KR20200137014A - 증기 터빈 플랜트, 및 그 냉각 방법 - Google Patents

증기 터빈 플랜트, 및 그 냉각 방법 Download PDF

Info

Publication number
KR20200137014A
KR20200137014A KR1020207032322A KR20207032322A KR20200137014A KR 20200137014 A KR20200137014 A KR 20200137014A KR 1020207032322 A KR1020207032322 A KR 1020207032322A KR 20207032322 A KR20207032322 A KR 20207032322A KR 20200137014 A KR20200137014 A KR 20200137014A
Authority
KR
South Korea
Prior art keywords
steam
valve
boiler
temperature
low
Prior art date
Application number
KR1020207032322A
Other languages
English (en)
Other versions
KR102520288B1 (ko
Inventor
다이키 후지무라
스스무 세키네
Original Assignee
미츠비시 파워 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 파워 가부시키가이샤 filed Critical 미츠비시 파워 가부시키가이샤
Publication of KR20200137014A publication Critical patent/KR20200137014A/ko
Application granted granted Critical
Publication of KR102520288B1 publication Critical patent/KR102520288B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/003Arrangements for measuring or testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/74Application in combination with a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

증기 터빈 플랜트는, 보일러(20)와, 연료 밸브(66)와, 저온 증기 발생원(50)과, 증기 터빈(30)과, 보일러(20)로 발생한 증기를 증기 터빈(30)으로 유도하는 주증기 라인(77)과, 주증기 라인(77)에 마련되어 있는 주증기 조절 밸브(79)와, 저온 증기 발생원(50)으로부터의 저온 증기를 주증기 라인(77) 중에서 주증기 조절 밸브(79)보다 증기 터빈 측의 위치로 유도하는 저온 증기 라인(82)과, 저온 증기 라인(82)에 마련되어 있는 저온 증기 밸브(83)와, 제어 장치(100)를 구비한다. 제어 장치(100)는, 증기 터빈 플랜트의 정지 과정에서, 연료 밸브(66)로의 폐쇄 지시를 보낸 후에, 저온 증기 밸브(83)로 개방 지시를 보낸다.

