル−ポリエーテルエラストマ樹脂であり、前記金属粒子の粒径が10nm〜5000nmである前項1に記載のめっき繊維の製造方法。   [2] The method for producing a plated fiber according to [1], wherein in the first step, the polyester elastomer resin is a polyester-polyether elastomer resin, and the metal particles have a particle size of 10 nm to 5000 nm.

[3]前記有機高分子繊維がナイロン、ポリエステル、ポリプロピレンから選ばれる一種または複数の繊維であることを特徴とする前項1または2に記載のめっき繊維の製造方法により製造されためっき繊維。   [3] The plated fiber produced by the method for producing a plated fiber as described in [1] or [2] above, wherein the organic polymer fiber is one or a plurality of fibers selected from nylon, polyester, and polypropylene.

[1]の発明では、第一工程で、金属粒子含有ポリエステルエラストマ樹脂溶液を有機高分子繊維の表面に塗ることができる。金属粒子が含有されているので触媒作用を発揮するため、従来技術で必要であった触媒付与工程及び活性化工程が不要となる。ポリエステルエラストマ樹脂が溶媒に溶けているので、金属粒子をポリエステルエラストマ樹脂中に分散させることができるので、金属粒子を前記有機高分子繊維中に予め混練する必要はなく、ポリエステルエラストマ樹脂にのみに分散させればよいので、金属粒子を浪費することがない。   In the invention of [1], in the first step, the metal particle-containing polyester elastomer resin solution can be applied to the surface of the organic polymer fiber. Since the metal particles are contained, the catalytic action is exhibited, so that the catalyst application step and the activation step required in the prior art are not required. Since the polyester elastomer resin is dissolved in the solvent, the metal particles can be dispersed in the polyester elastomer resin, so there is no need to knead the metal particles in the organic polymer fiber in advance, but only in the polyester elastomer resin. Therefore, metal particles are not wasted.

さらに、第二の工程では、前記金属粒子含有ポリエステルエラストマ樹脂溶液が塗布され有機高分子繊維を乾燥処理して鞘構造を形成することができる。すなわち、溶媒が揮発することで前記有機高分子繊維の表面に前記金属粒子含有ポリエステルエラストマ樹脂層を強固に形成することができるとともに、溶媒の揮発痕によって、後に形成される金属皮膜との密着性を向上させる。   Furthermore, in the second step, the metal particle-containing polyester elastomer resin solution can be applied and the organic polymer fiber can be dried to form a sheath structure. That is, when the solvent volatilizes, the metal particle-containing polyester elastomer resin layer can be firmly formed on the surface of the organic polymer fiber, and the adhesion with the metal film to be formed later by the solvent volatilization trace. To improve.

第三の工程では、前記乾燥処理により鞘構造が形成された有機高分子繊維(芯鞘構造繊維)を、温度40℃〜100℃の範囲の無電解めっき溶液に浸漬することで金属被膜を形成することができる。前記金属粒子は、鞘構造の外層はもちろんのこと鞘構造の内層にも分散しているので、該金属粒子の触媒作用によって形成される金属被膜は、密着性優れ、しかも耐久性にも優れためっき皮膜となる。   In the third step, a metal film is formed by immersing the organic polymer fiber (core-sheath structure fiber) having a sheath structure formed by the drying treatment in an electroless plating solution in a temperature range of 40 ° C to 100 ° C. can do. Since the metal particles are dispersed not only in the outer layer of the sheath structure but also in the inner layer of the sheath structure, the metal coating formed by the catalytic action of the metal particles has excellent adhesion and excellent durability. It becomes a plating film.

[2]の発明では、前記第一工程において、前記ポリエステルエラストマ樹脂が、ポリエステル−ポリエーテルエラストマ樹脂なので、溶媒に溶かした状態で有機高分子繊維の表面に塗布することで容易に積層できる。また、前記金属粒子の粒径が10nm〜5000nmであるので金属粒子の分散性が良く有機高分子繊維の繊維表面に十分に分散できる。   In the invention of [2], since the polyester elastomer resin is a polyester-polyether elastomer resin in the first step, the polyester elastomer resin can be easily laminated by being applied to the surface of the organic polymer fiber in a state dissolved in a solvent. In addition, since the particle size of the metal particles is 10 nm to 5000 nm, the metal particles have good dispersibility and can be sufficiently dispersed on the fiber surface of the organic polymer fiber.

[3]の発明では、前記有機高分子繊維がナイロン、ポリエステル、ポリプロピレンから選ばれる一種または複数の繊維であるので、前記ポリエステル−ポリエーテルエラストマ樹脂溶液の溶媒に不溶であり芯鞘構造繊維を形成できるため密着性と耐久性に優れ、軽量で導電性のよいめっき繊維を得ることができる。   In the invention of [3], since the organic polymer fiber is one or a plurality of fibers selected from nylon, polyester and polypropylene, it is insoluble in the solvent of the polyester-polyether elastomer resin solution and forms a core-sheath structure fiber. Therefore, it is possible to obtain a plated fiber having excellent adhesion and durability, light weight and good conductivity.

本発明の一実施形態に係るめっき繊維の構成を示す断面図である。It is sectional drawing which shows the structure of the plating fiber which concerns on one Embodiment of this invention. 本発明の一実施形態に係る乾燥処理が施された有機高分子繊維を乾燥処理して鞘構造が形成された構成を示す断面図である。It is sectional drawing which shows the structure by which the drying process was performed on the organic polymer fiber to which the drying process which concerns on one Embodiment of this invention was performed, and the sheath structure was formed.

本発明における有機高分子繊維としては、例えば、芳香族ポリアミド繊維;ポリアクリル系繊維;ポリエステル系繊維;ポリエチレン、ポリプロピレン等のポリオレフィン系繊維;ナイロン;ポリ塩化ビニル系繊維;ポリ塩化ビニリデン系繊維;ビニロン等のポリアルコール系繊維;フッ素系繊維等の有機繊維をあげることができる。中でも、汎用繊維であるナイロン、ポリエステル、ポリプロピレンに本発明のめっき繊維の製造方法を適用するのは有効である。   Examples of the organic polymer fiber in the present invention include aromatic polyamide fiber; polyacrylic fiber; polyester fiber; polyolefin fiber such as polyethylene and polypropylene; nylon; polyvinyl chloride fiber; polyvinylidene chloride fiber; Examples thereof include polyalcohol fibers such as fluorine fibers and organic fibers such as fluorine fibers. Among them, it is effective to apply the method for producing plated fibers of the present invention to general-purpose fibers such as nylon, polyester, and polypropylene.

まず、第一工程では、あらかじめ用意した金属粒子含有ポリエステルエラストマ樹脂溶液を有機高分子繊維の表面に塗布する。方法としては、金属粒子含有ポリエステルエラストマ樹脂溶液に有機高分子繊維を浸漬した後、有機高分子繊維引き上げればよいが、塗布する方法は特に限定されず、例えば綛の状態で浸漬してからマングルで絞る、チーズの状態で金属粒子含有ポリエステルエラストマ樹脂溶液を通過させる等を挙げることができる。また、浸漬するときの金属粒子含有ポリエステルエラストマ樹脂溶液の温度は0℃〜35℃が好ましく、浸漬時間は1分〜10分程度でよい。なお、ポリエステルエラストマ樹脂溶液の濃度は、0.05〜30質量%が好ましい。こうして、有機高分子繊維の表面に金属粒子含有ポリエステルエラストマ樹脂溶液を塗布することができる。   First, in the first step, a metal particle-containing polyester elastomer resin solution prepared in advance is applied to the surface of the organic polymer fiber. As the method, after immersing the organic polymer fiber in the metal particle-containing polyester elastomer resin solution, the organic polymer fiber may be pulled up, but the method of application is not particularly limited. The metal particle-containing polyester elastomer resin solution is allowed to pass through in a cheese state. The temperature of the metal particle-containing polyester elastomer resin solution when immersed is preferably 0 ° C. to 35 ° C., and the immersion time may be about 1 minute to 10 minutes. The concentration of the polyester elastomer resin solution is preferably 0.05 to 30% by mass. Thus, the metal particle-containing polyester elastomer resin solution can be applied to the surface of the organic polymer fiber.

前記ポリエステルエラストマ樹脂としては、ポリエステル−ポリエーテルエラストマ樹脂が好ましい。また、前記ポリエステルエラストマ樹脂を分散する溶媒としては特に限定されないが、例えば塩化メチレンがポリエステルエラストマ樹脂を容易に溶かすことができ、しかも有機高分子繊維を溶かさないので好ましい。   The polyester elastomer resin is preferably a polyester-polyether elastomer resin. The solvent for dispersing the polyester elastomer resin is not particularly limited, but for example, methylene chloride is preferable because it can easily dissolve the polyester elastomer resin and does not dissolve the organic polymer fiber.

前記金属粒子としては、めっき金属に対して触媒作用を発揮するものであれば特に限定はされないが、例えばAg、Cu、Ni、Co、Au、Pd、Rh、Pt、In、Sn等を挙げることができる。銀めっきの場合は、めっきの反応性がよいことからAg、Pdが好ましい。なお、前記金属粒子の粒径は特に限定されないが、10nm〜1000nmの範囲が好ましく、この範囲にすることで金属粒子の分散性が良くかつ有機高分子繊維の繊維表面に十分に分散できる。また、金属粒子の前記ポリエステルエラストマ樹脂溶液中の濃度は0.05〜15質量%が好ましい。   The metal particles are not particularly limited as long as they exhibit a catalytic action on the plated metal, and examples thereof include Ag, Cu, Ni, Co, Au, Pd, Rh, Pt, In, and Sn. Can do. In the case of silver plating, Ag and Pd are preferable since the reactivity of plating is good. The particle size of the metal particles is not particularly limited, but is preferably in the range of 10 nm to 1000 nm. By setting the particle size within this range, the metal particles can be dispersed well and sufficiently dispersed on the fiber surface of the organic polymer fiber. The concentration of the metal particles in the polyester elastomer resin solution is preferably 0.05 to 15% by mass.

次に、第二工程では、前記金属粒子含有ポリエステルエラストマ樹脂溶液が塗布され有機高分子繊維を乾燥処理して鞘構造を形成する。乾燥温度は、特に高温にする必要もなく、50℃程で処理すればよい。なお、好ましい乾燥処理温度は、40℃〜70℃である。この範囲にすることで、例えば溶媒の塩化メチレンが揮発する際に鞘構造を形成したポリエステルエラストマ樹脂に小さな空洞を形成しこの空洞が鞘構造の表面まで達するので、後工程での金属皮膜の形成時に金属皮膜がこれらの空洞に入り込んだり、塞いだりすることでアンカー効果を発揮し、めっきの密着性を向上させるので好ましい。こうして有機高分子繊維の周囲に鞘構造が形成されるので芯鞘構造繊維となる。なお、溶媒が揮発することで前記有機高分子繊維の表面に前記金属粒子含有ポリエステルエラストマ樹脂層を強固に形成することができるとともに、溶媒の揮発痕によって後に形成される金属皮膜との密着性が向上する。   Next, in the second step, the metal particle-containing polyester elastomer resin solution is applied and the organic polymer fiber is dried to form a sheath structure. The drying temperature does not need to be particularly high and may be processed at about 50 ° C. In addition, preferable drying process temperature is 40 to 70 degreeC. In this range, for example, when the solvent methylene chloride volatilizes, a small cavity is formed in the polyester elastomer resin that formed a sheath structure, and this cavity reaches the surface of the sheath structure, so the formation of a metal film in the subsequent process A metal film sometimes enters or closes these cavities, so that an anchor effect is exhibited and adhesion of plating is improved, which is preferable. Thus, a sheath structure is formed around the organic polymer fiber, so that a core-sheath structure fiber is obtained. The solvent evaporates to form the metal particle-containing polyester elastomer resin layer firmly on the surface of the organic polymer fiber, and the adhesion with the metal film to be formed later due to the volatile trace of the solvent. improves.

第三工程では、前記乾燥処理により鞘構造が形成された有機高分子繊維(芯鞘構造繊維)を無電解めっき溶液に浸漬し、無電解めっき処理を行い金属皮膜を形成する。無電解めっき溶液の温度は40℃〜100℃であり、浸漬時間は10分〜90分が好ましい。   In the third step, an organic polymer fiber (core-sheath structure fiber) having a sheath structure formed by the drying treatment is immersed in an electroless plating solution, and an electroless plating treatment is performed to form a metal film. The temperature of the electroless plating solution is 40 ° C to 100 ° C, and the immersion time is preferably 10 minutes to 90 minutes.

無電解めっきは、有機高分子繊維の表面に形成された鞘の部分の、ポリエステルエラストマ樹脂に含まれる金属粒子の強い触媒作用によって、めっき液に含まれる還元剤が酸化されるときに放出する電子により、めっき液にある金属イオンが還元され、該金属を金属皮膜として有機高分子繊維の表面に析出させるものである。特に前記金属粒子めがけて析出するので形成された金属皮膜は強固に密着している。すなわち、前記ポリエステルエラストマ樹脂の表面近傍にある金属粒子を核として金属皮膜が形成され、金属粒子がポリエステルエラストマ樹脂に埋没していて、かつ金属粒子の一部がポリエステルエラストマ樹脂の表面に出ているのでアンカー効果と相俟って金属皮膜層の密着性が向上する。無電解めっきとしては、一般的に常用されるめっき液を使用することができる。例えば、無電解銅めっき、無電解ニッケルめっき、無電解銀めっき等が挙げられる。   Electroless plating is an electron released when the reducing agent contained in the plating solution is oxidized by the strong catalytic action of the metal particles contained in the polyester elastomer resin at the sheath part formed on the surface of the organic polymer fiber. Thus, the metal ions in the plating solution are reduced, and the metal is deposited on the surface of the organic polymer fiber as a metal film. In particular, since the metal particles are deposited toward the metal particles, the formed metal film is firmly adhered. That is, a metal film is formed with metal particles in the vicinity of the surface of the polyester elastomer resin as a nucleus, the metal particles are buried in the polyester elastomer resin, and a part of the metal particles is exposed on the surface of the polyester elastomer resin. Therefore, combined with the anchor effect, the adhesion of the metal film layer is improved. As electroless plating, a commonly used plating solution can be used. Examples thereof include electroless copper plating, electroless nickel plating, and electroless silver plating.

その後、金属被膜を形成した芯鞘構造繊維をイオン交換水で洗浄した(水洗工程)後、加熱して乾燥(乾燥工程)した。   Thereafter, the core-sheath structure fiber on which the metal coating was formed was washed with ion-exchanged water (water washing step) and then heated to dry (drying step).

こうして得られためっき繊維のめっき皮膜の厚さは、0.2μm以上あることが好ましく、さらに好ましくは0.4μm以上がよい。0.5μm〜3.0μmが最も好適で、0.2μm未満では、十分な導電性や密着性が得られないことがあり、3.0μmを超える厚みでは、繊維の柔軟性が失われ、硬くなるので好ましくない。   The thickness of the plating film of the plating fiber thus obtained is preferably 0.2 μm or more, more preferably 0.4 μm or more. 0.5 μm to 3.0 μm is the most preferable. If the thickness is less than 0.2 μm, sufficient conductivity and adhesion may not be obtained. If the thickness exceeds 3.0 μm, the flexibility of the fiber is lost and hard. This is not preferable.

次に、本発明の具体的実施例について説明するが、本発明はこれらの実施例のものに特に限定されるものではない。なお、各工程の実施方法、試験方法及び評価は次の通り行った。また、有機高分子繊維の種類、金属粒子濃度、金属粒子径等は表1に記載したように行った。また、テープ剥離法、摩擦試験法、外観評価(めっきムラ)の評価についても示す。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples. In addition, the implementation method of each process, the test method, and evaluation were performed as follows. Moreover, the kind of organic polymer fiber, metal particle concentration, metal particle diameter, etc. were performed as described in Table 1. Moreover, it shows about the evaluation of a tape peeling method, a friction test method, and external appearance evaluation (plating nonuniformity).

(芯鞘構造繊維作成工程)
有機高分子繊維に金属粒子含有ポリエステルエラストマ樹脂溶液(ポリエステル−ポリエーテルエラストマ樹脂、塩化メチレンを溶媒に100nm金属粒子を分散、10重量%溶液)を通過させて塗布する。
(Core-sheath fiber creation process)
The organic polymer fiber is coated with a metal particle-containing polyester elastomer resin solution (polyester-polyether elastomer resin, 100 nm metal particles dispersed in methylene chloride as a solvent, 10 wt% solution).

(乾燥工程)
その後、金属粒子含有ポリエステルエラストマ樹脂が塗布された有機高分子繊維を50℃で乾燥して芯鞘構造繊維を作成する。
(Drying process)
Thereafter, the organic polymer fiber coated with the metal particle-containing polyester elastomer resin is dried at 50 ° C. to produce a core-sheath structure fiber.

(無電解めっき工程)
金属粒子を含む芯鞘構造繊維に対して、送液ポンプを使用し、無電解めっき溶液(ムデンシルバーSS:奥野製薬工業株式会社製品)を50℃で1時間浸漬し、芯鞘構造繊維上に金属被膜を形成する。
(Electroless plating process)
On the core-sheath fiber including the metal-sheathed fiber, an electroless plating solution (Muden Silver SS: Okuno Pharmaceutical Co., Ltd. product) is immersed at 50 ° C. for 1 hour using a feed pump. A metal film is formed on.

(洗浄・乾燥工程)
金属被膜を形成した繊維をイオン交換水で洗浄した後、加熱して乾燥する。
(Washing / drying process)
The fiber on which the metal film has been formed is washed with ion exchange water and then heated to dry.

<繊維と金属被膜の密着性試験と評価 テープ剥離法>
JIS H8504に準じて行った。市販のセロハンテープをめっきした高分子繊維材料に貼り付けた後剥がし、「テープ貼り付け前のめっき面積」に対する「テープ剥がし後のテープに付着しためっき被膜の面積」の割合を目視にて観察して行った。2%未満であるものを◎、2%以上〜10%未満のものを○、10%以上〜15%未満のものを△、15%以上のものを×と評価した。
<Fiber and metal coating adhesion test and evaluation tape peeling method>
This was performed according to JIS H8504. After attaching a commercially available cellophane tape to the plated polymer fiber material, peel it off, and visually observe the ratio of "the area of the plating film attached to the tape after peeling the tape" to "the plating area before sticking the tape". I went. Those less than 2% were evaluated as ◎, those from 2% to less than 10% were evaluated as ◯, those from 10% to less than 15% were evaluated as Δ, and those from 15% or more were evaluated as ×.

<繊維と金属被膜の密着性試験と評価 摩耗試験法>
作製した無電解めっき繊維について被膜の密着(剥離)強度をJIS L 0849「摩擦に対する染色堅ろう度試験方法」に準じて行った。具体的には、試験資料の無電解めっき繊維に白色布を重ね、200gの荷重を加え、毎分30回の往復速度で摩擦を行った。100往復の摩擦後の導電率を測定し、摩擦後の導電率が10Ω/cm未満のものを◎、10Ω/cm〜10Ω/cm未満のものを○、10Ω/cm〜10Ω/cm未満のものを△、10Ω/cm以上のものを×と評価した。
<Fiber and metal coating adhesion test and evaluation Abrasion test method>
The adhesion (peeling) strength of the coating of the produced electroless-plated fiber was measured according to JIS L 0849 “Test Method for Dye Fastness to Friction”. Specifically, a white cloth was layered on the electroless plated fiber of the test material, a load of 200 g was applied, and friction was performed at a reciprocating speed of 30 times per minute. 100 measures the conductivity of after friction reciprocating conductivity after friction those less than 10 1 Ω / cm ◎, ○ a of less than 10 1 Ω / cm~10 3 Ω / cm, 10 3 Ω / cm~10 of less than 5 Ω / cm things △, was evaluated as × of not less than 10 5 Ω / cm.

<めっきムラ 外観による評価>
作製した無電解めっき繊維の外観を染色ボビン内側部分と外側部分、糸中間点の外観を観察し、均一にめっきができていればめっきムラ無を○、均一にめっきできていないもしくはめっきできていない部分がある場合、めっきムラ有りを×と評価した。
<Evaluation by plating unevenness appearance>
Observe the appearance of the electroless plated fiber on the inside and outside of the dyed bobbin and the middle point of the yarn. If the plating is uniform, the plating unevenness is not found. When there was no part, the presence of uneven plating was evaluated as x.

<実施例1>
染色ボビンに巻いたポリエステル糸(167dtex/50f)に銀粒子含有ポリエステル−ポリエーテルエラストマ樹脂10重量%溶液(塩化メチレン溶媒、粒径が100nm銀粒子の濃度0.1%)を通過させたのち、50℃の温度で乾燥して芯鞘構造繊維(初期体積抵抗率6.8×1013Ω・cm)を作成した。次に、無電解めっき溶液(ムデンシルバーSS:奥野製薬工業株式会社製品)を送液ポンプにてこの芯鞘構造繊維に供給して50℃の温度(めっき加工温度)で1時間浸漬することで芯鞘構造繊維上に金属被膜を形成した。こうして芯鞘構造繊維の鞘部分に含まれる銀粒子を触媒として無電解めっきによるめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が1%、摩擦後の導電率が0.8Ω/cmでいずれも◎と評価された。
<Example 1>
After passing through a polyester yarn (167 dtex / 50f) wound around a dyed bobbin, a silver particle-containing polyester-polyether elastomer resin 10% by weight solution (methylene chloride solvent, 100 nm silver particle concentration 0.1%), It dried at the temperature of 50 degreeC, and produced the core-sheath structure fiber (initial stage volume resistivity 6.8 * 1013 ohm * cm). Next, an electroless plating solution (Muden Silver SS: Okuno Pharmaceutical Co., Ltd. product) is supplied to the core-sheath structure fiber with a liquid feed pump and immersed at a temperature of 50 ° C. (plating processing temperature) for 1 hour. A metal film was formed on the core-sheath fiber. Thus, a plating fiber by electroless plating was obtained using the silver particles contained in the sheath portion of the core-sheath structure fiber as a catalyst. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 1%, and the conductivity after friction was 0.8Ω / cm.

<実施例2>
実施例1において、ポリエステル糸に替えてナイロン糸(156dtex/48f)を用いた以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が1%、摩擦後の導電率が1.2Ω/cmでいずれも◎と評価された。
<Example 2>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that nylon yarn (156 dtex / 48f) was used instead of polyester yarn. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 1%, and the conductivity after friction was 1.2 Ω / cm.

<実施例3>
実施例1において、ポリエステル糸に替えてポリプロピレン糸(178dtex/60f) を用いた以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が1%、摩擦後の導電率が1.0Ω/cmでいずれも◎と評価された。
<Example 3>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that polypropylene yarn (178 dtex / 60f) was used instead of polyester yarn. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 1%, and the conductivity after friction was 1.0 Ω / cm.

<実施例4>
実施例1において、粒径が2000nm銀粒子を用いた。また、銀粒子濃度を1%とした以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が1.5%、摩擦後の導電率が1.8Ω/cmでいずれも◎と評価された。
<Example 4>
In Example 1, silver particles having a particle size of 2000 nm were used. A core-sheath plated fiber was obtained in the same manner as in Example 1 except that the silver particle concentration was 1%. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 1.5%, and the conductivity after friction was 1.8 Ω / cm.

<実施例5>
実施例1において、銀粒子濃度を8%とした以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が1.1%、摩擦後の導電率が6.2Ω/cmでいずれも◎と評価された。
<Example 5>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that the silver particle concentration was 8%. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 1.1%, and the conductivity after friction was 6.2 Ω / cm.

<実施例6>
実施例1において、粒径が4000nm銀粒子を用いた以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が9.2%、摩擦後の導電率が14Ω/cmでいずれも○と評価された。
<Example 6>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that silver particles having a particle size of 4000 nm were used. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 9.2%, and the electrical conductivity after friction was 14Ω / cm.

<実施例7>
実施例1において、粒径が1000nm銀粒子を用いた。また、めっき加工温度を70℃とした以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が1.4%で◎と評価され、摩擦後の導電率が43Ω/cmは○と評価された。
<Example 7>
In Example 1, silver particles having a particle size of 1000 nm were used. Further, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that the plating temperature was 70 ° C. In the adhesion test, the area ratio of the tape peeling portion of the plating film was evaluated as ◎ when the ratio was 1.4%, and the conductivity after friction was evaluated as ○ when 43 Ω / cm.

<実施例8>
実施例1において、銀粒子濃度を13%とした以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が1.3%、摩擦後の導電率が6.3Ω/cmでいずれも◎と評価された。
<Example 8>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that the silver particle concentration was 13%. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 1.3%, and the conductivity after friction was 6.3 Ω / cm.

<実施例9>
実施例1において、めっき加工温度を90℃とした以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が3.8%、摩擦後の導電率が38Ω/cmでいずれも○と評価された。
<Example 9>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that the plating temperature was 90 ° C. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 3.8%, and the electrical conductivity after friction was 38Ω / cm.

<実施例10>粒径が10000nm銀粒子を用いた以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が13%、摩擦後の導電率が1.8×10Ω/cmでいずれも△と評価された。 <Example 10> A plating fiber having a core-sheath structure was obtained in the same manner as in Example 1 except that silver particles having a particle size of 10,000 nm were used. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 13%, and the conductivity after friction was 1.8 × 10 4 Ω / cm.

<実施例11>
実施例1において、銀粒子濃度を20%とした以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が14%、摩擦後の導電率が6.2×10Ω/cmでいずれも△と評価された。
<Example 11>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that the silver particle concentration was 20%. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 14%, and the conductivity after friction was 6.2 × 10 4 Ω / cm.

<比較例1>
実施例1において、金属粒子を含有していないポリエステル−ポリエーテルエラストマ樹脂10重量%溶液(塩化メチレン溶媒)を通過させたのち、50℃の温度で乾燥して芯鞘構造繊維(初期体積抵抗率6.8×1013Ω・cm)を作成した以外は実施例1と同様にして無電解めっき加工を行ったが、いくぶん金属皮膜を形成するものの、密着性も不十分でとてもめっき繊維とは言い難かった。
<Comparative Example 1>
In Example 1, a 10% by weight polyester-polyether elastomer resin solution containing no metal particles (methylene chloride solvent) was passed through, followed by drying at a temperature of 50 ° C. to form a core-sheath fiber (initial volume resistivity) Electroless plating was performed in the same manner as in Example 1 except that 6.8 × 10 13 Ω · cm) was formed. However, although a metal film was formed somewhat, adhesion was insufficient and it was difficult to say that it was a plated fiber. It was.

<比較例2>
実施例1において、めっき加工温度を20℃とした以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が25%、摩擦後の導電率が9.2×10Ω/cmでいずれも×と評価された。
<Comparative example 2>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that the plating temperature was 20 ° C. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 25%, and the conductivity after friction was 9.2 × 10 6 Ω / cm.

<比較例3>
実施例1において、めっき加工温度を110℃とした以外は実施例1と同様にして芯鞘構造のめっき繊維を得た。密着性試験では、めっき被膜のテープ剥離部分の面積比率が18%、摩擦後の導電率が5.2×10Ω/cmでいずれも×と評価された。
<Comparative Example 3>
In Example 1, a core-sheath plated fiber was obtained in the same manner as in Example 1 except that the plating temperature was 110 ° C. In the adhesion test, the area ratio of the tape peeling portion of the plating film was 18%, and the electric conductivity after friction was 5.2 × 10 6 Ω / cm.

表1に示すように、実施例1〜11はいずれも良好な評価が得られた。   As shown in Table 1, good evaluation was obtained for all of Examples 1 to 11.

一方、比較例1〜3では、めっき被膜のテープ剥離法と摩擦試験法のいずれの密着性試験においても満足のいく評価は得られなかった。さらに、外観評価(めっきムラ)による評価は、均一にめっきできていない、もしくはめっきできていない部分があるのでめっきムラ有りの×であった。いずれの比較例も満足のいく評価は得られなかった。   On the other hand, in Comparative Examples 1 to 3, a satisfactory evaluation was not obtained in any of the adhesion tests of the plating film tape peeling method and the friction test method. Furthermore, the evaluation by appearance evaluation (plating unevenness) was x with plating unevenness because there was a portion where plating could not be performed uniformly or not. None of the comparative examples gave satisfactory evaluation.

本発明に係るめっき被膜された高分子繊維材料は、例えば製編あるいは製織し布帛に組み込むことで、通電性能のある布帛が得られ、その応用範囲は広い。   The polymer fiber material coated with a plating film according to the present invention is, for example, knitted or woven and incorporated into a fabric to obtain a fabric having a current-carrying performance, and its application range is wide.

1…めっき繊維
2…鞘
3…芯(有機高分子繊維)
4…めっき(金属皮膜)
5…芯鞘構造繊維
1 ... Plating fiber 2 ... Sheath 3 ... Core (organic polymer fiber)
4 ... Plating (metal coating)
5 ... Core sheath fiber

Claims (3)

有機高分子繊維の表面に金属粒子含有ポリエステルエラストマ樹脂溶液を塗布する第一工程と、前記金属粒子含有ポリエステルエラストマ樹脂溶液が塗布され有機高分子繊維を乾燥処理して鞘構造を形成する第二工程と、前記乾燥処理により鞘構造が形成された有機高分子繊維(芯鞘構造繊維)を、温度40℃〜100℃の範囲の無電解めっき溶液に浸漬し金属被膜を形成する第三工程とを含むことを特徴とするめっき繊維の製造方法。   A first step of applying a metal particle-containing polyester elastomer resin solution to the surface of the organic polymer fiber, and a second step of forming a sheath structure by applying the metal particle-containing polyester elastomer resin solution and drying the organic polymer fiber And a third step of immersing the organic polymer fiber (core-sheath structure fiber) having a sheath structure formed by the drying treatment in an electroless plating solution in a temperature range of 40 ° C. to 100 ° C. to form a metal film. The manufacturing method of the plating fiber characterized by including. 前記第一工程において、前記ポリエステルエラストマ樹脂が、ポリエステル−ポリエーテルエラストマ樹脂であり、前記金属粒子の粒径が10nm〜5000nmである請求項1に記載のめっき繊維の製造方法。   2. The method for producing a plated fiber according to claim 1, wherein in the first step, the polyester elastomer resin is a polyester-polyether elastomer resin, and a particle diameter of the metal particles is 10 nm to 5000 nm. 前記有機高分子繊維がナイロン、ポリエステル、ポリプロピレンから選ばれる一種または複数の繊維であることを特徴とする請求項1または2に記載のめっき繊維の製造方法により製造されためっき繊維。   3. The plated fiber manufactured by the method for manufacturing a plated fiber according to claim 1, wherein the organic polymer fiber is one or more fibers selected from nylon, polyester, and polypropylene.
JP2015175390A 2015-09-07 2015-09-07 Plated fiber and production method thereof Pending JP2017052975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175390A JP2017052975A (en) 2015-09-07 2015-09-07 Plated fiber and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175390A JP2017052975A (en) 2015-09-07 2015-09-07 Plated fiber and production method thereof

Publications (1)

Publication Number Publication Date
JP2017052975A true JP2017052975A (en) 2017-03-16

Family

ID=58317269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175390A Pending JP2017052975A (en) 2015-09-07 2015-09-07 Plated fiber and production method thereof

Country Status (1)

Country Link
JP (1) JP2017052975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737341A (en) * 2021-09-15 2021-12-03 武汉纺织大学 Elastic sheath-core fiber and preparation method thereof
CN113737512A (en) * 2021-09-15 2021-12-03 武汉纺织大学 Method for preparing elastic conductive fiber by microfluid coating technology and elastic conductive fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737341A (en) * 2021-09-15 2021-12-03 武汉纺织大学 Elastic sheath-core fiber and preparation method thereof
CN113737512A (en) * 2021-09-15 2021-12-03 武汉纺织大学 Method for preparing elastic conductive fiber by microfluid coating technology and elastic conductive fiber
CN113737512B (en) * 2021-09-15 2023-08-08 武汉纺织大学 Method for preparing elastic conductive fiber by micro-fluid coating technology and elastic conductive fiber

Similar Documents

Publication Publication Date Title
Liu et al. A facile way of fabricating a flexible and conductive cotton fabric
JP5255015B2 (en) Electroless copper plating method for polymer fiber
KR100997629B1 (en) Method for production of metal-coated polyimide resin substrate having excellent thermal aging resistance property
JP2013533387A (en) Conductive metal coated fiber, continuous method for its preparation, and its use
CN102121194B (en) Conductive fabric manufacturing method and fabric manufactured by same
JP2008208456A (en) Method of plating pretreatment for fiber and method for manufacturing plated fiber
JP5509432B2 (en) Manufacturing method of fiber conductor and fiber conductor obtained by the method
JP2010070826A (en) Manufacturing method of conductive fiber
JP6114521B2 (en) Metal coated fiber
JP2017052975A (en) Plated fiber and production method thereof
TW200813288A (en) Color-coated, fouling-resistant conductive clothes and manufacturing method thereof
JP2009242839A (en) Plate-pretreatment method for polymeric material and plating method, and coated electric wire using conductive fiber obtained by the method
KR20210000574A (en) Method of manufacturing carbon fiber heating wire and carbon fiber heating wire manufactured thereby
JP2013204125A (en) Metal coated fiber
JP5160057B2 (en) Fiber material with silver plating
JP2010037623A (en) Plating method for carbon material and method for producing carbon material
JP6746842B2 (en) Method for producing cycloolefin yarn with metal coating
JP2987556B2 (en) Method for forming metal conductive layer on fluororesin body surface
JP6075639B2 (en) coaxial cable
JP6473307B2 (en) Manufacturing method of conductor for electric wire
JP2017155383A (en) Method for producing plated fiber
JP2016212960A (en) Polymer fiber conductive wire and manufacturing method thereof
JP6746843B2 (en) Method for producing cycloolefin yarn with metal coating
JP2019167529A (en) Synthetic resin having carbon nanotubes bonded thereto, and resin structure obtained by plating the synthetic resin with silver
JP3625369B2 (en) Semi-rigid coaxial cable and manufacturing method thereof