JP5255015B2 - Electroless copper plating method for polymer fiber - Google Patents
Electroless copper plating method for polymer fiber Download PDFInfo
- Publication number
- JP5255015B2 JP5255015B2 JP2010104076A JP2010104076A JP5255015B2 JP 5255015 B2 JP5255015 B2 JP 5255015B2 JP 2010104076 A JP2010104076 A JP 2010104076A JP 2010104076 A JP2010104076 A JP 2010104076A JP 5255015 B2 JP5255015 B2 JP 5255015B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer fiber
- copper plating
- fiber
- electroless copper
- treatment step
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Chemically Coating (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
本発明は、高分子繊維の無電解銅めっき方法に関し、更に詳しくは、めっき皮膜の密着性を向上させることにより、高分子繊維を芯材とした電線並びに被覆電線、電磁波シールド材及び導電性プラスチック等の材料として好適な導電性皮膜付き高分子繊維を製造する技術に関する。 The present invention relates to an electroless copper plating method of the polymer textiles, more particularly, by improving the adhesion of the plating film, wire and covered wire was a polymer fiber with a core material, an electromagnetic wave shielding material and a conductive The present invention relates to a technique for producing a polymer fiber with a conductive film suitable as a material such as plastic.
従来、電線として金属線が用いられているが、近年、軽量化・低コスト化を図るべく、高分子繊維に導電性皮膜を形成させた繊維めっき素材が金属線に代わるものとして研究開発が進められている。例えば、特許文献1の高分子材料のめっき方法には、塩化第二銅水和物8.75g/l,Quadrol20g/l,水酸化ナトリウム15g/l,ホルムアルデヒド3.6g/lに適量の界面活性剤を添加して作製した無電解めっき液にアラミド繊維を投入し、40℃で20分浸漬することにより、試料に銅皮膜を形成させる技術が開示されている。この銅皮膜付きアラミド繊維(電線)は、被覆電線用の素線として用いることができるほか、織物や編物に加工して様々な形状の電磁波シールド材として使用できる。 Conventionally, metal wires have been used as electric wires, but in recent years, in order to reduce weight and cost, research and development has progressed on the assumption that a fiber plating material with a conductive film formed on polymer fibers replaces metal wires. It has been. For example, in the method of plating a polymer material of Patent Document 1, cuprate chloride hydrate 8.75 g / l, Quadrol 20 g / l, sodium hydroxide 15 g / l, formaldehyde 3.6 g / l with an appropriate amount of surface activity. A technique is disclosed in which an aramid fiber is introduced into an electroless plating solution prepared by adding an agent and immersed in the sample at 40 ° C. for 20 minutes to form a copper film on the sample. This aramid fiber (electric wire) with a copper film can be used as an element wire for a covered electric wire, or can be processed into a woven fabric or a knitted fabric and used as an electromagnetic shielding material having various shapes.
その他にも、特許文献2には、ポリイミド樹脂フィルムへ導体回路を形成するために、(1)粗化→(2)中和→(3)親水化処理(水酸化ナトリウム水溶液に浸漬)→(4)触媒付与(Pdイオン含有触媒付与液に浸漬)→(5)還元処理→(6)無電解銅ニッケルめっき液に浸漬→(7)硫酸銅電気めっき液に浸漬→(8)導体回路形成(銅めっき皮膜・銅ニッケル皮膜のエッチング除去)する方法が開示されている。 In addition, in Patent Document 2, in order to form a conductor circuit on a polyimide resin film, (1) roughening → (2) neutralization → (3) hydrophilization treatment (immersion in an aqueous sodium hydroxide solution) → ( 4) Catalyst application (immersion in Pd ion-containing catalyst application liquid) → (5) Reduction treatment → (6) Immersion in electroless copper nickel plating liquid → (7) Immersion in copper sulfate electroplating liquid → (8) Conductor circuit formation A method of (etching removal of copper plating film / copper nickel film) is disclosed.
従って、特許文献1に記載されるような、高分子繊維を芯材とした電線並びに被覆電線、電磁波シールド材及び導電性プラスチック等の材料として好適な導電性皮膜付き高分子繊維を製造すべく、多くの高分子繊維を対象に導電性皮膜を形成するための種々の研究が産業界においてなされている。これらの用途としての導電性皮膜付き高分子繊維は、高い密着性や強度が要求される。何らかの原因でめっき(導電性皮膜)が剥がれると導電性能に悪影響を及ぼすためである。
一方、特許文献2に記載のめっき技術は、プリント配線板作製用の導電性皮膜に関する技術である。このめっき技術は、皮膜中のニッケル量をある所定範囲とすることにより、ポリイミド樹脂に対する密着性の特性を高めるものである。Niを皮膜中含有による電気抵抗率の増加が懸念される。
Therefore, as described in Patent Document 1, to produce a polymer fiber with a conductive film suitable as a material such as an electric wire using a polymer fiber as a core material, a covered electric wire, an electromagnetic shielding material, and a conductive plastic, Various studies have been conducted in the industry to form a conductive film on many polymer fibers. High adhesiveness and strength are required for the polymer fiber with a conductive film for these uses. This is because if the plating (conductive film) is peeled for some reason, the conductive performance is adversely affected.
On the other hand, the plating technique described in Patent Document 2 is a technique related to a conductive film for producing a printed wiring board. This plating technique improves the adhesion property to the polyimide resin by setting the amount of nickel in the film within a certain predetermined range. There is concern about an increase in electrical resistivity due to the inclusion of Ni in the film.
本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、めっき皮膜に良好な密着性及び導電性を備えさせることができる高分子繊維の無電解銅めっき方法を提供することにある。これにより、高分子繊維を芯材とした電線並びに被覆電線、電磁波シールド材及び導電性プラスチック等の材料の軽量化・低コスト化を実現しようとするものである。 The present invention has been made in view of the above circumstances, an object of the present invention provides an electroless copper plating method of a polymer textiles, which can be provided with good adhesion and conductivity to the plating film There is. As a result, it is intended to realize weight reduction and cost reduction of materials such as an electric wire having a polymer fiber as a core material, a covered electric wire, an electromagnetic shielding material, and a conductive plastic.
(削除) (Delete)
上記課題を解決するために本発明に係る高分子繊維の無電解銅めっき方法は、以下の構成を備えていることを要旨とする。
(1)前記高分子繊維の無電解銅めっき方法は、
必要に応じて高分子繊維をアルカリ性溶液に所定時間浸漬するアルカリ処理工程と、
前記アルカリ処理工程を経た又は当該アルカリ処理工程が省略された高分子繊維Aを表面調整剤に所定時間浸漬する表面調整処理工程と、
前記表面調整処理工程を経た高分子繊維BをPdとSnのコロイド溶液に所定時間浸漬するSn−Pd触媒浸漬工程と、
前記Sn−Pd触媒浸漬工程を経た高分子繊維Cを120〜300℃に所定時間保持する熱処理工程と、
前記熱処理工程を経た高分子繊維Dを酸溶液に所定時間浸漬するアクセレーター処理工程と、
前記アクセレーター処理工程を経た高分子繊維Eを無電解銅めっき液に所定時間浸漬し、前記高分子繊維Eの表面に、厚みが0.1μm以上0.707624226μmであり、かつ、剥離率(=「テープ貼付前のめっき面積」に対する「テープ剥離後のめっき面積」の割合)が30%以下である導電性皮膜を形成する無電解銅めっき工程と、
を備えている。
(2)前記無電解銅めっき液は、
(a)CuSO 4 ・5H 2 Oを7〜15g/Lと、
(b)EDTA−4Naを20〜35g/Lと、
(c)NaOHを5〜15g/Lと、
(d)HCHOを5〜15cc/Lと、
(e)ノニオン系界面活性剤を0.005〜0.015g/Lと、
(f)KCN、0−フェナントロリン、ネオクプロイン又は2,2−ビピリジルを0.05〜0.15g/Lと、
(g)NiSO 4 ・6H 2 O、CoSO 4 ・7H 2 O、ZnSO 4 ・7H 2 O、SnSO 4 、及び、Na 2 O 3 Sn・3H 2 Oから選ばれるいずれか一種又は二種以上を0超〜0.020mol/Lと、
からなる。
Electroless copper plating method of a polymer textiles according to the present invention in order to solve the above problems, and summarized in that has the following configuration.