Description

증기 터빈 플랜트, 및 그 냉각 방법
본 발명은, 보일러와, 보일러로부터의 증기로 구동하는 증기 터빈을 구비하는 증기 터빈 플랜트, 및 그 냉각 방법에 관한 것이다.
본원은, 2018년 5월 14일에, 일본에 출원된 특원 2018-093301호에 근거하여 우선권을 주장하며, 이 내용을 여기에 원용한다.
증기 터빈 플랜트를 점검하는 경우, 증기 터빈의 온도가 증기 터빈에 대하여 점검 작업 가능한 온도로 저하될 때까지 기다릴 필요가 있다. 이 대기 시간을 짧게 하기 위하여, 증기 터빈을 냉각하는 각종 방법이 있다.
제1 방법은, 증기 터빈의 정지 후, 이 증기 터빈 내로 냉각 공기를 보내어, 이 증기 터빈을 냉각 공기로 강제 냉각하는 방법이다.
제2 방법은, 이하의 특허문헌 1에 기재된 방법이다. 이 제2의 방법에서는, 증기 터빈의 정지 과정에서, 보일러로부터 가감(加減) 밸브에 이르기 전의 증기의 압력을 높이는 한편, 가감 밸브의 개도(開度)를 줄여, 증기 터빈으로 유입하는 증기의 온도를 저하시켜, 이 증기로 증기 터빈을 냉각한다. 이 특허문헌 1에서는, 증기 터빈의 정지 후, 자연 냉각, 또는 냉각 공기에 의한 강제 냉각을 행하여, 증기 터빈의 온도를 더 저하시키는 것이 제안되고 있다.
일본 공개특허공보 평04-140403호
증기 터빈 플랜트를 점검하는 경우, 증기 터빈으로 증기를 공급하는 보일러도 냉각할 필요가 있다. 보일러를 냉각하는 일반적인 방법에서는, 먼저, 증기의 발생을 위한 연료의 공급을 끊고, 또한 증기 터빈으로 유입하는 증기의 유량을 조절하는 가감 밸브를 폐쇄 상태로 한다. 그 후, 복수기(復水器) 내의 물을 보일러로 공급하여, 보일러 내를 경유한 물을 보일러로부터 배출한다. 이 방법을 실행하는 경우, 녹 발생을 억제하기 위하여, 보일러로 공급하는 물 속의 산소 농도를 억제할 필요가 있다. 이 때문에, 보일러 냉각 중, 증기 터빈에 냉각 공기를 공급하지 않도록 하여, 이 냉각 공기가 복수기 내로 유입하는 것을 피할 필요가 있다.
따라서, 제1의 방법 및 제2의 방법에서는, 연료 공급을 끊고 나서 보일러 냉각이 종료될 때까지의 사이에, 증기 터빈을 강제 냉각할 수 없어, 증기 터빈의 냉각 종료가 늦어진다는 문제점이 있다.
따라서, 본 발명은, 증기 터빈의 냉각 종료를 앞당길 수 있는 기술을 제공하는 것을 목적으로 한다.
상기 문제점을 해결하기 위한 발명에 관한 일 양태의 증기 터빈 플랜트는,
증기를 발생하는 보일러와, 상기 증기의 발생을 위한 연료의 유량을 조절하는 연료 밸브와, 상기 보일러와 독립하여, 저온 증기를 발생하는 저온 증기 발생원과, 상기 보일러로부터의 증기로 구동하는 증기 터빈과, 상기 보일러에서 발생한 증기를 상기 증기 터빈의 증기 입구로 유도하는 주증기(主蒸氣) 라인과, 상기 주증기 라인에 마련되어, 상기 보일러로부터 상기 증기 터빈으로 유입하는 증기 유량을 조절하는 주증기 조절 밸브와, 상기 저온 증기 발생원에 접속되어, 상기 저온 증기 발생원으로부터의 상기 저온 증기를 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 유도하는 저온 증기 라인과, 상기 저온 증기 라인에 마련되어, 상기 저온 증기 라인을 흐르는 상기 저온 증기의 유량을 조절하는 저온 증기 밸브와, 제어 장치를 구비한다. 상기 제어 장치는, 상기 연료 밸브로의 폐쇄 지시를 보낸 후에, 상기 저온 증기 밸브에 개방 지시를 보낸다.
본 양태에서는, 증기 터빈 플랜트의 정지 과정에서, 연료의 공급을 끊은 후, 저온 증기로 증기 터빈을 냉각할 수 있다. 이 때문에, 본 양태에서는, 증기 터빈으로부터의 증기를 물로 되돌리는 복수기 내를 진공 파괴하기 전에, 증기 터빈의 냉각을 개시할 수 있다.
증기 터빈에서는, 그 운전 중, 각 단(段)의 날개 중, 증기 흐름의 하류 측의 날개보다 상류 측의 날개 쪽이 고온의 증기에 노출되어, 상류 측의 날개 쪽이 고온이 된다. 이 때문에, 본 양태와 같이, 저온 증기를 증기 터빈의 증기 입구로부터 증기 터빈 내로 넣음으로써, 상류 측의 고온의 날개를 효율적으로 냉각할 수 있다.
여기에서, 상기 양태의 증기 터빈 플랜트에 있어서, 상기 저온 증기 발생원은, 상기 보일러인 제1 보일러와는 독립하여 증기를 발생하는 제2 보일러와, 상기 제2 보일러로부터의 증기의 온도를 저하시켜, 상기 저온 증기를 생성하는 감온(減溫)기를 가져도 된다.
상기 감온기를 갖는 양태의 증기 터빈 플랜트에 있어서, 상기 제어 장치는, 상기 저온 증기 밸브로 개방 지시를 보낸 후, 미리 정해진 조건을 충족하면, 상기 감온기에 대하여, 상기 저온 증기의 온도를 더 저하하도록 지시해도 된다.
본 양태에서는, 증기 터빈에 대한 열 충격을 억제할 수 있음과 함께, 증기 터빈을 효율적으로 냉각할 수 있다.
이상의 어느 하나의 양태의 증기 터빈 플랜트에 있어서, 상기 저온 증기 라인 중에서, 상기 저온 증기 밸브보다 상기 저온 증기 발생원 측에 접속되고, 상기 저온 증기 라인 중의 상기 저온 증기 및 상기 저온 증기의 드레인을 배출하는 드레인 배출 라인과, 상기 드레인 배출 라인 중에 마련되어 있는 드레인 밸브를 구비해도 된다. 이 경우, 상기 제어 장치는, 상기 연료 밸브에 대하여 폐쇄 지시를 보낸 후에, 상기 드레인 밸브로 개방 지시를 보내고, 상기 드레인 밸브로 개방 지시를 보낸 후에 소정 시간이 경과하면, 상기 드레인 밸브로 폐쇄 지시를 보냄과 함께 상기 저온 증기 밸브로 개방 지시를 보낸다.
본 양태에서는, 저온 증기를 증기 터빈으로 공급하기 전에 저온 증기 라인을 저온 증기로 데울 수 있다. 이 때문에, 본 양태에서는, 저온 증기의 증기 터빈으로의 공급 개시 시, 저온 증기가 저온 증기 라인을 통과하는 과정에서, 일부가 액화하는 것을 억제할 수 있다. 즉, 본 양태에서는, 저온 증기의 증기 터빈으로의 공급 개시 시, 증기 터빈으로 유입하는 저온 증기의 드레인양을 억제할 수 있다.
또, 이상의 어느 하나의 양태의 증기 터빈 플랜트에 있어서, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치로부터 분기하며, 상기 보일러로부터 증기를, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 유도하는 바이패스 라인과, 상기 바이패스 라인을 흐르는 증기의 유량을 조절하는 잉여 증기 밸브와, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치에서의 압력을 검지하는 압력 검지기를 구비해도 된다. 이 경우, 상기 제어 장치는, 상기 연료 밸브로의 폐쇄 지시의 송신에 수반하여 상기 주증기 조절 밸브로 폐쇄 지시를 보냄과 함께, 상기 잉여 증기 밸브로 개방 지시를 보내고, 상기 압력 검지기로 검지된 압력이 미리 정해진 압력 이하가 되면, 상기 저온 증기 밸브로 개방 지시를 보낸다.
본 양태에서는, 증기 터빈에 저온 증기가 공급되기 전에, 연료 공급이 끊어진 후의 보일러로부터의 증기를 증기 터빈으로 공급하여, 이 증기로 증기 터빈을 냉각한다. 연료 공급을 끊기 직전 직후에서, 보일러로부터 발생하는 증기의 온도는 거의 변하지 않는다. 이 때문에, 본 양태에서는, 연료 공급을 끊기 전후에, 증기 터빈에 주는 열 충격을 최소한으로 억제할 수 있다.
또, 이상의 어느 하나의 양태의 증기 터빈 플랜트에 있어서, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치에서의 압력을 검지하는 압력 검지기를 구비해도 된다. 이 경우, 상기 제어 장치는, 상기 연료 밸브로의 폐쇄 지시의 송신에 수반하여 상기 주증기 조절 밸브로 밸브 개도를 작게 하는 취지를 나타내는 미소한 개방 지시를 보내며, 상기 압력 검지기로 검지된 압력이 미리 정해진 압력 이하가 되면, 상기 저온 증기 밸브로 개방 지시를 보낸다.
본 양태에서도, 증기 터빈에 저온 증기가 공급되기 전에, 연료 공급이 끊어진 후의 보일러로부터의 증기를 증기 터빈으로 공급하여, 이 증기로 증기 터빈을 냉각한다. 이 때문에, 본 양태에서도, 연료 공급을 끊기 직전 직후에서, 증기 터빈에 주는 열 충격을 최소한으로 억제할 수 있다.
이상의 어느 하나의 양태의 증기 터빈 플랜트에 있어서, 상기 증기 터빈으로부터의 증기를 물로 되돌리는 복수기와, 상기 복수기 내의 물을 상기 보일러로 유도하는 급수 라인과, 상기 급수 라인에 마련되어, 상기 복수기 내의 물을 보일러로 보내는 펌프와, 상기 보일러에서 물 또는 증기가 통과하는 관 또는 드럼에 접속되어, 상기 관 또는 드럼 내의 물 또는 증기를 보일러 외부로 배출하는 보일러수 배출 라인과, 상기 보일러수 배출 라인에 마련되어, 상기 보일러수 배출 라인을 흐르는 유체의 유량을 조절하는 보일러수 배출 밸브를 구비해도 된다. 이 경우, 상기 제어 장치는, 상기 연료 밸브에 대하여 폐쇄 지시를 보낸 후에, 상기 펌프의 구동을 계속한 상태에서, 상기 보일러수 배출 밸브로 개방 지시를 보낸다.
본 양태에서는, 연료 공급이 끊어진 후에, 복수기 내의 물을 보일러의 관 등으로 공급하므로, 이 물로 보일러를 냉각할 수 있다.
상기 복수기를 구비하는 양태의 증기 터빈 플랜트에 있어서, 상기 보일러수 배출 라인은, 상기 복수기에 접속되어 있어도 된다.
본 양태에서는, 복수기로부터 보일러로 공급한 물이, 보일러수 배출 라인을 통하여, 복수기 내로 되돌아간다. 따라서, 본 양태에서는, 복수기 내의 물을 유효 이용할 수 있다.
상기 복수기를 구비하는 양태의 증기 터빈 플랜트에 있어서, 상기 제어 장치는, 상기 저온 증기 밸브가 개방되어 있는 시간대의 적어도 일부가, 상기 보일러수 배출 밸브가 개방되어 있는 시간대와 겹치도록, 상기 보일러수 배출 밸브에 대하여 개방 지시를 보내도 된다.
본 양태에서는, 저온 증기를 증기 터빈으로 공급하여, 증기 터빈을 냉각하는 증기 터빈 냉각 공정과, 복수기로부터의 물을 보일러로 공급하여 보일러를 냉각하는 보일러 냉각 공정을 병행하여 실행하게 된다. 이 때문에, 본 양태에서는, 보일러 냉각 공정과 증기 터빈 냉각 공정 모두가 완료되는 타이밍을 앞당길 수 있다.
이상의 어느 하나의 양태의 증기 터빈 플랜트에 있어서, 상기 증기 터빈에서, 상기 보일러로부터의 증기가 접하는 개소의 온도를 검지하는 온도 검지기를 구비해도 된다. 이 경우, 상기 제어 장치는, 상기 온도 검지기로 검지된 온도가 미리 정해진 온도 이하가 되면, 상기 저온 증기 밸브로 폐쇄 지시를 보낸다.
상기 복수기를 구비하는, 이상의 어느 하나의 양태의 증기 터빈 플랜트에 있어서, 상기 증기 터빈에서, 상기 보일러로부터의 증기가 접하는 개소의 온도를 검지하는 온도 검지기와, 상기 증기 터빈을 냉각하기 위한 냉각 공기를 상기 증기 터빈 내로 보내는 냉각 공기 공급기와, 상기 냉각 공기 공급기에 접속되어, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 상기 냉각 공기를 유도하는 냉각 공기 라인을 구비해도 된다. 이 경우, 상기 제어 장치는, 상기 온도 검지기로 검지된 온도가 미리 정해진 온도 이하가 되기 전에, 상기 보일러의 냉각이 완료되었다고 판단하면, 상기 저온 증기 밸브로 폐쇄 지시를 보낸 후에 상기 냉각 공기 공급기로 공급 지시를 보내며, 상기 보일러의 냉각이 완료되기 전에 상기 온도 검지기로 검지된 온도가 미리 정해진 온도 이하가 되었다고 판단하면, 상기 저온 증기 밸브로 폐쇄 지시를 보낸다.
본 양태에서는, 저온 증기로 증기 터빈을 냉각하는 증기 터빈 냉각 공정 중에, 보일러의 냉각이 완료되면, 이 증기 터빈 냉각 공정을 중지하여, 냉각 공기 팬으로부터의 냉각 공기로 증기 터빈을 냉각할 수 있다.
이상의 어느 하나의 양태의 증기 터빈 플랜트에 있어서, 연료를 연소시켜 구동하는 가스 터빈을 구비해도 된다. 이 경우, 상기 보일러는, 상기 가스 터빈으로부터 배기된 연소 가스의 열로 증기를 발생시키는 배열 회수 보일러이다. 또, 상기 연료 밸브는, 상기 가스 터빈으로 공급하는 연료의 유량을 조절하는 밸브이다.
상기 가스 터빈을 구비하는 양태의 증기 터빈 플랜트에 있어서, 상기 가스 터빈의 가스 터빈 로터를 회전시키는 모터를 구비해도 된다. 이 경우, 상기 제어 장치는, 상기 가스 터빈의 정격 회전수보다 낮은 회전수로 상기 가스 터빈 로터를 회전시키는 스핀 운전을 실행하도록, 상기 연료 밸브에 대하여 폐쇄 지시를 보낸 후이며, 상기 저온 증기 밸브가 개방되어 있는 시간대의 적어도 일부가, 상기 스핀 운전의 실행 시간대와 겹치는 타이밍으로, 상기 모터로 스핀 운전 지시를 보낸다.
본 양태에서는, 가스 터빈을 냉각할 수 있다.
상기 문제점을 해결하기 위한 발명에 관한 일 양태의 증기 터빈 플랜트의 냉각 방법은,
증기를 발생하는 보일러와, 상기 보일러로부터의 증기로 구동하는 증기 터빈과, 상기 보일러에서 발생한 증기를 상기 증기 터빈의 증기 입구로 유도하는 주증기 라인과, 상기 주증기 라인에 마련되어, 상기 보일러로부터 상기 증기 터빈으로 유입하는 증기 유량을 조절하는 주증기 조절 밸브를 구비하는 증기 터빈 플랜트의 냉각 방법이다. 이 냉각 방법은, 상기 보일러에서 증기의 발생을 위한 연료 공급을 정지하는 연료 정지 공정과, 상기 연료 정지 공정 후에, 상기 보일러와 독립하여, 저온 증기를 발생하는 저온 증기 발생원으로부터의 저온 증기를, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 유도하는 저온 증기 공급 공정을 실행한다.
여기에서, 상기 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 저온 증기 발생원은, 상기 보일러인 제1 보일러와는 독립된 제2 보일러로부터의 증기를 감온하여, 상기 저온 증기를 생성해도 된다.
상기 제2 보일러로부터의 증기를 감온하는 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 저온 증기 공급 공정에서는, 상기 저온 증기 공급 공정 중에 미리 정해진 조건을 충족하면, 상기 저온 증기의 온도를 더 저하시켜도 된다.
이상의 어느 하나의 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 증기 터빈 플랜트는, 상기 저온 증기 발생원에 접속되어, 상기 저온 증기 발생원으로부터의 상기 저온 증기를 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 유도하는 저온 증기 라인과, 상기 저온 증기 라인에 마련되어, 상기 저온 증기 라인을 흐르는 상기 저온 증기의 유량을 조절하는 저온 증기 밸브를 구비한다. 이 경우, 상기 연료 정지 공정 후에, 상기 저온 증기 라인 중에서 상기 저온 증기 밸브보다 상기 저온 증기 발생원 측의 상기 저온 증기 및 상기 저온 증기의 드레인을 배출하는 드레인 배출 공정을 실행하며, 상기 드레인 배출 공정 후에, 상기 저온 증기 밸브를 개방하여 상기 저온 증기 공급 공정을 실행해도 된다.
이상의 어느 하나의 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 연료 정지 공정에 수반하여 상기 주증기 조절 밸브를 폐쇄하는 주증기 정지 공정과, 상기 연료 정지 공정 및 상기 주증기 정지 공정 후에, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 증기를, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측으로 공급하는 잉여 증기 공급 공정을 실행해도 된다. 이 경우, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치에서의 압력이 미리 정해진 압력 이하가 되면, 상기 저온 증기 공급 공정을 실행한다.
이상의 어느 하나의 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 연료 정지 공정에 수반하여 상기 주증기 조절 밸브의 개도를 작게 하여, 상기 보일러로부터의 증기부터 상기 증기 터빈으로 유입하는 증기 유량을 억제하는 잉여 증기 공급 공정을 실행해도 된다. 이 경우, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치에서의 압력이 미리 정해진 압력 이하가 되면, 상기 저온 증기 공급 공정을 실행해도 된다.
이상의 어느 하나의 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 증기 터빈 플랜트는, 상기 증기 터빈으로부터의 증기를 물로 되돌리는 복수기와, 상기 복수기 내의 물을 상기 보일러로 유도하는 급수 라인과, 상기 급수 라인에 마련되어, 상기 복수기 내의 물을 보일러로 보내는 펌프를 구비해도 된다. 이 경우, 상기 연료 정지 공정 후에, 상기 펌프의 구동을 계속한 상태에서, 상기 보일러에서 물 또는 증기가 통과하는 관 내의 상기 물 또는 상기 증기를 상기 보일러 외로 배출하는 보일러 냉각 공정을 실행해도 된다.
상기 보일러 냉각 공정을 실행하는 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 보일러 냉각 공정에서는, 보일러 외로 배출한 상기 관 내의 상기 물 또는 상기 증기를 상기 복수기로 되돌려도 된다.
상기 보일러 냉각 공정을 실행하는, 어느 하나의 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 저온 증기 공급 공정의 실행 시간대의 적어도 일부가, 상기 보일러 냉각 공정의 실행 시간대와 겹쳐도 된다.
이상의 어느 하나의 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 증기 터빈에서, 상기 저온 증기 공급 공정의 실행 후, 상기 보일러로부터의 증기가 접하는 개소의 온도가 미리 정해진 온도 이하가 되면, 상기 저온 증기 공급 공정을 종료해도 된다.
상기 보일러 냉각 공정을 실행하는, 이상의 어느 하나의 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 증기 터빈에서, 상기 저온 증기 공급 공정의 실행 후, 상기 보일러로부터의 증기가 접하는 개소의 온도가 미리 정해진 온도 이하가 되기 전에, 상기 보일러의 냉각이 완료되면, 상기 저온 증기 공급 공정을 종료하는 한편, 상기 증기 터빈 내로 냉각 공기를 보내는 냉각 공기 공급 공정을 실행하며, 상기 보일러의 냉각이 완료되기 전에, 상기 보일러로부터의 증기가 접하는 개소의 온도가 미리 정해진 온도 이하가 되면, 상기 저온 증기 공급 공정을 종료해도 된다.
이상의 어느 하나의 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 증기 터빈 플랜트는, 연료를 연소시켜 구동하는 가스 터빈을 구비해도 된다. 이 경우, 상기 보일러는, 상기 가스 터빈으로부터 배기된 연소 가스의 열로 증기를 발생시킨다. 또, 상기 연료는, 상기 가스 터빈으로 공급하는 연료이다.
상기 가스 터빈을 구비하는 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 증기 터빈 플랜트는, 상기 가스 터빈의 가스 터빈 로터를 회전시키는 모터를 구비해도 된다. 이 경우, 상기 연료 정지 공정 후에, 상기 모터에, 상기 가스 터빈의 정격 회전수보다 낮은 회전수로 상기 가스 터빈 로터를 회전시키는 가스 터빈 냉각 공정을 실행해도 된다.
상기 가스 터빈 냉각 공정을 실행하는 양태의 증기 터빈 플랜트의 냉각 방법에 있어서, 상기 저온 증기 공급 공정의 실행 시간대의 적어도 일부가, 상기 가스 터빈 냉각 공정의 실행 시간대와 겹쳐도 된다.
본 발명의 일 양태에서는, 증기 터빈을 구동시키기 위한 증기를 발생하는 보일러에 대하여 독립된 저온 증기 발생원으로부터의 저온 증기로 증기 터빈을 냉각한다. 이 때문에, 본 발명의 일 양태에 의하면, 연료 공급을 끊은 후의 보일러 냉각 중에서도, 증기 터빈을 강제 냉각할 수 있어, 증기 터빈의 냉각 종료를 앞당길 수 있다.
도 1은 본 발명에 관한 제1 실시형태에 있어서의 증기 터빈 플랜트의 계통도이다.
도 2는 본 발명에 관한 제1 실시형태에 있어서의 증기 터빈 플랜트의 정지 절차를 나타내는 플로차트(그 1)이다.
도 3은 본 발명에 관한 제1 실시형태에 있어서의 증기 터빈 플랜트의 정지 절차를 나타내는 플로차트(그 2)이다.
도 4는 본 발명에 관한 제1 실시형태에 있어서의 시간 경과에 따른, 발전기 출력, 로터 회전수, 및 증기 터빈의 메탈 온도의 변화를 나타내는 그래프이다.
도 5는 비교예의 증기 터빈 플랜트에 있어서의 시간 경과에 따른, 발전기 출력, 로터 회전수, 및 증기 터빈의 메탈 온도의 변화를 나타내는 그래프이다.
도 6은 본 발명에 관한 제2 실시형태에 있어서의 증기 터빈 플랜트의 계통도이다.
도 7은 본 발명에 관한 제2 실시형태에 있어서의 증기 터빈 플랜트의 정지 절차를 나타내는 플로차트(그 1)이다.
도 8은 본 발명에 관한 제2 실시형태에 있어서의 증기 터빈 플랜트의 정지 절차를 나타내는 플로차트(그 2)이다.
이하, 본 발명에 관한 증기 터빈 플랜트의 각종 실시형태에 대하여, 도면을 이용하여 설명한다.
「제1 실시형태」
본 발명에 관한 증기 터빈 플랜트의 제1 실시형태에 대하여, 도 1~도 5를 참조하여 설명한다.
본 실시형태의 증기 터빈 플랜트는, 도 1에 나타내는 바와 같이, 가스 터빈(10)과, 가스 터빈(10)으로부터의 배기 가스(EG)로 증기를 발생하는 배열 회수 보일러(20)와, 배열 회수 보일러(20)로부터의 증기로 구동하는 증기 터빈(30)과, 증기 터빈(30)으로부터의 증기를 물로 되돌리는 복수기(40)와, 복수기(40) 내의 물을 배열 회수 보일러(20)로 보내는 급수 펌프(76)와, 발전기(45)와, 기동 모터(49)를 구비한다. 따라서, 본 실시형태의 증기 터빈 플랜트는, 컴바인드 사이클 플랜트이다.
가스 터빈(10)은, 공기(A)를 압축하는 압축기(11)와, 압축기(11)로 압축된 공기 중에서 연료(F)를 연소시켜 연소 가스를 생성하는 연소기(14)와, 고온 고압의 연소 가스에 의하여 구동하는 터빈(15)을 구비한다. 압축기(11)는, 축선(Ar)을 중심으로 하여 회전하는 압축기 로터(12)와, 이 압축기 로터(12)를 덮는 압축기 케이싱(13)을 갖는다. 터빈(15)은, 축선(Ar)을 중심으로 하여 회전하는 터빈 로터(16)와, 이 터빈 로터(16)를 덮는 터빈 케이싱(17)을 갖는다. 압축기 로터(12)와 터빈 로터(16)는, 동일한 축선(Ar)을 중심으로 하여 회전하는 것이며, 서로 연결되어, 가스 터빈 로터(19)를 이루고 있다. 연소기(14)에는, 연소기(14)로 연료(F)를 공급하는 연료 공급 라인(65)이 접속되어 있다. 이 연료 공급 라인(65)에는, 연소기(14)로 공급하는 연료(F)의 유량을 조절하는 연료 밸브(66)가 마련되어 있다.
배열 회수 보일러(20)는, 복수기(40)로부터의 물을 배기 가스(EG)의 열로 가열하는 절탄기(節炭器)(21)와, 절탄기(21)로 가열된 물을 배기 가스(EG)의 열로 가열하여 증기를 발생시키는 증발기(22)와, 이 증기를 배기 가스(EG)의 열로 추가로 과열하는 과열기(23)를 갖는다. 절탄기(21), 증발기(22), 및 과열기(23)는, 모두, 내부를 물 또는 증기가 통과하며, 이 물 또는 증기와 배기 가스(EG)를 열교환시키기 위한 전열관을 갖는다. 증발기(22)는, 전열관 외에, 드럼(22a)을 갖는다. 과열기(23)가 갖는 전열관의 출구 근방에는, 이 전열관의 온도를 검지하는 전열관 온도 검지기(98)가 마련되어 있다.
증기 터빈(30)은, 축선(Ar)을 중심으로 하여 회전하는 증기 터빈 로터(31)와, 이 증기 터빈 로터(31)를 덮는 증기 터빈 케이싱(34)과, 축봉(軸封) 장치(39)를 갖는다. 증기 터빈 로터(31)는, 축선(Ar)을 중심으로 하여 회전하는 로터축(32)과, 이 로터축(32)에 고정되어 있는 복수의 동익렬(動翼列)(33)을 갖는다. 복수의 동익렬(33)은, 축선(Ar)이 뻗어 있는 축선 방향으로 나열되어 있다. 증기 터빈 케이싱(34)의 내주면에는, 복수의 정익렬(靜翼列)(36)이 고정되어 있다. 복수의 정익렬(36)은, 축선 방향이 뻗어 있는 방향으로 나열되어 있다. 복수의 정익렬(36)의 각각은, 복수의 동익렬(33) 중 어느 하나의 동익렬(33)에 대하여, 증기 흐름의 상류 측에 배치되어 있다. 복수의 정익렬(36) 중, 증기 흐름의 가장 상류 측에 배치되어 있는 제1 단(段) 정익렬에는, 제1 단 정익렬을 구성하는 정익의 온도를 검지하는 메탈 온도 검지기(96)가 마련되어 있다. 축봉 장치(39)는, 외부로부터의 증기로, 증기 터빈 로터(31)의 단부(端部)와 증기 터빈 케이싱(34)과의 간극으로부터 증기 터빈 케이싱(34) 내의 증기 유출을 억제하는 장치이다. 또한, 도 1에 나타내는 증기 터빈(30)은, 유입한 증기를 2방향으로 분류하는 2분류 배기형의 증기 터빈이다. 그러나, 본 실시형태의 증기 터빈(30)은, 유입한 증기를 분류하지 않는 형식의 증기 터빈이어도 된다.
복수기(40)는, 물 등의 냉각 매체가 흐르는 전열관(42)과, 이 전열관(42)을 덮는 복수기 케이싱(41)을 갖는다. 증기 터빈(30)으로부터의 증기는, 복수기 케이싱(41) 내로 유입하여, 전열관(42) 내의 냉각 매체와의 열교환으로 냉각되어 물이 된다. 복수기 케이싱(41)에는, 복수기 케이싱(41) 내의 기체를 외부로 배기하여, 복수기 케이싱(41) 내의 압력을 저하시키는 배기 라인(70)이 마련되어 있다. 이 배기 라인(70)에는, 복수기 케이싱(41) 내의 기체를 흡인하는 진공 펌프(71)가 마련되어 있다. 이 복수기 케이싱(41)에는, 또한, 외기를 복수기 케이싱(41) 내로 유도하는 외기 라인(72)이 마련되어 있다. 이 외기 라인(72)에는, 진공 파괴 밸브(73)가 마련되어 있다.
발전기(45)는, 축선(Ar)을 중심으로 하여 회전하는 발전기 로터(46)와, 이 발전기 로터(46)를 덮는 발전기 케이싱(47)을 갖는다. 이 발전기(45)는, 접속선(60)에 의하여 외부 계통(63)과 전기적으로 접속되어 있다. 이 접속선(60)에는, 변압기(61), 및 차단기(62)가 마련되어 있다. 또한, 이 접속선(60)에는, 차단기(62)보다 발전기(45) 측의 위치에 전력 검지기(출력 검지기)(99)가 마련되어 있다.
가스 터빈 로터(19)와, 증기 터빈 로터(31)와, 발전기 로터(46)는, 동일 축선(Ar) 상에 위치하며, 서로 기계적으로 연결되어 있다. 따라서, 본 실시형태의 컴바인드 사이클 플랜트는, 일축형 컴바인드 사이클 플랜트라고 불린다. 기동 모터(49)는, 축선(Ar)을 중심으로 하여, 이들 로터를 회전시킨다. 발전기 로터(46)는, 이상과 같이, 가스 터빈 로터(19)에도 증기 터빈 로터(31)에도 접속되어 있기 때문에, 발전기(45)에서의 발전량, 즉 발전기 출력은, 가스 터빈 출력과 증기 터빈 출력을 합친 출력이 된다.
본 실시형태의 증기 터빈 플랜트는, 이상 외에, 배열 회수 보일러(20)와는 독립하여 저온 증기를 발생하는 저온 증기 발생원(50)과, 냉각 공기 팬(냉각 공기 공급기)(55)과, 제어 장치(100)를 구비한다. 저온 증기 발생원(50)은, 배열 회수 보일러(20)와는 독립하여 증기를 발생하는 보조 보일러(제2 보일러)(51)와, 보조 보일러(51)에서 발생한 증기의 압력을 저하시키는 압력 제어 밸브(59)와, 보조 보일러(51)에서 발생한 증기의 온도를 낮추는 감온기(52)를 갖는다. 감온기(52)는, 보조 보일러(51)에서 발생한 증기 중에 감온용의 물을 분무하는 노즐(53)과, 이 노즐(53)으로 공급하는 감온용의 물의 유량을 조절하는 감온수 조절 밸브(54)를 갖는다. 이 감온기(52)는, 보조 보일러(51)에서 발생한 증기의 온도를 저하시켜, 이 증기를 저온 증기로 한다. 이 저온 증기의 온도는, 예를 들면, 140℃이다. 냉각 공기 팬(55)은, 예를 들면, 외기를 흡입하여, 이 외기를 냉각 공기로서 증기 터빈 케이싱(34) 내로 보낸다.
본 실시형태의 증기 터빈 플랜트는, 또한, 급수 라인(75)과, 주증기 라인(77)과, 차단 밸브(78)와, 가감 밸브(79)와, 잉여 증기 바이패스 라인(80)(이하, 간단하게 바이패스 라인(80)이라고 함)과, 잉여 증기 바이패스 밸브(81)(이하, 간단하게 잉여 증기 밸브(81)라고 함)와, 저온 증기 라인(82)과, 저온 증기 밸브(83)와, 드레인 배출 라인(84)과, 드레인 밸브(85)와, 축봉 증기 라인(86)과, 축봉 증기 밸브(87)와, 복수의 보일러수 배출 라인(88)과, 복수의 보일러수 배출 밸브(89)와, 냉각 공기 라인(90)과, 냉각 공기 밸브(91)를 구비한다.
급수 라인(75)은, 복수기 케이싱(41)과 절탄기(21)를 접속한다. 이 급수 라인(75) 중에 급수 펌프(76)가 마련되어 있다. 주증기 라인(77)은, 과열기(23)와 증기 터빈 케이싱(34)의 증기 입구를 접속한다. 이 주증기 라인(77)에, 차단 밸브(78) 및 가감 밸브(주증기 조절 밸브)(79)가 마련되어 있다. 또한, 이 주증기 라인(77) 중에서, 차단 밸브(78) 및 가감 밸브(79)보다 과열기(23) 측에는, 증기의 압력을 검지하는 증기 압력 검지기(97)가 마련되어 있다. 바이패스 라인(80)의 제1 단부는, 주증기 라인(77) 중에서 차단 밸브(78) 및 가감 밸브(79)보다 과열기(23) 측의 위치에 접속되어 있다. 또, 이 바이패스 라인(80)의 제2 단부는, 주증기 라인(77) 중에서 차단 밸브(78) 및 가감 밸브(79)보다 증기 입구 측의 위치에 접속되어 있다. 즉, 이 바이패스 라인(80)은, 차단 밸브(78) 및 가감 밸브(79)에 대하여, 과열기(23)로부터의 증기를 우회시키는 라인이다. 잉여 증기 밸브(81)는, 이 바이패스 라인(80)에 마련되어 있다.
저온 증기 라인(82)의 제1 단부는, 감온기(52)에 접속되며, 이 저온 증기 라인(82)의 제2 단부는, 주증기 라인(77) 중에서 차단 밸브(78) 및 가감 밸브(79)보다 증기 입구 측의 위치에 접속되어 있다. 저온 증기 밸브(83)는, 이 저온 증기 라인(82)에 마련되어 있다. 드레인 배출 라인(84)의 제1 단부는, 저온 증기 라인(82) 중에서 저온 증기 밸브(83)보다 감온기(52) 측의 위치에 접속되며, 드레인 배출 라인(84)의 제2 단부는, 복수기 케이싱(41)에 접속되어 있다. 드레인 밸브(85)는, 이 드레인 배출 라인(84)에 마련되어 있다. 축봉 증기 라인(86)의 제1 단부는, 저온 증기 라인(82) 중에서 드레인 배출 라인(84)과의 접속 위치보다 감온기(52) 측의 위치에 접속되어 있다. 축봉 증기 라인(86)의 제2 단부는, 증기 터빈(30)의 축봉 장치(39)에 접속되어 있다. 축봉 증기 밸브(87)는, 이 축봉 증기 라인(86)에 마련되어 있다.
복수의 보일러수 배출 라인(88) 중, 제1 보일러수 배출 라인(88a)의 제1 단부는, 증발기(22)의 드럼(22a)에 접속되어 있다. 이 제1 보일러수 배출 라인(88a)의 제2 단부는, 복수기 케이싱(41)에 접속되어 있다. 복수의 보일러수 배출 밸브(89) 중, 제1 보일러수 배출 밸브(89a)는, 이 제1 보일러수 배출 라인(88a)에 마련되어 있다. 복수의 보일러수 배출 라인(88) 중, 제2 보일러수 배출 라인(88b)의 제1 단부는, 과열기(23)를 구성하는 전열관의 출구 근방에 접속되어 있다. 제2 보일러수 배출 라인(88b)의 제2 단부는, 복수기 케이싱(41)에 접속되어 있다. 복수의 보일러수 배출 밸브(89) 중, 제2 보일러수 배출 밸브(89b)는, 이 제2 보일러수 배출 라인(88b)에 마련되어 있다.
냉각 공기 라인(90)의 제1 단부는, 냉각 공기 팬(55)의 토출구에 접속되어 있다. 냉각 공기 라인(90)의 제2 단부는, 주증기 라인(77) 중에서 차단 밸브(78) 및 가감 밸브(79)보다 증기 입구 측의 위치에 접속되어 있다. 냉각 공기 밸브(91)는, 이 냉각 공기 라인(90)에 마련되어 있다.
제어 장치(100)는, 이상에서 설명한 각 밸브의 동작이나, 각종 펌프 등의 동작을 제어한다.
다음으로, 이상에서 설명한 본 실시형태의 증기 터빈 플랜트의 동작에 대하여 설명한다.
가스 터빈(10)의 압축기(11)는, 대기 중의 공기(A)를 압축하며, 압축한 공기(A)를 연소기(14)로 공급한다. 또, 연소기(14)에는, 연료 공급 라인(65)으로부터의 연료(F)도 공급된다. 연소기(14) 내에서는, 압축된 공기(A) 중에서 연료(F)가 연소하여, 고온 고압의 연소 가스가 생성된다. 이 연소 가스는, 터빈(15)으로 보내져, 터빈 로터(16)를 회전시킨다.
터빈 로터(16)를 회전시킨 연소 가스는, 배기 가스(EG)로서 가스 터빈(10)으로부터 배기되며, 배열 회수 보일러(20)를 거쳐, 외부로 방출된다. 배열 회수 보일러(20)의 절탄기(21)에는, 복수기(40)로부터의 물이 급수 라인(75)을 통하여 공급된다. 절탄기(21)는, 이 물을 배기 가스(EG)와 열교환시켜 가열한다. 절탄기(21)로 가열된 물은, 증발기(22)로 더 가열되어 증기가 된다. 이 증기는, 과열기(23)로 추가로 과열되어, 주증기로서, 주증기 라인(77)을 통하여 증기 터빈(30)으로 공급된다. 증기 터빈(30)을 구동시킨 증기는, 복수기(40)에서 물로 되돌아간다. 이 물은, 복수기(40)로부터 급수 라인(75)을 통하여 다시 절탄기(21)로 공급된다.
발전기 로터(46)는, 가스 터빈 로터(19) 및 증기 터빈 로터(31)의 회전으로 회전한다. 발전기(45)는, 이 발전기 로터(46)의 회전으로 발전한다. 발전기(45)가 발전한 전력은, 변압기(61) 및 차단기(62)를 통하여, 외부 계통(63)으로 공급된다.
다음으로, 도 2 및 도 3에 나타내는 플로차트와 도 4에 나타내는 그래프에 따라, 본 실시형태의 증기 터빈 플랜트의 정지 과정에 있어서의 동작에 대하여 설명한다.
제어 장치(100)는, 외부로부터 플랜트 정지 지령을 접수하면, 연료 밸브(66)에 대하여, 개도를 서서히 작게 하도록 지시를 보내며, 연소기(14)로 공급되는 연료의 유량을 서서히 적게 한다(S1: 연료 감소 공정). 연소기(14)로 공급되는 연료의 유량이 서서히 적어지면, 가스 터빈 출력이 서서히 저하된다. 또, 연소기(14)로 공급되는 연료의 유량이 서서히 적어지면, 가스 터빈(10)으로부터 배기되는 배기 가스(EG)에 포함되는 열에너지도 서서히 저하되기 때문에, 배열 회수 보일러(20)로부터 발생하는 증기의 유량이 서서히 적어지게 됨과 함께, 이 증기의 온도도, 서서히 저하된다. 이 때문에, 연소기(14)로 공급되는 연료의 유량이 서서히 적어지면, 증기 터빈 출력도 서서히 저하된다. 따라서, 연소기(14)로 공급되는 연료의 유량이 서서히 적어지면, 도 4 중 파선으로 나타내는 바와 같이, 발전기 출력이 서서히 저하됨과 함께, 동 도면 중 실선으로 나타내는 바와 같이, 메탈 온도 검지기(96)로 검지되는 증기 터빈(30)의 메탈 온도도 서서히 저하된다.
또한, 이 연료 감소 공정(S1) 중에서도, 발전기(45)는, 외부 계통(63)과 전기적으로 접속되어 있기 때문에, 발전기 로터(46) 및 가스 터빈 로터(19) 등은, 도 4 중 일점 쇄선으로 나타내는 바와 같이, 외부 계통(63)의 주파수에 대응한 회전수를 계속 유지한다. 예를 들면, 외부 계통(63)의 주파수가 60Hz인 경우, 발전기 로터(46) 및 가스 터빈 로터(19) 등은, 이 60Hz에 대응한 회전수인 3600rpm을 계속 유지한다.
제어 장치(100)는, 출력 검지기(99)로 검지된 발전기 출력이 미리 정해진 출력 이하가 되면, 차단기(62)로 개방 지시를 보내며, 차단기(62)를 개방시켜, 발전기(45)를 외부 계통(63)으로부터 해열(解列)시킨다. 또한, 제어 장치(100)는, 차단 밸브(78) 및 가감 밸브(79)로 폐쇄 지시를 보내, 차단 밸브(78) 및 가감 밸브(79)를 폐쇄시킴과 함께, 연료 밸브(66)로 폐쇄 지시를 보내, 연료 밸브(66)를 폐쇄시킨다(S2: 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정). 또한, 이 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2)에 있어서의 차단 밸브(78) 및 가감 밸브(79)로의 폐쇄 지시의 송신은, 주증기 정지 공정이다. 또, 이 시점에서, 메탈 온도 검지기(96)에 의하여 검지되는 제1 단 정익의 온도는, 예를 들면, 300℃이다.
제어 장치(100)는, 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2)이 완료되면, 도 4에 나타내는 바와 같이, 가스 터빈 냉각 공정(Sgt), 보일러 냉각 공정(Sb), 및 증기 터빈 냉각 공정(Sst)을 병행하여 실행한다.
가스 터빈 냉각 공정(Sgt)에서, 제어 장치(100)는, 기동 모터(49)로 가스 터빈 로터(19)를 정격 회전수(예를 들면, 3600rpm)보다 낮은 회전수로 회전시킨다. 즉, 제어 장치(100)는, 기동 모터(49)로 가스 터빈(10)의 스핀 운전을 간헐적으로 복수 회 실행시킨다. 제어 장치(100)는, 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2) 후, 가스 터빈 로터(19) 등의 회전수가 미리 정한 터닝 회전수가 되면(Sgt1), 기동 모터(49)로 가스 터빈(10)의 스핀 운전을 실행시킨다(Sgt2). 제어 장치(100)는, 그 후, 기동 모터(49)에 스핀 운전을 중지시킨다. 제어 장치(100)는, 스핀 운전의 정지 후, 가스 터빈 로터(19) 등의 회전수가 다시 터닝 회전수가 되면(Sgt3), 기동 모터(49)로 가스 터빈(10)의 스핀 운전을 실행시킨다(Sgt4). 제어 장치(100)는, 그 후, 기동 모터(49)에 스핀 운전을 중지시킨다. 제어 장치(100)는, 이하, 마찬가지로 가스 터빈 로터(19) 등의 회전수가 터닝 회전수가 되었는지 여부를 판단함과 함께(Sgt5, Sgt7), 및 기동 모터(49)에 스핀 운전을 실행시킨다(Sgt6, Sgt8).
이상의 스핀 운전의 실행에 의하여, 가스 터빈(10)의 압축기 케이싱(13) 내, 연소기(14) 내 및 터빈 케이싱(17) 내에는, 외기가 통과한다. 이 결과, 가스 터빈(10)의 압축기(11), 연소기(14) 및 터빈(15)은, 외기에 의하여 냉각된다. 본 실시형태에서는, 복수 회의 스핀 운전 중, 최초의 스핀 운전의 실행 시간을 후반의 스핀 운전의 실행 시간보다 짧게 한다. 압축기 케이싱(13) 내 및 터빈 케이싱(17) 내를 외기가 통과하면, 압축기 케이싱(13), 압축기 로터(12), 터빈 케이싱(17), 및 터빈 로터(16)가 외기에 의하여 냉각된다. 이때, 압축기 케이싱(13)의 열용량과 압축기 로터(12)의 열용량의 차로부터, 압축기 케이싱(13)의 수축량과 압축기 로터(12)의 수축량에 차가 발생한다. 마찬가지로, 터빈 케이싱(17)의 수축량과 터빈 로터(16)의 수축량과도 차가 발생한다. 이 때문에, 외기에 의한 냉각 과정에서는, 압축기 로터(12)의 동익과 압축기 케이싱(13)이 접촉할 우려, 및 터빈 로터(16)의 동익과 터빈 케이싱(17)이 접촉할 우려가 발생한다. 그래서, 본 실시형태에서는, 복수 회의 스핀 운전 중, 최초의 스핀 운전의 실행 시간을 짧게 하고 있다. 한편, 복수 회의 스핀 운전으로, 가스 터빈(10)의 압축기(11), 연소기(14) 및 터빈(15)이 어느 정도 냉각되면, 압축기 로터(12)의 동익과 압축기 케이싱(13)이 접촉할 우려, 및 터빈 로터(16)의 동익과 터빈 케이싱(17)이 접촉할 우려가 없어진다. 이 때문에, 본 실시형태에서는, 복수 회의 스핀 운전 중, 후반의 스핀 운전에서는, 가스 터빈(10)의 냉각을 촉진하기 위하여, 스핀 운전의 실행 시간을 길게 한다.
제어 장치(100)는, 미리 정해진 횟수의 스핀 운전을 기동 모터(49)로 실행시키면, 가스 터빈(10)의 냉각이 완료된 것으로 하여, 가스 터빈 냉각 공정(Sgt)을 종료한다. 또한, 가스 터빈(10)의 일부의 온도를 검지하는 온도 검지를 마련해 두고, 온도 검지기로 검지되는 온도가 미리 정해진 온도 이하가 될 때까지, 스핀 운전을 반복하여 실행하며, 이 온도 검지기로 검지되는 온도가 미리 정해진 온도 이하가 되면, 가스 터빈 냉각 공정(Sgt)을 종료하도록 해도 된다.
보일러 냉각 공정(Sb)은, 이상에서 설명한 가스 터빈 냉각 공정(Sgt)과 병행하여 실행된다. 또한, 본 실시형태에서 2개의 공정이 병행하여 실행된다는 것은, 2개의 공정 중 제1 공정의 실행 시간대의 일부가 제2 공정의 실행 시간대와 겹치도록, 2개의 공정이 실행되는 것이다.
이 보일러 냉각 공정(Sb)에서, 제어 장치(100)는, 배열 회수 보일러(20)의 전열관 내에 복수기 케이싱(41) 내의 물을 흐르게 한다. 구체적으로, 제어 장치(100)는, 급수 펌프(76)를 구동시킨 상태를 유지하면서, 보일러수 배출 밸브(89)로 개방 지시를 보내, 이 보일러수 배출 밸브(89)를 개방한다(Sb1: 보일러수 배출 밸브 폐쇄 공정). 이 결과, 복수기 케이싱(41) 내의 물은, 배열 회수 보일러(20)의 전열관 내로 공급된다. 배열 회수 보일러(20)의 전열관 내로 공급된 물은, 이 전열관과 열교환하여, 이 전열관을 냉각한다. 그 후, 이 물은, 보일러수 배출 라인(88)을 거쳐, 복수기 케이싱(41) 내로 되돌아간다. 구체적으로, 배열 회수 보일러(20)의 공급된 물은, 절탄기(21)로부터 증발기(22)의 드럼(22a)으로 공급되며, 그 일부가 제1 보일러수 배출 밸브(89a) 및 제1 보일러수 배출 라인(88a)을 거쳐, 복수기 케이싱(41) 내로 되돌아간다. 또, 증발기(22)의 드럼(22a)으로 공급된 물 중의 다른 일부는, 과열기(23), 제2 보일러수 배출 밸브(89b) 및 제2 보일러수 배출 라인(88b)을 거쳐, 복수기 케이싱(41) 내로 되돌아간다.
제어 장치(100)는, 보일러수 배출 밸브 개방 공정(Sb1)을 실행하면, 보일러 냉각이 완료되었는지 여부를 판단한다(Sb2: 냉각 완료 판단 공정). 제어 장치(100)는, 보일러 냉각이 완료되었는지 여부를, 예를 들면, 전열관 온도 검지기(98)에 의하여 검지된 온도가 미리 정해진 온도 이하가 되었는지 여부에 따라 판단한다. 또한, 제어 장치(100)는, 보일러수 배출 밸브 개방 공정(Sb1)의 개시부터 미리 정해진 시간이 경과했는지 여부, 또는 보일러수 배출 밸브 개방 공정(Sb1)의 개시부터 미리 정해진 유량의 물을 배열 회수 보일러(20)로 공급했는지 여부 등에 따라, 보일러 냉각이 완료되었는지 여부를 판단해도 된다.
제어 장치(100)는, 보일러 냉각이 완료되었다고 판단하면, 급수 펌프(76)로 정지 지시를 보냄과 함께, 보일러수 배출 밸브(89)로 폐쇄 지시를 보낸다. 이 결과, 급수 펌프(76)가 정지하며(Sb3: 급수 펌프 정지 공정), 보일러수 배출 밸브(89)가 폐쇄된다(Sb4: 보일러수 배출 밸브 폐쇄 공정).
이상으로, 보일러 냉각 공정(Sb)이 종료된다.
제어 장치(100)는, 보일러 냉각 공정(Sb)의 종료 후, 메탈 온도 검지기(96)로 검지된 증기 터빈(30)의 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되었는지 여부를 판단한다(Sx5: 메탈 온도 판단 공정). 제어 장치(100)는, 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되었다고 판단하면, 증기 터빈(30)의 냉각이 완료된 것으로 하여, 복수기(40)의 진공 파괴 밸브(73)로 개방 지시를 보냄과 함께, 진공 펌프(71)로 정지 지시를 보낸다. 또한, 여기에서의 미리 정해진 온도(Tms)는, 예를 들면, 170℃이다. 이 결과, 복수기 케이싱(41) 내로 외기가 유입하여, 복수기 케이싱(41) 내의 진공 상태가 파괴된다(Sx6: 진공 파괴 공정). 또, 제어 장치(100)는, 메탈 온도 판단 공정(Sx5)에서, 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되어 있지 않다고 판단한 경우는, 도 3에 나타내는 진공 파괴 공정(Sst10)을 실행한다.
보일러 냉각 공정(Sb)에서는, 상술한 바와 같이, 복수기 케이싱(41) 내의 물을 배열 회수 보일러(20)의 전열관 내로 공급한다. 이 물 속에 산소가 많이 포함되어 있으면, 전열관의 내면이 산소에 의하여 녹슬 우려가 있다. 이 때문에, 배열 회수 보일러(20)의 전열관으로 공급하는 물 속의 산소 농도를 억제할 필요가 있다. 그래서, 본 실시형태에서는, 보일러 냉각 공정(Sb) 중, 복수기 케이싱(41) 내로 외기를 유입시키지 않고, 보일러 냉각 공정(Sb)의 완료 후에, 진공 파괴 공정(Sx5)을 실행하여, 복수기 케이싱(41) 내로 외기를 도입하고 있다.
증기 터빈 냉각 공정(Sst)은, 도 4에 나타내는 바와 같이, 잉여 증기 공급 공정(Ssta)과, 저온 증기 공급 공정(Sstc)과, 저온 증기 공급 공정(Sstc) 전에 실행하는 드레인 배출 공정(Sstb)을 포함한다. 또한, 이 증기 터빈 냉각 공정(Sst)은, 냉각 공기 공급 공정(Sstd)을 포함하는 경우가 있다.
증기 터빈 냉각 공정(Sst)에서, 제어 장치(100)는, 먼저, 잉여 증기 밸브(81)로 개방 지시를 보낸다(Sst1: 잉여 증기 밸브 개방 공정). 이 시점에서, 차단 밸브(78) 및 가감 밸브(79)가 폐쇄되어 있기 때문에, 배열 회수 보일러(20)로부터의 증기는, 차단 밸브(78) 및 가감 밸브(79)를 거쳐, 증기 터빈(30)으로 유입하지 않는다. 배열 회수 보일러(20)로부터의 증기는, 주증기 라인(77)에 대한 바이패스 라인(80), 및 이 바이패스 라인(80)에 마련되어 있는 잉여 증기 밸브(81)를 거쳐, 증기 터빈(30)으로 유입한다. 배열 회수 보일러(20)로부터 발생하는 증기의 온도는, 이 시점에서 연소기(14)로의 연료 공급이 정지되어 있기 때문에, 연소기(14)로의 연료 공급 정지 전보다 낮다. 또한, 이 증기의 온도는, 시간 경과에 따라 서서히 낮아진다. 또한, 이 시점에서, 보일러 냉각 공정(Sb)이 개시되어 있으면, 배열 회수 보일러(20)의 전열관이 냉각되므로, 배열 회수 보일러(20)로부터 발생하는 증기의 온도는, 보다 낮아진다. 또, 배열 회수 보일러(20)로부터 발생하는 증기의 유량이 시간 경과에 따라 서서히 적어지게 됨과 함께, 이 증기의 압력도 시간 경과에 따라 서서히 저하된다. 따라서, 증기 터빈(30)은, 잉여 증기 밸브(81)를 거쳐 유입하는 증기에 의하여, 서서히 냉각된다.
제어 장치(100)는, 잉여 증기 밸브 개방 공정(Sst1) 후, 주증기 라인(77)에 마련되어 있는 증기 압력 검지기(97)에 의하여 검지된 압력(Pb)이 미리 정해진 압력(Ps) 이하가 되었는지 여부를 판단한다(Sst2: 증기 압력 판단 공정). 제어 장치(100)는, 증기 압력 검지기(97)에 의하여 검지된 압력(Pb)이 미리 정해진 압력(Ps) 이하가 되어 있지 않다고 판단하면, 잉여 증기 밸브(81)를 통하여, 배열 회수 보일러(20)로부터의 증기를 증기 터빈(30)으로 계속 공급한다. 한편, 제어 장치(100)는, 증기 압력 검지기(97)에 의하여 검지된 압력(Pb)이 미리 정해진 압력(Ps) 이하가 되었다고 판단하면, 드레인 배출 라인(84)에 마련되어 있는 드레인 밸브(85)에 개방 지시를 보낸다(Sst3: 드레인 밸브 개방 공정). 이 결과, 드레인 밸브(85)가 개방되어, 감온기(52)로부터의 저온 증기가, 저온 증기 라인(82) 및 드레인 배출 라인(84)을 거쳐, 복수기(40)로 유입한다. 감온기(52)로부터의 저온 증기는, 저온 증기 라인(82)을 통과하는 과정에서, 이 저온 증기 라인(82)을 가열하는 한편, 냉각되어 일부가 물이 된다. 이 물은, 상술한 바와 같이, 증기와 함께, 드레인 배출 라인(84)을 거쳐, 복수기(40)로 유입한다.
제어 장치(100)는, 드레인 밸브 개방 공정(Sst3) 후, 드레인 밸브 개방 공정(Sst3)의 개시 시점부터 현시점까지의 시간(Tt)이 미리 정해진 시간(Tts) 이상 경과했는지 여부를 판단한다(Sst4: 가열 완료 판단 공정). 제어 장치(100)는, 이 시간(Tt)이 미리 정해진 시간(Tts) 이상 경과하고 있지 않으면, 이 시간(Tt)이 미리 정해진 시간(Tts)이 될 때까지 기다린다. 제어 장치(100)는, 이 시간(Tt)이 미리 정해진 시간(Tts) 이상 경과했다고 판단하면, 저온 증기 라인(82)이 충분히 데워진 것으로 하여, 잉여 증기 밸브(81) 및 드레인 밸브(85)로 폐쇄 지시를 보내는 한편, 저온 증기 밸브(83)로 개방 지시를 보낸다(Sst5: 잉여 증기 밸브 폐쇄/드레인 밸브 폐쇄/저온 증기 밸브 개방 공정). 이 결과, 잉여 증기 밸브(81) 및 드레인 밸브(85)가 폐쇄되는 한편, 저온 증기 밸브(83)가 개방된다. 드레인 밸브(85)가 폐쇄되고, 저온 증기 밸브(83)가 개방됨으로써, 감온기(52)로부터의 저온 증기는, 저온 증기 라인(82)을 거쳐, 증기 터빈(30)으로 공급된다. 이 때문에, 증기 터빈(30)은, 이 저온 증기로 냉각된다.
잉여 증기 공급 공정(Ssta)은, 이상에서 설명한 잉여 증기 밸브 개방 공정(Sst1)으로 개시되며, Sst5에 있어서의 잉여 증기 밸브 폐쇄로 종료한다. 또, 드레인 배출 공정(Sstb)은, 드레인 밸브 개방 공정(Sst3)으로 개시되며, Sst5에 있어서의 드레인 밸브 폐쇄로 종료한다. 또, 저온 증기 공급 공정(Sstc)은, Sst5에 있어서의 저온 증기 밸브 개방으로 개시된다.
저온 증기 공급 공정(Sstc)의 실행 전에, 드레인 배출 공정(Sstb)이 실행되며, 저온 증기 라인(82)이 저온 증기로 데워진다. 이 때문에, 저온 증기 공급 공정(Sstc)의 개시 시에, 저온 증기가 저온 증기 라인(82)을 통과하는 과정에서, 일부가 액화하는 것을 억제할 수 있다. 즉, 저온 증기 공급 공정(Sstc)의 개시 시에, 증기 터빈(30)으로 유입하는 저온 증기의 드레인양을 억제할 수 있다.
이 저온 증기 공급 공정(Sstc)에서는, 저온 증기를 증기 터빈(30)의 증기 입구로부터 증기 터빈(30) 내로 들어가게 한다. 증기 터빈(30)에서는, 그 운전 중, 각 단의 날개 중, 증기 흐름의 하류 측의 날개보다 상류 측의 날개 쪽이 고온의 증기에 노출되어, 상류 측의 날개 쪽이 고온이 된다. 이 때문에, 본 실시형태와 같이, 저온 증기를 증기 터빈(30)의 증기 입구로부터 증기 터빈(30) 내로 들어가게 함으로써, 상류 측의 고온의 날개를 효율적으로 냉각할 수 있다.
제어 장치(100)는, 저온 증기 밸브(83)로 개방 지시를 보낸 후, 상술한 냉각 완료 판단 공정(Sb2)과 마찬가지로, 보일러 냉각이 완료되었는지 여부를 판단한다(Sst6: 냉각 완료 판단 공정). 제어 장치(100)는, 보일러 냉각이 완료되어 있지 않다고 판단하면, 상술한 메탈 온도 판단 공정(Sx5)과 마찬가지로, 메탈 온도 검지기(96)로 검지된 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되었는지 여부를 판단한다(Sst7: 메탈 온도 판단 공정). 제어 장치(100)는, 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되어 있지 않다고 판단하면, 냉각 완료 판단 공정(Sst6)으로 되돌아간다. 한편, 제어 장치(100)는, 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되었다고 판단하면, 증기 터빈(30)의 냉각이 완료된 것으로 하여, 저온 증기 밸브(83)로 폐쇄 지시를 보낸다(Sst8: 저온 증기 밸브 폐쇄 공정). 이 결과, 증기 터빈(30)에는, 저온 증기가 유입되지 않게 되어, 저온 증기 공급 공정(Sstc) 및 증기 터빈 냉각 공정(Sst)이 종료된다.
제어 장치(100)는, 냉각 완료 판단 공정(Sst6)에서, 보일러 냉각이 완료되었다고 판단하면, 상술한 진공 파괴 공정(Sx6)과 마찬가지로, 복수기(40)의 진공 파괴 밸브(73)로 개방 지시를 보냄과 함께, 진공 펌프(71)로 정지 지시를 보낸다. 또한, 제어 장치(100)는, 저온 증기 밸브(83)로 폐쇄 지시를 보낸다(Sst10: 진공 파괴 공정(도 3에 나타냄)). 이 결과, 복수기 케이싱(41) 내로 외기가 유입하여, 복수기 케이싱(41) 내의 진공 상태가 파괴된다. 또한 저온 증기 밸브(83)가 폐쇄되어, 저온 증기 공급 공정(Sstc)이 종료된다.
제어 장치(100)는, 진공 파괴 공정(Sst10)을 실행하면, 냉각 공기 밸브(91)로 개방 지시를 보냄과 함께, 냉각 공기 팬(55)에 구동 지시(또는 공급 지시)를 보낸다(Sst11: 냉각 공기 밸브 개방/냉각 공기 팬 구동 공정). 이 결과, 냉각 공기 팬(55)으로부터의 냉각 공기가 냉각 공기 라인(90)을 통하여 증기 터빈(30)으로 공급된다. 이 때문에, 증기 터빈(30)은, 이 냉각 공기로 냉각된다. 이상과 같이, 냉각 공기 공급 공정(Sstd)은, 냉각 공기 밸브 개방/냉각 공기 팬 구동 공정(Sst11)의 실행으로 개시된다.
제어 장치(100)는, 냉각 공기 밸브 개방/냉각 공기 팬 구동 공정(Sst11)을 실행하면, 상술한 메탈 온도 판단 공정(Sx5, Sst7)과 마찬가지로, 메탈 온도 검지기(96)로 검지된 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되었는지 여부를 판단한다(Sst12: 메탈 온도 판단 공정). 제어 장치(100)는, 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되어 있지 않다고 판단하면, 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 될 때까지 기다린다. 한편, 제어 장치(100)는, 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되었다고 판단하면, 증기 터빈(30)의 냉각이 완료된 것으로 하여, 냉각 공기 팬(55)으로 정지 지시를 보냄과 함께, 냉각 공기 밸브(91)로 폐쇄 지시를 보낸다(Sst13: 냉각 공기 팬 정지/냉각 공기 밸브 폐쇄 공정). 이 결과, 증기 터빈(30)에는, 냉각 공기가 유입하지 않게 되어, 냉각 공기 공급 공정(Sstd) 및 증기 터빈 냉각 공정(Sst)이 종료된다.
이상으로, 증기 터빈 플랜트의 정지 처리가 완료된다.
여기에서, 본 실시형태에 있어서의 증기 터빈 플랜트의 효과에 대하여 설명하기 전에, 비교예에 있어서의 증기 터빈 플랜트에 대하여 설명한다.
비교예의 증기 터빈 플랜트에서는, 오로지, 냉각 공기 팬(55)으로부터의 냉각 공기로 증기 터빈(30)을 냉각한다. 따라서, 비교예의 증기 터빈 플랜트는, 본 실시형태에 있어서의 증기 터빈 플랜트로부터, 저온 증기 라인(82), 바이패스 라인(80)을 생략한 것이다.
비교예의 증기 터빈 플랜트에서도, 도 5에 나타내는 바와 같이, 본 실시형태의 증기 터빈 플랜트와 마찬가지로, 비교예의 제어 장치가 외부로부터 플랜트 정지 지령을 접수하면, 연료 밸브(66)에 대하여, 개도를 서서히 작게 하도록 지시를 보낸다(S1: 연료 감소 공정).
연소기(14)로 공급되는 연료의 유량이 서서히 적어지게 됨으로써, 발전기 출력이 서서히 저하되고, 이 발전기 출력이 미리 정해진 출력 이하가 되면, 제어 장치는, 차단기(62)로 개방 지시를 보내며, 차단기(62)를 개방시켜, 발전기(45)를 외부 계통(63)으로부터 해열한다. 또한, 제어 장치는, 차단 밸브(78) 및 가감 밸브(79)로 폐쇄 지시를 보내, 차단 밸브(78) 및 가감 밸브(79)를 폐쇄시킴과 함께, 연료 밸브(66)로 폐쇄 지시를 보내, 연료 밸브(66)를 폐쇄시킨다(S2: 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정).
제어 장치는, 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2)이 완료되면, 본 실시형태의 증기 터빈 플랜트와 마찬가지로, 가스 터빈 냉각 공정(Sgt), 및 보일러 냉각 공정(Sb)을 실행한다. 단, 비교예에서는, 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2) 후에, 즉시 증기 터빈 냉각 공정(Sstz)을 실행하지 않는다.
비교예에서의 증기 터빈 냉각 공정(Sstz)에서는, 상술한 바와 같이, 오로지, 냉각 공기 팬(55)으로부터의 냉각 공기로 증기 터빈(30)을 냉각한다. 증기 터빈(30)으로 냉각 공기가 유입하면, 복수기(40) 내에도, 이 냉각 공기가 유입한다. 보일러 냉각 공정(Sb)에서는, 상술한 바와 같이, 배열 회수 보일러(20)의 전열관으로 공급하는 물 속의 산소 농도를 억제할 필요가 있기 때문에, 이 보일러 냉각 공정(Sb) 중, 기본적으로, 복수기 케이싱(41) 내로 공기를 유입시키지 않는다. 따라서, 비교예에서는, 보일러 냉각 공정(Sb)의 완료 후에, 복수기(40)에 대한 진공 파괴 공정을 실행한 후, 증기 터빈 냉각 공정(Ssbz)을 실행한다.
한편, 본 실시형태에 있어서의 증기 터빈 냉각 공정(Sst)의 잉여 증기 공급 공정(Ssta) 및 저온 증기 공급 공정(Sstc)에서는, 증기 터빈(30)으로 증기를 공급하여, 이 증기로 증기 터빈(30)을 냉각한다. 이 때문에, 잉여 증기 공급 공정(Ssta) 및 저온 증기 공급 공정(Sstc)의 실행에서는, 복수기 케이싱(41) 내로 공기가 유입하지 않는다. 따라서, 본 실시형태에서는, 도 4에 나타내는 바와 같이, 증기 터빈 냉각 공정(Sst)의 잉여 증기 공급 공정(Ssta) 및 저온 증기 공급 공정(Sstc)을 보일러 냉각 공정(Sb)에 병행하여 실행한다. 따라서, 본 실시형태에서는, 증기 터빈(30)의 냉각 개시 타이밍을 앞당길 수 있으며, 결과적으로, 증기 터빈(30) 및 증기 터빈 플랜트의 냉각 완료 타이밍을 앞당길 수 있다.
증기는, 공기에 비하여, 열 용량이 크다. 이 때문에, 증기 터빈(30)의 온도가 높고, 이 증기 터빈(30)의 온도와 저온 증기의 온도의 온도차가 큰 단계에서는, 본 실시형태에 있어서의 저온 증기의 유량에 따라서도 다르지만, 단위 시간당 증기 터빈(30)의 강하 온도를 크게 할 수 있다. 따라서, 본 실시형태에서는, 이 관점에서도, 증기 터빈(30)의 냉각 완료 타이밍을 앞당길 수 있다.
또, 본 실시형태에서는, 저온 증기의 공급에 의하여, 증기 터빈(30)의 온도가 저하되며, 증기 터빈(30)의 온도와 저온 증기의 온도의 온도차가 작아진 단계에서, 보일러 냉각 공정(Sb)이 완료되어 있으면, 이 증기 터빈(30)의 온도에 대하여 온도차가 큰 냉각 공기로, 증기 터빈(30)을 냉각한다. 이 때문에, 본 실시형태에서는, 보일러 냉각 공정(Sb)이 완료되어 있으면, 증기 터빈(30)의 온도와 저온 증기의 온도의 온도차가 작아진 이후에 있어서의, 단위 시간당 증기 터빈(30)의 강하 온도를 크게 할 수 있다. 따라서, 본 실시형태에서는, 이 관점에서도, 증기 터빈(30)의 냉각 완료 타이밍을 앞당길 수 있다.
본 실시형태에서는, 증기 터빈 냉각 공정(Sst)에서, 잉여 증기 공급 공정(Ssta)을 실행하고 나서 저온 증기 공급 공정(Sstc)을 실행한다. 잉여 증기 공급 공정(Ssta)에서는, 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2)의 전과 마찬가지로, 과열기(23)에서 발생한 증기를 증기 터빈(30)으로 공급한다. 이 때문에, 본 실시형태에서는, 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2)의 직전 직후에서, 증기 터빈(30)으로 공급하는 증기의 온도는 거의 변하지 않는다. 따라서, 본 실시형태에서는, 증기 터빈 냉각 공정(Sst)의 개시 직후에 있어서의 증기 터빈(30)에 주는 열 충격을 최소한으로 억제할 수 있다.
본 실시형태의 증기 터빈(30)은, 저온 증기 공급 공정(Sstc)을 실현하기 위하여, 보조 보일러(51) 및 감온기(52)와, 저온 증기 라인(82)을 구비하고 있다. 가령, 기존의 증기 터빈 플랜트가, 보조 보일러(51)와, 감온기(52)와, 감온기(52)로부터의 저온 증기를 증기 터빈(30)의 축봉 장치(39)로 유도하는 축봉 증기 라인(86)을 구비하고 있으면, 이 축봉 증기 라인(86)으로부터 분기하며, 주증기 라인(77)으로 연결되는 저온 증기 라인(82)을 마련하면, 저온 증기 공급 공정(Sstc)을 실현할 수 있다. 따라서, 기존의 증기 터빈 플랜트가, 이상과 같은 플랜트이면, 설비의 개조 비용을 억제하면서, 저온 증기 공급 공정(Sstc)을 실현할 수 있다.
「제2 실시형태」
본 발명에 관한 증기 터빈 플랜트의 제2 실시형태에 대하여, 도 6 및 도 7을 참조하여 설명한다.
본 실시형태의 증기 터빈 플랜트도, 제1 실시형태의 증기 터빈 플랜트와 마찬가지로, 도 6에 나타내는 바와 같이, 가스 터빈(10)과, 가스 터빈(10)으로부터의 배기 가스(EG)로 증기를 발생하는 배열 회수 보일러(20x)와, 배열 회수 보일러(20x)로부터의 증기로 구동하는 증기 터빈과, 증기 터빈으로부터의 증기를 물로 되돌리는 복수기(40)와, 복수기(40) 내의 물을 배열 회수 보일러(20x)로 보내는 급수 펌프(76)와, 발전기(45)와, 기동 모터(49)를 구비한다. 따라서, 본 실시형태의 증기 터빈 플랜트도, 제1 실시형태의 증기 터빈 플랜트와 마찬가지로, 컴바인드 사이클 플랜트이다.
본 실시형태의 가스 터빈(10)은, 제1 실시형태의 가스 터빈(10)과 동일하다. 따라서, 본 실시형태의 가스 터빈(10)도, 압축기(11)와, 연소기(14)와, 터빈(15)을 구비한다. 본 실시형태에서도, 연소기(14)에는, 연소기(14)에 연료(F)를 공급하는 연료 공급 라인(65)이 접속되어 있다. 이 연료 공급 라인(65)에는, 연소기(14)로 공급하는 연료(F)의 유량을 조절하는 연료 밸브(66)가 마련되어 있다.
본 실시형태의 증기 터빈 플랜트는, 증기 터빈으로서, 고압 증기 터빈(30a)과, 중압 증기 터빈(30b)과, 저압 증기 터빈(30c)을 구비한다. 고압 증기 터빈(30a), 중압 증기 터빈(30b), 및 저압 증기 터빈(30c)은, 모두, 제1 실시형태의 증기 터빈(30)과 마찬가지로, 증기 터빈 로터(31)와, 증기 터빈 케이싱(34)과, 복수의 정익렬(36)과, 축봉 장치를 갖는다. 또한, 도 6에서는, 저압 증기 터빈(30c)의 축봉 장치(39c)만을 그리고, 고압 증기 터빈(30a) 및 중압 증기 터빈(30b)의 축봉 장치를 생략하고 있다. 고압 증기 터빈(30a)의 제1 단 정익에는, 이 제1 단 정익의 온도를 검지하는 메탈 온도 검지기(96)가 마련되어 있다.
본 실시형태의 배열 회수 보일러(20x)는, 제1 실시형태의 배열 회수 보일러(20)와 마찬가지로, 절탄기(21)와, 증발기(22)와, 과열기(23)를 갖는다. 본 실시형태의 배열 회수 보일러(20x)는, 또한, 중압 증기 터빈(30b)으로부터 배기된 증기를 가열하는 재열기(24)를 갖는다. 절탄기(21), 증발기(22), 재열기(24), 및 과열기(23)는, 모두, 내부를 물 또는 증기가 통과하며, 이 물 또는 증기와 배기 가스(EG)를 열교환시키기 위한 전열관을 갖는다. 본 실시형태의 증발기(22)도, 제1 실시형태의 증발기(22)와 마찬가지로, 전열관 외에, 드럼(22a)을 갖는다. 과열기(23)가 갖는 전열관의 출구 근방에는, 이 전열관의 온도를 검지하는 전열관 온도 검지기(98)가 마련되어 있다. 또, 배열 회수 보일러(20x)는, 절탄기(21)로 공급된 물을 승압하는 하나 이상의 승압 펌프(도시하지 않음)를 구비한다.
본 실시형태의 복수기(40)는, 제1 실시형태의 복수기(40)와 동일하다. 따라서, 본 실시형태의 복수기(40)도, 물 등의 냉각 매체가 흐르는 전열관과, 이 전열관을 덮는 복수기 케이싱(41)을 갖는다. 저압 증기 터빈(30c)으로부터의 증기는, 복수기 케이싱(41) 내로 유입하며, 전열관 내의 냉각 매체와의 열교환으로 냉각되어 물이 된다. 복수기 케이싱(41)에는, 제1 실시형태의 복수기(40)와 마찬가지로, 배기 라인(70)이 마련되어 있다. 이 배기 라인(70)에는, 복수기 케이싱(41) 내의 기체를 흡인하는 진공 펌프(71)가 마련되어 있다. 이 복수기 케이싱(41)에는, 또한, 외기를 복수기 케이싱(41) 내로 유도하는 외기 라인(72)이 마련되어 있다. 이 외기 라인(72)에는, 진공 파괴 밸브(73)가 마련되어 있다.
본 실시형태의 발전기(45)는, 제1 실시형태의 발전기(45)와 동일하다. 따라서, 본 실시형태의 발전기(45)도, 발전기 로터(46)와, 발전기 케이싱(47)을 갖는다. 이 발전기(45)는, 제1 실시형태와 마찬가지로, 접속선(60)에 의하여 외부 계통(63)과 전기적으로 접속되어 있다. 이 접속선(60)에는, 변압기(61), 및 차단기(62)가 마련되어 있다. 또한, 이 접속선(60)에는, 차단기(62)보다 발전기(45) 측의 위치에 전력 검지기(출력 검지기(99))가 마련되어 있다.
가스 터빈 로터(19)와, 각 증기 터빈(30a, 30b, 30c)의 증기 터빈 로터(31)와, 발전기 로터(46)는, 동일 축선(Ar) 상에 위치하며, 서로 기계적으로 연결되어 있다. 따라서, 본 실시형태의 컴바인드 사이클 플랜트도, 제1 실시형태와 마찬가지로, 일축형 컴바인드 사이클 플랜트라고 불린다. 기동 모터(49)는, 축선(Ar)을 중심으로 하여, 이들 로터를 회전시킨다.
본 실시형태의 증기 터빈 플랜트도, 제1 실시형태의 증기 터빈 플랜트와 마찬가지로, 저온 증기 발생원(50)과, 냉각 공기 팬(55)과, 제어 장치(100x)를 구비한다. 저온 증기 발생원(50)은, 배열 회수 보일러(20x)와는 독립하여 증기를 발생하는 보조 보일러(51)와, 보조 보일러(51)에서 발생한 증기의 압력을 저하시키는 압력 제어 밸브(59)와, 보조 보일러(51)에서 발생한 증기의 온도를 낮추는 감온기(52)를 갖는다. 감온기(52)는, 보조 보일러(51)에서 발생한 증기 중에 감온용의 물을 분무하는 노즐(53)과, 이 노즐(53)로 공급하는 감온용의 물의 유량을 조절하는 감온수 조절 밸브(54)를 갖는다.
본 실시형태의 증기 터빈 플랜트는, 또한, 급수 라인(75)과, 제1 주증기 라인(77a)과, 제2 주증기 라인(77b)과, 제1 차단 밸브(78a)와, 제2 차단 밸브(78b)와, 제1 가감 밸브(주증기 조절 밸브)(79a)와, 제2 가감 밸브(주증기 조절 밸브)(79b)와, 제1 잉여 증기 바이패스 라인(80a)(이하, 간단하게 제1 바이패스 라인(80a)이라고 함)과, 제2 잉여 증기 바이패스 라인(80b)(이하, 간단하게 제2 바이패스 라인(80b)이라고 함)과, 제1 잉여 증기 바이패스 밸브(81a)(이하, 간단하게 제1 잉여 증기 밸브(81a)라고 함)와, 제2 잉여 증기 바이패스 밸브(81b)(이하, 간단하게 제2 잉여 증기 밸브(81b)라고 함)와, 저온 증기 라인(82x)과, 제1 저온 증기 밸브(83a)와, 제2 저온 증기 밸브(83b)와, 제1 드레인 배출 라인(84a)과, 제2 드레인 배출 라인(84b)과, 제1 드레인 밸브(85a)와, 제2 드레인 밸브(85b)와, 축봉 증기 라인(86)과, 축봉 증기 밸브(87)와, 복수의 보일러수 배출 라인(88)과, 복수의 보일러수 배출 밸브(89)와, 냉각 공기 라인(90x)과, 제1 냉각 공기 밸브(91a)와, 제2 냉각 공기 밸브(91b)와, 고압 증기 회수 라인(92)과, 벤틸레이터 라인(93)과, 벤틸레이터 밸브(94)와, 저압 증기 라인(95)을 구비한다.
급수 라인(75)은, 복수기 케이싱(41)과 절탄기(21)를 접속한다. 이 급수 라인(75) 중에 급수 펌프(76)가 마련되어 있다. 제1 주증기 라인(77a)은, 과열기(23)와 고압 증기 터빈(30a)의 증기 입구를 접속한다. 이 제1 주증기 라인(77a)에, 제1 차단 밸브(78a) 및 제1 가감 밸브(79a)가 마련되어 있다. 또한, 이 제1 주증기 라인(77a) 중에서, 제1 차단 밸브(78a) 및 제1 가감 밸브(79a)보다 과열기(23) 측에는, 증기의 압력을 검지하는 증기 압력 검지기(97)가 마련되어 있다. 제1 바이패스 라인(80a)의 제1 단부는, 제1 주증기 라인(77a) 중에서 제1 차단 밸브(78a) 및 제1 가감 밸브(79a)보다 과열기(23) 측의 위치에 접속되어 있다. 또, 이 제1 바이패스 라인(80a)의 제2 단부는, 제1 주증기 라인(77a) 중에서 제1 차단 밸브(78a) 및 제1 가감 밸브(79a)보다 고압 증기 터빈(30a)의 증기 입구 측의 위치에 접속되어 있다. 제1 잉여 증기 밸브(81a)는, 이 제1 바이패스 라인(80a)에 마련되어 있다.
고압 증기 회수 라인(92)은, 고압 증기 터빈(30a)의 증기 출구와 재열기(24)의 증기 입구를 접속한다. 벤틸레이터 라인(93)의 제1 단부는, 이 고압 증기 회수 라인(92)에 접속되어 있다. 벤틸레이터 라인(93)의 제2 단부는, 복수기 케이싱(41)에 접속되어 있다. 벤틸레이터 밸브(94)는, 이 벤틸레이터 라인(93)에 마련되어 있다. 제2 주증기 라인(77b)은, 재열기(24)의 증기 출구와 중압 증기 터빈(30b)의 증기 입구를 접속한다. 이 제2 주증기 라인(77b)에, 제2 차단 밸브(78b) 및 제2 가감 밸브(79b)가 마련되어 있다. 제2 바이패스 라인(80b)의 제1 단부는, 제1 주증기 라인(77a) 중에서 제1 차단 밸브(78a) 및 제1 가감 밸브(79a)보다 과열기(23) 측의 위치에 접속되어 있다. 또, 이 제2 바이패스 라인(80b)의 제2 단부는, 제2 주증기 라인(77b) 중에서 제2 차단 밸브(78b) 및 제2 가감 밸브(79b)보다 중압 증기 터빈(30b)의 증기 입구 측의 위치에 접속되어 있다. 제2 잉여 증기 밸브(81b)는, 이 제2 바이패스 라인(80b)에 마련되어 있다.
저압 증기 라인(95)은, 중압 증기 터빈(30b)의 증기 출구와 저압 증기 터빈(30c)의 증기 입구를 접속한다.
저온 증기 라인(82x)은, 주저온 증기 라인(82m)과, 제1 저온 증기 라인(82a)과, 제2 저온 증기 라인(82b)을 갖는다. 주저온 증기 라인(82m)은, 감온기(52)에 접속되어 있다. 제1 저온 증기 라인(82a)의 제1 단부는, 주저온 증기 라인(82m)에 접속되어 있다. 제1 저온 증기 라인(82a)의 제2 단부는, 제1 주증기 라인(77a) 중에서 제1 차단 밸브(78a) 및 제1 가감 밸브(79a)보다 고압 증기 터빈(30a)의 증기 입구 측의 위치에 접속되어 있다. 제1 저온 증기 밸브(83a)는, 이 제1 저온 증기 라인(82a)에 마련되어 있다. 제1 드레인 배출 라인(84a)의 제1 단부는, 제1 저온 증기 라인(82a) 중에서 제1 저온 증기 밸브(83a)보다 감온기(52) 측의 위치에 접속되어 있다. 제1 드레인 배출 라인(84a)의 제2 단부는, 복수기 케이싱(41)에 접속되어 있다. 제1 드레인 밸브(85a)는, 이 제1 드레인 배출 라인(84a)에 마련되어 있다. 제2 저온 증기 라인(82b)의 제1 단부는, 주저온 증기 라인(82m)에 접속되어 있다. 제2 저온 증기 라인(82b)의 제2 단부는, 제2 주증기 라인(77b) 중에서 제2 차단 밸브(78b) 및 제2 가감 밸브(79b)보다 중압 증기 터빈(30b)의 증기 입구 측의 위치에 접속되어 있다. 제2 저온 증기 밸브(83b)는, 이 제2 저온 증기 라인(82b)에 마련되어 있다. 제2 드레인 배출 라인(84b)의 제1 단부는, 제2 저온 증기 라인(82b) 중에서 제2 저온 증기 밸브(83b)보다 감온기(52) 측의 위치에 접속되어 있다. 제1 드레인 배출 라인(84a)의 제2 단부는, 복수기 케이싱(41)에 접속되어 있다. 제2 드레인 밸브(85b)는, 이 제2 드레인 배출 라인(84b)에 마련되어 있다.
축봉 증기 라인(86)의 제1 단부는, 주저온 증기 라인(82m)에 접속되어 있다. 축봉 증기 라인(86)의 제2 단부는, 저압 증기 터빈(30c)의 축봉 장치(39)에 접속되어 있다. 축봉 증기 밸브(87)는, 이 축봉 증기 라인(86)에 마련되어 있다. 보일러수 배출 라인(88)의 제1 단부는, 제1 실시형태의 보일러수 배출 라인(88)과 마찬가지로, 과열기(23)를 구성하는 전열관의 출구 근방에 접속되어 있다.
복수의 보일러수 배출 라인(88) 중, 제1 보일러수 배출 라인(88a)의 제1 단부는, 증발기(22)의 드럼(22a)에 접속되어 있다. 이 제1 보일러수 배출 라인(88a)의 제2 단부는, 복수기 케이싱(41)에 접속되어 있다. 복수의 보일러수 배출 밸브(89) 중, 제1 보일러수 배출 밸브(89a)는, 이 제1 보일러수 배출 라인(88a)에 마련되어 있다. 복수의 보일러수 배출 라인(88) 중, 제2 보일러수 배출 라인(88b)의 제1 단부는, 과열기(23)를 구성하는 전열관의 출구 근방에 접속되어 있다. 제2 보일러수 배출 라인(88b)의 제2 단부는, 복수기 케이싱(41)에 접속되어 있다. 복수의 보일러수 배출 밸브(89) 중, 제2 보일러수 배출 밸브(89b)는, 이 제2 보일러수 배출 라인(88b)에 마련되어 있다.
냉각 공기 라인(90x)은, 주냉각 공기 라인(90m)과, 제1 냉각 공기 라인(90a)과, 제2 냉각 공기 라인(90b)을 갖는다. 주냉각 공기 라인(90m)은, 냉각 공기 팬(55)의 토출구에 접속되어 있다. 제1 냉각 공기 라인(90a)의 제1 단부는, 주냉각 공기 라인(90m)에 접속되어 있다. 제1 냉각 공기 라인(90a)의 제2 단부는, 제1 주증기 라인(77a) 중에서 제1 차단 밸브(78a) 및 제1 가감 밸브(79a)보다 고압 증기 터빈(30a)의 증기 입구 측의 위치에 접속되어 있다. 제1 냉각 공기 밸브(91a)는, 이 제1 냉각 공기 라인(90a)에 마련되어 있다. 제2 냉각 공기 라인(90b)의 제1 단부는, 주냉각 공기 라인(90m)에 접속되어 있다. 제2 냉각 공기 라인(90b)의 제2 단부는, 제2 주증기 라인(77b) 중에서 제2 차단 밸브(78b) 및 제2 가감 밸브(79b)보다 중압 증기 터빈(30b)의 증기 입구 측의 위치에 접속되어 있다. 제2 냉각 공기 밸브(91b)는, 이 제2 냉각 공기 라인(90b)에 마련되어 있다.
제어 장치(100x)는, 이상에서 설명한 각 밸브의 동작이나, 각종 펌프 등의 동작을 제어한다.
다음으로, 이상에서 설명한 본 실시형태의 증기 터빈 플랜트의 동작에 대하여 설명한다.
본 실시형태의 가스 터빈(10)도, 제1 실시형태의 가스 터빈(10)과 동일하게 동작한다. 가스 터빈(10)의 터빈 로터(16)를 회전시킨 연소 가스는, 배기 가스(EG)로서 가스 터빈(10)으로부터 배기되며, 배열 회수 보일러(20x)를 거쳐, 외부로 방출된다. 배열 회수 보일러(20x)의 절탄기(21)에는, 복수기(40)로부터의 물이 급수 라인(75)을 통하여 공급된다. 절탄기(21)는, 이 물을 배기 가스(EG)와 열교환시켜 가열한다. 절탄기(21)로 가열된 물은, 증발기(22)로 더 가열되어 증기가 된다. 이 증기는, 과열기(23)로 추가로 과열되어, 고압 증기로서, 제1 주증기 라인(77a)을 통하여 고압 증기 터빈(30a)으로 공급된다. 고압 증기 터빈(30a)을 구동시킨 증기는, 고압 증기 회수 라인(92)을 거쳐, 재열기(24)로 유입한다. 재열기(24)로 유입한 증기는, 이 재열기(24)로 가열된다. 재열기(24)로 가열된 증기는, 중압 증기(또는 재열 증기)로서, 제2 주증기 라인(77b)을 통하여 중압 증기 터빈(30b)으로 공급된다. 중압 증기 터빈(30b)을 구동시킨 증기는, 저압 증기 라인(95)을 통하여, 저압 증기 터빈(30c)으로 공급된다. 저압 증기 터빈(30c)을 구동시킨 증기는, 복수기(40)에서 물로 되돌아간다. 이 물은, 복수기(40)로부터 급수 라인(75)을 통하여 다시 절탄기(21)로 공급된다.
발전기 로터(46)는, 가스 터빈 로터(19) 및 증기 터빈 로터(31)의 회전으로 회전한다. 발전기(45)는, 이 발전기 로터(46)의 회전으로 발전한다. 발전기(45)가 발전한 전력은, 변압기(61) 및 차단기(62)를 통하여, 외부 계통(63)으로 공급된다.
다음으로, 도 7 및 도 8에 나타내는 플로차트에 따라, 본 실시형태의 증기 터빈 플랜트의 정지 과정에 있어서의 동작에 대하여 설명한다.
본 실시형태에서도, 제어 장치(100x)는, 외부로부터 플랜트 정지 지령을 접수하면, 연료 밸브(66)에 대하여, 개도를 서서히 작게 하도록 지시를 보내, 연소기(14)로 공급되는 연료의 유량을 서서히 적게 한다(S1: 연료 감소 공정). 그리고, 제어 장치(100x)는, 제1 실시형태와 마찬가지로, 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2x)을 실행한다. 단, 이 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2x)에서, 제어 장치(100x)는, 제1 차단 밸브(78a), 제1 가감 밸브(79a), 제2 차단 밸브(78b), 제2 가감 밸브(79b)에 폐쇄 지시를 보내, 제1 차단 밸브(78a), 제1 가감 밸브(79a), 제2 차단 밸브(78b) 및 제2 가감 밸브(79b)를 폐쇄시킨다.
제어 장치(100x)는, 해열/차단 밸브 및 가감 밸브 폐쇄/연료 정지 공정(S2x)이 완료되면, 제1 실시형태와 마찬가지로, 가스 터빈 냉각 공정(Sgt), 보일러 냉각 공정(Sb), 및 증기 터빈 냉각 공정(Sstx)을 병행하여 실행한다. 본 실시형태의 가스 터빈 냉각 공정(Sgt)은, 제1 실시형태의 가스 터빈 냉각 공정(Sgt)과 동일한 공정이다. 또, 본 실시형태의 보일러 냉각 공정(Sb)은, 제1 실시형태의 보일러 냉각 공정(Sb)과 동일한 공정이다. 단, 본 실시형태의 증기 터빈 냉각 공정(Sstx)은, 제1 실시형태의 가스 터빈 냉각 공정(Sst)과 약간 상이하다. 따라서, 이하에서는, 본 실시형태의 가스 터빈 냉각 공정(Sgt) 및 보일러 냉각 공정(Sb)의 설명을 생략하며, 본 실시형태의 증기 터빈 냉각 공정(Sstx)에 대하여 설명한다.
본 실시형태의 증기 터빈 냉각 공정(Sstx)도, 제1 실시형태와 마찬가지로, 잉여 증기 공급 공정과, 저온 증기 공급 공정과, 저온 증기 공급 공정 전에 실행하는 드레인 배출 공정을 포함한다. 또한, 본 실시형태의 증기 터빈 냉각 공정(Sstx)도, 냉각 공기 공급 공정을 포함하는 경우가 있다.
증기 터빈 냉각 공정(Sstx)에서, 제어 장치(100x)는, 제1 실시형태와 달리, 먼저, 벤틸레이터 밸브(94)로 개방 지시를 보낸다(Sstx1: 벤틸레이터 밸브 개방 공정). 이 결과, 벤틸레이터 밸브(94)가 개방되어, 고압 증기 터빈(30a)의 증기 출구와 복수기 케이싱(41)이, 고압 증기 회수 라인(92) 및 벤틸레이터 라인(93)을 통하여 연통하게 된다. 다음으로, 제어 장치(100x)는, 제1 실시형태의 잉여 증기 밸브 개방 공정(Sst1)과 동일한 잉여 증기 밸브 개방 공정(Sstx1a)을 실행한다. 단, 이 잉여 증기 밸브 개방 공정(Sstx1a)에서, 제어 장치(100x)는, 제1 잉여 증기 밸브(81a) 및 제2 잉여 증기 밸브(81b)로 개방 지시를 보낸다. 이 결과, 과열기(23)로부터의 증기의 일부는, 제1 바이패스 라인(80a)을 통하여, 고압 증기 터빈(30a)으로 유입되며, 이 증기에 의하여 고압 증기 터빈(30a)이 냉각된다. 고압 증기 터빈(30a)으로 유입한 증기는, 고압 증기 회수 라인(92) 및 벤틸레이터 라인(93)을 통하여, 복수기(40) 내로 배기된다. 또, 과열기(23)로부터의 증기의 다른 일부는, 제2 바이패스 라인(80b)을 통하여, 중압 증기 터빈(30b)으로 유입되며, 이 증기에 의하여 중압 증기 터빈(30b)이 냉각된다. 중압 증기 터빈(30b)으로 유입한 증기는, 저압 증기 라인(95)을 통하여, 저압 증기 터빈(30c)으로 유입되며, 이 증기에 의하여 저압 증기 터빈(30c)이 냉각된다.
제어 장치(100x)는, 잉여 증기 밸브 개방 공정(Sstx1a) 후, 제1 실시형태와 마찬가지로, 증기 압력 판단 공정(Sst2)을 실행한다. 제어 장치(100x)는, 이 증기 압력 판단 공정(Sst2)에서, 증기 압력 검지기(97)에 의하여 검지된 압력(Pb)이 미리 정해진 압력(Ps) 이하가 되었다고 판단하면, 제1 실시형태의 드레인 밸브 개방 공정(Sst3)과 동일한 드레인 밸브 개방 공정(Sstx3)을 실행한다. 단, 이 드레인 밸브 개방 공정(Sstx3)에서, 제어 장치(100x)는, 제1 드레인 밸브(85a) 및 제2 드레인 밸브(85b)로 개방 지시를 보낸다. 이 결과, 감온기(52)로부터의 저온 증기의 일부가, 제1 저온 증기 라인(82a) 및 제1 드레인 배출 라인(84a)을 거쳐, 복수기(40)로 유입한다. 이로써, 제1 저온 증기 라인(82a)이 저온 증기로 데워진다. 또한, 감온기(52)로부터의 저온 증기의 다른 일부가, 제2 저온 증기 라인(82b) 및 제2 드레인 배출 라인(84b)을 거쳐, 복수기(40)로 유입한다. 이 때문에, 제2 저온 증기 라인(82b)이 저온 증기로 데워진다.
제어 장치(100x)는, 드레인 밸브 개방 공정(Sstx3) 후, 제1 실시형태와 마찬가지로, 가열 완료 판단 공정(Sst4)을 실행한다. 제어 장치(100x)는, 이 가열 완료 판단 공정(Sst4)에서, 드레인 밸브 개방 공정(Sstx3)의 개시 시점부터 현시점까지의 시간(Tt)이 미리 정해진 시간(Tts) 이상 경과했다고 판단하면, 제1 저온 증기 라인(82a) 및 제2 저온 증기 라인(82b)이 충분히 데워진 것으로 하여, 제1 실시형태의 잉여 증기 밸브 폐쇄/드레인 밸브 폐쇄/저온 증기 밸브 개방 공정(Sst5)과 동일한 잉여 증기 밸브 폐쇄/드레인 밸브 폐쇄/저온 증기 밸브 개방 공정(Sstx5)을 실행한다. 단, 이 잉여 증기 밸브 폐쇄/드레인 밸브 폐쇄/저온 증기 밸브 개방 공정(Sstx5)에서, 제어 장치(100x)는, 제1 잉여 증기 밸브(81a), 제2 잉여 증기 밸브(81b), 제1 드레인 밸브(85a), 및 제2 드레인 밸브(85b)로 폐쇄 지령을 보내고, 제1 저온 증기 밸브(83a) 및 제2 저온 밸브로 개방 지시를 보낸다. 이 결과, 감온기(52)로부터의 저온 증기의 일부는, 제1 저온 증기 라인(82a)을 거쳐, 고압 증기 터빈(30a)으로 공급된다. 이 때문에, 고압 증기 터빈(30a)은, 이 저온 증기로 냉각된다. 또, 감온기(52)로부터의 저온 증기의 다른 일부는, 제2 저온 증기 라인(82b)을 거쳐, 중압 증기 터빈(30b)으로 공급된다. 이 때문에, 중압 증기 터빈(30b)은, 이 저온 증기로 냉각된다. 중압 증기 터빈(30b)으로 공급된 저온 증기는, 저압 증기 라인(95)을 통하여, 저압 증기 터빈(30c)으로 유입한다. 이 때문에, 저압 증기 터빈(30c)은, 이 저온 증기로 냉각된다.
본 실시형태의 잉여 증기 공급 공정은, 이상에서 설명한 벤틸레이터 밸브 개방 공정(Sstx1)으로 개시되며, Sstx5에 있어서의 제1 잉여 증기 밸브(81a) 및 제2 잉여 증기 밸브(81b)의 폐쇄로 종료한다. 또, 본 실시형태의 드레인 배출 공정은, 드레인 밸브 개방 공정(Sstx3)으로 개시되며, Sstx5에 있어서의 제1 드레인 밸브(85a) 및 제2 드레인 밸브(85b)의 폐쇄로 종료한다. 또, 저온 증기 공급 공정은, Sstx5에 있어서의 제1 저온 증기 밸브(83a) 및 제2 저온 증기 밸브(83b)의 개방으로 개시된다.
제어 장치(100x)는, 제1 저온 증기 밸브(83a) 및 제2 저온 증기 밸브(83b)로 개방 지시를 보낸 후, 제1 실시형태의 냉각 완료 판단 공정(Sst6)과 마찬가지로, 냉각 완료 판단 공정(Sst6)을 실행한다. 제어 장치(100x)는, 이 냉각 완료 판단 공정(Sst6)에서, 보일러 냉각이 완료되어 있지 않다고 판단하면, 제1 실시형태의 메탈 온도 판단 공정(Sst7)과 마찬가지로, 메탈 온도 판단 공정(Sst7)을 실행한다. 제어 장치(100x)는, 이 메탈 온도 판단 공정(Sst7)에서, 메탈 온도 검지기(96)로 검지된 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되어 있지 않다고 판단하면, 냉각 완료 판단 공정(Sst6)으로 되돌아간다. 한편, 제어 장치(100x)는, 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되었다고 판단하면, 각 증기 터빈(30a, 30b, 30c)의 냉각이 완료된 것으로 하여, 제1 실시형태의 저온 증기 밸브 폐쇄 공정(Sst8)과 동일한 저온 증기 밸브 폐쇄 공정(Sstx8)을 실행한다. 단, 이 저온 증기 밸브 폐쇄 공정(Sstx8)에서, 제어 장치(100x)는, 제1 저온 증기 밸브(83a) 및 제2 저온 증기 밸브(83b)로 폐쇄 지시를 보낸다. 이 결과, 각 증기 터빈(30a, 30b, 30c)에는, 저온 증기가 유입하지 않게 되어, 저온 증기 공급 공정 및 증기 터빈 냉각 공정(Sstx)이 종료된다.
제어 장치(100x)는, 냉각 완료 판단 공정(Sst6)에서, 보일러 냉각이 완료되었다고 판단하면, 제1 실시형태의 진공 파괴 공정(Sst10)과 동일한 진공 파괴 공정(Sstx10(도 8에 나타냄))을 실행한다. 단, 이 진공 파괴 공정(Sstx10)에서, 제어 장치(100x)는, 복수기(40)의 진공 파괴 밸브(73)로 개방 지시를 보냄과 함께, 진공 펌프(71)로 정지 지시를 보낸 후에, 제1 저온 증기 밸브(83a) 및 제2 저온 증기 밸브(83b)로 폐쇄 지시를 보낸다. 이 결과, 복수기 케이싱(41) 내로 외기가 유입하여, 복수기 케이싱(41) 내의 진공 상태가 파괴된다. 또한, 제1 저온 증기 밸브(83a) 및 제2 저온 증기 밸브(83b)가 폐쇄되어, 저온 증기 공급 공정이 종료된다.
제어 장치(100x)는, 진공 파괴 공정(Sstx10)을 실행하면, 제1 실시형태의 냉각 공기 밸브 개방/냉각 공기 팬 구동 공정(Sst11)과 동일한 냉각 공기 밸브 개방/냉각 공기 팬 구동 공정(Sstx11)을 실행한다. 단, 이 냉각 공기 밸브 개방/냉각 공기 팬 구동 공정(Sstx11)에서, 제어 장치(100x)는, 제1 냉각 공기 밸브(91a) 및 제2 냉각 공기 밸브(91b)로 개방 지시를 보낸다. 이 결과, 냉각 공기 팬(55)으로부터의 냉각 공기의 일부가 제1 냉각 공기 라인(90a)을 통하여 고압 증기 터빈(30a)으로 공급된다. 이 때문에, 고압 증기 터빈(30a)은, 이 냉각 공기로 냉각된다. 또, 냉각 공기 팬(55)으로부터의 냉각 공기의 다른 일부가 제2 냉각 공기 라인(90b)을 통하여 중압 증기 터빈(30b)으로 공급된다. 이 때문에, 중압 증기 터빈(30b)은, 이 냉각 공기로 냉각된다. 중압 증기 터빈(30b)으로 공급된 냉각 공기는, 이 중압 증기 터빈(30b)으로부터 저압 증기 라인(95)을 통하여, 저압 증기 터빈(30c)으로 유입한다. 저압 증기 터빈(30c)은, 이 냉각 공기로 냉각된다. 이상과 같이, 본 실시형태의 냉각 공기 공급 공정은, 냉각 공기 밸브 개방/냉각 공기 팬 구동 공정(Sstx11)의 실행으로 개시된다.
제어 장치(100x)는, 냉각 공기 밸브 개방/냉각 공기 팬 구동 공정(Sstx11)을 실행하면, 제1 실시형태의 메탈 온도 판단 공정(Sst12)과 마찬가지로, 메탈 온도 판단 공정(Sst12)을 실행한다. 제어 장치(100x)는, 이 메탈 온도 판단 공정(Sst12)에서, 메탈 온도 검지기(96)로 검지된 제1 단 정익의 온도(Tm)가 미리 정해진 온도(Tms) 이하가 되었다고 판단하면, 각 증기 터빈(30a, 30b, 30c)의 냉각이 완료된 것으로 하여, 제1 실시형태의 냉각 공기 팬 정지/냉각 공기 밸브 폐쇄 공정(Sst13)과 동일한 냉각 공기 팬 정지/냉각 공기 밸브 폐쇄 공정(Sstx13)을 실행한다. 단, 이 냉각 공기 팬 정지/냉각 공기 밸브 폐쇄 공정(Sstx13)에서, 제어 장치(100x)는, 제1 냉각 공기 밸브(91a) 및 제2 냉각 공기 밸브(91b)로 폐쇄 지시를 보낸다. 이 결과, 각 증기 터빈(30a, 30b, 30c)으로는, 냉각 공기가 유입하지 않게 되어, 냉각 공기 공급 공정 및 증기 터빈 냉각 공정(Sstx)이 종료된다.
이상으로, 증기 터빈 플랜트의 정지 처리가 완료된다.
이상과 같이, 본 실시형태에서도, 제1 실시형태와 마찬가지로, 증기 터빈 냉각 공정(Sstx)의 잉여 증기 공급 공정 및 저온 증기 공급 공정에서는, 각 증기 터빈(30a, 30b, 30c)으로 증기를 공급하여, 이 증기로 각 증기 터빈(30a, 30b, 30c)을 냉각한다. 이 때문에, 본 실시형태에서도, 제1 실시형태와 동일한 효과를 얻을 수 있다. 즉, 본 실시형태에서도, 각 증기 터빈(30a, 30b, 30c) 및 증기 터빈 플랜트의 냉각 완료 타이밍을 앞당길 수 있다.
「변형예」
이상의 각 실시형태에서는, 저온 증기 공급 공정 중에, 보일러 냉각이 완료된 경우, 이 저온 증기 공급 공정을 종료하고 나서, 냉각 공기 공급 공정을 실행한다. 그러나, 보일러 냉각이 완료된 후에도, 제1 단 정익의 온도가 미리 정해진 온도 이하가 될 때까지, 저온 증기 공급 공정을 계속해도 된다. 이 경우, 냉각 공기 팬(55)이나 냉각 공기 라인(90x)을 마련할 필요는 없다.
이상의 각 실시형태에서는, 잉여 증기 공급 공정을 실행하기 위하여, 바이패스 라인(80) 및 잉여 증기 밸브(81)를 마련하고 있다. 그러나, 바이패스 라인(80) 및 잉여 증기 밸브(81)를 마련하지 않아도, 잉여 증기 공급 공정을 실행할 수 있다. 바이패스 라인(80) 및 잉여 증기 밸브(81)를 마련하지 않고, 잉여 증기 공급 공정을 실행하는 경우, 제어 장치(100x)는, 차단 밸브(78)로 개방 지시를 보냄과 함께, 가감 밸브(79)로 밸브 개도를 작게 하는 취지를 나타내는 미소개방 지시를 보낸다. 이 결과, 과열기(23)로부터의 증기는, 주증기 라인(77), 차단 밸브(78) 및 가감 밸브(79)를 통하여, 증기 터빈(30)으로 유입하게 된다.
이상의 각 실시형태에서는, 증기 터빈 냉각 공정에서 잉여 증기 공급 공정을 실행한다. 그러나, 증기 터빈 냉각 공정에서, 이 잉여 증기 공급 공정을 실행하지 않아도 된다. 이 경우, 잉여 증기 공급 공정을 실행하기 위한 바이패스 라인 및 잉여 증기 밸브를 생략할 수 있다.
이상의 실시형태에서는, 저온 증기 공급 공정에서, 일정한 온도의 저온 증기를 증기 터빈으로 공급한다. 그러나, 저온 증기 공급 공정 중에 미리 정해진 조건을 충족하면, 제어 장치가 감온기(52)에 대하여 저온 증기의 온도를 낮추게 지시하도록 해도 된다. 이 경우, 미리 정해진 조건으로서는, 저온 증기 공급 공정의 개시 시점부터 현시점까지의 시간이 소정 시간 이상 경과한 것, 또, 증기 터빈의 제1 단 정익의 온도가 미리 정해진 온도 이하가 된 것 등이 있다. 또, 저온 증기의 온도를 낮추는 방법으로서는, 감온수 조절 밸브(54)의 개도를 크게 하여, 감온기(52)의 노즐(53)으로부터 분무하는 물의 양을 많게 하는 방법이 있다. 이와 같이, 저온 증기 공급 공정에서, 조건에 따라 저온 증기의 온도를 낮추면, 증기 터빈에 대한 열 충격을 억제할 수 있음과 함께, 증기 터빈(30)을 효율적으로 냉각할 수 있다.
이상의 실시형태의 증기 터빈 플랜트는, 가스 터빈 로터(19)를 기동 시 등에 회전시키는 기동 모터(49)를 구비하고 있다. 그러나, 외부로부터의 전력을 발전기(45)로 공급하여, 이 발전기(45)를 기동 모터로서 기능시키는 경우에는, 별도로, 기동 모터를 마련할 필요는 없다.
이상의 실시형태의 증기 터빈 플랜트는, 모두, 일축형의 컴바인드 사이클 플랜트이다. 그러나, 가스 터빈 로터(19)의 회전으로 구동하는 발전기와, 이 발전기와는 다른 발전기이며, 증기 터빈 로터의 회전으로 발전하는 발전기를 구비하는 2축형 컴바인드 사이클 플랜트여도 된다.
이상의 실시형태의 증기 터빈 플랜트에서는, 증기 터빈으로 발전기를 구동시킨다. 그러나, 증기 터빈으로, 예를 들면, 펌프 등의 다른 장치를 구동시켜도 된다.
이상의 실시형태의 증기 터빈 플랜트는, 모두, 가스 터빈과 배열 회수 보일러와 증기 터빈을 구비하는 컴바인드 사이클 플랜트이다. 그러나, 증기 터빈 플랜트는, 가스 터빈을 구비하고 있지 않아도 된다. 이 경우, 보일러는, 화로를 갖는 컨벤셔널한 보일러가 된다.
이상의 실시형태의 저온 증기 발생원(50)은, 보조 보일러(51)와, 감온기(52)를 갖는다. 그러나, 보조 보일러가 발생하는 증기가, 증기 터빈을 냉각하기 위하여 충분한 온도의 증기인 경우에는, 감온기(52)를 마련할 필요는 없다. 또, 하나의 부지 내에 복수의 증기 터빈 플랜트가 있는 경우, 하나의 증기 터빈 플랜트를 정지시킬 때에, 운전 중인 증기 터빈 플랜트가 있을 때에는, 이 운전 중인 증기 터빈 플랜트의 보일러를 보조 보일러로 해도 된다.
본 발명의 일 양태에 의하면, 증기 터빈의 냉각 종료를 앞당길 수 있다.
10: 가스 터빈
11: 압축기
12: 압축기 로터
13: 압축기 케이싱
14: 연소기
15: 터빈
16: 터빈 로터
17: 터빈 케이싱
19: 가스 터빈 로터
20, 20x: 배열 회수 보일러(또는 보일러)
21: 절탄기
22: 증발기
22a: 드럼
23: 과열기
24: 재열기
30: 증기 터빈
30a: 고압 증기 터빈
30b: 중압 증기 터빈
30c: 저압 증기 터빈
31: 증기 터빈 로터
32: 로터축
33: 동익렬
34: 증기 터빈 케이싱
36: 정익렬
39, 39c: 축봉 장치
40: 복수기
41: 복수기 케이싱
42: 전열관
45: 발전기
46: 발전기 로터
47: 발전기 케이싱
49: 기동 모터
50: 저온 증기 발생원
51: 보조 보일러(제2 보일러)
52: 감온기
53: 노즐
54: 감온수 조절 밸브
55: 냉각 공기 팬(냉각 공기 공급기)
59: 압력 제어 밸브
60: 접속선
63: 외부 계통
61: 변압기
62: 차단기
65: 연료 공급 라인
66: 연료 밸브
70: 배기 라인
71: 진공 펌프
72: 외기 라인
73: 진공 파괴 밸브
75: 급수 라인
76: 급수 펌프
77: 주증기 라인
77a: 제1 주증기 라인
77b: 제2 주증기 라인
78: 차단 밸브
78a: 제1 차단 밸브
78b: 제2 차단 밸브
79: 가감 밸브(주증기 조절 밸브)
79a: 제1 가감 밸브(주증기 조절 밸브)
79b: 제2 가감 밸브(주증기 조절 밸브)
80: 잉여 증기 바이패스 라인(또는 바이패스 라인)
80a: 제1 잉여 증기 바이패스 라인(또는 제1 바이패스 라인)
80b: 제2 잉여 증기 바이패스 라인(또는 제2 바이패스 라인)
81: 잉여 증기 바이패스 밸브(또는 잉여 증기 밸브)
81a: 제1 잉여 증기 바이패스 밸브(또는 제1 잉여 증기 밸브)
81b: 제2 잉여 증기 바이패스 밸브(또는 제2 잉여 증기 밸브)
82, 82x: 저온 증기 라인
82m: 주저온 증기 라인
82a: 제1 저온 증기 라인
82b: 제2 저온 증기 라인
83: 저온 증기 밸브
83a: 제1 저온 증기 밸브
83b: 제2 저온 증기 밸브
84: 드레인 배출 라인
84a: 제1 드레인 배출 라인
84b: 제2 드레인 배출 라인
85: 드레인 밸브
85a: 제1 드레인 밸브
85b: 제2 드레인 밸브
86: 축봉 증기 라인
87: 축봉 증기 밸브
88: 보일러수 배출 라인
88a: 제1 보일러수 배출 라인
88b: 제2 보일러수 배출 라인
89: 보일러수 배출 밸브
89a: 제1 보일러수 배출 밸브
89b: 제2 보일러수 배출 밸브
90, 90x: 냉각 공기 라인
90m: 주냉각 공기 라인
90a: 제1 냉각 공기 라인
90b: 제2 냉각 공기 라인
91: 냉각 공기 밸브
91a: 제1 냉각 공기 밸브
91b: 제2 냉각 공기 밸브
92: 고압 증기 회수 라인
93: 벤틸레이터 라인
94: 벤틸레이터 밸브
95: 저압 증기 라인
96: 메탈 온도 검지기
97: 증기 압력 검지기
98: 전열관 온도 검지기
99: 전력 검지기(또는 출력 검지기)
100, 100x: 제어 장치
A: 공기
EG: 배기 가스
F: 연료
Ar: 축선

Claims (18)

  1. 증기를 발생하는 보일러와,
    상기 증기의 발생을 위한 연료의 유량을 조절하는 연료 밸브와,
    상기 보일러와 독립하여, 저온 증기를 발생하는 저온 증기 발생원과,
    상기 보일러로부터의 증기로 구동하는 증기 터빈과,
    상기 보일러에서 발생한 증기를 상기 증기 터빈의 증기 입구로 유도하는 주증기 라인과,
    상기 주증기 라인에 마련되어, 상기 보일러로부터 상기 증기 터빈으로 유입하는 증기 유량을 조절하는 주증기 조절 밸브와,
    상기 저온 증기 발생원에 접속되어, 상기 저온 증기 발생원으로부터의 상기 저온 증기를 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 유도하는 저온 증기 라인과,
    상기 저온 증기 라인에 마련되어, 상기 저온 증기 라인을 흐르는 상기 저온 증기의 유량을 조절하는 저온 증기 밸브와,
    제어 장치를 구비하고,
    상기 제어 장치는, 상기 연료 밸브로의 폐쇄 지시를 보낸 후에, 상기 저온 증기 밸브로 개방 지시를 보내는, 증기 터빈 플랜트.
  2. 청구항 1에 있어서,
    상기 저온 증기 발생원은, 상기 보일러인 제1 보일러와는 독립하여 증기를 발생하는 제2 보일러와, 상기 제2 보일러로부터의 증기의 온도를 저하시켜, 상기 저온 증기를 생성하는 감온기를 갖는, 증기 터빈 플랜트.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 저온 증기 라인 중에서, 상기 저온 증기 밸브보다 상기 저온 증기 발생원 측에 접속되고, 상기 저온 증기 라인 중의 상기 저온 증기 및 상기 저온 증기의 드레인을 배출하는 드레인 배출 라인과,
    상기 드레인 배출 라인 중에 마련되어 있는 드레인 밸브를 구비하며,
    상기 제어 장치는, 상기 연료 밸브에 대하여 폐쇄 지시를 보낸 후에, 상기 드레인 밸브로 개방 지시를 보내고, 상기 드레인 밸브로 개방 지시를 보내고 나서 소정의 시간이 경과하면, 상기 드레인 밸브로 폐쇄 지시를 보냄과 함께 상기 저온 증기 밸브로 개방 지시를 보내는, 증기 터빈 플랜트.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치로부터 분기하고, 상기 보일러로부터 증기를, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 유도하는 바이패스 라인과,
    상기 바이패스 라인을 흐르는 증기의 유량을 조절하는 잉여 증기 밸브와,
    상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치에서의 압력을 검지하는 압력 검지기를 구비하며,
    상기 제어 장치는, 상기 연료 밸브로의 폐쇄 지시의 송신에 수반하여 상기 주증기 조절 밸브로 폐쇄 지시를 보냄과 함께, 상기 잉여 증기 밸브로 개방 지시를 보내고, 상기 압력 검지기로 검지된 압력이 미리 정해진 압력 이하가 되면, 상기 저온 증기 밸브로 개방 지시를 보내는, 증기 터빈 플랜트.
  5. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치에서의 압력을 검지하는 압력 검지기를 구비하고,
    상기 제어 장치는, 상기 연료 밸브로의 폐쇄 지시의 송신에 수반하여 상기 주증기 조절 밸브로 밸브 개도를 작게 하는 취지를 나타내는 미소개방 지시를 보내며, 상기 압력 검지기로 검지된 압력이 미리 정해진 압력 이하가 되면, 상기 저온 증기 밸브로 개방 지시를 보내는, 증기 터빈 플랜트.
  6. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서,
    상기 증기 터빈으로부터의 증기를 물로 되돌리는 복수기와,
    상기 복수기 내의 물을 상기 보일러로 유도하는 급수 라인과,
    상기 급수 라인에 마련되어, 상기 복수기 내의 물을 보일러로 보내는 펌프와,
    상기 보일러에서 물 또는 증기가 통과하는 관 또는 드럼에 접속되어, 상기 관 또는 드럼 내의 물 또는 증기를 보일러 외로 배출하는 보일러수 배출 라인과,
    상기 보일러수 배출 라인에 마련되어, 상기 보일러수 배출 라인을 흐르는 유체의 유량을 조절하는 보일러수 배출 밸브를 구비하고,
    상기 제어 장치는, 상기 연료 밸브에 대하여 폐쇄 지시를 보낸 후에, 상기 펌프의 구동을 계속한 상태에서, 상기 보일러수 배출 밸브로 개방 지시를 보내는 증기 터빈 플랜트.
  7. 청구항 6에 있어서,
    상기 보일러수 배출 라인은, 상기 복수기에 접속되어 있는, 증기 터빈 플랜트.
  8. 청구항 6 또는 청구항 7에 있어서,
    상기 제어 장치는, 상기 저온 증기 밸브가 개방되어 있는 시간대의 적어도 일부가, 상기 보일러수 배출 밸브가 개방되어 있는 시간대와 겹치도록, 상기 보일러수 배출 밸브에 대하여 개방 지시를 보내는, 증기 터빈 플랜트.
  9. 청구항 1 내지 청구항 8 중 어느 한 항에 있어서,
    상기 증기 터빈에서, 상기 보일러로부터의 증기가 접하는 개소의 온도를 검지하는 온도 검지기를 구비하고,
    상기 제어 장치는, 상기 온도 검지기로 검지된 온도가 미리 정해진 온도 이하가 되면, 상기 저온 증기 밸브로 폐쇄 지시를 보내는, 증기 터빈 플랜트.
  10. 청구항 6 내지 청구항 8 중 어느 한 항에 있어서,
    상기 증기 터빈에서, 상기 보일러로부터의 증기가 접하는 개소의 온도를 검지하는 온도 검지기와,
    상기 증기 터빈을 냉각하기 위한 냉각 공기를 상기 증기 터빈 내로 보내는 냉각 공기 공급기와,
    상기 냉각 공기 공급기에 접속되어, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 상기 냉각 공기를 유도하는 냉각 공기 라인을 구비하고,
    상기 제어 장치는, 상기 온도 검지기로 검지된 온도가 미리 정해진 온도 이하가 되기 전에, 상기 보일러의 냉각이 완료되었다고 판단하면, 상기 저온 증기 밸브로 폐쇄 지시를 보낸 후에 상기 냉각 공기 공급기로 공급 지시를 보내며, 상기 보일러의 냉각이 완료되기 전에 상기 온도 검지기로 검지된 온도가 미리 정해진 온도 이하가 되었다고 판단하면, 상기 저온 증기 밸브로 폐쇄 지시를 보내는, 증기 터빈 플랜트.
  11. 청구항 1 내지 청구항 10 중 어느 한 항에 있어서,
    연료를 연소시켜 구동하는 가스 터빈을 구비하고,
    상기 보일러는, 상기 가스 터빈으로부터 배기된 연소 가스의 열로 증기를 발생시키는 배열 회수 보일러이며,
    상기 연료 밸브는, 상기 가스 터빈으로 공급하는 연료의 유량을 조절하는 밸브인, 증기 터빈 플랜트.
  12. 청구항 11에 있어서,
    상기 가스 터빈의 가스 터빈 로터를 회전시키는 모터를 구비하고,
    상기 제어 장치는, 상기 가스 터빈의 정격 회전수보다 낮은 회전수로 상기 가스 터빈 로터를 회전시키는 스핀 운전을 실행하도록, 상기 연료 밸브에 대하여 폐쇄 지시를 보낸 후이며, 상기 저온 증기 밸브가 개방되어 있는 시간대의 적어도 일부가, 상기 스핀 운전의 실행 시간대와 겹치는 타이밍으로, 상기 모터에 스핀 운전 지시를 보내는, 증기 터빈 플랜트.
  13. 증기를 발생하는 보일러와,
    상기 보일러로부터의 증기로 구동하는 증기 터빈과,
    상기 보일러에서 발생한 증기를 상기 증기 터빈의 증기 입구로 유도하는 주증기 라인과,
    상기 주증기 라인에 마련되어, 상기 보일러로부터 상기 증기 터빈으로 유입하는 증기 유량을 조절하는 주증기 조절 밸브를 구비하는 증기 터빈 플랜트의 냉각 방법에 있어서,
    상기 보일러에서 증기의 발생을 위한 연료 공급을 정지하는 연료 정지 공정과,
    상기 연료 정지 공정 후에, 상기 보일러와 독립하여, 저온 증기를 발생하는 저온 증기 발생원으로부터의 저온 증기를, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 유도하는 저온 증기 공급 공정을 실행하는 증기 터빈 플랜트의 냉각 방법.
  14. 청구항 13에 있어서,
    상기 증기 터빈 플랜트는,
    상기 저온 증기 발생원에 접속되어, 상기 저온 증기 발생원으로부터의 상기 저온 증기를 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 증기 터빈 측의 위치로 유도하는 저온 증기 라인과,
    상기 저온 증기 라인에 마련되어, 상기 저온 증기 라인을 흐르는 상기 저온 증기의 유량을 조절하는 저온 증기 밸브를 구비하고,
    상기 연료 정지 공정 후에, 상기 저온 증기 라인 중에서 상기 저온 증기 밸브보다 상기 저온 증기 발생원 측의 상기 저온 증기 및 상기 저온 증기의 드레인을 배출하는 드레인 배출 공정을 실행하며,
    상기 드레인 배출 공정 후에, 상기 저온 증기 밸브를 개방하여 상기 저온 증기 공급 공정을 실행하는, 증기 터빈 플랜트의 냉각 방법.
  15. 청구항 13 또는 청구항 14에 있어서,
    상기 연료 정지 공정에 따라 상기 주증기 조절 밸브를 폐쇄하는 주증기 정지 공정과,
    상기 연료 정지 공정 및 상기 주증기 정지 공정 후에, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 증기를, 상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측으로 공급하는 잉여 증기 공급 공정을 실행하며,
    상기 주증기 라인 중에서 상기 주증기 조절 밸브보다 상기 보일러 측의 위치에서의 압력이 미리 정해진 압력 이하가 되면, 상기 저온 증기 공급 공정을 실행하는 증기 터빈 플랜트의 냉각 방법.
  16. 청구항 13 내지 청구항 15 중 어느 한 항에 있어서,
    상기 증기 터빈 플랜트는,
    상기 증기 터빈으로부터의 증기를 물로 되돌리는 복수기와,
    상기 복수기 내의 물을 상기 보일러로 유도하는 급수 라인과,
    상기 급수 라인에 마련되어, 상기 복수기 내의 물을 보일러로 보내는 펌프를 구비하며,
    상기 연료 정지 공정 후에, 상기 펌프의 구동을 계속한 상태에서, 상기 보일러에서 물 또는 증기가 통과하는 관 내의 상기 물 또는 상기 증기를 상기 보일러 외로 배출하는 보일러 냉각 공정을 실행하는, 증기 터빈 플랜트의 냉각 방법.
  17. 청구항 16에 있어서,
    상기 저온 증기 공급 공정의 실행 시간대의 적어도 일부가, 상기 보일러 냉각 공정의 실행 시간대와 겹치는, 증기 터빈 플랜트의 냉각 방법.
  18. 청구항 16 또는 청구항 17에 있어서,
    상기 증기 터빈에서, 상기 저온 증기 공급 공정의 실행 후, 상기 보일러로부터의 증기가 접하는 개소의 온도가 미리 정해진 온도 이하가 되기 전에, 상기 보일러의 냉각이 완료되면, 상기 저온 증기 공급 공정을 종료하는 한편, 상기 증기 터빈 내로 냉각 공기를 보내는 냉각 공기 공급 공정을 실행하며,
    상기 보일러의 냉각이 완료되기 전에, 상기 보일러로부터의 증기가 접하는 개소의 온도가 미리 정해진 온도 이하가 되면, 상기 저온 증기 공급 공정을 종료하는, 증기 터빈 플랜트의 냉각 방법.
KR1020207032322A 2018-05-14 2019-03-27 증기 터빈 플랜트, 및 그 냉각 방법 KR102520288B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018093301 2018-05-14
JPJP-P-2018-093301 2018-05-14
PCT/JP2019/013339 WO2019220786A1 (ja) 2018-05-14 2019-03-27 蒸気タービンプラント、及びその冷却方法

Publications (2)

Publication Number Publication Date
KR20200137014A true KR20200137014A (ko) 2020-12-08
KR102520288B1 KR102520288B1 (ko) 2023-04-10

Family

ID=68540147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207032322A KR102520288B1 (ko) 2018-05-14 2019-03-27 증기 터빈 플랜트, 및 그 냉각 방법

Country Status (6)

Country Link
US (1) US11473445B2 (ko)
JP (1) JP7167136B2 (ko)
KR (1) KR102520288B1 (ko)
CN (1) CN112334635B (ko)
DE (1) DE112019002484T5 (ko)
WO (1) WO2019220786A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111878182B (zh) * 2020-06-24 2022-08-23 中国能源建设集团华东电力试验研究院有限公司 660mw超临界机组旁路控制系统及其控制方法
CN112780368B (zh) * 2021-01-15 2022-10-21 华电电力科学研究院有限公司 一种汽轮机发电机组的主汽温度控制系统及其控制方法
CN114607477B (zh) * 2022-04-01 2023-08-01 邹平滨能能源科技有限公司 一种单元制机组汽轮机快速冷却方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
JPH04140403A (ja) 1990-10-01 1992-05-14 Hitachi Ltd 蒸気タービン装置とその冷却運転方法
US20100229523A1 (en) * 2009-03-16 2010-09-16 General Electric Company Continuous combined cycle operation power plant and method
US20150316324A1 (en) * 2012-12-12 2015-11-05 Nem Energy B.V. Heat exchange system and method for starting-up such a heat exchange system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118605A (en) * 1977-03-24 1978-10-17 Toshiba Corp Forced cooling method for turbine
JPS58117306A (ja) * 1981-12-29 1983-07-12 Hitachi Ltd コンバインドプラント
JPH0650106A (ja) * 1992-07-28 1994-02-22 Toshiba Corp 蒸気タービンの冷却加熱装置
JP4295415B2 (ja) * 2000-04-05 2009-07-15 三菱重工業株式会社 一軸式コンバインドタービン設備
JP2006009787A (ja) * 2004-05-26 2006-01-12 Tokyo Electric Power Co Inc:The 蒸気タービンの冷却方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
JPH04140403A (ja) 1990-10-01 1992-05-14 Hitachi Ltd 蒸気タービン装置とその冷却運転方法
US20100229523A1 (en) * 2009-03-16 2010-09-16 General Electric Company Continuous combined cycle operation power plant and method
US20150316324A1 (en) * 2012-12-12 2015-11-05 Nem Energy B.V. Heat exchange system and method for starting-up such a heat exchange system

Also Published As

Publication number Publication date
JPWO2019220786A1 (ja) 2021-05-13
WO2019220786A1 (ja) 2019-11-21
CN112334635A (zh) 2021-02-05
JP7167136B2 (ja) 2022-11-08
US20210246809A1 (en) 2021-08-12
KR102520288B1 (ko) 2023-04-10
CN112334635B (zh) 2023-03-24
DE112019002484T5 (de) 2021-01-28
US11473445B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
US10655543B2 (en) Gas turbine, combined cycle plant, and activation method of gas turbine
US8210801B2 (en) Systems and methods of reducing heat loss from a gas turbine during shutdown
US8061971B2 (en) Apparatus and method for cooling a turbine
US8739509B2 (en) Single shaft combined cycle power plant start-up method and single shaft combined cycle power plant
US20140165565A1 (en) Steam turbine plant and driving method thereof
JP7167136B2 (ja) 蒸気タービンプラント、及びその冷却方法
JP6264128B2 (ja) コンバインドサイクルプラント、その制御方法、及びその制御装置
JP2012167571A (ja) 一軸型複合サイクル発電プラントおよびその運転方法
JP5694112B2 (ja) 一軸型複合サイクル発電プラント及びその運転方法
JP7120839B2 (ja) 蒸気タービンプラント、及びその起動方法
EP2840238A1 (en) Operation of a gas turbine power plant with carbon dioxide separation
US10215059B2 (en) Active draft control for combined cycle power plant shutdown
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP4373420B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
US10920623B2 (en) Plant control apparatus, plant control method and power plant
JP2010196473A (ja) 発電プラント給水装置及び制御方法
JP2017110649A (ja) 排気ガスダンパおよび圧縮ガス供給源を介してガスタービン排気エネルギーを制御するためのシステムおよび方法
JP5734117B2 (ja) コンバインドサイクル発電プラント及びその運転方法
WO2012176257A1 (ja) 閉サイクルガスタービン
JP2006009787A (ja) 蒸気タービンの冷却方法
JPH08218811A (ja) 蒸気タービンの冷却方法及びその装置
EP2460983B1 (en) Steam-driven power plant
JP2667699B2 (ja) 一軸型コンバインドプラント及びその起動方法
JPH0734809A (ja) 抽気蒸気タービンの温度制御装置
JPH0849507A (ja) 抽気タービンの内部冷却方法

Legal Events

Date Code Title Description
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant