KR101197723B1 - Manufacturing process of nickel-plated carbon fibers by non-electroplating method - Google Patents

Manufacturing process of nickel-plated carbon fibers by non-electroplating method Download PDF

Info

Publication number
KR101197723B1
KR101197723B1 KR1020100079767A KR20100079767A KR101197723B1 KR 101197723 B1 KR101197723 B1 KR 101197723B1 KR 1020100079767 A KR1020100079767 A KR 1020100079767A KR 20100079767 A KR20100079767 A KR 20100079767A KR 101197723 B1 KR101197723 B1 KR 101197723B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
nickel
plated
producing
plated carbon
Prior art date
Application number
KR1020100079767A
Other languages
Korean (ko)
Other versions
KR20120021815A (en
Inventor
박수진
정기호
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020100079767A priority Critical patent/KR101197723B1/en
Publication of KR20120021815A publication Critical patent/KR20120021815A/en
Application granted granted Critical
Publication of KR101197723B1 publication Critical patent/KR101197723B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9,10 or 18 of the Periodic Table; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

본 발명은 무전해 도금법에 의한 니켈 도금된 탄소섬유의 제조방법에 관한 것으로서, 더욱 상세하게는 폴리아미드이미드계 방사용액을 이용한 전기방사법으로 탄소섬유를 제조하고, 제조된 탄소섬유의 표면에 화학적 환원방법인 무전해 도금법을 통해 니켈-인 합금으로 도금처리하여 전기적 전도성이 향상된 고전도성 탄소섬유의 제조방법 및 그에 의해 제조된 고전도성 탄소섬유에 관한 것이다.
상기와 같은 본 발명에 따르면, 니켈 무전해 도금된 탄소섬유의 제조방법은 연속공정이 가능하고, 안정적인 처리가 가능함과 동시에 탄소 섬유표면 형상에 두께가 일정하고 균일한 니켈-인 합금을 도입시킴으로써 높은 전도성을 가질 수 있다.
The present invention relates to a method for producing nickel-plated carbon fibers by electroless plating, and more particularly to preparing carbon fibers by electrospinning using polyamide-imide spinning solution, and chemically reducing the surface of the prepared carbon fibers. The present invention relates to a method for manufacturing a highly conductive carbon fiber having improved electrical conductivity by plating with a nickel-phosphorus alloy through a method of electroless plating, and a highly conductive carbon fiber produced thereby.
According to the present invention as described above, the nickel electroless plated carbon fiber manufacturing method is capable of a continuous process, stable processing and at the same time by introducing a uniform and uniform nickel-phosphorus alloy in the carbon fiber surface shape is high It may have conductivity.

Description

무전해 도금법에 의한 니켈 도금된 탄소섬유의 제조방법{MANUFACTURING PROCESS OF NICKEL-PLATED CARBON FIBERS BY NON-ELECTROPLATING METHOD}MANUFACTURING PROCESS OF NICKEL-PLATED CARBON FIBERS BY NON-ELECTROPLATING METHOD}

본 발명은 무전해 도금법에 의한 니켈 도금된 탄소섬유의 제조방법에 관한 것으로서, 더욱 상세하게는 폴리아미드이미드계 방사용액을 이용한 전기방사법으로 탄소섬유를 제조하고, 제조된 탄소섬유의 표면에 화학적 환원방법인 무전해 도금법을 통해 니켈-인 합금으로 도금처리하여 전기적 전도성이 향상된 고전도성 탄소섬유의 제조방법 및 그에 의해 제조된 고전도성 탄소섬유에 관한 것이다.The present invention relates to a method for producing nickel-plated carbon fibers by electroless plating, and more particularly to preparing carbon fibers by electrospinning using polyamide-imide spinning solution, and chemically reducing the surface of the prepared carbon fibers. The present invention relates to a method for manufacturing a highly conductive carbon fiber having improved electrical conductivity by plating with a nickel-phosphorus alloy through a method of electroless plating, and a highly conductive carbon fiber produced thereby.

최근 탄소섬유는 우수한 역학적 특성 및 전기적 특성에 의해 우주, 항공 산업 분야를 비롯하여 스포츠, 레저 용도 등의 고성능 복합 재료의 보강 섬유 소재로서 상업적으로 생산, 판매되고 있다. Recently, carbon fiber has been commercially produced and sold as a reinforcing fiber material of high-performance composite materials such as sports and leisure applications, including the aerospace and aviation industries, due to its excellent mechanical and electrical properties.

특히, 고전도성 탄소섬유의 경우는 내열성, 화학적 안정성, 전기전도성, 전자파 차폐성, 생체 친화성, 유연성 등의 우수한 특성을 가지고 있어 여러 산업 분야에서 폭넓은 응용이 가능하다. 그 중에서도 우수한 전도성은 면상 발열체 및 전자파 차폐(electromagnetic interference shielding)의 소재로서 전자기파의 상호 간섭현상 및 인체에 유해한 전자기파의 차단을 목적으로 사용될 수 있을 뿐만 아니라 전기화학소자의 전극 재료로의 응용에서도 활발한 연구가 진행되고 있다.In particular, the highly conductive carbon fiber has excellent characteristics such as heat resistance, chemical stability, electrical conductivity, electromagnetic shielding, biocompatibility, flexibility, and the like, and thus can be widely applied in various industrial fields. Among them, excellent conductivity is a material of surface heating element and electromagnetic interference shielding, which can be used for the purpose of mutual interference of electromagnetic waves and blocking of electromagnetic waves harmful to human body, and is also active in the application of electrochemical devices as electrode materials. Is going on.

종래 액상의 전해질로부터 금속이온을 환원 석출 시켜 피도금물 위에 금속막을 형성하여 고전도성 탄소섬유를 제조하는 방법으로는 외부전력에 의해 전해 석출시켜 섬유표면을 전기화학적으로 산화시키는 전해도금법, 금속염과 가용성 환원제가 공존하는 용액에서 환원제의 산화반응으로 방출되는 전자에 의해서 금속 이온을 환원시켜 금속피막을 석출시키는 화학 환원도금법 및 용액 중의 금속이온을 피도금물에 의해 치환 석출시키는 치환도금법이 있다. Conventionally, a method of producing a highly conductive carbon fiber by reducing and depositing metal ions from a liquid electrolyte to form a metal film on a plated object is an electroplating method in which electrolytic precipitation is performed by external power to electrochemically oxidize the surface of the fiber, metal salts and solubility. There are a chemical reduction plating method in which metal ions are reduced by electrons released by the oxidation reaction of the reducing agent in a solution in which a reducing agent coexists, and a metal plating in which a metal coating in a solution is substituted and deposited by plating.

이 중 전해도금법은 기지층이 전도체이어야 하며, 전류밀도의 영향으로 기지층 표면 현상에 두께가 불균일하고, 복잡한 형상에 균일한 도금이 어렵다는 단점이 있다. 또한, 기존의 탄소섬유는 전기 전도도가 103~101S/cm 에 불과해 높은 전기 전도도를 필요로 하는 분야에서는 적용하기 곤란하다는 단점이 있다.Among them, the electroplating method has a disadvantage that the base layer should be a conductor, the thickness is uneven in the surface phenomenon of the base layer due to the influence of the current density, and it is difficult to uniformly plate the complex shape. In addition, the conventional carbon fiber has a disadvantage that it is difficult to apply in the field requiring high electrical conductivity because the electrical conductivity is only 10 3 ~ 10 1 S / cm.

이에 본 발명에서는 높은 전기적 전도성을 가지는 탄소섬유를 개발하기 위하여 전기방사법을 이용해 탄소섬유를 제조하고, 화학적 환원방법인 무전해 도금을 통해 제조된 탄소섬유의 표면에 산소 관능기뿐 아니라 니켈-인 합금을 도입시켜 전기 전도성이 향상된 탄소섬유를 제조함으로써 본 발명을 성공적으로 완성하였다.Accordingly, in the present invention, in order to develop carbon fibers having high electrical conductivity, carbon fibers are manufactured by electrospinning, and nickel-phosphorus alloys as well as oxygen functional groups are formed on the surface of carbon fibers manufactured by electroless plating, which is a chemical reduction method. The present invention has been successfully completed by introducing carbon fibers with improved electrical conductivity.

따라서, 본 발명의 목적은 화학적 환원방법인 무전해 도금법을 통해 니켈-인 합금으로 도금 처리를 함으로써, 탄소섬유의 전기적 전도성 향상에 의한 고전도성 탄소섬유의 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method for producing a highly conductive carbon fiber by improving the electrical conductivity of the carbon fiber by plating with a nickel-phosphorus alloy through the electroless plating method which is a chemical reduction method.

상기 목적을 달성하기 위하여, 본 발명은 니켈 염, 환원제 및 착화제를 포함하는 무전해 도금 용액에 탄소섬유를 침지시키는 것을 포함하는 니켈 도금된 탄소섬유의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a nickel-plated carbon fiber comprising immersing the carbon fiber in an electroless plating solution containing a nickel salt, a reducing agent and a complexing agent.

상기와 같은 본 발명에 따르면, 니켈 무전해 도금된 탄소섬유의 제조방법은 연속공정이 가능하고, 안정적인 처리가 가능함과 동시에 탄소 섬유표면 형상에 두께가 일정하고 균일한 니켈-인 합금을 도입시킴으로써 높은 전도성을 가질 수 있다.According to the present invention as described above, the nickel electroless plated carbon fiber manufacturing method is capable of a continuous process, stable processing and at the same time by introducing a uniform and uniform nickel-phosphorus alloy in the carbon fiber surface shape is high It may have conductivity.

또한, 적절한 조건 내에서 탄소섬유의 전도성을 제어 할 수 있다. In addition, it is possible to control the conductivity of the carbon fiber within the appropriate conditions.

도 1은 무전해 도금법에 의한 니켈 도금된 탄소섬유의 표면을 주사전자현미경으로 관찰한 것이다.1 is a scanning electron microscope of the surface of the nickel-plated carbon fiber by the electroless plating method.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 전기방사법으로 탄소섬유를 제조하고, 제조된 탄소섬유의 표면에 무전해 도금법으로 니켈 도금 처리한 고전도성 탄소섬유의 제조방법을 제공한다.The present invention provides a method for producing a highly conductive carbon fiber prepared by electrospinning carbon fibers, and nickel-plated on the surface of the carbon fiber by electroless plating.

본 발명의 방법의 특징으로 탄소섬유는 폴리아미드이미드를 전구체로 이용하여 전기방사법으로 제조하고, 산화 안정화 및 탄소화 단계를 거쳐 제조되는데 이 때 탄소섬유의 평균 직경의 크기는 0.4 내지 0.9㎛이다. 또한, 제조된 탄소섬유의 표면에 화학적 환원 방법에 의해 표면처리 하여 니켈도금하는 것으로서, 이는 고전도성 효과가 있는 탄소섬유 표면을 거의 손상시키지 않으면서 양극산화처럼 연속공정이 가능하여 상업적으로도 유용할 수 있는 공정이다.As a feature of the method of the present invention, the carbon fiber is prepared by electrospinning using polyamideimide as a precursor, and is subjected to oxidation stabilization and carbonization, wherein the average diameter of the carbon fiber is 0.4 to 0.9 m. In addition, the surface of the carbon fiber is nickel plated by surface treatment by chemical reduction method, which can be used commercially as it can be continuously processed like anodizing with little damage to the carbon fiber surface having high conductivity effect. It is a process that can.

본 발명에 따른 무전해 니켈 도금액은 주성분으로서 니켈염, 환원제 및 착화제를 함유하는데, 도금액 중의 환원제에 의해서 니켈염의 니켈이온이 탄소섬유 표면에 니켈막을 형성하게 된다.The electroless nickel plating liquid according to the present invention contains a nickel salt, a reducing agent and a complexing agent as main components, and nickel ions of the nickel salt form a nickel film on the surface of the carbon fiber by the reducing agent in the plating liquid.

본 발명에서 사용할 수 있는 상기 니켈염으로는 NiCl2?6H2O가 바람직하며, 상기 환원제로는 Na3C6H5O7 및 NaCO2CH3이 바람직하고, 또한 착화제로는 NaH2PO2를 바람직하게 사용할 수 있다. 그 외에도 히드라진이나 수소화붕소화합물등을 환원제로 사용할 수 있다.As the nickel salt that can be used in the present invention, and the NiCl 2? 6H 2 O Preferably, the reducing agent Na 3 C 6 H 5 O 7 and NaCO 2 CH 3 are preferable, and also the complexing agent is NaH 2 PO 2 Can be preferably used. In addition, hydrazine or borohydride compounds can be used as reducing agents.

상기 도금액에 있어서, 염화니켈의 역할은 도금욕 내에서 니켈 이온을 공급하는 것으로 각각 20 내지 300g/l의 범위에서 사용하는 것이 적절하다. 또한, 상기 환원제 및 착화제는 각각 10 내지 160g/l의 농도로 사용하는 것이 적절하다.In the above plating solution, the role of nickel chloride is to supply nickel ions in the plating bath, and it is appropriate to use them in the range of 20 to 300 g / l, respectively. In addition, it is appropriate to use the reducing agent and the complexing agent at a concentration of 10 to 160 g / l, respectively.

또한, 본 발명의 무전해 니켈 도금액의 pH는 산성욕의 경우는 3 내지 6, 알칼리욕의 경우는 8 내지 10의 범위에서 사용하는 것이 적절하다. 알카리성 도금욕에서 pH 조정제로 암모니아수(NH4OH)를 사용하는 경우 암모늄이 니켈 이온과 착화제를 형성한다. 그러나 pH 조정제에 가성 알칼리를 사용하는 경우는 착화제를 넣지 않으면 알칼리 조건에서 수산화 니켈의 백색침전이 생겨 도금욕으로서 사용할 수 없다. 따라서 가성알칼리를 pH 조정제로 사용시에는 많은 량의 착화제를 사용하여야 하며, 이때의 착화제로는 착화형성과 도금속도를 고려해 볼 때 구연산염이 가장 적절하다. 산성 도금욕에서는 pH 조정제로서 HCl을 사용하는 것이 적절하다.Moreover, it is suitable to use the pH of the electroless nickel plating liquid of this invention in the range of 3-6 for an acidic bath, and 8-10 for an alkali bath. When using ammonia water (NH 4 OH) as the pH adjuster in an alkaline plating bath, ammonium forms a complexing agent with nickel ions. However, in the case where caustic alkali is used as the pH adjusting agent, white precipitates of nickel hydroxide may be generated under alkaline conditions without the addition of a complexing agent, and thus it cannot be used as a plating bath. Therefore, when caustic alkali is used as a pH adjuster, a large amount of complexing agent should be used, and citrate is most suitable in consideration of complexation formation and plating rate. In acidic plating baths, it is appropriate to use HCl as the pH adjuster.

또한, 본 발명에 따른 무전해 니켈 도금욕에는 안정제로 소량의 PbNO3를 첨가할 수 있다. 도금욕이 가성 알칼리성인 경우에는 제1 착화제와 병용하여 도금 속도를 높이기 위하여 붕사 또는 붕산, 그리고 NH4Cl을 사용할 수 있으며, 이들은 저온 알카리성 욕에서 석출 속도의 향상에 도움이 된다.In addition, a small amount of PbNO 3 may be added to the electroless nickel plating bath according to the present invention as a stabilizer. When the plating bath is caustic alkaline, borax or boric acid and NH 4 Cl may be used in combination with the first complexing agent to increase the plating speed, which helps to improve the precipitation rate in the low temperature alkaline bath.

또한, 본 발명에 있어서 탄소섬유의 도금욕 노출 시간은 3 내지 90분이 바람직하다. 1분 미만에서는 자가 촉매 반응의 시간이 너무 짧은 관계로 탄소섬유 표면에 생성되는 니켈-인 합금 양이 적기 때문에 바람직하지 못하며, 90분을 초과하면 다량으로 형성되어진 니켈-인 합금으로 인하여 탄소섬유 표면에 피트가 발생되고 금속층이 탄소섬유 본연의 특성을 소실할 정도로 두꺼워지기 때문에 바람직하지 못하다.Further, in the present invention, the plating bath exposure time of the carbon fiber is preferably 3 to 90 minutes. Less than 1 minute is not desirable because the amount of nickel-phosphorus alloy formed on the surface of the carbon fiber is too short because the time of the autocatalytic reaction is too short, and the surface of the carbon fiber due to the large amount of nickel-phosphorus alloy formed after 90 minutes It is not preferable because pit is generated and the metal layer becomes thick enough to lose the inherent properties of the carbon fiber.

또한, 본 발명에 있어서 탄소섬유의 제조 시 도금 용액의 온도는 40℃ 내지는 200℃가 바람직하다.In addition, in the present invention, the temperature of the plating solution during the production of the carbon fibers is preferably 40 ° C to 200 ° C.

또한, 본 발명에 있어서 무전해 도금에 사용되는 탄소섬유는 무전해 도금 전에 섬유표면을 활성화하기 위해 표면의 불순물을 제거한 후 금속 핵을 형성시키는 전처리를 하는 것이 바람직하다.
In addition, in the present invention, the carbon fiber used for electroless plating is preferably subjected to pretreatment to remove metal impurities and then to form metal nuclei in order to activate the fiber surface before electroless plating.

발명에 있어서 각각의 특성 값들은 다음 방법에 의하여 측정하였다.Each characteristic value in the invention was measured by the following method.

측정예Measurement example 1. 금속  1. Metal 무전해Electroless 도금  Plated 탄소섬유의Carbon fiber 표면구조, 두께변화 및 특성확인 Surface structure, thickness change and characteristic check

하기의 실시예에서 제조된 니켈 무전해 도금 탄소섬유의 표면구조, 두께변화 및 특성을 확인하기 위하여 주사전자현미경(Scanning electron microscopy)와 X선 회절 분석기(X-ray diffraction)를 이용한 분석을 실시하였다.
In order to confirm the surface structure, thickness change and characteristics of the nickel electroless plated carbon fiber prepared in the following examples, an analysis was performed using a scanning electron microscopy and an X-ray diffraction. .

측정예Measurement example 2. 금속  2. Metal 무전해Electroless 도금  Plated 탄소섬유의Carbon fiber 전기전도성 확인 Check conductivity

하기의 실시예에서 제조된 니켈 무전해 도금 탄소섬유의 전기전도도 측정을 위하여, 4-probe volum resistivity tester (Mitubishi Chemical Co., MCP-T610)을 이용하여 저항(V/I)을 측정한 후 시편의 치수와의 관계를 이용하여 전기전도도(σ)를 계산하였다.
In order to measure the electrical conductivity of the nickel electroless plated carbon fiber prepared in the following examples, the specimen after measuring the resistance (V / I) using a 4-probe volum resistivity tester (Mitubishi Chemical Co., MCP-T610) The electrical conductivity (σ) was calculated using the relationship with the dimension of.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예Example 1. One.

폴리아미드이미드를 전구체로 사용하여 방사용액을 제조하고, 전기방사법을 이용하여 섬유를 제조히였다. 방사섬유는 상온에서 24시간 이상 건조시킨 후, 산화 안정화 및 탄소화 단계를 거쳐 탄소섬유로 제조하였다.A spinning solution was prepared using polyamideimide as a precursor, and fibers were prepared by electrospinning. Spinning fibers were dried at room temperature for 24 hours or more, and then made into carbon fibers through oxidation stabilization and carbonization steps.

상기의 방법으로 제조된 탄소섬유는 무전해 니켈도금 전에 표면의 불순물을 제거하기 위하여 10wt% HNO3으로 30분 동안 전처리하고 속슬레(Soxhlet) 장치를 이용하여 아세톤으로 2시간 동안 세척하여 건조한 후, SnCl2 용액에서 1분 동안 활성화시킨 후 세척하고 다시 PdCl2를 이용하여 1분 동안 활성화 시켰다. 이 과정에서 탄소섬유 표면에 Sn/Pd 핵이 형성되며, 탄소섬유표면에 형성된 Sn/Pd 핵은 금속 니켈의 침착(deposition)을 촉진시킬 수 있게 된다.The carbon fiber prepared by the above method was pretreated with 10wt% HNO 3 for 30 minutes to remove impurities on the surface before electroless nickel plating, washed with acetone for 2 hours using a Soxhlet apparatus, and dried. After activating in SnCl 2 solution for 1 minute, it was washed and again activated with PdCl 2 for 1 minute. In this process, Sn / Pd nuclei are formed on the surface of the carbon fiber, and the Sn / Pd nuclei formed on the surface of the carbon fiber can promote the deposition of metal nickel.

NiCl2?6H2O 280g/l, NaH2PO2?2H2O 100g/l 및 NaCO2CH3 15g/l의 조성을 가지는 pH 8의 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 50℃ (±1℃)의 온도에서 10분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다. NiCl 2? 6H 2 O 280g / l, NaH 2 PO 2? 2H 2 O 100g / l and NaCO 2 CH 3 15g / year l nickel in the pH 8 having a composition electroless into the processed carbon fibers in a plating solution, 50 The surface of the carbon fiber was surface treated while stirring the solution well using a stirring apparatus at a temperature of (° C. (± 1 ° C.) for 10 minutes, and then completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

실시예Example 2. 2.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 70℃(±1℃)의 온도에서 10분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in a nickel electroless plating solution, while stirring the solution well using a stirring device for 10 minutes at a temperature of 70 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

실시예Example 3. 3.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 90℃(±1℃)의 온도에서 10분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in the nickel electroless plating solution, while stirring the solution well using a stirring device for 10 minutes at a temperature of 90 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

실시예Example 4. 4.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 110℃(±1℃)의 온도에서 10분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in a nickel electroless plating solution, while stirring the solution well using a stirring device for 10 minutes at a temperature of 110 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

실시예Example 5. 5.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 90℃(±1℃)의 온도에서 5분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in a nickel electroless plating solution, while stirring the solution well using a stirring device for 5 minutes at a temperature of 90 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

실시예Example 6. 6.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 90℃(±1℃)의 온도에서 20분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in the nickel electroless plating solution, while stirring the solution well using a stirring apparatus for 20 minutes at a temperature of 90 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

실시예Example 7. 7.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 90℃(±1℃)의 온도에서 30분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in a nickel electroless plating solution, while stirring the solution well using a stirring device for 30 minutes at a temperature of 90 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

실시예Example 8. 8.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 90℃(±1℃)의 온도에서 60분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in a nickel electroless plating solution, while stirring the solution well using a stirring device for 60 minutes at a temperature of 90 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

비교예Comparative example 1. One.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 90℃(±1℃)의 온도에서 10초 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in a nickel electroless plating solution, while stirring the solution well using a stirring device for 10 seconds at a temperature of 90 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.
The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

비교예Comparative example 2. 2.

실시예 1에서와 동일한 공정을 수행하되, 니켈 무전해 도금용액에 상기 처리된 탄소섬유를 넣고, 90℃(±1℃)의 온도에서 200분 동안 교반 장치를 이용하여 용액을 잘 저어 주면서 탄소섬유를 표면처리 한 후, 완전하게 건조시켜 무전해 니켈 도금된 탄소섬유를 수득하였다.Perform the same process as in Example 1, but put the treated carbon fiber in a nickel electroless plating solution, while stirring the solution well using a stirring device for 200 minutes at a temperature of 90 ℃ (± 1 ℃) carbon fiber After surface treatment, it was completely dried to obtain an electroless nickel plated carbon fiber.

상기와 같이 하여 얻어진 탄소섬유의 도금층 두께 및 전도도를 측정하고 표 1에 나타내었다.The plating layer thickness and conductivity of the carbon fiber obtained as described above were measured and shown in Table 1.

Figure 112010053128914-pat00001
Figure 112010053128914-pat00001

그 결과, 표 1에 나타나 있듯이 비교예 1은 너무 적은 양의 금속막이 형성되었으며, 비교예 2의 경우는 도금층이 너무 두껍게 형성되어 섬유간의 합사가 발생하였다.
As a result, as shown in Table 1, in Comparative Example 1, too little metal film was formed, and in Comparative Example 2, the plating layer was formed too thick, so that weaving between fibers occurred.

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

니켈 염, 환원제 및 착화제를 함유하는 무전해 도금 용액에 폴리아미드이미드를 전구체로 이용하여 전기방사법을 통해 제조된 탄소섬유를 침지시키는 것을 포함하는 니켈 도금된 탄소섬유의 제조방법.
A method for producing nickel plated carbon fibers comprising immersing carbon fibers produced by electrospinning using polyamideimide as a precursor in an electroless plating solution containing nickel salts, reducing agents and complexing agents.
제 1 항에 있어서,
상기 니켈염은 NiCl2?6H2O이고, 농도가 20 내지 300g/l 범위임을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
The nickel salt is NiCl 2 ~ 6H 2 O, the concentration of the method of producing a nickel-plated carbon fiber, characterized in that the range of 20 to 300g / l.
제 1 항에 있어서,
상기 환원제는 Na3C6H5O7 또는 NaCO2CH3 이고, 농도가 10 내지 160g/l 범위임을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
The reducing agent is Na 3 C 6 H 5 O 7 or NaCO 2 CH 3 , the method of producing a nickel-plated carbon fiber characterized in that the concentration ranges from 10 to 160g / l.
제 1 항에 있어서,
상기 착화제는 NaH2PO2 이고, 농도가 10 내지 160g/l 범위임을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
The complexing agent is NaH 2 PO 2 , The concentration of the nickel-plated carbon fiber manufacturing method characterized in that the range of 10 to 160g / l.
제 1 항에 있어서,
상기 도금 용액은 안정제를 추가로 포함하는 것을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
The plating solution is a method of producing a nickel-plated carbon fiber, characterized in that it further comprises a stabilizer.
제 1 항에 있어서,
상기 도금 용액은 pH가 3 내지 10 범위인 것을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
The plating solution is a method of producing a nickel-plated carbon fiber, characterized in that the pH ranges from 3 to 10.
제 1 항에 있어서,
상기 무전해 도금 용액은 가성 알칼리성이고, NH4Cl, 붕사 및 붕산 중 하나 이상을 더 포함하는 것을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
The electroless plating solution is caustic alkaline, and further comprising at least one of NH 4 Cl, borax and boric acid.
삭제delete 제 1 항에 있어서,
상기 탄소섬유는 1 내지 90분 동안 도금 용액에 침지하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
The carbon fiber is a method of producing a nickel-plated carbon fiber immersed in a plating solution for 1 to 90 minutes.
제 1 항에 있어서,
상기 탄소섬유를 도금 용액에 섬유를 침지 시 도금 용액의 온도는 40℃ 내지 200℃인 것을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
When the carbon fiber is immersed in the plating solution, the temperature of the plating solution is a method of producing a nickel-plated carbon fiber, characterized in that 40 ℃ to 200 ℃.
제 1 항에 있어서,
상기 탄소섬유 표면에 도금되는 막의 두께는 0.1 내지 5.0㎛인 것을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
The thickness of the film plated on the surface of the carbon fiber is 0.1 to 5.0㎛ manufacturing method of the nickel plated carbon fiber.
제 1 항에 있어서,
상기 탄소섬유를 무전해 도금액에 침지하기 전에 섬유 표면을 세척한 후 표면 상에 금속 핵을 형성시키는 전처리를 하는 것을 특징으로 하는 니켈 도금된 탄소섬유의 제조방법.
The method of claim 1,
Before the carbon fiber is immersed in an electroless plating solution, the method of producing a nickel-plated carbon fiber characterized in that the pre-treatment to wash the surface of the fiber and to form a metal nucleus on the surface.
KR1020100079767A 2010-08-18 2010-08-18 Manufacturing process of nickel-plated carbon fibers by non-electroplating method KR101197723B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100079767A KR101197723B1 (en) 2010-08-18 2010-08-18 Manufacturing process of nickel-plated carbon fibers by non-electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100079767A KR101197723B1 (en) 2010-08-18 2010-08-18 Manufacturing process of nickel-plated carbon fibers by non-electroplating method

Publications (2)

Publication Number Publication Date
KR20120021815A KR20120021815A (en) 2012-03-09
KR101197723B1 true KR101197723B1 (en) 2012-11-05

Family

ID=46130046

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100079767A KR101197723B1 (en) 2010-08-18 2010-08-18 Manufacturing process of nickel-plated carbon fibers by non-electroplating method

Country Status (1)

Country Link
KR (1) KR101197723B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200089170A (en) 2019-01-16 2020-07-24 주식회사 디앤씨테크 High-conductivity nickel-plated carbon fibers by non-electroplating process
KR102206914B1 (en) 2019-08-19 2021-01-26 한국생산기술연구원 Method for manufacturing carbon fiber for Low voltage heating cable and carbon fiber for Low voltage heating cable
KR20210029886A (en) 2019-09-06 2021-03-17 (주)다인스 Metal plated carbon fibers by non-electroplating process and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645944B1 (en) 2016-03-09 2016-08-05 (주)다인스 Metal coated carbon fiber bundle manufacturing process for braid
KR20230143357A (en) 2022-04-05 2023-10-12 유해윤 Heating wires including metal wires in conductive carbon composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486962B1 (en) * 2001-12-17 2005-05-03 한국화학연구원 Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method
KR100996189B1 (en) 2008-01-04 2010-11-24 한국생산기술연구원 Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486962B1 (en) * 2001-12-17 2005-05-03 한국화학연구원 Manufacturing process of nanoscaled nickel-plated carbon fibers by non-electroplating method
KR100996189B1 (en) 2008-01-04 2010-11-24 한국생산기술연구원 Autocatalytic-type electroless Ni-P-Co plating solution and method for producing thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200089170A (en) 2019-01-16 2020-07-24 주식회사 디앤씨테크 High-conductivity nickel-plated carbon fibers by non-electroplating process
KR102206914B1 (en) 2019-08-19 2021-01-26 한국생산기술연구원 Method for manufacturing carbon fiber for Low voltage heating cable and carbon fiber for Low voltage heating cable
KR20210029886A (en) 2019-09-06 2021-03-17 (주)다인스 Metal plated carbon fibers by non-electroplating process and manufacturing method thereof

Also Published As

Publication number Publication date
KR20120021815A (en) 2012-03-09

Similar Documents

Publication Publication Date Title
KR101197723B1 (en) Manufacturing process of nickel-plated carbon fibers by non-electroplating method
JP5255015B2 (en) Electroless copper plating method for polymer fiber
Zhang et al. Comparative study of electroless Ni-P, Cu, Ag, and Cu-Ag plating on polyamide fabrics
Guo et al. Influence of deposition parameters and kinetics of electroless Ni-P plating on polyester fiber
BR112014029353B1 (en) process for metallizing non-conductive plastic surfaces
RU2398049C2 (en) Improved stabilisation and working characteristics of auto-catalyst procedures of coating application by method of chemical reduction
KR101420915B1 (en) Manufacturing method of electroconductive fabric for electromagnetic interference(EMI) shielding by using electroless
KR20180006523A (en) Manufacturing method of Nickel-plated and high-conductivity carbon fibers by non-electroplating process
CN108517516B (en) Chemical silver plating solution and preparation method thereof
KR20100033625A (en) Manufacturing process of high conductive glass fibers by ni electroless plating
KR102116055B1 (en) Electroless nickel strike plating solution
KR101199305B1 (en) Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent
Georgieva Investigation of the influence of Ni 2+ concentration for the obtaining of electroless Cu-Ni-P alloy coatings on the dielectric surface
JPS63165582A (en) Production of metal coated fiber
JP5888977B2 (en) Black coated product and method for producing the same
Kim et al. Roles of nickel layer deposition on surface and electric properties of carbon fibers
KR101069581B1 (en) Nickel alloy galvanizing solution for electronic parts and manufacturing method of the same
Tzaneva et al. Uniformity of Electrochemical Deposition on Thin Copper Layers
TWI606140B (en) Electroless copper plating bath and electroless copper plating method for increasing hardness of copper plating
Yunhong et al. Conductive Polyacrylonitrile Fiber Prepared by Copper Plating with L-Ascorbic Acid as Reducing Agent.
KR20110132894A (en) Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent
JP2013209708A (en) Product coated with black film
JPS6215637B2 (en)
Hu et al. Cobalt layer prepared on copper using galvanic replacement as an alternative to palladium for activating electroless Ni-P plating
KR20030068601A (en) A method of preparing for metal-plated polyester filament

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 7