KR20110132894A - Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent - Google Patents

Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent Download PDF

Info

Publication number
KR20110132894A
KR20110132894A KR1020100052489A KR20100052489A KR20110132894A KR 20110132894 A KR20110132894 A KR 20110132894A KR 1020100052489 A KR1020100052489 A KR 1020100052489A KR 20100052489 A KR20100052489 A KR 20100052489A KR 20110132894 A KR20110132894 A KR 20110132894A
Authority
KR
South Korea
Prior art keywords
carbon fiber
nickel
reducing agent
plating
boron
Prior art date
Application number
KR1020100052489A
Other languages
Korean (ko)
Inventor
박수진
김병주
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020100052489A priority Critical patent/KR20110132894A/en
Publication of KR20110132894A publication Critical patent/KR20110132894A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9,10 or 18 of the Periodic Table; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/80Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with boron or compounds thereof, e.g. borides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE: A manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent is provided to increase conductivity, by preventing the rising of resistivity due to phosphorus components. CONSTITUTION: A manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent comprises a step of plating nickel to carbon fiber by using plating liquid consisting of nickel salt, complex agent, stabilizer, and boron-based reducing agent. The nickel salt is NiSO46H2O or NiCl2·6H2O. The complex agent is NaC6H5O7. The stabilizer is Pb(NO3)2. The boron-based reducing agent is Sodium Boro Hydride, NaBH4, (CH3)2NHBH3 and the mixture thereof.

Description

보론계 환원제를 사용한 고전도성 탄소섬유의 제조 방법{Manufacturing Method of Highly Electro-Conductive Carbon Fibers Using Boron Based Reducing Agent}Manufacturing Method of Highly Electro-Conductive Carbon Fibers Using Boron Based Reducing Agent

본 발명은 고전도성 탄소섬유 및 그의 제조 방법에 관한 것으로서, 보다 구체적으로는 니켈의 무전해 도금 표면처리를 통해 전도성을 높이되 특히 도금용액 중에서 환원제로 보론계 환원제를 사용하여 인(P)의 함량을 최소화한 니켈을 도금함으로써 더욱 우수한 전도성을 지닌 탄소섬유 및 그 제조방법에 관한 것이다.
The present invention relates to a highly conductive carbon fiber and a method for manufacturing the same, and more specifically, to increase conductivity through electroless plating surface treatment of nickel, in particular, the content of phosphorus (P) by using a boron-based reducing agent as a reducing agent in the plating solution. The present invention relates to a carbon fiber having a superior conductivity by plating nickel with a minimized amount, and a method of manufacturing the same.

최근 거의 모든 기기들이 정보처리의 발생, 전달, 저장 등을 위한 전기, 전자 장비들을 탑재하고 최신기기로서의 효능을 향상시키고 있다. 그러나 이러한 전기, 전자 장비의 이용이 증대될수록 기기와 기기 상호 간의 전자적 간섭이 커지게 되어, 급기야 전자파 장해라는 커다란 사회문제까지 야기하고, 심지어 인체에는 심각한 유해성이 있음이 검증되어 높은 관심을 불러일으키고 있다.Recently, almost all devices are equipped with electrical and electronic equipment for the generation, transmission, and storage of information processing, and improve the efficiency as a modern device. However, as the use of such electric and electronic equipment increases, the electromagnetic interference between the devices and devices increases, causing a great social problem such as electromagnetic disturbances, and even a serious hazard to the human body, which has been attracting high attention. .

특히 플라스틱은 성형성이 뛰어나고 가격이 저렴하다는 장점으로 여러 가지 정보통신 분야의 하우징으로서 수요가 폭발적으로 늘어나고 있지만 절연성과 전자파를 투과하는 단점 때문에 고기능적인 전자파 차폐효과가 필요하게 되었다.In particular, plastics are excellent in formability and low in price, and the demand for housing in various information and communication fields is exploding. However, due to insulation and electromagnetic wave transmission, a high functional electromagnetic shielding effect is required.

고전도성 탄소섬유는 내열성, 화학적 안정성, 전기전도성, 전자파 차폐성 유연성 등의 우수한 특성이 있어 고전도성을 갖는 플라스틱의 내부 충전물로 이용 가능하다.Highly conductive carbon fiber has excellent properties such as heat resistance, chemical stability, electrical conductivity, electromagnetic shielding flexibility, and can be used as an internal filler of plastic having high conductivity.

고전도성 탄소섬유를 제조하는 방법으로 무전해 도금이 가장 많이 사용되는데 무전해 도금의 경우 우수한 차폐효과를 가질 뿐만 아니라 섬유표면에 일정한 두께의 도금층을 형성시키는 장점이 있다.Electroless plating is most often used as a method of manufacturing high-conductivity carbon fibers. In the case of electroless plating, not only has an excellent shielding effect but also has the advantage of forming a plating layer having a constant thickness on the fiber surface.

하지만 종래의 무전해 도금법(한국등록특허 제 486,962호)은, 금속염과 환원제 및 착화제가 공존하는 금속도금용액으로 탄소섬유를 화학적 환원에 의해 니켈 도금 처리하여 탄소섬유 표면에 나노크기의 니켈-인 합금을 도입함으로써, 일정한 두께의 피막을 형성하도록 하여, 탄소섬유의 전도성을 향상시키는 방법이었으나, 합금 중의 인 함량이 증가함에 따라 비저항이 도리어 상승하여 탄소섬유의 전도성이 감소하는 문제가 발생하였다.
However, the conventional electroless plating method (Korean Patent No. 486,962) is a metal plating solution in which a metal salt, a reducing agent and a complexing agent coexist, and the carbon fiber is nickel-plated on the surface of the carbon fiber by nickel plating of carbon fiber by chemical reduction. In order to form a film having a constant thickness to improve the conductivity of the carbon fiber, but as the phosphorus content in the alloy increases, the specific resistance increases rather than the problem of reducing the conductivity of the carbon fiber.

이에 본 발명자들은, 상기 문제점을 해결하기 위해, 보론계 환원제를 사용하는 도금액을 이용하여, 무전해 도금을 통해 표면처리를 실시하고, 탄소섬유 표면에 순수한 니켈 막을 형성시켜 고전도성 탄소섬유를 제조함으로써 본 발명을 성공적으로 완성하게 되었다.Accordingly, the present inventors, in order to solve the above problems, by using a plating solution using a boron-based reducing agent, by performing a surface treatment through electroless plating, by forming a pure nickel film on the surface of the carbon fiber to produce a highly conductive carbon fiber The present invention has been successfully completed.

결국, 본 발명의 목적은 보론계 환원제를 이용한 고전도성 탄소섬유의 제조방법을 제공하는데 그 주된 목적이 있다.
After all, an object of the present invention is to provide a method for producing a highly conductive carbon fiber using a boron-based reducing agent.

상기 목적을 달성하기 위하여, 본 발명은 보론계 환원제를 사용하는 니켈 무전해 도금 고전도성 탄소섬유 및 그의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a nickel electroless plating highly conductive carbon fiber using a boron-based reducing agent and a method for producing the same.

구체적으로, 본 발명은 니켈 염, 착화제, 안정제 및 보론계 환원제를 포함하는 도금액을 사용하여 탄소섬유에 니켈을 도금하는 고전도성 탄소섬유의 제조 방법을 제공한다.Specifically, the present invention provides a method for producing highly conductive carbon fibers in which nickel is plated on carbon fibers using a plating solution containing a nickel salt, a complexing agent, a stabilizer, and a boron-based reducing agent.

본 발명에 있어서, 상기 무전해 니켈 도금용액의 주성분인 니켈 염으로는 NiSO4·6H2O 또는 NiCl2·6H2O이 바람직하다. 상기 보론계 환원제로는 구체적으로 소듐 보로하이드라이드(Sodium Boro Hydride, NaBH4), 디메틸아민보란((CH3)2NHBH3) 또는 이들의 혼합물을 사용할 수 있다. 착화제로는 구연산나트륨(NaCHO)을 사용할 수 있다. 또한 안정제로 Pb(NO3)2을 사용할 수 있다.In the present invention, the nickel salt as the main component of the electroless nickel plating solution is preferably NiSO 4 · 6H 2 O or NiCl 2 · 6H 2 O. Specifically, as the boron-based reducing agent, sodium borohydride (NaBH 4 ), dimethylamine borane ((CH 3 ) 2 NHBH 3 ), or a mixture thereof may be used. Sodium citrate (NaCHO) may be used as the complexing agent. In addition, Pb (NO 3 ) 2 may be used as a stabilizer.

본 발명에서 제시하는 무전해 도금을 통해 탄소섬유 표면에 니켈도금을 실시하고, 탄소섬유 표면에 Ni-B 합금을 도입하여 일정한 두께의 막을 형성시켜 고전도성 탄소섬유를 제조할 수 있게 된다.
Nickel plating is performed on the surface of the carbon fiber through the electroless plating proposed in the present invention, and Ni-B alloy is introduced on the surface of the carbon fiber to form a film having a predetermined thickness, thereby producing a highly conductive carbon fiber.

본 발명에 따른 니켈 무전해 도금 고전도성 탄소섬유의 제조방법은 보론계 환원제를 사용함으로써 인(P) 성분에 의한 비저항의 상승을 방지하여 높은 전도성을 가질 수 있다. 또한 종래의 환원제를 사용하는 것에 비해 짧은 시간과 낮은 온도에서 도금하더라도 높은 함량의 니켈을 도금시킬 수 있어 도금의 효율이 높아진다.
Nickel electroless plating high conductivity carbon fiber manufacturing method according to the present invention can have a high conductivity by preventing the increase of the specific resistance by the phosphorus (P) component by using a boron-based reducing agent. In addition, even if the plating in a short time and low temperature compared to using a conventional reducing agent it is possible to plate a high content of nickel, thereby increasing the efficiency of the plating.

도 1은 실시예 1에 따른 무전해 니켈 도금된 탄소섬유의 SEM 측정 결과이다.
도 2는 비교예 1에 따른 무전해 니켈 도금된 탄소섬유의 SEM 측정 결과이다.
1 is a SEM measurement result of the electroless nickel plated carbon fiber according to Example 1.
2 is a SEM measurement result of the electroless nickel plated carbon fiber according to Comparative Example 1.

본 발명은 보론계 환원제를 사용하는 니켈 무전해 도금 고전도성 탄소섬유 및 그의 제조방법을 제공한다.The present invention provides a nickel electroless plating highly conductive carbon fiber using a boron-based reducing agent and a method of manufacturing the same.

구체적으로, 본 발명은 니켈 염, 착화제, 안정제 및 보론계 환원제를 포함하는 도금액을 사용하여 탄소섬유에 니켈을 도금하는 고전도성 탄소섬유의 제조 방법을 제공한다.Specifically, the present invention provides a method for producing highly conductive carbon fibers in which nickel is plated on carbon fibers using a plating solution containing a nickel salt, a complexing agent, a stabilizer, and a boron-based reducing agent.

본 발명에 있어서, 니켈염으로 NiSO4·6H2O 또는 NiCl2·6H2O이 바람직 하다. 더욱 바람직하게는 NiSO4·6H2O를 선택하는 것이 좋으며, 도금 속도가 빠른 효과가 있기 때문이다. 상기 환원제로는 보론계 환원제가 바람직하다. 이는 종래의 환원제와는 달리 인(P)이 포함되지 않아 인 성분에 의한 비저항의 상승을 방지하는 효과가 있기 때문이다. 보론계 환원제로는 구체적으로 소듐 보로하이드라이드, 디메틸아민보란 또는 이들의 혼합물을 사용할 수 있다. 착화제로는 구연산나트륨(NaCHO)을 사용할 수 있다. 착화제로 구연산나트륨을 사용하였을 경우 염의 환원속도를 억제할 수 있다. 또한 안정제로 Pb(NO3)2을 사용할 수 있다. 안정제로 Pb(NO3)2를 사용할 경우 욕의 분해 방지, 조악한 니켈 석출 방지, 도금조의 석출 방지의 효과가 있기 때문이다.In the present invention, NiSO 4 .6H 2 O or NiCl 2 .6H 2 O is preferable as the nickel salt. More preferably, it is preferable to select NiSO 4 · 6H 2 O, because the plating speed has an effect. The reducing agent is preferably a boron-based reducing agent. This is because, unlike the conventional reducing agent, since phosphorus (P) is not included, there is an effect of preventing the increase in specific resistance due to the phosphorus component. Specifically, the boron-based reducing agent may be sodium borohydride, dimethylamine borane or a mixture thereof. Sodium citrate (NaCHO) may be used as the complexing agent. When sodium citrate is used as the complexing agent, the rate of salt reduction can be suppressed. In addition, Pb (NO 3 ) 2 may be used as a stabilizer. This is because the use of Pb (NO 3 ) 2 as a stabilizer has the effect of preventing decomposition of the bath, preventing coarse nickel precipitation, and preventing precipitation of the plating bath.

또한, 상기 도금액의 온도는 20 ~ 100℃가 바람직하다. 20℃ 미만에서는 화학적 환원반응이 일어나기 어려우며, 100℃를 초과하면 섬유표면이 손상되어 섬유자체가 타버리는 현상이 발생되기 때문이다. 더욱 바람직하게는 디메틸아민보란을 환원제로 사용하였을 경우 25 ~ 65℃가 바람직하며, 소듐 보로하이드라이드를 사용하였을 경우 40 ~ 100℃가 바람직하다.In addition, the temperature of the plating liquid is preferably 20 ~ 100 ℃. If it is less than 20 ℃ chemical reduction reaction is difficult to occur, and if it exceeds 100 ℃ the fiber surface is damaged and the fiber itself burns out. More preferably, when using dimethylamine borane as a reducing agent, 25 ~ 65 ℃ is preferred, when using sodium borohydride 40 ~ 100 ℃ is preferred.

또한, 상기 도금액은 pH 3 ~ 17의 범위에서 이용할 수 있다. pH 3 미만일 경우 도금층의 질이 저하되는 문제가 있을 수 있고, pH 17을 초과할 경우 도금액이 자체 분해를 일으켜 도금이 원활하게 되지 않는 문제가 있을 수 있다. 더욱 바람직하게는 디메틸아민보란을 환원제로 사용할 경우 pH 6 ~ 8.5가 바람직하며, 소듐 보로하이드라이드를 환원제로 사용할 경우 pH 12 ~ 14가 바람직하다.In addition, the plating liquid can be used in the range of pH 3 ~ 17. If the pH is less than 3, there may be a problem that the quality of the plating layer is deteriorated. If the pH is higher than 17, the plating solution may cause self-decomposition and may not be smoothly plated. More preferably, when using dimethylamine borane as a reducing agent, pH 6 ~ 8.5 is preferred, and when using sodium borohydride as a reducing agent, pH 12 ~ 14 is preferred.

또한, 본 발명에 있어서, 탄소섬유의 도금욕 노출 시간은 1 ~ 60 분이 바람직하다. 1 분 미만에서는 자가 촉매 반응시간이 너무 짧은 관계로 섬유 표면에 생성되는 니켈 피막의 양이 적기 때문에 바람직하지 못하며 60 분을 초과하면 피막의 양이 급격히 상승하여 가공성이 떨어지기 때문에 부적합하다.In the present invention, the plating bath exposure time of the carbon fiber is preferably 1 to 60 minutes. Less than 1 minute is not preferable because the amount of nickel film formed on the surface of the fiber is too small because the self-catalytic reaction time is too short, and if the amount exceeds 60 minutes, the amount of the film rises rapidly, which is not suitable.

본 발명에 있어서, 탄소섬유 표면에 도금되는 니켈 막의 두께는 0.08 ~ 6.0㎛인 것이 바람직하다. 0.08㎛ 미만에서는 금속막이 너무 얇아 전기전도성을 측정하기 어려울 뿐 아니라, 도금 시 탄소섬유 표면을 보호하기 어려운 문제가 발생한다. 그리고 6.0㎛를 초과할 경우에는 금속막이 과도하게 두꺼워져서 탄소섬유의 우수한 성질을 잃어버릴 뿐만 아니라 가공성이 떨어지는 현상이 발생하기 때문에 부적합하다.In the present invention, the thickness of the nickel film plated on the surface of the carbon fiber is preferably 0.08 to 6.0 mu m. If the thickness is less than 0.08 μm, the metal film is too thin to make it difficult to measure the electrical conductivity, and a problem arises that it is difficult to protect the carbon fiber surface during plating. When the thickness exceeds 6.0 µm, the metal film becomes excessively thick, which causes loss of excellent properties of the carbon fibers as well as poor workability.

또한, 니켈 함량은 전체 탄소섬유에 대해 5 ~ 60 중량%가 적합하다. 니켈의 함량이 5 중량% 미만일 경우 탄소섬유의 고른 전도성을 얻기 힘들뿐만 아니라 60 중량%를 초과할 경우 섬유의 성질을 잃어버리기 때문에 부적합하다.In addition, the nickel content is suitable 5 to 60% by weight based on the total carbon fiber. If the content of nickel is less than 5% by weight, not only is it difficult to obtain even conductivity of the carbon fiber, but if it is more than 60% by weight, the fiber properties are not suitable.

또한, 상기 도금된 섬유 표면의 보론 함량은 전체 탄소섬유에 대해 0.3 ~ 10 중량%가 되는 것이 바람직하다. 상기 범위를 벗어나면 도금액 수명이 저하되는 문제가 있을 수 있다. 더욱 바람직하게는 디메틸아민보란을 환원제로 사용할 경우 0.3 ~ 3 중량%인 것이 바람직하며, 소듐 보로하이드라이드를 환원제로 사용할 경우 5 ~ 7 중량%인 것이 바람직하다.In addition, the boron content of the plated fiber surface is preferably 0.3 to 10% by weight based on the total carbon fiber. If it is out of the range there may be a problem that the life of the plating liquid is lowered. More preferably, when using dimethylamine borane as the reducing agent is preferably 0.3 to 3% by weight, and when using sodium borohydride as the reducing agent is preferably 5 to 7% by weight.

상기 탄소섬유를 도금욕에 노출시키기 전에 염화주석(SnCl2) 또는 염화팔라듐(PdCl2)으로 활성화 시킬 수 있다. 이 과정에 의해 주석 또는 팔라듐 핵이 탄소 표면에 형성되며 이러한 핵은 금속 석출을 촉매화 시키는 역할을 하게 된다.The carbon fiber may be activated with tin chloride (SnCl 2 ) or palladium chloride (PdCl 2 ) prior to exposure to the plating bath. By this process, tin or palladium nuclei are formed on the carbon surface, and these nuclei serve to catalyze metal precipitation.

또한, 상기 무전해 도금된 고전도성 탄소섬유의 비저항은 1 ×10-3Ωcm 이하인 것이 바람직하다. 1 ×10-3Ωcm을 초과할 경우 전도성이 너무 낮아 충전물로 사용하기 힘들기 때문이다.
In addition, the specific resistance of the electroless plated highly conductive carbon fiber is preferably 1 × 10 -3 Ωcm or less. If it exceeds 1 × 10 -3 Ωcm, the conductivity is too low to be used as a filling.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
However, the following examples are merely to illustrate the present invention, but the content of the present invention is not limited by the following examples.

실험예Experimental Example 1 : 니켈  1: nickel 무전해Electroless 도금된  Plated 탄소섬유의Carbon fiber 전기전도도 측정 Conductivity measurement

하기의 실시예에서 제조된 니켈 무전해 도금 탄소섬유의 전기전도도 측정을 위하여, 4-probe volum resistivity tester (Mituvishi Chemical Co., MCP-T610)을 이용하여 저항(V/I)을 측정한 후 시편의 치수 (W×T:섬유 측면의 단면적; L:전압 접촉부 사이의 거리)와의 관계를 이용하여 전기전도도(σ)를 계산하였다.
In order to measure the electrical conductivity of the nickel electroless plated carbon fiber prepared in the following examples, the specimen after measuring the resistance (V / I) using a 4-probe volum resistivity tester (Mituvishi Chemical Co., MCP-T610) The electrical conductivity σ was calculated using the relationship with the dimension (W × T: cross-sectional area of the fiber side surface; L: distance between voltage contacts).

실험예Experimental Example 2 : 니켈  2: nickel 무전해Electroless 도금된  Plated 탄소섬유의Carbon fiber 표면구조, 두께변화 및 특성 확인 Surface structure, thickness change and characteristic check

하기의 실시예에서 제조된 니켈 무전해 도금된 탄소섬유의 표면구조, 두께 변화 및 특성을 관찰하기 위하여 주사전자현미경(Scanning electron microscope, SEM JEOL JSM0840A)과 X선 회절(X-ray diffraction) 분석을 실시하였으며, 발생원으로는 CuKα를 장착한 Rigaku Model D/MAX-Ⅲ를 사용하였다.
Scanning electron microscope (SEM JEOL JSM0840A) and X-ray diffraction analysis were performed to observe the surface structure, thickness change and characteristics of the nickel electroless plated carbon fiber prepared in the following examples. As a generator, Rigaku Model D / MAX-III equipped with CuKα was used.

실시예Example 1 One

본 발명에서 사용된 탄소섬유는 Formosa Platic Co.에서 생산된 폴리아크릴로니트릴(Polyacrylonitrile, PAN)계 고강도 탄소섬유 (TC-3K-36)로, 아세톤으로 2시간 동안 호발정련(desizing) 처리된 장섬유를 사용하여 금속 도금 전 표면의 불순물 제거를 위해 0.1M 농도의 질산(HNO3)으로 30분 동안 전처리한 다음 사용하였다.Carbon fiber used in the present invention is a polyacrylonitrile (PAN) -based high-strength carbon fiber (TC-3K-36) produced by Formosa Platic Co., which is desizing with acetone for 2 hours The fibers were pretreated with 0.1 M nitric acid (HNO 3 ) for 30 minutes to remove impurities on the surface before metal plating and then used.

탄소섬유의 니켈 도금은 무전해 도금방법을 사용하였으며, 염화주석(SnCl2)용액에서 10 분 동안 활성화 시킨 후 증류수에 세척하고 다시 염화팔라듐(PdCl2)을 이용하여 10 분 동안 활성화 시킨 후 증류수에 세척하였다.Nickel plating of carbon fiber was performed by electroless plating method, activated in tin chloride (SnCl 2 ) solution for 10 minutes, washed in distilled water, and activated again for 10 minutes using palladium chloride (PdCl 2 ). Washed.

또한, 무전해 도금액은 NiSO46H2O (20 g/L)을 사용하였으며 착화제로 NaC6H5O7 (27 g/L)을, 안정제로 Pb(NO3)2 (0.5 ppm)을 각각 사용하였다. 환원제는 소듐 보로하이드라이드 (21 g/L)를 사용하여 pH 6의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 1 분 동안 30℃의 온도에서 무전해 도금 후 건조기에서 완전하게 건조시켜 니켈 도금된 탄소섬유를 제조하였다.In addition, the electroless plating solution was used NiSO 4 6H 2 O (20 g / L) and NaC 6 H 5 O 7 as a complexing agent Pb (NO 3 ) 2 (0.5 ppm) was used as a stabilizer (27 g / L), respectively. The reducing agent was added sodium carbon borohydride (21 g / L) to a nickel electroless plating solution of pH 6 and electroless plated at a temperature of 30 ° C. for 1 minute, followed by complete drying in a dryer. Carbon fiber was prepared.

하기 표 1에는 본 발명에서 사용된 보론계 환원제의 종류, 온도와 도금 시간에 따라 제조된 탄소섬유의 도금막 두께, 전기전도도, 니켈 함량의 결과를 나타내었다.
Table 1 below shows the results of plating film thickness, electrical conductivity, and nickel content of the carbon fibers prepared according to the type, temperature, and plating time of the boron-based reducing agent used in the present invention.

실시예Example 2 2

상기 실시예 1과 동일한 공정을 수행하되, 1분 동안 65℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but electroless plating was performed at a temperature of 65 ° C. for 1 minute.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 3 3

상기 실시예 1과 동일한 공정을 수행하되, pH 7.5의 니켈 무전해 도금 용액에 상기 탄소섬유를 넣고 10 분 동안 65℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the carbon fibers were placed in a nickel electroless plating solution having a pH of 7.5 and electroless plated at a temperature of 65 ° C. for 10 minutes.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 4 4

상기 실시예 1과 동일한 공정을 수행하되, pH 7.5의 니켈 무전해 도금 용액에 상기 탄소섬유를 넣고 25 분 동안 40℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the carbon fibers were placed in a nickel electroless plating solution having a pH of 7.5 and electroless plated at a temperature of 40 ° C. for 25 minutes.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 5 5

상기 실시예 1과 동일한 공정을 수행하되, pH 8.5의 니켈 무전해 도금 용액에 상기 탄소섬유를 넣고 10 분 동안 40℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the carbon fibers were placed in a nickel electroless plating solution having a pH of 8.5 and electroless plated at a temperature of 40 ° C. for 10 minutes.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 6 6

상기 실시예 1과 동일한 공정을 수행하되, pH 8.5의 니켈 무전해 도금 용액에 상기 탄소섬유를 넣고 10 분 동안 25℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the carbon fiber was placed in a nickel electroless plating solution having a pH of 8.5 and electroless plated at a temperature of 25 ° C. for 10 minutes.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 7 7

상기 실시예 1과 동일한 공정을 수행하되, pH 17의 니켈 무전해 도금 용액에 상기 탄소섬유를 넣고 60 분 동안 100℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the carbon fibers were placed in a nickel electroless plating solution having a pH of 17 and electroless plated at a temperature of 100 ° C. for 60 minutes.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 8 8

상기 실시예 1과 동일한 공정을 수행하되, pH 3의 니켈 무전해 도금 용액에 상기 탄소섬유를 넣고 30 초 동안 10℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the carbon fiber was placed in a nickel electroless plating solution having a pH of 3 and electroless plated at a temperature of 10 ° C. for 30 seconds.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 9 9

상기 실시예 1과 동일한 공정을 수행하되, 환원제는 디메틸아민보란 (24.3 g/L)를 사용하여 pH 12의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 30 분 동안 60℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the reducing agent was added to the carbon fiber in a nickel electroless plating solution having a pH of 12 using dimethylamine borane (24.3 g / L) and electroless plating at a temperature of 60 ° C. for 30 minutes. It was.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 10 10

상기 실시예 1과 동일한 공정을 수행하되, 환원제는 디메틸아민보란 (24.3 g/L)를 사용하여 pH 12의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 5 분 동안 60℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the reducing agent was added to the carbon fiber in a nickel electroless plating solution having a pH of 12 using dimethylamine borane (24.3 g / L) and electroless plating at a temperature of 60 ° C. for 5 minutes. It was.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 11 11

상기 실시예 1과 동일한 공정을 수행하되, 환원제는 디메틸아민보란 (24.3 g/L)를 사용하여 pH 13의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 20 분 동안 90℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was carried out, but the reducing agent was added to the carbon fiber in a nickel electroless plating solution of pH 13 using dimethylamine borane (24.3 g / L) and electroless plating at a temperature of 90 ° C. for 20 minutes. It was.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 12 12

상기 실시예 1과 동일한 공정을 수행하되, 환원제는 디메틸아민보란 (24.3 g/L)를 사용하여 pH 13의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 20 분 동안 40℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the reducing agent was added to the carbon fiber in a nickel electroless plating solution having a pH of 13 using dimethylamine borane (24.3 g / L) and electroless plating at a temperature of 40 ° C. for 20 minutes. It was.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 13 13

상기 실시예 1과 동일한 공정을 수행하되, 환원제는 디메틸아민보란 (24.3 g/L)를 사용하여 pH 14의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 1 분 동안 60℃의 온도에서 무전해 도금 하였다.Performing the same process as in Example 1, the reducing agent was added to the carbon fiber in a nickel electroless plating solution of pH 14 using dimethylamine borane (24.3 g / L) electroless plating at a temperature of 60 ℃ for 1 minute It was.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 14 14

상기 실시예 1과 동일한 공정을 수행하되, 환원제는 디메틸아민보란 (24.3 g/L)를 사용하여 pH 14의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 30 분 동안 90℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was carried out, but the reducing agent was added to the carbon fiber in a nickel electroless plating solution having a pH of 14 using dimethylamine borane (24.3 g / L) and electroless plating at a temperature of 90 ° C. for 30 minutes. It was.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 15 15

상기 실시예 1과 동일한 공정을 수행하되, 환원제는 디메틸아민보란 (24.3 g/L)를 사용하여 pH 17의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 60 분 동안 100℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the reducing agent was added to the carbon fiber in a nickel electroless plating solution having a pH of 17 using dimethylamine borane (24.3 g / L) and electroless plating at a temperature of 100 ° C. for 60 minutes. It was.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

실시예Example 16 16

상기 실시예 1과 동일한 공정을 수행하되, 환원제는 디메틸아민보란 (24.3 g/L)를 사용하여 pH 3의 니켈 무전해 도금용액에 상기 탄소섬유를 넣고 30 초 동안 10℃의 온도에서 무전해 도금 하였다.The same process as in Example 1 was performed, but the reducing agent was added to the carbon fiber in a nickel electroless plating solution of pH 3 using dimethylamine borane (24.3 g / L) and electroless plating at a temperature of 10 ° C. for 30 seconds. It was.

상기와 같이 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
In the nickel electroless plated carbon fiber prepared as described above, the thickness of the plating film, the electrical conductivity, and the nickel content were measured, and the results are shown in Table 1 below.

비교예Comparative example 1 One

상기 실시예 1과 동일한 공정으로 수행하되, 환원제로 NaH2PO2을 사용하여 30 분 동안 50℃의 온도에서 무전해 도금을 실시하고, 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
Perform the same process as in Example 1, using the NaH 2 PO 2 as a reducing agent for 30 minutes at an temperature of 50 ℃ electroless plating, the thickness of the plated film, electrical conductivity in the prepared electroless nickel plated carbon fiber , The nickel content was measured and the results are shown in Table 1 below.

비교예Comparative example 2 2

상기 실시예 1과 동일한 공정으로 수행하되, 환원제로 NaH2PO2을 사용하여 30 분 동안 80℃의 온도에서 무전해 도금을 실시하고, 제조된 니켈 무전해 도금 탄소섬유에서 도금막 두께, 전기전도도, 니켈 함량을 측정하고 그 결과를 하기 표 1에 나타내었다.
Perform the same process as in Example 1, using the NaH 2 PO 2 as a reducing agent to perform electroless plating at a temperature of 80 ℃ for 30 minutes, plating film thickness, electrical conductivity in the prepared electroless nickel plated carbon fiber , The nickel content was measured and the results are shown in Table 1 below.

구분division 환원제reducing agent 시간
(분)
time
(minute)
온도
(℃)
Temperature
(℃)
보론함량
(%)
Boron content
(%)
pHpH 두께
(㎛)
thickness
(Μm)
비저항
(Ω㎝)
Resistivity
(Ωcm)
실시예1Example 1 소듐 보로하이드라이드Sodium borohydride 1One 2525 0.30.3 66 0.680.68 5.85×10-4 5.85 × 10 -4 실시예2Example 2 1One 6565 0.30.3 66 0.810.81 5.14×10-4 5.14 × 10 -4 실시예3Example 3 1010 6565 1.51.5 7.57.5 2.742.74 4.16×10-5 4.16 × 10 -5 실시예4Example 4 3030 6565 1.51.5 7.57.5 4.824.82 4.71×10-6 4.71 × 10 -6 실시예5Example 5 1010 4040 33 8.58.5 2.832.83 4.08×10-5 4.08 × 10 -5 실시예6Example 6 1010 2525 33 8.58.5 2.282.28 6.14×10-5 6.14 × 10 -5 실시예7Example 7 6060 100100 1010 1717 6.816.81 1.56×10-7 1.56 × 10 -7 실시예8Example 8 0.50.5 1010 0.10.1 33 -- 3.89×10-3 3.89 × 10 -3 실시예9Example 9 디메틸아민보란Dimethylamine Borane 3030 6060 55 1212 4.914.91 3.16×10-6 3.16 × 10 -6 실시예10Example 10 55 6060 55 1212 2.622.62 5.89×10-5 5.89 × 10 -5 실시예11Example 11 2020 9090 66 1313 4.234.23 1.18×10-5 1.18 × 10 -5 실시예12Example 12 2020 4040 66 1313 4.084.08 2.15×10-5 2.15 × 10 -5 실시예13Example 13 1One 6060 77 1414 0.910.91 4.56×10-4 4.56 × 10 -4 실시예14Example 14 3030 9090 77 1414 5.135.13 0.89×10-6 0.89 × 10 -6 실시예15Example 15 6060 100100 1010 1717 7.187.18 1.27×10-7 1.27 × 10 -7 실시예16Example 16 0.50.5 1010 0.10.1 33 -- 3.89×10-3 3.89 × 10 -3 비교예1Comparative Example 1 NaH2PO2 NaH 2 PO 2 3030 5050 -- 66 0.010.01 0.81×10-3 0.81 × 10 -3 비교예2Comparative Example 2 3030 8080 -- 66 0.070.07 0.92×10-3 0.92 × 10 -3

상기와 같이 제조한 고전도성 탄소섬유는 보론계 환원제를 사용한 도금액을 사용함으로서 탄소섬유 표면에 Ni-P를 도입시킴으로써 니켈-인(Ni-P)도금에 비해 높은 전도성향상이 가능함과 동시에 섬유 표면 형상의 두께가 일정하고 균일한 도금이 가능하였다.The highly conductive carbon fibers prepared as described above have a higher conductivity than the nickel-phosphorus (Ni-P) plating by introducing Ni-P into the carbon fiber surface by using a plating solution using a boron-based reducing agent, and at the same time, the fiber surface shape. The thickness of was uniform and uniform plating was possible.

또한 상기 표 1에 나타나듯이 보론계 환원제를 사용한 경우 비교예 1, 2에 비해 전기저항도가 현저히 낮아짐을 알 수 있다.In addition, as shown in Table 1, when the boron-based reducing agent is used it can be seen that the electrical resistance is significantly lower compared to Comparative Examples 1 and 2.

또한 실시예 1에 따른 무전해 니켈 도금된 탄소섬유의 전자 주사 현미경(SEM) 측정 결과(도 1)와 비교예 1에 따른 무전해 니켈 도금된 탄소섬유의 SEM 측정 결과(도 2)를 비교해 보면 탄소섬유 표면에 도금되어진 니켈 두께 면에서 보론계 환원제를 사용한 탄소섬유가 더 두꺼운 니켈막이 형성되어 짐을 확인 할 수 있었다.In addition, when comparing the electron scanning microscope (SEM) measurement results (SEM) of the electroless nickel plated carbon fiber according to Example 1 (Fig. 1) and SEM measurement results (Fig. 2) of the electroless nickel plated carbon fiber according to Comparative Example 1 In terms of the thickness of nickel plated on the surface of the carbon fiber, it was confirmed that a thicker nickel film was formed using the boron-based reducing agent.

Claims (12)

니켈 염, 착화제, 안정제 및 보론계 환원제를 포함하는 도금액을 사용하여 탄소섬유에 니켈을 도금하는 고전도성 탄소섬유의 제조방법.
A method for producing a highly conductive carbon fiber in which nickel is plated on a carbon fiber using a plating solution containing a nickel salt, a complexing agent, a stabilizer, and a boron-based reducing agent.
제 1항에 있어서, 상기 니켈 염이 NiSO46H2O 또는 NiCl2·6H2O 인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of claim 1, wherein the nickel salt is NiSO 4 6H 2 O or NiCl 2 · 6H 2 O.
제 1항에 있어서, 상기 착화제가 NaC6H5O7인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of producing a highly conductive carbon fiber according to claim 1, wherein the complexing agent is NaC 6 H 5 O 7 .
제 1항에 있어서, 상기 안정제가 Pb(NO3)2인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of manufacturing a highly conductive carbon fiber according to claim 1, wherein the stabilizer is Pb (NO 3 ) 2 .
제 1항에 있어서, 상기 보론계 환원제는 소듐 보로하이드라이드(Sodium Boro Hydride, NaBH4), 디메틸아민보란((CH3)2NHBH3) 또는 이들의 혼합물인 것을 특징으로 하는 고전도성 탄소섬유 제조 방법.
The method of claim 1, wherein the boron-based reducing agent is sodium boro hydride (Sodium Boro Hydride, NaBH 4 ), dimethylamine borane ((CH 3 ) 2 NHBH 3 ) or a mixture of high carbon fiber, characterized in that Way.
제 1항에 있어서, 상기 도금액의 온도는 20 ~ 100℃인 것을 특징으로 하는 고전도성 탄소섬유 제조방법.
The method of claim 1, wherein the temperature of the plating liquid is 20 ~ 100 ℃.
제 1항에 있어서, 상기 도금 시간은 1 ~ 60 분인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of claim 1, wherein the plating time is 1 to 60 minutes.
제 1항에 있어서, 상기 도금액은 pH 3 ~ 17인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of claim 1, wherein the plating solution is pH 3 ~ 17.
제 1항에 있어서, 상기 탄소섬유에 니켈을 0.08 ~ 6.0 ㎛의 두께로 도금하는 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of manufacturing a highly conductive carbon fiber according to claim 1, wherein nickel is plated on the carbon fiber in a thickness of 0.08 to 6.0 µm.
제 1항에 있어서, 상기 탄소섬유에 도금되는 니켈함량이 5 ~ 60 중량% 인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of claim 1, wherein the nickel content to be plated on the carbon fiber is 5 to 60% by weight.
제 1항에 있어서, 상기 탄소섬유에 도금되는 보론함량이 0.3 ~ 10 중량%인 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.
The method of manufacturing a highly conductive carbon fiber according to claim 1, wherein the boron content to be plated on the carbon fiber is 0.3 to 10% by weight.
제 1항에 있어서, 상기 탄소섬유를 도금하기 전에 염화주석(SnCl2) 또는 염화팔라듐(PdCl2)으로 활성화 시키는 것을 특징으로 하는 고전도성 탄소섬유의 제조방법.The method of claim 1, wherein the carbon fiber is activated with tin chloride (SnCl 2 ) or palladium chloride (PdCl 2 ) before plating the carbon fiber.
KR1020100052489A 2010-06-03 2010-06-03 Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent KR20110132894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100052489A KR20110132894A (en) 2010-06-03 2010-06-03 Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100052489A KR20110132894A (en) 2010-06-03 2010-06-03 Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent

Publications (1)

Publication Number Publication Date
KR20110132894A true KR20110132894A (en) 2011-12-09

Family

ID=45500737

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100052489A KR20110132894A (en) 2010-06-03 2010-06-03 Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent

Country Status (1)

Country Link
KR (1) KR20110132894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026475A (en) * 2017-09-05 2019-03-13 인하대학교 산학협력단 Manufacturing method of nickel-plated CuS-PAN fibers for EMI-shielding
KR20200089170A (en) 2019-01-16 2020-07-24 주식회사 디앤씨테크 High-conductivity nickel-plated carbon fibers by non-electroplating process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026475A (en) * 2017-09-05 2019-03-13 인하대학교 산학협력단 Manufacturing method of nickel-plated CuS-PAN fibers for EMI-shielding
KR20200089170A (en) 2019-01-16 2020-07-24 주식회사 디앤씨테크 High-conductivity nickel-plated carbon fibers by non-electroplating process

Similar Documents

Publication Publication Date Title
Balaraju et al. Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites
CN101054483A (en) Silvering graphite and preparation method thereof
CN110724943A (en) Palladium-free activating solution before chemical nickel plating on copper surface, preparation method and nickel plating method
CN103757617B (en) A kind of Ni-Cu-La-B quaternary alloy plating solution and the method for the plating of glass fibre chemistry
Tang et al. Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal
CN104005224A (en) Method for preparing wave absorbing type high-elasticity electromagnetic shielding fabric
CN104164784B (en) Preparation method of composite fiber with high thermal conductivity through coating graphene on chemical fiber surface
CN105063580A (en) Preparation method of nickel-coated graphite powder for electroconductive rubber of electromagnetic shielding material
Hui et al. Electromagnetic shielding wood-based composite from electroless plating corrosion-resistant Ni–Cu–P coatings on Fraxinus mandshurica veneer
KR101199305B1 (en) Manufacturing Method of Highly Electro-conductive Carbon Fibers Using Cobalt Based Reducing Agent
Zhang et al. Comparative study of electroless Ni-P, Cu, Ag, and Cu-Ag plating on polyamide fabrics
CN102011154A (en) Gold plating solution for plating gold finger on circuit board
Qi et al. High‐electromagnetic‐shielding cotton fabric prepared using multiwall carbon nanotubes/nickel–phosphorus electroless plating
KR20180006523A (en) Manufacturing method of Nickel-plated and high-conductivity carbon fibers by non-electroplating process
KR101197723B1 (en) Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR20110132894A (en) Manufacturing method of highly electro-conductive carbon fibers using boron based reducing agent
CN102605360B (en) Chemical silvering solution based on imidazolium ionic liquid and silvering method
Zhu et al. Cu–Ni–Gd coating with improved corrosion resistance on linen fabric by electroless plating for electromagnetic interference shielding
CN101311307A (en) Ni-Fe-La-P four-component alloy plating solution for chemical plating on surface of fiberglass and method for preparing same
CN114105494B (en) Coupling agent compounded ionic nickel palladium-free activation solution and method for preparing conductive basalt fiber
KR20100033625A (en) Manufacturing process of high conductive glass fibers by ni electroless plating
KR101093608B1 (en) Manufacturing method of high conductivity carbon fiber using hydrazine and carbon fiber manufactured by the same
CN102797000B (en) Choline-chloride-based chemical silvering solution and application method thereof
CN114032531A (en) Polyetheretherketone surface chemical nickel plating solution and nickel plating process thereof
CN114411129A (en) Environment-friendly high-phosphorus nickel plating additive

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application