(1) The method for electroless copper plating of the polymer fiber is as follows:
An alkali treatment step of immersing the polymer fiber in an alkaline solution for a predetermined time if necessary;
A surface conditioning treatment step in which the polymer fiber A that has undergone the alkali treatment step or the alkali treatment step is omitted is immersed in a surface conditioning agent for a predetermined time;
A Sn-Pd catalyst immersion step of immersing the polymer fiber B that has undergone the surface conditioning treatment step in a colloidal solution of Pd and Sn for a predetermined time;
A heat treatment step of maintaining the polymer fiber C that has undergone the Sn—Pd catalyst immersion step at 120 to 300 ° C. for a predetermined time;
An accelerator treatment step of immersing the polymer fiber D that has undergone the heat treatment step in an acid solution for a predetermined time;
The immersed Accelerator step a predetermined time polymeric fibers E in an electroless copper plating solution which has passed through, the surface of the polymer fiber E, a thickness of more than 0.1 [mu] m 0.707624226Myuemu, and peeling rate ( = " Electroplated copper plating process for forming a conductive film having a ratio of" plated area after tape peeling "to" plated area before tape application "" of 30% or less ,
It has.
(2) The electroless copper plating solution is
(A) 7-15 g / L of CuSO 4 .5H 2 O,
(B) 20-35 g / L of EDTA-4Na,
(C) 5-15 g / L of NaOH,
(D) 5-15 cc / L of HCHO,
(E) 0.005 to 0.015 g / L of nonionic surfactant,
(F) 0.05 to 0.15 g / L of KCN, 0-phenanthroline, neocuproin or 2,2-bipyridyl;
(G) NiSO 4 · 6H 2 O, CoSO 4 · 7H 2 O, ZnSO 4 · 7H 2 O, SnSO 4, and, Na 2 O 3 Sn · 3H 0 more either one or two or selected from 2 O Ultra to 0.020 mol / L,
Consists of.
(削除) (Delete)
本発明に係る高分子繊維の無電解銅めっき液は、所定の組成を備え、特に、NiSO4・6H2O、CoSO4・7H2O、ZnSO4・7H2O、SnSO4、及び、Na2O3Sn・3H2Oから選ばれるいずれか一種又は二種以上を0超〜0.020mol/L備えたので、高分子繊維に密着性に優れた導電性皮膜を形成させることを可能とするという効果がある。 The electroless copper plating solution of polymer fiber according to the present invention has a predetermined composition, in particular, NiSO 4 .6H 2 O, CoSO 4 .7H 2 O, ZnSO 4 .7H 2 O, SnSO 4 , and Na. Since any one or two or more selected from 2 O 3 Sn · 3H 2 O is provided in an amount of more than 0 to 0.020 mol / L, it is possible to form a conductive film having excellent adhesion on the polymer fiber. There is an effect of doing.
従って、当該無電解銅めっき液を用いて高分子繊維に無電解銅めっきを実施すれば、密着性の低さに起因する被めっき繊維の抵抗値上昇、強度低下を抑制しうる導電性皮膜付き高分子繊維を製造することができるという効果がある。これにより、高分子繊維を芯材とした電線並びに被覆電線、電磁波シールド材及び導電性プラスチックの材料として好適な導電性皮膜付き高分子繊維が得られる。 Therefore, if electroless copper plating is performed on polymer fibers using the electroless copper plating solution, a conductive coating is provided that can suppress an increase in resistance value and a decrease in strength due to the low adhesion. There exists an effect that a polymer fiber can be manufactured. Thereby, the polymer fiber with a conductive film suitable as a material of the electric wire which used the polymer fiber as the core material, the covered electric wire, the electromagnetic wave shielding material, and the conductive plastic can be obtained.
本発明に係る高分子繊維のめっき方法によれば、アルカリ処理工程において高分子繊維の表面の付着物が除去され、表面調整処理工程において高分子繊維の表面がカチオン化され、Sn−Pd触媒浸漬工程においてSn−Pdコロイドのアニオンが高分子繊維の表面に強固に吸着・結合する。そして、熱処理工程においては高分子繊維の分子が開いてその分子中にPd−Sn粒子(PdとSnとからなるアニオン)が取り込まれ吸着・結合するが、熱によりその触媒活性が損なわれる。アクセレーター処理工程においては、取り込まれたPd−Sn粒子のうちSnが溶け、Pdのみがその分子中に吸着・結合するとともに、金属触媒が再活性化される。無電解銅めっき工程においては、高分子繊維に導電性皮膜が形成される。 According to the polymer fiber plating method of the present invention, deposits on the surface of the polymer fiber are removed in the alkali treatment step, the surface of the polymer fiber is cationized in the surface conditioning treatment step, and Sn—Pd catalyst immersion is performed. In the process, the anion of the Sn—Pd colloid is firmly adsorbed and bonded to the surface of the polymer fiber. In the heat treatment step, the polymer fiber molecules are opened and Pd—Sn particles (anions composed of Pd and Sn) are taken in and adsorbed / bonded in the molecules, but the catalytic activity is impaired by heat. In the accelerator treatment step, Sn is dissolved in the incorporated Pd—Sn particles, and only Pd is adsorbed and bound in the molecule, and the metal catalyst is reactivated. In the electroless copper plating step, a conductive film is formed on the polymer fiber.
従って、本発明に係る高分子繊維のめっき方法によれば、表面調整処理工程におけるカチオン化、熱処理工程におけるPd−Sn粒子の高分子繊維の分子中への取り込み及び吸着・結合により、無電解銅めっき工程がなされた場合に形成される導電性皮膜と高分子繊維との密着性を向上させるという効果がある。更に、無電解銅めっき工程においては本発明に係る無電解銅めっき液を使用するため、これによっても、上記の通り密着性を向上させる効果がある。 Therefore, according to the polymer fiber plating method of the present invention, electroless copper is obtained by cationization in the surface conditioning treatment step, incorporation of Pd-Sn particles into the polymer fiber molecule and adsorption / bonding in the heat treatment step. There is an effect of improving the adhesion between the conductive film formed when the plating process is performed and the polymer fiber. Furthermore, since the electroless copper plating solution according to the present invention is used in the electroless copper plating step, this also has the effect of improving the adhesion as described above.
よって、本発明によれば、相乗効果(表面調整処理及び熱処理並びに無電解銅めっき液による相乗効果)により良好な密着性が得られるという効果がある。本発明に係る高分子繊維の製造方法は、本発明に係る高分子繊維のめっき方法を使用するものであるから当該めっき方法と同様の効果がある。 Therefore, according to this invention, there exists an effect that favorable adhesiveness is acquired by the synergistic effect (The synergistic effect by a surface adjustment process and heat processing, and an electroless copper plating solution). Since the polymer fiber manufacturing method according to the present invention uses the polymer fiber plating method according to the present invention, it has the same effects as the plating method.
以下、図面を参照して本発明の一実施形態について説明する。尚、本明細書においては「高分子繊維」は、フィラメント及びフィラメントの集合体である束のいずれをも意味する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present specification, “polymer fiber” means both a filament and a bundle which is an assembly of filaments.
(高分子繊維−被めっき繊維)
本発明の一実施形態に係る無電解銅めっき液を用いて本発明の一実施形態に係るめっき方法が適用される高分子繊維としては、高融点(150℃以上)の有機高分子繊維、例えば、ポリアリレート樹脂(例えば、ベクトラン(登録商標))、ポリ(パラフェニレンベンゾビスオキサゾール)(例えば、ザイロン(登録商標))、ポリパラフェニレンテレフタルアミド(例えば、ケブラー(登録商標))、ポリエーテルイミド、高密度ポリエチレン繊維(例えば、ダイニーマ(登録商標))が挙げられる(表1A〜表1F参照)。
高分子繊維は、1本のフィラメントが1〜6デシテックス(dtex)でその直径が10〜30μmのものを数十本〜数千本集めて繊維束にしたものが用いられる。その繊維束の断面形状は、特に限定されず、めっき後の導電性皮膜付き高分子繊維の用途に応じて選択すればよい。
(Polymer fiber-Plated fiber)
Examples of the polymer fiber to which the plating method according to one embodiment of the present invention is applied using the electroless copper plating solution according to one embodiment of the present invention include organic polymer fibers having a high melting point (150 ° C. or higher), such as , Polyarylate resins (eg, Vectran®), poly (paraphenylenebenzobisoxazole) (eg, Zylon®), polyparaphenylene terephthalamide (eg, Kevlar®), polyetherimide And high-density polyethylene fibers (for example, Dyneema (registered trademark)) (see Tables 1A to 1F).
As the polymer fiber, one having 1 to 6 decitex (dtex) and a diameter of 10 to 30 μm collected from several tens to several thousand fibers to form a fiber bundle is used. The cross-sectional shape of the fiber bundle is not particularly limited, and may be selected according to the use of the polymer fiber with a conductive film after plating.
(無電解銅めっき液)
本実施形態に係る無電解銅めっきは、触媒活性の高い金属触媒(例えば、Pd,Ag,Au,Pt等)の表面で、無電解銅めっき液に含まれる還元剤(例えば、HCHO)が酸化されるときに放出される電子により、無電解銅めっき液に含まれる「導電性皮膜となる金属イオン」を還元し、これを均一な厚みで被めっき物に導電性皮膜として析出させる技術である。
本実施形態に係る無電解銅めっき液は、以下の(1)〜(7)の成分を全て含むものからなるめっき液が好ましいが(表2A〜表2D参照)、これに限定されず、これらのうちのいずれかに代えて又はこれらに追加して他の添加剤を含有してもよい。
(1)導電性皮膜として形成されるCu又はCuイオンを含む水和物、錯体その他の化合物として、例えば、CuSO4・5H2Oを7〜15g/L。
(2)アルカリ性めっき液中においても、導電性皮膜として析出させるべき金属を金属イオンとしてめっき液中に存在させるキレート剤として、例えば、EDTA−4Naを20〜35g/L、又は、導電性皮膜として形成されるCu又はCuイオンを含む水和物、錯体その他の化合物に含まれるCu(又はCuイオン)と当モル以上。
(3)めっき液をアルカリ性にし、これを維持するpH上昇剤として、例えば、NaOHを5〜15g/L、又は、めっき液のpHを8以上に維持しうる量。
(4)導電性皮膜として析出させるべき金属を含む金属イオンを還元する還元剤として、例えば、HCHOを5〜15cc/L。
(5)めっき液の表面張力を下げて反応ガスを抜けやすくする界面活性剤として、例えば、ノニオン系界面活性剤を0.005〜0.015g/L。
(6)めっき液の分解を抑制する分解抑制剤として、例えば、KCN、0−フェナントロリン、ネオクプロイン又は2,2−ビピリジルを0.05〜0.15g/L。
(7)密着性を向上させる添加剤として、Niイオン(Ni2+),Coイオン(Co2+),Znイオン(Zn2+)及びSnイオン(Sn2+、Sn4+)から選ばれるいずれか一種又は二種以上を含む添加剤として、例えば、NiSO4・6H2O、CoSO4・7H2O、ZnSO4・7H2O、SnSO4、及び、Na2O3Sn・3H2Oから選ばれるいずれか一種又は二種以上を0超〜0.020mol/L。
(Electroless copper plating solution)
In the electroless copper plating according to this embodiment, the reducing agent (for example, HCHO) contained in the electroless copper plating solution is oxidized on the surface of a metal catalyst (for example, Pd, Ag, Au, Pt, etc.) having high catalytic activity. This is a technology that reduces the "metal ions that become conductive films" contained in the electroless copper plating solution by the electrons emitted when it is applied, and deposits them as a conductive film on the object to be plated with a uniform thickness. .
The electroless copper plating solution according to the present embodiment is preferably a plating solution comprising all of the following components (1) to (7) (see Tables 2A to 2D), but is not limited thereto. Other additives may be contained instead of or in addition to any of the above.
(1) As a hydrate, complex or other compound containing Cu or Cu ions formed as a conductive film, for example, CuSO 4 .5H 2 O is 7 to 15 g / L.
(2) In the alkaline plating solution, as a chelating agent that causes the metal to be deposited as a conductive film to exist in the plating solution, for example, EDTA-4Na is 20 to 35 g / L, or as a conductive coating. Cu (or Cu ions) contained in hydrates, complexes, and other compounds containing Cu or Cu ions to be formed and equimolar or more.
(3) As a pH raising agent for making the plating solution alkaline and maintaining it, for example, NaOH is 5 to 15 g / L, or an amount capable of maintaining the pH of the plating solution at 8 or more.
(4) As a reducing agent for reducing metal ions including a metal to be deposited as a conductive film, for example, HCHO is 5 to 15 cc / L.
(5) For example, 0.005 to 0.015 g / L of a nonionic surfactant is used as the surfactant that lowers the surface tension of the plating solution to facilitate the reaction gas.
(6) As a decomposition inhibitor that suppresses decomposition of the plating solution, for example, 0.05 to 0.15 g / L of KCN, 0-phenanthroline, neocuproine, or 2,2-bipyridyl.
(7) As an additive for improving adhesion, any one or two selected from Ni ion (Ni 2+ ), Co ion (Co 2+ ), Zn ion (Zn 2+ ) and Sn ion (Sn 2+ , Sn 4+ ) As an additive containing seeds or more, for example, any one selected from NiSO 4 · 6H 2 O, CoSO 4 · 7H 2 O, ZnSO 4 · 7H 2 O, SnSO 4 , and Na 2 O 3 Sn · 3H 2 O One type or two or more types is more than 0 to 0.020 mol / L.
本実施形態に係る無電解銅めっき液は、上記所定の構成のうち、Niイオン(Ni2+),Coイオン(Co2+),Znイオン(Zn2+)及びSnイオン(Sn2+、Sn4+)から選ばれるいずれか一種又は二種以上を含む添加剤を0超〜0.020mol/L含有するため、被めっき繊維に密着性に優れた導電性皮膜を形成させることを可能とする。すなわち、本実施形態に係る無電解銅めっき液は、密着性の低さに起因する抵抗値上昇や強度低下を抑制しうる導電性皮膜付き高分子繊維を製造することを可能とする。これにより、高分子繊維を芯材とした電線並びに被覆電線、電磁波シールド材及び導電性プラスチックの材料として好適な導電性皮膜付き高分子繊維が得られる。 The electroless copper plating solution according to the present embodiment is composed of Ni ions (Ni 2+ ), Co ions (Co 2+ ), Zn ions (Zn 2+ ), and Sn ions (Sn 2+ , Sn 4+ ) among the above-described predetermined configurations. Since the additive containing any one kind or two or more kinds selected is contained in an amount of more than 0 to 0.020 mol / L, it is possible to form a conductive film having excellent adhesion on the fiber to be plated. That is, the electroless copper plating solution according to the present embodiment makes it possible to produce a polymer fiber with a conductive film that can suppress an increase in resistance value and a decrease in strength due to low adhesion. Thereby, the polymer fiber with a conductive film suitable as a material of the electric wire which used the polymer fiber as the core, the covered electric wire, the electromagnetic wave shielding material, and the conductive plastic can be obtained.
(高分子繊維のめっき方法)
本発明の一実施形態に係る高分子繊維のめっき方法は、その工程順に、(1)アルカリ処理、(2)表面調整処理、(3)Sn−Pd触媒浸漬、(4)熱処理、(5)アクセレーター処理、(6)無電解銅めっきの各工程からなる(表3A〜表3D参照)。
以下、これらの各工程について説明する。
(Polymer fiber plating method)
The polymer fiber plating method according to an embodiment of the present invention includes (1) alkali treatment, (2) surface conditioning treatment, (3) Sn—Pd catalyst immersion, (4) heat treatment, and (5) in the order of the steps. It consists of each process of an accelerator process and (6) electroless copper plating (refer Table 3A-Table 3D).
Hereinafter, each of these steps will be described.
(1)アルカリ処理工程は、所定温度のアルカリ性溶液に被めっき繊維(高分子繊維)を所定時間浸漬することにより、被めっき繊維の汚れを除去し、洗浄する工程である。アルカリ性溶液としては、例えば、NaOH、KOHを用いることができる。アルカリ処理後は、被めっき繊維を水洗し、アルカリ処理溶液等の被めっき繊維への付着物を除去する。
図1(a)は、アルカリ処理工程後の被めっき繊維の状態を示す。表面の汚れが除去されていることがわかる。尚、初めから被めっき繊維の汚れが除去されている場合には、アルカリ処理工程は省略してもよい。
(1) The alkali treatment step is a step of removing and washing the metal to be plated by immersing the fiber to be plated (polymer fiber) in an alkaline solution at a predetermined temperature for a predetermined time. For example, NaOH or KOH can be used as the alkaline solution. After the alkali treatment, the to-be-plated fiber is washed with water to remove deposits on the to-be-plated fiber such as an alkali treatment solution.
Fig.1 (a) shows the state of the to-be-plated fiber after an alkali treatment process. It can be seen that the dirt on the surface has been removed. In addition, when the stain | pollution | contamination of the to-be-plated fiber is removed from the beginning, you may abbreviate | omit an alkali treatment process.
(2)表面調整処理工程は、被めっき繊維を所定温度の表面調整剤に所定時間浸漬することにより、被めっき繊維の表面をカチオン化し、被めっき繊維の表面に触媒金属を付着しやすくする工程である。これにより、密着性の向上が図られる。表面調整処理後は、被めっき繊維を水洗し、表面調整剤等の被めっき繊維への付着物を除去する。
図1(b)は、表面調整処理工程後の被めっき繊維の状態を示す。被めっき繊維の表面がカチオン化され、触媒金属が付着しやすくなっていることがわかる。
(2) The surface conditioning treatment step is a step of cationizing the surface of the fiber to be plated by immersing the fiber to be plated in a surface conditioner at a predetermined temperature for a predetermined time so that the catalyst metal is easily attached to the surface of the fiber to be plated. It is. Thereby, the adhesiveness is improved. After the surface conditioning treatment, the fiber to be plated is washed with water, and the deposits on the fiber to be plated such as a surface conditioning agent are removed.
FIG.1 (b) shows the state of the to-be-plated fiber after a surface adjustment process process. It turns out that the surface of the to-be-plated fiber is cationized and the catalyst metal is easy to adhere.
(3)Sn−Pd触媒浸漬工程は、被めっき繊維を所定温度の触媒付与剤(例えば、PdとSnのコロイド溶液)に所定時間浸漬することにより、PdとSnを当該被めっき繊維の表面に吸着・結合させる工程である。触媒付与剤としては、塩化スズ(II)と塩化パラジウム(II)をそれぞれ塩酸溶液で溶解させ、これらを攪拌しながら混合し、加熱しながら熟成させて作製したものが好ましい。
図1(c)は、Sn−Pd触媒浸漬工程後の被めっき繊維の状態を示す。表面調整処理で触媒が付着しやすくなった被めっき繊維の表面にPdとSnとからなるアニオンが吸着・結合していることがわかる。この吸着・結合は、ファンデルワールス力(分子間の相互作用による引力)とクーロン力(正負の電荷の相互作用)によるものと考えられる。
(3) In the Sn—Pd catalyst dipping step, Pd and Sn are immersed on the surface of the fiber to be plated by immersing the fiber to be plated in a catalyst-imparting agent (for example, a colloidal solution of Pd and Sn) at a predetermined temperature. This is a process of adsorption and bonding. The catalyst imparting agent is preferably prepared by dissolving tin (II) chloride and palladium (II) chloride in a hydrochloric acid solution, mixing them with stirring, and aging them while heating.
FIG.1 (c) shows the state of the to-be-plated fiber after a Sn-Pd catalyst immersion process. It can be seen that an anion composed of Pd and Sn is adsorbed and bonded to the surface of the fiber to be plated on which the catalyst is easily attached by the surface conditioning treatment. This adsorption / bonding is considered to be due to van der Waals force (attraction due to interaction between molecules) and Coulomb force (interaction between positive and negative charges).
クーロン力によっても結合(イオン結合)するのは、被めっき繊維の表面が表面調整処理によりカチオン化されているためと考えられる。そして、これがめっきの密着性の向上に寄与する。 The bonding (ionic bonding) is also caused by the Coulomb force because the surface of the fiber to be plated is cationized by the surface conditioning treatment. This contributes to improving the adhesion of plating.
(4)熱処理工程は、被めっき繊維を120〜300℃に所定時間保持することにより、被めっき繊維の分子を開かせ(図1(d)(i)参照)、その中にPd−Sn粒子を取り込ませ、吸着・結合させる(図1(d)(ii)参照)工程である。保持温度は、被めっき繊維の種類に応じて120〜300℃の間で適宜選択すれば良い。例えば、ポリアリレート樹脂の場合には150〜280℃が特に好ましく、ポリ(パラフェニレンベンゾビスオキサゾール)の場合には150〜300℃が特に好ましく、ポリパラフェニレンテレフタルアミドの場合には120〜250℃が特に好ましく、ポリエーテルイミドの場合には120〜250℃が特に好ましく、高密度ポリエチレン繊維の場合には120〜250℃が特に好ましい。 (4) In the heat treatment step, the fibers to be plated are opened by holding the fibers to be plated at 120 to 300 ° C. for a predetermined time (see FIGS. 1D and 1I), and Pd—Sn particles are contained therein. Is taken in, adsorbed and bound (see FIG. 1 (d) (ii)). What is necessary is just to select holding temperature suitably between 120-300 degreeC according to the kind of to-be-plated fiber. For example, 150 to 280 ° C. is particularly preferable in the case of polyarylate resin, 150 to 300 ° C. is particularly preferable in the case of poly (paraphenylene benzobisoxazole), and 120 to 250 ° C. in the case of polyparaphenylene terephthalamide. Is particularly preferable in the case of polyetherimide, and 120 to 250 ° C. is particularly preferable in the case of high density polyethylene fiber.
図1(d)(i)は、熱処理工程中の被めっき繊維の状態を示す。同図に示すように、被めっき繊維が開き、Pd−Sn粒子(PdとSnとからなるアニオン)がその開いた被めっき繊維の分子間に取り込まれ、吸着・結合する。Pd−Sn粒子の被めっき繊維の分子間への取り込み、吸着・結合は、ファンデルワールス力による吸着力に加えクーロン力による結合力が維持された状態で進行するが、熱によりPd―Sn粒子の触媒活性は損なわれる。 FIG.1 (d) (i) shows the state of the to-be-plated fiber in the heat processing process. As shown in the figure, the fiber to be plated opens, and Pd—Sn particles (anions composed of Pd and Sn) are taken in between the molecules of the opened fiber to be plated and adsorbed and bonded. Incorporation, adsorption and bonding of Pd-Sn particles between the fibers to be plated proceed in a state where the bonding force by the Coulomb force is maintained in addition to the adsorption force by the van der Waals force, but the Pd-Sn particles are heated by heat. The catalytic activity of is impaired.
図1(d)(ii)は、熱処理工程後の被めっき繊維の状態を示す。熱処理工程が終了すると温度が下がるため、同図に示すように、開いた被めっき繊維の分子が閉じる。これにより、被めっき繊維の分子間へ取り込まれ、吸着・結合したPd粒子が被めっき繊維の分子間から離脱しにくくなる。このことが、後述する無電解銅めっき工程によって形成される導電性皮膜の密着性の向上に寄与する。 FIG.1 (d) (ii) shows the state of the to-be-plated fiber after a heat processing process. When the heat treatment step is completed, the temperature drops, and as shown in FIG. As a result, the Pd particles taken in and adsorbed and bonded between the molecules of the fiber to be plated are less likely to be separated from the molecules of the fiber to be plated. This contributes to the improvement of the adhesion of the conductive film formed by the electroless copper plating process described later.
(5)アクセレーター処理工程は、被めっき繊維を活性化促進剤(例えば、酸溶液)に所定時間浸漬することにより、熱処理工程で触媒活性が損なわれたPdとSnとからなる粒子を再活性化させるために、Snを溶解させ、当該被めっき繊維にPdのみを吸着・結合させた状態にする工程である。活性化促進剤として用いる酸溶液としては、Snを溶解させるがPdが溶けない酸であれば特に限定されず、処理条件(処理濃度・処理温度・処理時間)は特に限定されない。好適な酸溶液及びその処理条件の例として、例えば、塩酸(10%、室温、4分)、硫酸(10%、45℃、5分)、フッ化水素酸(5%、室温、5分)、ホウフッ化水素酸 (5〜10%、室温、5分)が挙げられる。 (5) The accelerator treatment step reactivates particles composed of Pd and Sn whose catalytic activity is impaired in the heat treatment step by immersing the fiber to be plated in an activation accelerator (for example, an acid solution) for a predetermined time. In order to make it easier, the Sn is dissolved and only Pd is adsorbed and bonded to the fiber to be plated. The acid solution used as the activation accelerator is not particularly limited as long as it is an acid that dissolves Sn but does not dissolve Pd, and the processing conditions (processing concentration, processing temperature, processing time) are not particularly limited. Examples of suitable acid solutions and treatment conditions include, for example, hydrochloric acid (10%, room temperature, 4 minutes), sulfuric acid (10%, 45 ° C., 5 minutes), hydrofluoric acid (5%, room temperature, 5 minutes) , Borohydrofluoric acid (5-10%, room temperature, 5 minutes).
図1(e)は、アクセレーター処理工程後の被めっき繊維の状態を示す。Pdが被めっき繊維に強固に吸着・結合していることがわかる。従って、後述するめっき工程で施されるめっきの密着性を向上させる。アクセレーター処理後は、被めっき繊維を水洗し、アクセレーター処理溶液等の被めっき繊維への付着物を除去する。 FIG.1 (e) shows the state of the to-be-plated fiber after an accelerator process. It can be seen that Pd is strongly adsorbed and bonded to the fiber to be plated. Therefore, the adhesion of the plating applied in the plating process described later is improved. After the accelerator treatment, the fiber to be plated is washed with water to remove deposits on the fiber to be plated such as an accelerator treatment solution.
(6)無電解銅めっき工程は、被めっき繊維を所定温度の無電解銅めっき液に所定時間浸漬することにより、当該被めっき繊維にめっき皮膜(導電性皮膜)を0.1〜2.0μm厚で形成させる工程である。無電解銅めっき液としては、密着性の低さに起因する被めっき繊維の抵抗値上昇や強度低下を抑制しうる導電性皮膜付き高分子繊維を製造することを可能とするものであれば特に限定されない。そのような無電解銅めっき液としては、例えば、上記の無電解銅めっき液や表2A〜表2Dに示す無電解銅めっき液が好適である。 (6) In the electroless copper plating step, the plated fiber is immersed in an electroless copper plating solution at a predetermined temperature for a predetermined time, whereby a plated film (conductive film) is 0.1 to 2.0 μm on the plated fiber. This is a step of forming with a thickness. As an electroless copper plating solution, it is possible to produce a polymer fiber with a conductive film that can suppress an increase in resistance value and a decrease in strength of a fiber to be plated due to low adhesion. It is not limited. As such an electroless copper plating solution, for example, the above-described electroless copper plating solution and the electroless copper plating solutions shown in Tables 2A to 2D are suitable.
当該無電解銅めっき液を用いてめっきを実施するときの処理条件(処理濃度・処理温度・処理時間)は、特に限定されず、めっき厚・めっき効率等に応じて適宜調整すればよい。無電解銅めっき工程後は、導電性皮膜付き高分子繊維を水洗し、無電解銅めっき液等の付着物を除去した後、温風乾燥(60〜100℃)する。 Processing conditions (processing concentration, processing temperature, processing time) when performing plating using the electroless copper plating solution are not particularly limited, and may be appropriately adjusted according to plating thickness, plating efficiency, and the like. After the electroless copper plating step, the polymer fiber with the conductive film is washed with water, and deposits such as the electroless copper plating solution are removed, followed by hot air drying (60 to 100 ° C.).
図1(f)は、無電解銅めっき工程後の被めっき繊維の状態を示す。導電性皮膜が、ファンデルワールス力及び/又はクーロン力によって被めっき繊維の分子間・表面に吸着・結合したPd上に形成されていることがわかる。特に、被めっき繊維の分子間に入り込んだPdは、ファンデルワールス力及びクーロン力によって強固に当該被めっき繊維に固定されている。従って、そのPdを触媒金属として形成させた導電性皮膜は優れた密着性を備える。 FIG.1 (f) shows the state of the to-be-plated fiber after an electroless copper plating process. It can be seen that the conductive film is formed on Pd adsorbed and bonded to the intermolecular / surface of the fiber to be plated by van der Waals force and / or coulomb force. In particular, Pd that has entered between molecules of the fiber to be plated is firmly fixed to the fiber to be plated by van der Waals force and Coulomb force. Therefore, the conductive film formed by using the Pd as a catalyst metal has excellent adhesion.
以上説明した、本発明の一実施形態に係る(1)〜(6)の工程を実施することにより、導電性皮膜付き高分子繊維を得ることができる。 By carrying out the steps (1) to (6) according to one embodiment of the present invention described above, a polymer fiber with a conductive film can be obtained.
以下、本実施形態に係るめっき方法を実施し、導電性皮膜付き高分子繊維を作製したのでそれについて説明する。
(高分子繊維の無電解銅めっき)
各実施例及び各比較例について、表1A〜表1Fに示す高分子繊維に対して表2A〜表2Fに示す無電解銅めっき液を用いて、表3A〜表3Fに示す工程を実施し、導電性皮膜付き高分子繊維を製造した。表4A〜表4Fに示すめっき厚は、この無電解銅めっき後の厚さを示す。尚、被めっき繊維(高分子繊維)は、表1A〜表1Fに示すフィラメントを撚らずに同表に示すフィラメント数束ねたものであり、めっき工程を経る間にローラー等で巻き取り・送り出しが繰り返される結果、その断面は扁平形状となり、その状態で導電性皮膜が形成される。表1A〜1Fに示す直径総和は、各フィラメントが1本ずつ全て並列に並ぶまで扁平にされた状態を想定したものである。
Hereinafter, since the plating method according to this embodiment was carried out to produce a polymer fiber with a conductive film, this will be described.
(Electroless copper plating of polymer fiber)
About each Example and each comparative example, the process shown to Table 3A-Table 3F was implemented using the electroless copper plating solution shown to Table 2A-Table 2F with respect to the polymer fiber shown to Table 1A-Table 1F, A polymer fiber with a conductive film was produced. The plating thicknesses shown in Tables 4A to 4F indicate the thicknesses after the electroless copper plating. In addition, the fiber to be plated (polymer fiber) is a bundle of the number of filaments shown in the same table without twisting the filaments shown in Tables 1A to 1F, and is wound and delivered by a roller or the like during the plating process. As a result of the repetition, the cross section becomes a flat shape, and a conductive film is formed in that state. The sum of diameters shown in Tables 1A to 1F assumes a state in which the filaments are flattened until all the filaments are arranged in parallel one by one.
(密着性試験−手順)
上記のようにして得られた導電性皮膜付き高分子繊維を密着性試験用の試験片として密着性試験を実施した。密着性試験は、市販のセロハンテープを試験片に貼った後、これを剥がし、「テープ貼付前のめっき面積」に対する「テープ剥離後のめっき面積」の割合を目視にて観察することにより実施した。表4A〜表4Fにその結果を併せて示す。
(Adhesion test-procedure)
The adhesion test was carried out using the polymer fiber with a conductive film obtained as described above as a test piece for the adhesion test. The adhesion test was carried out by attaching a commercially available cellophane tape to a test piece, peeling it off, and visually observing the ratio of “plating area after tape peeling” to “plating area before tape application”. . The results are also shown in Tables 4A to 4F.
(密着性試験−評価)
添加剤として何を用いるかによって密着性に差異が生じるが、比較例のうち添加剤を全く添加しない場合には高い剥離率を示すが、実施例(添加剤を所定範囲で添加した場合)には、剥離率が顕著に低下することがわかる。特に、添加剤の微量添加が密着性向上に極めて効果があることが確認できた。一方、添加剤の多量添加もまた密着性を低下させることがわかった。その理由はCuに比べイオン化傾向の高い添加剤量の増加により、析出速度が極度に増加しめっき膜の緻密性が低下するためと考えられる。
無電解銅めっき工程で形成される導電性皮膜の密着性は、30%未満が好ましく、25%未満が更に好ましく、20%未満が更に好ましく、15%未満が更に好ましく、10%未満が更に好ましい。従って、これらの要求特性を満たすように添加剤の量を適宜選択すればよい。尚、製品としては更に電気銅めっきがなされるため、無電解銅めっきの段階では30%程度の密着性があればよい。
(Adhesion test-evaluation)
Although the adhesiveness varies depending on what is used as an additive, a high peeling rate is exhibited when no additive is added in the comparative example, but in the example (when the additive is added within a predetermined range). It can be seen that the peel rate is significantly reduced. In particular, it was confirmed that the addition of a small amount of the additive was extremely effective in improving the adhesion. On the other hand, it has been found that addition of a large amount of additive also reduces adhesion. The reason is considered to be that the precipitation rate is extremely increased and the denseness of the plating film is lowered due to an increase in the amount of the additive having a higher ionization tendency than Cu.
The adhesion of the conductive film formed in the electroless copper plating step is preferably less than 30%, more preferably less than 25%, further preferably less than 20%, more preferably less than 15%, and still more preferably less than 10%. . Therefore, the amount of the additive may be appropriately selected so as to satisfy these required characteristics. Since the product is further subjected to electrolytic copper plating, it is sufficient that the adhesiveness is about 30% at the stage of electroless copper plating.
従って、添加剤として、NiSO4・6H2Oを用いる場合には、その添加量の下限は0を超えることが必須であり、その上限は0.020mol/L以下が好ましく、0.015mol/L以下が更に好ましく、0.010mol/L以下が更に好ましく、0.0050mol/Lが更に好ましく、0.0025mol/L以下が更に好ましい。 Accordingly, when NiSO 4 .6H 2 O is used as an additive, the lower limit of the amount added is essential to exceed 0, and the upper limit is preferably 0.020 mol / L or less, and 0.015 mol / L. The following is more preferable, 0.010 mol / L or less is further preferable, 0.0050 mol / L is further preferable, and 0.0025 mol / L or less is more preferable.
添加剤として、CoSO4・7H2Oを用いる場合には、その添加量の下限は0を超えることが必須であり、その上限は0.020mol/L以下が好ましく、0.015mol/L以下が更に好ましく、0.010mol/L以下が更に好ましく、0.0050mol/Lが更に好ましく、0.0025mol/L以下が更に好ましい。 When CoSO 4 · 7H 2 O is used as an additive, the lower limit of the amount added is essential to exceed 0, and the upper limit is preferably 0.020 mol / L or less, and 0.015 mol / L or less. More preferably, 0.010 mol / L or less is further preferable, 0.0050 mol / L is further preferable, and 0.0025 mol / L or less is more preferable.
添加剤として、ZnSO4・7H2Oを用いる場合には、その添加量の下限は0を超えることが必須であり、その上限は0.020mol/L以下が好ましく、0.015mol/L以下が更に好ましく、0.010mol/L以下が更に好ましく、0.0050mol/Lが更に好ましく、0.0025mol/L以下が更に好ましい。 When using ZnSO 4 · 7H 2 O as an additive, the lower limit of the amount added is essential to exceed 0, and the upper limit is preferably 0.020 mol / L or less, and 0.015 mol / L or less. More preferably, 0.010 mol / L or less is further preferable, 0.0050 mol / L is further preferable, and 0.0025 mol / L or less is more preferable.
添加剤として、SnSO4を用いる場合には、その添加量の下限は0を超えることが必須であり、その上限は0.020mol/L以下が好ましく、0.015mol/L以下が更に好ましく、0.010mol/L以下が更に好ましく、0.0050mol/Lが更に好ましく、0.0025mol/L以下が更に好ましい。 When SnSO 4 is used as an additive, the lower limit of the amount added is essential to exceed 0, and the upper limit is preferably 0.020 mol / L or less, more preferably 0.015 mol / L or less, and 0 It is more preferably 0.0010 mol / L or less, further preferably 0.0050 mol / L, and further preferably 0.0025 mol / L or less.
(抵抗値測定−手法)
密着性試験で用いる試験片に電気銅めっきを行い、これを抵抗値測定用の試験片とした。抵抗値測定は、図2のように冶具に取り付けた端子に導電性皮膜付きめっき繊維を接触させ、市販の抵抗計HIOKI製を用い4端子法にて測定を行った。抵抗値の測定長さは30cmとした。表4A〜表4Fにその結果を併せて示す。
(Resistance measurement-method)
Electrolytic copper plating was performed on the test piece used in the adhesion test, and this was used as a test piece for measuring the resistance value. As shown in FIG. 2, the resistance value measurement was carried out by contacting a plated fiber with a conductive film to a terminal attached to a jig and using a commercially available resistance meter manufactured by HIOKI, using a four-terminal method. The measurement length of the resistance value was 30 cm. The results are also shown in Tables 4A to 4F.
(抵抗値測定−評価)
添加剤として何を用いるかによって抵抗値に差異が生じるが、比較例(添加剤を全く添加しない場合や、添加剤が多すぎる場合)に比べると、実施例(添加剤を所定範囲で添加した場合)は、同じ添加剤を用いたもの同士との比較では、相対的に低抵抗値を達成できることがわかった。このことから、実施例で確認された密着性(剥離率にして20%)を満たせば所望の抵抗値を得ることができることがわかった。
また、同じ添加剤を用いたもの同士との比較において実施例が比較例に比べて相対的に低抵抗値を達成した理由についてであるが、実施例は比較例に比べて密着性が高いため、その上に電気銅めっきを施した場合に、部分的な剥がれ等が少なく導電性を確保しうるためと考えられる。また密着性が高い緻密な膜であるため転位や結晶粒界などの欠陥が少なく抵抗率が低下した可能性も考えられる。尚、比較例において添加剤を全く添加しない場合に密着性が極めて悪いにも拘わらず相対的に低い抵抗値を示したのは、電気抵抗率の高い添加剤を含有しないためと考えられる。
(Resistance measurement-evaluation)
The resistance value varies depending on what is used as the additive, but compared to the comparative example (when no additive is added or when there are too many additives), the example (additive was added in a predetermined range). In the case of the same additive, it was found that a relatively low resistance value can be achieved. From this, it was found that a desired resistance value can be obtained if the adhesion (20% in terms of peel rate) confirmed in the examples is satisfied.
Moreover, although it is the reason why the Example achieved a relatively low resistance value compared with the Comparative Example in comparison with those using the same additive, the Example has higher adhesion than the Comparative Example. It is considered that, when electrolytic copper plating is applied thereon, there is little partial peeling and the like and electrical conductivity can be ensured. In addition, since it is a dense film with high adhesion, there may be few defects such as dislocations and crystal grain boundaries and the resistivity may be lowered. In the comparative example, when the additive was not added at all, the reason why a relatively low resistance value was exhibited despite the extremely poor adhesion is considered to be because the additive does not contain a high electrical resistivity.
以上、本発明の一実施形態について説明したが、本発明は上記実施の形態に何ら限定されるものではない。本発明の一実施形態は、種々の改変が可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. Various modifications can be made to the embodiment of the present invention.
本発明に係る高分子繊維のめっき液並びにこれを用いた高分子繊維のめっき方法及びその製造方法は、めっき皮膜の密着性を向上させることにより、密着性の低さに起因する低抵抗値、強度不足を改善することができるため、高分子繊維を芯材とした電線並びに被覆電線、電磁波シールド材及び導電性プラスチック等の材料として好適である。 The polymer fiber plating solution according to the present invention, and the polymer fiber plating method using the same and the method for producing the same, improve the adhesion of the plating film, thereby reducing the low resistance value resulting from the low adhesion, Since the strength deficiency can be improved, it is suitable as a material such as an electric wire using a polymer fiber as a core material, a covered electric wire, an electromagnetic shielding material, and a conductive plastic.
Claims (2)
(1)前記高分子繊維の無電解銅めっき方法は、
必要に応じて高分子繊維をアルカリ性溶液に所定時間浸漬するアルカリ処理工程と、
前記アルカリ処理工程を経た又は当該アルカリ処理工程が省略された高分子繊維Aを表面調整剤に所定時間浸漬する表面調整処理工程と、
前記表面調整処理工程を経た高分子繊維BをPdとSnのコロイド溶液に所定時間浸漬するSn−Pd触媒浸漬工程と、
前記Sn−Pd触媒浸漬工程を経た高分子繊維Cを120〜300℃に所定時間保持する熱処理工程と、
前記熱処理工程を経た高分子繊維Dを酸溶液に所定時間浸漬するアクセレーター処理工程と、
前記アクセレーター処理工程を経た高分子繊維Eを無電解銅めっき液に所定時間浸漬し、前記高分子繊維Eの表面に、厚みが0.1μm以上0.707624226μmであり、かつ、剥離率(=「テープ貼付前のめっき面積」に対する「テープ剥離後のめっき面積」の割合)が30%以下である導電性皮膜を形成する無電解銅めっき工程と、
を備えている。
(2)前記無電解銅めっき液は、
(a)CuSO 4 ・5H 2 Oを7〜15g/Lと、
(b)EDTA−4Naを20〜35g/Lと、
(c)NaOHを5〜15g/Lと、
(d)HCHOを5〜15cc/Lと、
(e)ノニオン系界面活性剤を0.005〜0.015g/Lと、
(f)KCN、0−フェナントロリン、ネオクプロイン又は2,2−ビピリジルを0.05〜0.15g/Lと、
(g)NiSO 4 ・6H 2 O、CoSO 4 ・7H 2 O、ZnSO 4 ・7H 2 O、SnSO 4 、及び、Na 2 O 3 Sn・3H 2 Oから選ばれるいずれか一種又は二種以上を0超〜0.020mol/Lと、
からなる。 An electroless copper plating method for polymer fibers having the following configuration.
(1) The method for electroless copper plating of the polymer fiber is as follows:
An alkali treatment step of immersing the polymer fiber in an alkaline solution for a predetermined time if necessary;
A surface conditioning treatment step in which the polymer fiber A that has undergone the alkali treatment step or the alkali treatment step is omitted is immersed in a surface conditioning agent for a predetermined time;
A Sn-Pd catalyst immersion step of immersing the polymer fiber B that has undergone the surface conditioning treatment step in a colloidal solution of Pd and Sn for a predetermined time;
A heat treatment step of maintaining the polymer fiber C that has undergone the Sn—Pd catalyst immersion step at 120 to 300 ° C. for a predetermined time;
An accelerator treatment step of immersing the polymer fiber D that has undergone the heat treatment step in an acid solution for a predetermined time;
The immersion Accelerator step a predetermined time polymeric fibers E in an electroless copper plating solution which has passed through, the surface of the polymer fiber E, a thickness of more than 0.1 [mu] m 0.707624226Myuemu, and peeling rate ( = " Electroplated copper plating process for forming a conductive film having a ratio of" plated area after tape peeling "to" plated area before tape application "" of 30% or less ,
It has.
(2) The electroless copper plating solution is
(A) 7-15 g / L of CuSO 4 .5H 2 O,
(B) 20-35 g / L of EDTA-4Na,
(C) 5-15 g / L of NaOH,
(D) 5-15 cc / L of HCHO,
(E) 0.005 to 0.015 g / L of nonionic surfactant,
(F) 0.05 to 0.15 g / L of KCN, 0-phenanthroline, neocuproin or 2,2-bipyridyl;
(G) NiSO 4 · 6H 2 O, CoSO 4 · 7H 2 O, ZnSO 4 · 7H 2 O, SnSO 4, and, Na 2 O 3 Sn · 3H 0 more either one or two or selected from 2 O Ultra to 0.020 mol / L,
Consists of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010104076A JP5255015B2 (en) | 2010-04-28 | 2010-04-28 | Electroless copper plating method for polymer fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010104076A JP5255015B2 (en) | 2010-04-28 | 2010-04-28 | Electroless copper plating method for polymer fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011231382A JP2011231382A (en) | 2011-11-17 |
JP5255015B2 true JP5255015B2 (en) | 2013-08-07 |
Family
ID=45321000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010104076A Active JP5255015B2 (en) | 2010-04-28 | 2010-04-28 | Electroless copper plating method for polymer fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5255015B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6129001B2 (en) * | 2013-07-17 | 2017-05-17 | 名古屋メッキ工業株式会社 | Electroless metal plating method for organic fiber materials |
CN104372387A (en) * | 2014-10-30 | 2015-02-25 | 青岛昌安达药业有限公司 | Electroplating solution |
JP6158270B2 (en) * | 2014-12-24 | 2017-07-05 | キヤノン・コンポーネンツ株式会社 | Resin product with plating film and manufacturing method thereof |
KR101580121B1 (en) * | 2015-03-27 | 2015-12-28 | 이규상 | a functional copper sulfide composition and a functional fiber produced therefrom |
JP2016212960A (en) * | 2015-04-29 | 2016-12-15 | 株式会社サーテックカリヤ | Polymer fiber conductive wire and manufacturing method thereof |
CN105779980B (en) * | 2016-03-09 | 2018-04-20 | 昆山艾森半导体材料有限公司 | A kind of electroless copper agent and preparation method thereof |
KR101932963B1 (en) * | 2018-02-20 | 2018-12-27 | 한국기계연구원 | Composition for catalyst-free electroless plating and method for electroless plating using the same |
KR102198242B1 (en) * | 2018-11-30 | 2021-01-06 | 한국재료연구원 | Composition for catalyst-free electroless plating and use thereof |
EP4092172A4 (en) * | 2020-01-15 | 2024-04-03 | Kuraray Co., Ltd. | Metal-covered liquid crystal polyester multifilament |
CN112813675B (en) * | 2020-12-24 | 2023-08-29 | 赣州西维尔金属材料科技有限公司 | Metallized polyimide fiber and preparation method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4975426A (en) * | 1972-11-24 | 1974-07-22 | ||
JPS5248580B2 (en) * | 1973-07-21 | 1977-12-10 | ||
JPS5125432A (en) * | 1974-08-28 | 1976-03-02 | Mitsubishi Gas Chemical Co | MUDENKAIDOMETSUKIHOHO |
JPS5627594B2 (en) * | 1975-03-14 | 1981-06-25 | ||
JPS5220339A (en) * | 1975-08-08 | 1977-02-16 | Hitachi Ltd | Chemical copper plating solution |
JPS53144836A (en) * | 1977-05-25 | 1978-12-16 | Toshiba Corp | Electroless copper plating bath |
CA1135903A (en) * | 1978-09-13 | 1982-11-23 | John F. Mccormack | Electroless copper deposition process having faster plating rates |
JPS5959870A (en) * | 1982-09-28 | 1984-04-05 | Hitachi Chem Co Ltd | Electroless copper plating solution |
JPS5959871A (en) * | 1982-09-28 | 1984-04-05 | Hitachi Chem Co Ltd | Electroless copper plating solution |
JPS59116366A (en) * | 1982-12-24 | 1984-07-05 | Hitachi Ltd | Chemical copper plating solution |
JP3220350B2 (en) * | 1995-05-15 | 2001-10-22 | イビデン株式会社 | Manufacturing method of printed wiring board |
JP5160057B2 (en) * | 2006-07-27 | 2013-03-13 | 名古屋メッキ工業株式会社 | Fiber material with silver plating |
JP5638751B2 (en) * | 2008-08-07 | 2014-12-10 | 名古屋メッキ工業株式会社 | Method for plating polymer fiber material and method for producing polymer fiber material |
-
2010
- 2010-04-28 JP JP2010104076A patent/JP5255015B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011231382A (en) | 2011-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5255015B2 (en) | Electroless copper plating method for polymer fiber | |
CN101586310B (en) | Conductive fibers and preparation method | |
CN102701603B (en) | Preparation method for copper/zinc coating on surface of glass fiber | |
CN101828239B (en) | The electrical shielding material be made up of metallized stainless steel monofilament yarn | |
JP5638751B2 (en) | Method for plating polymer fiber material and method for producing polymer fiber material | |
US20140076618A1 (en) | Method of forming gold thin film and printed circuit board | |
CN107868947B (en) | Activating solution, preparation method thereof and palladium-free activated chemical nickel plating method | |
KR20100023986A (en) | Gold plating and silver plating method for electroconductive fabric | |
CN114032675B (en) | Conductive fiber and preparation method thereof | |
JP2010196137A (en) | Electroless plating method of polyimide resin base material, polyimide resin base material electrolessly plated by the method, dispersion liquid, and method of manufacturing the dispersion liquid | |
KR20190070958A (en) | A method of forming a tin layer on a metal substrate and the use of the structure comprising the tin layer and the nickel / phosphorus alloy underlayer by the method | |
KR102116055B1 (en) | Electroless nickel strike plating solution | |
KR100935185B1 (en) | Method for manufacturing textile coated with conductive metal | |
KR101197723B1 (en) | Manufacturing process of nickel-plated carbon fibers by non-electroplating method | |
JPWO2019022188A1 (en) | Tin-plated copper terminal material and terminal and wire end structure | |
KR101664857B1 (en) | Conductive yarn and method for preparing the same | |
KR101420915B1 (en) | Manufacturing method of electroconductive fabric for electromagnetic interference(EMI) shielding by using electroless | |
JP2010037623A (en) | Plating method for carbon material and method for producing carbon material | |
JP2014031576A (en) | Method for producing printed circuit board | |
KR20170030707A (en) | Electroless copper plating method using metal particle | |
CN114105494B (en) | Coupling agent compounded ionic nickel palladium-free activation solution and method for preparing conductive basalt fiber | |
CN116083890A (en) | Substrate surface treatment method and application thereof | |
JP5408462B2 (en) | Electroless plating method and activation pretreatment method | |
JP5707247B2 (en) | Method for producing conductive particles | |
JP6746842B2 (en) | Method for producing cycloolefin yarn with metal coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5255015 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |