KR20200139460A - 음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지 - Google Patents

음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지 Download PDF

Info

Publication number
KR20200139460A
KR20200139460A KR1020190066006A KR20190066006A KR20200139460A KR 20200139460 A KR20200139460 A KR 20200139460A KR 1020190066006 A KR1020190066006 A KR 1020190066006A KR 20190066006 A KR20190066006 A KR 20190066006A KR 20200139460 A KR20200139460 A KR 20200139460A
Authority
KR
South Korea
Prior art keywords
group
anion exchange
polymer
composite membrane
membrane
Prior art date
Application number
KR1020190066006A
Other languages
English (en)
Other versions
KR102260082B9 (ko
KR102260082B1 (ko
Inventor
남상용
손태양
김지현
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020190066006A priority Critical patent/KR102260082B1/ko
Publication of KR20200139460A publication Critical patent/KR20200139460A/ko
Application granted granted Critical
Publication of KR102260082B1 publication Critical patent/KR102260082B1/ko
Publication of KR102260082B9 publication Critical patent/KR102260082B9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2268Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds, and by reactions not involving this type of bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지에 관한 것으로, 보다 상세하게는 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매상에서 혼합하여 막의 형태로 제조함으로써, 기계적 물성 및 화학적 안정성이 향상된 음이온교환 복합막을 제공하고, 이를 연료전지용 음이온 교환막으로 응용할 수 있다.

Description

음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지{Anion-exchange composite membrane, preparation method thereof and fuel cell comprising the same}
본 발명은 음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지에 관한 것으로, 보다 상세하게는 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매상에서 혼합하여 막의 형태로 제조함으로써, 기계적 물성 및 화학적 안정성이 향상된 음이온교환 복합막을 제공하고, 이를 연료전지용 음이온 교환막으로 응용하는 기술에 관한 것이다.
이온교환막은 수용액 중의 양이온 및 음이온을 선택적으로 분리할 수 있어 연료전지, 전기투석, 산과 염기 회수를 위한 물 분해 전기투석, 산세 폐액으로부터 산 및 금속화학종을 회수하기 위한 확산투석, 초순수 공정 등 폭넓게 사용되고 있으며, 최근 선진국에서는 고성능 이온교환막이 개발됨에 따라 그 응용범위는 더욱 확대되고 있다.
이온교환막은 높은 선택성을 가져야 하며, 용매 및 비이온 용질의 낮은 투과성, 선택된 투과이온의 확산에 대한 낮은 저항, 높은 기계적 강도 및 내화학성을 필요로 한다. 이러한 이온교환막은 우수한 기계적 강도와 내구성이 요구된다. 이러한 요구를 충족시키기 위해 보편적으로 사용되는 방법은 무기물을 첨가하여 하이브리드 복합막을 제조하는 방법, 촉매 혼합물을 가열 압착하는 핫프레스법, 경화제를 첨가하는 방법 등이 있다.
하이브리드 복합막 제조 방법은 막의 스웰링 현상이 계속된다면 막의 무기물과 고분자막 간의 틈이 생기게 되어 제대로 된 이온교환능력을 발휘할 수 없게 된다는 단점이 있다. 촉매 혼합물을 가열 압착하는 핫프레스법은 시간의 경과에 따라 촉매층이 녹게되는 단점이 있다. 또한 경화제를 첨가하는 방법 역시 시간의 경과에 따라 경화제가 녹게되는 단점이 있다. 상술한 바와 같은 문제점들로 인해 여전히 내구성이 높고 기계적 물성이 우수한 이온교환막의 개발이 요구되어 왔다.
현재 연료전지막, 전극막 등에 사용되고 있는 상용화 이온교환막은 술폰화된 폴리스티렌(sulfonated polystyrene), 듀퐁(Du Pont)사에서 제조한 NafionTM(이하 '나피온'이라 칭함) 등을 들 수 있다. 그러나 술폰화 된 폴리스티렌은 건조하게 되면 취성의 증가로 부서지게 되어 박막화나 복합막 등의 형태로 성형이 어렵게 되며 전극으로 가공 시에 기계적 안정성이 떨어진다는 단점을 갖고 있다. 이러한 단점을 개선하기 위해서는 폴리스티렌의 술폰화 비율을 조절하는 방법 또는 막의 두께를 두껍게 하는 방법 등이 있는데, 이때에는 막의 저항이 증가하여 막의 이온교환 능력이 현저하게 떨어져 이온교환막으로서의 성능을 기대할 수 없고, 시스템 제작시 부피가 증가하여 공간의 제약을 받게 된다. 또한, 나피온은 불소계 물질로서 높은 도전성과 화학적 안정성 등으로 인해 이온교환막으로 많이 사용되어 왔으나, 포함되어 있는 불소화합물로 인해 가격이 매우 고가이며, 고온에서의 사용이 제한되는 단점을 가지고 있다. 실제로 나피온 등과 같은 고가의 이온교환막은 실제 배터리 구동에 막대한 영향을 미치며 배터리 제조 가격을 높이는 원인으로 지목되고 있다. 나피온과 같은 퍼플루오로술폰산 이온교환막의 단가는 약 100 만원/m2으로 높기 때문에 해결되어야 할 과제 중 하나이다.
이에 원가가 저렴한 비불소 이온교환막에 대한 다양한 연구가 이루어졌으며, 특히 SPAES(sulfonated poly aryleneether sulfone), SPEEK(sulfonated poly etherether ketone), PBI(Polybenzimidazole), SPSf(sulfonated polysulfone), 기타 합성고분자 등 탄화수소 계열의 고분자들에 대한 연구가 광범위하게 이루어져 왔다.
비불소계 고분자 물질들은 다양한 관능기의 도입, 고분자 사슬의 배치, 분자량의 조절 등 다양한 인자들을 조절하여 새로운 물질들이 개발되어 그 가능성을 테스트해 왔다. 그러나 대부분의 물질들은 우수한 전기적 성능에 비해 낮은 화학적/물리적 안정성으로 인하여 실제 응용이 되는 부분에 있어 제한적인 문제점을 안고 있었다. 따라서 고분자 물질의 성능 향상을 위해 다양한 방법들이 제시되어 왔다. 그러나 이러한 노력의 결과물들은 낮은 이온 선택성을 보이며 내구성이 낮은 단점이 있다.
따라서, 본 발명자는 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매상에서 혼합하여 막의 형태로 제조함으로써, 기계적 물성 및 화학적 안정성이 향상된 음이온교환 복합막을 제공하고, 이를 연료전지용 음이온 교환막으로 응용할 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.
특허문헌 1. 한국 공개특허 공보 제10-2016-0101715호 특허문헌 2. 한국 공개특허 공보 제10-2018-0109586호
본 발명은 상기와 같은 문제점을 고려하여 안출된 것으로, 본 발명의 목적은 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매상에서 혼합하여 막의 형태로 제조함으로써, 기계적 물성 및 화학적 안정성이 향상된 음이온교환 복합막을 제공하고, 이를 연료전지용 음이온 교환막으로 응용하고자 하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명은 (a) 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매 상에서 혼합하는 단계, 및 (b) 상기 혼합물을 막의 형태로 형성하는 단계를 포함하는 음이온교환 복합막의 제조방법을 제공한다.
상기 음이온 교환기는 4급 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상일 수 있고; 상기 제1 고분자 및 제2 고분자는 서로 동일하거나 상이하고, 각각 독립적으로 폴리페닐렌옥사이드(PPO), 폴리비닐리덴플루오라이드(PVdF), 폴리에테르술폰(PES), 폴리술폰(PSf), 폴리에테르에테르케톤(PEEK), 폴리(스티렌-에틸렌-부틸렌-스티렌)(SEBS), 폴리에틸렌(PE), 폴리벤조비스옥사졸(PBO), 폴리테트라플루오로에틸렌(PTFE), 폴리프로필렌(PP), 폴리벤지미다졸(PBI), 폴리이미드(PI) 및 폴리비닐클로라이드(PVC) 중에서 선택되는 1종 이상일 수 있다.
상기 음이온 교환기가 도입된 제1 고분자는 하기 화학식 1 또는 화학식 2로 표현되는 반복단위를 갖는 폴리페닐렌옥사이드일 수 있다.
[화학식 1]
Figure pat00001
상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
상기 A는 4급 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상의 음이온 교환기이다.
[화학식 2]
Figure pat00002
상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
상기 B는 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상의 음이온 교환기이다.
상기 음이온 교환기가 도입된 제1 고분자는 상기 음이온교환 복합막 전체 중량을 기준으로 10 내지 60 중량% 포함할 수 있다.
상기 용매는 N-메틸-2-피롤리돈, 디메틸설폭사이드, 디메틸포름아미드, 디에틸포름아미드, 디메틸아세트아미드, 메탄올, 에탄올 및 에테르 중에서 선택되는 1종 또는 2종 이상의 혼합물일 수 있다.
상기 (b) 단계는 상기 혼합물을 기판 상에 캐스팅한 후 캐스팅된 막을 건조시켜 수행될 수 있다.
상기 음이온 교환기가 도입된 제1 고분자는 하기 화학식 1a로 표현되는 반복단위를 갖는 폴리페닐렌옥사이드이고, 지지체용 제2 고분자는 폴리비닐리덴플루오라이드(PVdF)이며, 상기 음이온 교환기가 도입된 제1 고분자는 상기 음이온교환 복합막 전체 중량을 기준으로 35 내지 45 중량% 포함하며, 상기 용매는 N-메틸-2-피롤리돈이며, 상기 (b) 단계는 상기 혼합물을 기판 상에 캐스팅한 후 캐스팅된 막을 건조시켜 수행되며, 상기 캐스팅 막을 건조하는 온도는 50 내지 70 ℃이고, 상기 캐스팅 막을 건조하는 시간은 11 내지 13 시간이며, 상기 캐스팅 막의 건조는 진공 건조하여 수행될 수 있다.
[화학식 1a]
Figure pat00003
상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
상기 A는 4급 암모늄염이다.
본 발명에 따르면, 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매상에서 혼합하여 막의 형태로 제조함으로써, 기계적 물성 및 화학적 안정성이 향상된 음이온교환 복합막을 제공하고, 이를 연료전지용 음이온 교환막으로 응용할 수 있다.
도 1은 본 발명의 (a) 실시예 1, (b) 실시예 2 및 (c) 실시예 3으로부터 제조된 음이온교환 복합막의 실제 이미지이다(복합막 전체 중량을 기준으로 4차 암모늄기가 도입된 PPO(A-PPO)가 30 중량%로 포함됨).
도 2는 본 발명의 실시예 1로부터 제조된 음이온교환 복합막의 원자현미경(AFM) 이미지이다.
도 3은 본 발명의 실시예 1(PES), 실시예 2(PSf) 및 실시예 3(PVdF)으로부터 제조된 음이온교환 복합막에서 4차 암모늄기가 도입된 PPO(A-PPO)의 함량에 따른 접촉각을 나타낸 그래프이다.
도 4는 본 발명의 비교예(A-PPO)로부터 제조된 음이온 교환막과, 실시예 1(A-PPO + PES), 실시예 2(A-PPO + PSf) 및 실시예 3(A-PPO + PVdF)로부터 제조된 음이온교환 복합막의 인장강도를 나타낸 그래프이다(실시예 1 내지 3의 경우 복합막 전체 중량을 기준으로 4차 암모늄기가 도입된 PPO(A-PPO)가 30 중량%로 포함됨).
이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 설명한다.
본 발명은 (a) 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매 상에서 혼합하는 단계, 및 (b) 상기 혼합물을 막의 형태로 형성하는 단계를 포함하는 음이온교환 복합막의 제조방법을 제공한다.
종래 이온교환막은 일반적으로 이온전도성을 향상시키기 위하여 이온교환기의 도입량을 높일수록 기계적 물성이 저하되는 문제점이 존재하였다. 본 발명에서는 상기한 문제점을 해결하고자, 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매상에서 혼합하여 막의 형태로 제조함으로써, 기계적 물성 및 이온전도성을 동시에 향상시킨 음이온교환 복합막을 제공하고자 한다.
상기 음이온 교환기는 4급 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상일 수 있고; 상기 제1 고분자 및 제2 고분자는 서로 동일하거나 상이하고, 각각 독립적으로 폴리페닐렌옥사이드(PPO), 폴리비닐리덴플루오라이드(PVdF), 폴리에테르술폰(PES), 폴리술폰(PSf), 폴리에테르에테르케톤(PEEK), 폴리(스티렌-에틸렌-부틸렌-스티렌)(SEBS), 폴리에틸렌(PE), 폴리벤조비스옥사졸(PBO), 폴리테트라플루오로에틸렌(PTFE), 폴리프로필렌(PP), 폴리벤지미다졸(PBI), 폴리이미드(PI) 및 폴리비닐클로라이드(PVC) 중에서 선택되는 1종 이상일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 따르면, 친수성 기질을 나타내는 음이온 교환기가 도입된 제1 고분자와 소수성 기질을 나타내는 음이온 교환기가 도입되지 않은 제2 고분자는 친수성 고분자 간의 응집과 소수성 고분자 간의 응집 효과로 인하여 상분리가 일어나며, 이러한 상분리가 분리막에 전체적으로 골고루 일어나 복합막과 같은 효과를 나타낼 수 있다.
구체적으로, 상기 음이온 교환기가 도입된 제1 고분자는 하기 화학식 1 또는 화학식 2로 표현되는 반복단위를 갖는 폴리페닐렌옥사이드일 수 있다.
[화학식 1]
Figure pat00004
상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
상기 A는 4급 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상의 음이온 교환기이다.
[화학식 2]
Figure pat00005
상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
상기 B는 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상의 음이온 교환기이다.
더욱 구체적으로는, 상기 화학식 1에서 A는 4급 암모늄염일 수 있고, 상기 화학식 2에서 B는 4급 암모늄염일 수 있다.
또한 구체적으로는, 상기 지지체용 제2 고분자는 폴리비닐리덴플루오라이드(PVdF), 폴리에테르술폰(PES) 또는 폴리술폰(PSf)일 수 있고, 더욱 구체적으로는 PVdF일 수 있다.
상기 음이온 교환기가 도입된 제1 고분자는 상기 음이온교환 복합막 전체 중량을 기준으로 10 내지 60 중량%, 구체적으로는 20 내지 50 중량%, 더욱 구체적으로는 35 내지 45 중량%를 포함할 수 있다.
상기 용매는 N-메틸-2-피롤리돈, 디메틸설폭사이드, 디메틸포름아미드, 디에틸포름아미드, 디메틸아세트아미드, 메탄올, 에탄올 및 에테르 중에서 선택되는 1종 또는 2종 이상의 혼합물일 수 있으나, 이에 한정되는 것은 아니다. 구체적으로는 N-메틸-2-피롤리돈을 사용할 수 있다.
상기 (b) 단계는 상기 혼합물을 기판 상에 캐스팅한 후 캐스팅된 막을 건조시켜 수행될 수 있다.
상기 캐스팅 막을 건조하는 과정은 구체적으로는 30 내지 150 ℃, 보다 구체적으로는 40 내지 100 ℃, 더욱 구체적으로는 50 내지 70 ℃의 온도에서, 구체적으로는 1 내지 24 시간, 보다 구체적으로는 5 내지 20 시간, 더욱 구체적으로는 11 내지 13 시간 동안 수행될 수 있고, 진공 건조하는 것이 바람직하나, 이에 한정되는 것은 아니다.
특히, 하기 실시예 또는 비교예 등에는 명시적으로 기재하지는 않았지만, 본 발명의 음이온교환 복합막을 제조하는 과정에 있어서, 다양한 종류의 이온교환기 및 고분자에 대하여 다양한 제조 조건을 달리하여 음이온교환 복합막을 제조하고, 제조된 음이온교환 복합막에 대하여 1000 회 비틀림 강도를 측정하였으며, 1H NMR 분광분석 및 주사전자현미경(SEM)을 통하여 음이온 교환기가 도입된 고분자의 유실 여부 및 복합막의 외부 표면 거칠기를 확인하였다.
그 결과, 다른 종류의 이온교환기 및 고분자와 다른 수치 범위에서와는 달리, (ⅰ) 음이온 교환기가 도입된 제1 고분자는 하기 화학식 1a로 표현되는 반복단위를 갖는 폴리페닐렌옥사이드, (ⅱ) 지지체용 제2 고분자는 폴리비닐리덴플루오라이드(PVdF), (ⅲ) 음이온 교환기가 도입된 제1 고분자는 상기 음이온교환 복합막 전체 중량을 기준으로 35 내지 45 중량% 포함, (ⅳ) 용매는 N-메틸-2-피롤리돈, (ⅴ) (b) 단계는 상기 혼합물을 기판 상에 캐스팅한 후 캐스팅된 막을 건조시켜 수행, (ⅵ) 상기 캐스팅 막을 건조하는 온도는 50 내지 70 ℃, (ⅶ) 상기 캐스팅 막을 건조하는 시간은 11 내지 13 시간, (ⅷ) 상기 캐스팅 막의 건조는 진공 건조하여 수행되는 조건을 모두 만족하였을 때, 1000 회 비틀림 강도 측정 후에도 복합막이 전혀 파괴되지 않고, 음이온 교환기가 도입된 고분자의 유실이 전혀 관찰되지 않을 뿐만 아니라, 복합막의 외부 표면 거칠기 변화 및 결점이 전혀 관찰되지 않았고, 다만, 상기 조건 중 어느 하나라도 충족되지 않는 경우에는 1000 회 비틀림 강도 측정에 따른 파괴가 일어나 외부 표면에 상당한 결점 및 거칠기 변화가 관측되었을 뿐만 아니라, 음이온 교환기가 도입된 고분자의 유실이 현저하게 나타남을 확인하였다.
[화학식 1a]
Figure pat00006
상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
상기 A는 4급 암모늄염이다.
이하에서는 본 발명에 따른 제조예 및 실시예를 첨부된 도면과 함께 구체적으로 설명한다.
실시예 1: 음이온교환 복합막의 제조(A-PPO + PES)
하기 화학식 1a로 표현되는 반복단위를 갖는 폴리페닐렌옥사이드계 공중합체 용액 및 지지체용 고분자로서 폴리에테르술폰(PES) 용액을 N-메틸-2-피롤리돈 용매하에서 혼합하였고, 상기 혼합물을 투명한 유리 페트리디쉬 상에 캐스팅한 다음, 60 ℃에서 12 시간 동안 진공 하에 건조시켜 막을 형성함으로써, 최종적으로 음이온교환 복합막을 제조하였다. 이후 상기 음이온교환 복합막의 전체 중량을 기준으로 하기 화학식 1a 화합물의 중량비율을 달리하여 접촉각, 기계적 물성, 이온교환용량 및 함수율을 확인하였다.
[화학식 1a]
Figure pat00007
상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
상기 A는 4급 암모늄염이다.
실시예 2: 음이온교환 복합막의 제조(A-PPO + PSf)
상기 실시예 1과 동일하게 실시하되, 지지체용 고분자로서 폴리에테르술폰 대신 폴리술폰(PSf) 용액을 사용하여 음이온교환 복합막을 제조하였다.
실시예 3: 음이온교환 복합막의 제조(A-PPO + PVdF)
상기 실시예 1과 동일하게 실시하되, 지지체용 고분자로서 폴리에테르술폰 대신 폴리비닐리덴플루오라이드(PVdF) 용액을 사용하여 음이온교환 복합막을 제조하였다.
비교예: 음이온 교환막의 제조(A-PPO)
하기 화학식 1a로 표현되는 반복단위를 갖는 폴리페닐렌옥사이드계 공중합체를 N-메틸-2-피롤리돈 용매에 분산시킨 분산액을 투명한 유리 페트리디쉬 상에 캐스팅한 다음, 60 ℃에서 12 시간 동안 진공 하에 건조시켜 막을 형성함으로써, 최종적으로 음이온 교환막을 제조하였다.
[화학식 1a]
Figure pat00008
상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
상기 A는 4급 암모늄염이다.
도 1은 본 발명의 (a) 실시예 1, (b) 실시예 2 및 (c) 실시예 3으로부터 제조된 음이온교환 복합막의 실제 이미지이다(복합막 전체 중량을 기준으로 4차 암모늄기가 도입된 PPO(A-PPO)가 30 중량%로 포함됨).
도 1을 참조하면, 실시예 1 내지 3으로부터 음이온 교환기가 도입된 고분자 및 지지체용 고분자가 용매상에서 균일하게 혼합되어, 성공적으로 복합막이 제조되었음을 확인할 수 있다.
도 2는 본 발명의 실시예 1로부터 제조된 음이온교환 복합막의 원자현미경(AFM) 이미지이다(복합막 전체 중량을 기준으로 4차 암모늄기가 도입된 PPO(A-PPO)가 30 중량%로 포함됨).
도 2를 참조하면 친수성의 기질을 나타내는 밝은 부분과 소수성의 기질을 나타내는 어두운 부분이 골고루 분산이 이루어져있으며, 이를 통해 복합막 형태로 작용할 수 있음을 확인할 수 있다.
도 3은 본 발명의 실시예 1(PES), 실시예 2(PSf) 및 실시예 3(PVdF)으로부터 제조된 음이온교환 복합막에서 4차 암모늄기가 도입된 PPO(A-PPO)의 함량에 따른 접촉각을 나타낸 그래프이다.
도 3을 참조하면, 4차 암모늄기가 도입된 PPO(A-PPO)의 함량이 증가할수록 친수성 영역이 많아짐에 따라 접촉각이 낮아짐을 확인할 수 있다.
도 4는 본 발명의 비교예(A-PPO)로부터 제조된 음이온 교환막과, 실시예 1(A-PPO + PES), 실시예 2(A-PPO + PSf) 및 실시예 3(A-PPO + PVdF)로부터 제조된 음이온교환 복합막의 인장강도를 나타낸 그래프이다(실시예 1 내지 3의 경우 복합막 전체 중량을 기준으로 4차 암모늄기가 도입된 PPO(A-PPO)가 30 중량%로 포함됨).
도 4를 참조하면, 지지체용 고분자를 혼합하기 전인 비교예에 비하여 지지체용 고분자가 혼합된 실시예들의 기계적 물성이 현저히 향상되었음을 확인할 수 있다.
하기 표 1에는 본 발명의 실시예 1 내지 3으로부터 제조된 음이온교환 복합막의 4차 암모늄기가 도입된 고분자(A-PPO)의 중량비율에 따른 이온교환용량(Ion exchange capacity(meq/g))을 나타내었고, 하기 표 2에는 함수율(water uptake(%))을 나타내었다.
하기 표 1 및 2를 참조하면, A-PPO의 함량이 증가할수록 이온교환용량이 전체적으로 증가됨을 확인할 수 있고, 지지체용 고분자가 혼합되어 복합막 형태로 제조되기 때문에 전체적인 함수율은 거의 비슷한 값을 유지하는 것을 확인할 수 있다. 이를 통하여, 이온교환용량은 향상되는데 함수율은 안정되어서, 팽윤으로 인한 외부적인 형태 변화가 감소하여 기계적 물성이 향상됨을 확인할 수 있다.
A-PPO 함량(wt%) 실시예 1(PES) 실시예 2(PSf) 실시예 3(PVdF)
20 2.3 2.43 2.2
30 2.41 2.5 2.34
40 2.53 2.69 2.48
A-PPO 함량(wt%) 실시예 1(PES) 실시예 2(PSf) 실시예 3(PVdF)
20 3.14 2.94 3.45
30 3.65 2.63 2.94
40 2.56 2.38 2.63
그러므로 본 발명에 따르면, 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매상에서 혼합하여 막의 형태로 제조함으로써, 기계적 물성 및 화학적 안정성이 향상된 음이온교환 복합막을 제공하고, 이를 연료전지용 음이온 교환막으로 응용할 수 있다.

Claims (7)

  1. (a) 음이온 교환기가 도입된 제1 고분자 및 지지체용 제2 고분자를 용매 상에서 혼합하는 단계, 및
    (b) 상기 혼합물을 막의 형태로 형성하는 단계를 포함하는 음이온교환 복합막의 제조방법.
  2. 제1항에 있어서,
    상기 음이온 교환기는 4급 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상이고;
    상기 제1 고분자 및 제2 고분자는 서로 동일하거나 상이하고, 각각 독립적으로 폴리페닐렌옥사이드(PPO), 폴리비닐리덴플루오라이드(PVdF), 폴리에테르술폰(PES), 폴리술폰(PSf), 폴리에테르에테르케톤(PEEK), 폴리(스티렌-에틸렌-부틸렌-스티렌)(SEBS), 폴리에틸렌(PE), 폴리벤조비스옥사졸(PBO), 폴리테트라플루오로에틸렌(PTFE), 폴리프로필렌(PP), 폴리벤지미다졸(PBI), 폴리이미드(PI) 및 폴리비닐클로라이드(PVC) 중에서 선택되는 1종 이상인 것을 특징으로 하는 음이온교환 복합막의 제조방법.
  3. 제2항에 있어서,
    상기 음이온 교환기가 도입된 제1 고분자는 하기 화학식 1 또는 화학식 2로 표현되는 반복단위를 갖는 폴리페닐렌옥사이드인 것을 특징으로 하는 음이온교환 복합막의 제조방법.
    [화학식 1]
    Figure pat00009

    상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
    상기 A는 4급 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상의 음이온 교환기이다.
    [화학식 2]
    Figure pat00010

    상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
    상기 B는 암모늄염, 1 내지 3급 아민, 4급 포스포니움기, 3급 술폰니움기, 이미다졸리움기, 피페리디늄기, 모폴리니움기, 피리디늄기 및 피롤리디늄기 중에서 선택되는 1종 이상의 음이온 교환기이다.
  4. 제1항에 있어서,
    상기 음이온 교환기가 도입된 제1 고분자는 상기 음이온교환 복합막 전체 중량을 기준으로 10 내지 60 중량% 포함하는 것을 특징으로 하는 음이온교환 복합막의 제조방법.
  5. 제1항에 있어서,
    상기 용매는 N-메틸-2-피롤리돈, 디메틸설폭사이드, 디메틸포름아미드, 디에틸포름아미드, 디메틸아세트아미드, 메탄올, 에탄올 및 에테르 중에서 선택되는 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 음이온교환 복합막의 제조방법.
  6. 제1항에 있어서,
    상기 (b) 단계는 상기 혼합물을 기판 상에 캐스팅한 후 캐스팅된 막을 건조시켜 수행되는 것을 특징으로 하는 음이온 교환막의 제조방법.
  7. 제1항에 있어서,
    상기 음이온 교환기가 도입된 제1 고분자는 하기 화학식 1a로 표현되는 반복단위를 갖는 폴리페닐렌옥사이드이고,
    지지체용 제2 고분자는 폴리비닐리덴플루오라이드(PVdF)이며,
    상기 음이온 교환기가 도입된 제1 고분자는 상기 음이온교환 복합막 전체 중량을 기준으로 35 내지 45 중량% 포함하며,
    상기 용매는 N-메틸-2-피롤리돈이며,
    상기 (b) 단계는 상기 혼합물을 기판 상에 캐스팅한 후 캐스팅된 막을 건조시켜 수행되며,
    상기 캐스팅 막을 건조하는 온도는 50 내지 70 ℃이고,
    상기 캐스팅 막을 건조하는 시간은 11 내지 13 시간이며,
    상기 캐스팅 막의 건조는 진공 건조하여 수행되는 것을 특징으로 하는 음이온교환 복합막의 제조방법.
    [화학식 1a]
    Figure pat00011

    상기 x는 반복단위 내 몰분율(%)로서, 상기 x는 1 내지 99의 정수이고,
    상기 A는 4급 암모늄염이다.
KR1020190066006A 2019-06-04 2019-06-04 음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지 KR102260082B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190066006A KR102260082B1 (ko) 2019-06-04 2019-06-04 음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190066006A KR102260082B1 (ko) 2019-06-04 2019-06-04 음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지

Publications (3)

Publication Number Publication Date
KR20200139460A true KR20200139460A (ko) 2020-12-14
KR102260082B1 KR102260082B1 (ko) 2021-06-03
KR102260082B9 KR102260082B9 (ko) 2022-04-11

Family

ID=73779771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190066006A KR102260082B1 (ko) 2019-06-04 2019-06-04 음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지

Country Status (1)

Country Link
KR (1) KR102260082B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230021833A (ko) 2021-08-06 2023-02-14 전북대학교산학협력단 쯔비터이온을 포함하는 작용기화된 산화흑연 기반의 음이온 유무기 복합 전해질막 및 이의 제조방법
CN116272397A (zh) * 2023-04-20 2023-06-23 固碳新能源科技(苏州)有限公司 非均相阴离子交换膜及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494289B1 (ko) * 2014-08-20 2015-02-17 전남대학교산학협력단 고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치
KR20150073651A (ko) * 2013-12-23 2015-07-01 상명대학교 천안산학협력단 고분자 지지체를 이용한 박형 이온교환막의 제조방법
KR20160101715A (ko) 2016-08-11 2016-08-25 주식회사 아모그린텍 이온교환막을 구비한 탈염용 복합전극, 그 제조방법 및 이를 이용한 탈염 장치
KR20160128531A (ko) * 2015-04-28 2016-11-08 더블유스코프코리아 주식회사 다공성 지지체를 이용한 수처리용 이온교환막 및 그 제조방법
KR20180109586A (ko) 2017-03-28 2018-10-08 코웨이 주식회사 비대칭 구조의 바이폴라 이온교환막 및 그 제조방법
KR101934855B1 (ko) * 2017-08-25 2019-01-03 경상대학교산학협력단 이온 교환 복합막 및 이의 제조방법
KR20190024312A (ko) * 2017-08-31 2019-03-08 경상대학교산학협력단 폴리페닐렌옥사이드 기반의 복합막, 이의 제조방법 및 이를 포함하는 연료전지용 음이온 교환막

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150073651A (ko) * 2013-12-23 2015-07-01 상명대학교 천안산학협력단 고분자 지지체를 이용한 박형 이온교환막의 제조방법
KR101494289B1 (ko) * 2014-08-20 2015-02-17 전남대학교산학협력단 고분자전해질 다공성복합막, 상기 다공성복합막 제조방법 및 상기 다공성복합막을 포함하는 에너지저장장치
KR20160128531A (ko) * 2015-04-28 2016-11-08 더블유스코프코리아 주식회사 다공성 지지체를 이용한 수처리용 이온교환막 및 그 제조방법
KR20160101715A (ko) 2016-08-11 2016-08-25 주식회사 아모그린텍 이온교환막을 구비한 탈염용 복합전극, 그 제조방법 및 이를 이용한 탈염 장치
KR20180109586A (ko) 2017-03-28 2018-10-08 코웨이 주식회사 비대칭 구조의 바이폴라 이온교환막 및 그 제조방법
KR101934855B1 (ko) * 2017-08-25 2019-01-03 경상대학교산학협력단 이온 교환 복합막 및 이의 제조방법
KR20190024312A (ko) * 2017-08-31 2019-03-08 경상대학교산학협력단 폴리페닐렌옥사이드 기반의 복합막, 이의 제조방법 및 이를 포함하는 연료전지용 음이온 교환막

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230021833A (ko) 2021-08-06 2023-02-14 전북대학교산학협력단 쯔비터이온을 포함하는 작용기화된 산화흑연 기반의 음이온 유무기 복합 전해질막 및 이의 제조방법
CN116272397A (zh) * 2023-04-20 2023-06-23 固碳新能源科技(苏州)有限公司 非均相阴离子交换膜及装置
CN116272397B (zh) * 2023-04-20 2024-01-05 固碳新能源科技(苏州)有限公司 非均相阴离子交换膜及装置

Also Published As

Publication number Publication date
KR102260082B9 (ko) 2022-04-11
KR102260082B1 (ko) 2021-06-03

Similar Documents

Publication Publication Date Title
US11918959B2 (en) Anion exchange polymers and anion exchange membranes incorporating same
Ogungbemi et al. Fuel cell membranes–Pros and cons
US7550216B2 (en) Composite solid polymer electrolyte membranes
US8008404B2 (en) Composite membrane
Wycisk et al. New developments in proton conducting membranes for fuel cells
US20020045085A1 (en) Composite solid polymer elecrolyte membranes
KR102061633B1 (ko) 폴리페닐렌옥사이드 기반의 복합막, 이의 제조방법 및 이를 포함하는 연료전지용 음이온 교환막
KR100833056B1 (ko) 연료전지용 강화-복합 전해질막
CN102002168A (zh) 具有层状形貌的离子交换膜及其制造方法
JP2001236973A (ja) 固体高分子電解質膜およびその製造方法
US20210387174A1 (en) Multilayered ion exchange membranes
KR102260082B1 (ko) 음이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지
Qaisrani et al. Facile and green fabrication of polybenzoxazine-based composite anion-exchange membranes with a self-cross-linked structure
KR102255170B1 (ko) 이온교환 복합막, 이의 제조방법 및 이를 포함하는 연료전지
CN109121441B (zh) 离子传导性高分子电解质膜及其制备方法
JP5189394B2 (ja) 高分子電解質膜
KR101956169B1 (ko) 자기-가습성 이온교환 복합막 및 그 제조방법
KR20100021618A (ko) 막전극 접합체, 그리고 이것을 구비하는 막-전극-가스 확산층 접합체 및 고체 고분자형 연료 전지
KR102260086B1 (ko) 복합 분리막, 이의 제조방법 및 이를 포함하는 수처리용 분리막
KR101860541B1 (ko) 가교고분자전해질 복합막 제조방법, 그 방법으로 제조된 복합막 및 상기 복합막을 포함하는 에너지저장장치
KR20210136750A (ko) 강화복합 전해질막 및 그의 제조방법
KR102338150B1 (ko) 복합막, 이의 제조방법 및 이를 포함하는 연료전지
JP2014110232A (ja) フッ素系高分子電解質膜
KR102108352B1 (ko) 이온교환막의 제조방법
Yu et al. Fundamental studies of homogeneous cation exchange membranes from poly (2, 6‐dimethyl‐1, 4‐phenylene oxide): Membranes prepared by simultaneous aryl‐sulfonation and aryl‐bromination

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
G170 Re-publication after modification of scope of protection [patent]