KR20200131182A - 오토파지 활성을 통한 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물 - Google Patents

오토파지 활성을 통한 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
KR20200131182A
KR20200131182A KR1020200057124A KR20200057124A KR20200131182A KR 20200131182 A KR20200131182 A KR 20200131182A KR 1020200057124 A KR1020200057124 A KR 1020200057124A KR 20200057124 A KR20200057124 A KR 20200057124A KR 20200131182 A KR20200131182 A KR 20200131182A
Authority
KR
South Korea
Prior art keywords
pharmaceutical composition
potential
disease
autophagy
compound
Prior art date
Application number
KR1020200057124A
Other languages
English (en)
Inventor
권호정
황희윤
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to US17/610,879 priority Critical patent/US20220202743A1/en
Priority to PCT/KR2020/006306 priority patent/WO2020231185A1/ko
Priority to JP2021568096A priority patent/JP2022532638A/ja
Publication of KR20200131182A publication Critical patent/KR20200131182A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Neurosurgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polymers & Plastics (AREA)
  • Psychology (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물에 관한 것으로서, 하기 화학식 1로 표시되는 화합물 및 이의 약학적으로 허용 가능한 염으로 이루어 진 군으로부터 선택되는 하나 이상을 유효성분으로 함유하는 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물이 제공될 수 있다.
[화학식 1]
Figure pat00007

Description

오토파지 활성을 통한 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물{Pharmaceutical composition for preventing or treating neurodegenerative disease using autophagy activation}
본 발명은 퇴행성 뇌질환에 대한 약학적 조성물에 관한 것으로서, 더욱 상세하게는 오토파지 활성을 통한 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물에 관한 것이다.
오토파지(autophagy)는 세포 성분이 분해되어 영양분 및 에너지원으로 재활용되는 자가-소화 시스템으로서, 노화되거나 제 기능을 하지 못하게 된 세포 소기관들 및 손상되거나 폴딩(folding)이 제대로 되지 아니한 단백질들이 오토파지의 대상이 되며, 세포의 항상성과 유전적인 안정성을 유지하기 위해 필수적인 단백질 분해 과정을 조절한다. 이는 화학적인 물질 대사를 조절하고, 손상되거나 오랜 수명의 미토콘드리아를 재생시킴으로써 활성 산소종(ROS)의 생성을 완화시키며, 영양 결핍, 산소 고갈, 박테리아와 바이러스를 포함하는 병원균 침입, 및 UV 노출과 같은 세포내외 자극으로부터 세포들을 보호함으로써 세포의 항상성을 유지하기 위한 중심이 되는 역할을 한다. 결과적으로, 오토파지가 제대로 조절되지 아니하면 재발협착증, 신경변성적 질병, 백혈병, 암 및 노화와 같은 다양한 질병들이 발병할 수 있다.
특히, 세포질에 변성 단백질 응고체가 누적되는 경우 세포독성 물질이 되기 때문에, 이들을 오토파지에 의하여 분해되어야 한다. 만일 오토파지가 저하되는 경우, 변성 단백질(misfolded protein)의 축적이 초래되어 이로 인해 신경변성질환이 발생하기도 한다. 이러한 시스템은 세포 항상성을 유지하며 세포 생존 또는 사멸을 일으키지만, 언제 이를 유도하는지에 관한 특정 기전은 전부 밝혀지지 아니하였다.
퇴행성 뇌질환을 치료하기 위하여 오토파지를 활성화하는 연구는 최근 활발하게 진행되고 있다. 일반적으로 오토파지를 억제하는 조절인자는 mTOR이고, mTOR 저해제를 이용하여 오토파지를 활성화하는 방법이 가장 광범위하게 사용된다. 상세하게는, 라파마이신을 이용하여 APP를 과발현하는 동물모델에서 아밀로이드 베타(Ab) 및 타우(tau)를 제거함과 동시에 인지력을 증진시켰으며, 타우(tau) 단백질을 과발현하는 알츠하이머 증상을 보이는 동물모델에서 타우 단백질을 제거하였다. 그러나, mTOR는 오토파지의 조절 외에도 NF-kB 와 같은 다양한 세포내 경로들에 있어서 매우 중요한 역할을 하므로 다양한 외부 환경으로부터의 자극에 대하여 세포내의 전반적인 유전자 발현을 조절하는 광범위한 역할을 할 수 있다. 그러므로, 퇴행성 뇌질환의 변성 단백질 응고체를 제거하는 뛰어난 활성을 보임에도 불구하고 mTOR를 약물타겟으로 하는 것으로 알려진 이들 오토파지 활성제들을 치료제로 사용하는 것은 한계가 있다.
이밖에 mTOR외의 약물타겟으로 하는 오토파지 활성제를 이용한 연구도 진행되고 있다. 상세하게는, 마우스 모델에서 Rimenidine을 이용하여 mTOR를 경유하지 않고 오토파지를 활성화시켜 헌팅턴 응고체를 성공적으로 제거하였고, mTOR를 경유하지 않고 오토파지를 활성화시키는 것으로 알려진 Trehalose를 이용하여 마우스 모델의 뇌에서 돌연변이 헌팅턴, 운동능력 및 수명을 향상시켰다. 그러나, 이들 mTOR를 경유하지 않거나 mTOR를 포함하여 두 개 이상의 타겟을 통해 오토파지를 활성화시키는 물질들 또한 이들 타겟들이 세포내 신호전달체계에서 다양한 역할을 함으로써 치료제로 사용하기에는 한계가 있다.
미국 공개공보 제9,694,009호
따라서, 본 발명이 해결하고자 하는 기술적 과제는, mTOR 단백질을 타겟으로 하지 않는 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 기술적 과제는, 다른 유전자 발현을 조절하지 아니하고 퇴행성 뇌질환과 관련된 오토파지를 선택적으로 유도하고 변성 단백질 응고체를 제거하는 약학적 조성물을 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 약학적 조성물은 하기 화학식 1로 표시되는 화합물 및 이의 약학적으로 허용 가능한 염으로 이루어진 군으로부터 선택되는 하나 이상을 유효성분으로 함유하는 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물일 수 있다.
[화학식 1]
Figure pat00001
상기 화학식에서, R1은 C1-C3 알킬이고, R2 및 R3는 각각 독립적으로 수소 또는 할로겐이며, R2 및 R3는 동시에 수소가 아니다.
본 명세서에서 용어“알킬”은 직쇄 또는 분쇄의 포화 탄화수소기를 의미하며, 예를 들어, 메틸, 에틸, 프로필, 이소프로필 등을 포함한다. C1-C3 알킬은 탄소수 1 내지 3의 알킬 유니트를 가지는 알킬기를 의미하며, C1-C3 알킬이 치환된 경우 치환체의 탄소수는 포함되지 않은 것이다.
본 명세서에서 용어“할로겐”은 할로겐족 원소를 의미하며, 예컨대, 플루오로, 클로로(염소), 브로모 및 요오도를 포함한다.
본 발명의 구체적인 구현예에 따르면, 상기 화학식 1의 R1은 C1 알킬이고, R2 및 R3는 염소이다.
상기 퇴행성 뇌질환은 헌팅턴병(Huntington's disease; HD), 파킨슨병(Parkinson's disease; PD), 알츠하이머병(Alzheimer's disease; AD), 프리온병/인간 광우병(Prion disease), 근위축성 측삭경화증(amyotrophic lateral sclerosis; ALS) 및 이들의 조합으로 구성된 군으로부터 선택될 수 있다.
일 실시예에서, 상기 화합물은 미토콘드리아의 전위의존성 음이온 채널 1(Voltage-dependent anion channel-1, VDAC1)과 결합할 수 있고, 상기 화합물은 상기 전위의존성 음이온 채널의 아스파르트산(Aspartic acid) 12, 알라닌(Alanine) 17, 발린(Valine) 20, 히스티딘(Histidine) 184, 및 세린(Serine) 196 과 결합할 수 있다.
상기 화합물은 상기 전위의존성 음이온 채널의 ATP 결합 도메인과 결합하여 상기 전위의존성 음이온 채널의 ATP 결합 도메인을 억제하여 오토파지를 유도할 수 있고, 상기 화합물은 상기 전위의존성 음이온 채널과의 수소 결합 및 소수성 상호작용에 의하여 상기 전위의존성 음이온 채널과 결합할 수 있다.
일 실시예에서, 상기 화합물은 상기 전위의존성 음이온 채널과의 결합으로 인한 오토파지를 유도함으로써 아밀로이드를 분해할 수 있고, 상기 화합물은 전위의존성 음이온 채널과의 결합으로 인해 세포 내의 활성단백질키나아제(AMPK)의 발현을 활성화함으로써 오토파지를 유도하여 세포 내의 타우 단백질 응집체를 분해할 수 있다.
상기 다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 퇴행성 뇌질환 개선용 건강기능식품은, 하기 화학식 1로 표시되는 화합물을 유효성분으로 함유할 수 있다.
[화학식 1]
Figure pat00002
본 발명에서 사용되는 화학식 1 화합물에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 그 기재를 생략한다.
상기 퇴행성 뇌질환은 헌팅턴병(Huntington's disease; HD), 파킨슨병(Parkinson's disease; PD), 알츠하이머병(Alzheimer's disease; AD), 프리온병/인간 광우병(Prion disease), 근위축성 측삭경화증(amyotrophic lateral sclerosis; ALS) 및 이들의 조합으로 구성된 군으로부터 선택되는 질환일 수 있다.
일 실시예에서, 상기 화합물은 미토콘드리아의 전위의존성 음이온 채널(Voltage-dependent anion channel-1, VDAC1)과 결합할 수 있고, 상기 전위의존성 음이온 채널은 ATP 결합 도메인을 포함하며, 상기 ATP 결합 도메인은 아스파르트산(Aspartic acid) 12, 알라닌(Alanine) 17, 발린(Valine) 20, 히스티딘(Histidine) 184, 및 세린(Serine) 196을 포함할 수 있다.
상기 화합물은 상기 ATP 결합 도메인과 결합하여 상기 ATP 결합 도메인의 발현을 억제함으로써 오토파지를 유도할 수 있고, 상기 화합물은 상기 전위의존성 음이온 채널과의 수소 결합 및 소수성 상호작용에 의하여 상기 전위의존성 음이온 채널과 결합할 수 있다.
또한, 상기 화합물은 상기 전위의존성 음이온 채널과 결합하여 오토파지를 유도함으로써 아밀로이드를 분해할 수 있고, 세포 내의 타우 단백질 응집체를 분해할 수도 있다.
상기 또다른 과제를 해결하기 위한 본 발명의 일 실시예에 따른 변성 단백질을 분해하는 방법은, 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 동물 세포에 처리하여 미토콘드리아의 전위의존성 음이온 채널과 결합시켜 상기 세포 내의 ATP 활성을 억제하는 단계; 상기 감소된 ATP 레벨에 의하여 아데노신 모노포르페이트 활성 단백질 키나아제(AMPK)의 활성을 유도하는 단계; 상기 활성화된 AMPK 에 의하여 mTOR 및 S6K 단백질의 발현이 억제되는 단계; 및 상기 억제된 mTOR 및 S6K 활성에 의하여 상기 세포 내의 오토파지가 유도되는 단계를 포함할 수 있다.
일 실시예에서, 상기 화합물은 상기 전위의존성 음이온 채널의 ATP 결합 도메인과 결합할 수 있고, 상기 ATP 결합 도메인은 아스파르트산(Aspartic acid) 12, 알라닌(Alanine) 17, 발린(Valine) 20, 히스티딘(Histidine) 184, 및 세린(Serine) 196을 포함할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 본 발명의 화학식 1 화합물을 대상체에 투여하는 단계를 포함하는 퇴행성 뇌질환 예방 또는 치료 방법을 제공한다.
본 발명의 일 실시예에 따르면, 전위의존성 음이온 채널-1(VDAC1) 과 결합하여 세포질 내의 ATP 레벨을 감소시키고 AMPK의 발현을 활성화시킴으로써, mTOR의 발현을 억제하고 오토파지를 유도하여 타우 단백질 응집체들을 분해하는 설트라린 및 이의 약학적으로 허용가능한 염을 포함하는 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물을 제공할 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 종래의 오토파지 유도제와 달리 mTOR 단백질을 타겟 단백질로 하지 아니하고 미토콘드리아의 멤브레인에 존재하는 전위의존성 음이온 채널-1을 타겟 단백질로 하기 때문에, mTOR 단백질을 타겟으로 하는 억제제의 단점인 인슐린 저항과 같은 다른 생체 내 주요 발현에 직접적으로 영향을 미치지 아니하며 오토파지를 유도는 설트라린 및 이의 약학적으로 허용가능한 염을 포함하는 퇴행성 뇌질환 예방 또는 치료용 건강기능식품을 제공할 수 있다.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물의 오토파지 유도에 대한 실험 이미지들이다.
도 1c는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 오토파지 유도를 MDC 형광 염색법으로 촬영한 이미지 및 그래프이다.
도 1d는 본 발명의 일 실시예에 따른 약학적 조성물의 LC3-Ⅱ 및 p62에 대하 영향을 살펴보기 위한 면역블롯팅 실험 결과이다.
도 1e 및 도 1f는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 오토파지 플럭스의 활성을 나타내는 이미지이다.
도 2a는 본 발명의 일 실시예에 따른 약학적 조성물의 HUVEC 내의 세포 ATP 레벨을 ATPlite 발광 분석 시스템(ATPlite luminescence assay system)으로 측정한 결과이다.
도 2b는 본 발명의 일 실시예에 따른 약학적 조성물이 mTOR/S6K 시그날링을 억제하는지 여부를 확인하기 위한 면역블롯팅 실험 결과이다.
도 2c는 본 발명의 일 실시예에 따른 약학적 조성물이 EGFP-LC3 반점에 대하여 미치는 영향을 나타내는 것이다.
도 2d는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 오토파지 유도가 mTOR 상류의 시그날링 경로를 수반하는지를 나타내는 것이다.
도 2e는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 TFEB 핵 전좌를 관찰한 이미지이다.
도 2f는 본 발명의 일 실시예에 따른 약학적 조성물을 처리한 샘플의 오토파지 유도를 살펴보기 위한 웨스턴 블롯 결과이다.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 약학적 조성물이 저분자와 결합함에 따른 단백질의 가수분해 민감도 변화를 나타내는 것이다.
도 3c 내지 도 3e는 본 발명의 일 실시예에 따른 약학적 조성물의 단백질 내의 결합 위치를 나타내는 이미지이다.
도 3f 및 도 3g는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 AMPK/mTOR/S6K 시그날링의 조절 시작점을 확인하기 위한 실험 결과이다.
도 3h는 본 발명의 일 실시예에 따른 약학적 조성물의 VDAC1에 의한 활성 의존도를 나타내는 것이다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 약학적 조성물의 타우병증 치료효과를 나타내는 것이다.
도 5는 본 발명의 일 실시예에 따른 약학적 조성물이 오토파지를 유도하는 방법을 나타내는 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 발명을 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위해 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"는 해당 열거된 항목 중 어느 하나 및 하나 이상의 조합을 포함한다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
알츠하이머(AD)는 퇴행성 뇌질환들 중 하나이며, 염증 및 결함이 있는 오토파지를 수반할 수 있으며, 뉴런 피질 내의 타우 집합체와 베타 아밀로이드로 인한 회복불가능하고 대량적인 인지능력의 손실과 병적인 플라크 컴플릭스의 형성으로 특징지어진다. 따라서, 오토파지 유도 화합물은 알츠하이머 환자의 뇌에서의 유해 단백질의 분해를 촉진할 수 있다. 그러므로, 다른 알츠하이머 치료약과 함께 이용될 수 있는 잠재적인 오토파지 유도 화합물의 개발이 높이 요구되고 있다.
본 명세서에서는 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물을 제공하기 위하여, 존스홉킨스 약물 라이브러리(JHDL)로부터 오토파지 유도를 위한 피노타입(phynotypic) 스크리닝을 수행하였으며, 이로부터 설트라린(sertraline) 및 인다트라린(indatraline)을 포함하는 오토파지 유도 활성을 갖는 항우울제를 발견하였다. 설트라린은 1991년 미국에서 생체적활성을 갖는 약리효과를 승인받아 항우울제로 이용되는 세로토닌 선택적 재흡수 저해제이다. 본 명세서에서는 상기 발견된 오토파지 유도 활성을 갖는 후보 물질들 중 활성이 우수한 설트라린 (상품명: Zoloft)을 퇴행성 뇌질환 예방 또는 치료를 위한 약학적 조성물로 발견하였으며, 상기 약학적 조성물의 오토파지 유도 활성의 상세한 분자적 메커니즘과 오토파지 관련 질병을 위한 임상적인 응용에서의 잠재성을 설명하기로 한다.
본 발명의 일 실시예에 따른 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물은 R1은 C1 알킬이고, R2 및 R3는 염소인 화학식 1 화합물, 즉 설트라린(C17H17Cl2N) 및 이의 약학적으로 허용가능한 염이고, 이는 하기 화학식 2와 같이 나타낼 수 있다. 상기 약학적 조성물은 세로토닌 전달체를 억제함으로써 항우울 작용을 하는 임상적인 약물이다. 상기 약학적 조성물은 중요한 오토파지 마커인 LC3-Ⅰ(microtubule-associated light chain protein type 3)를 LC3-Ⅱ로 변환하는 것을 유도할 수 있다. LC3 변환은 오토파고좀과 리소좀의 융합 또는 리소좀의 분해와 같은 오토파지 억제의 뒷단계 또는 오토파지 유도중에 발생될 수 있다. 또한, 상기 약학적 조성물은 오토파지를 유도함으로써 타우 단백질 및 베타 아밀로이드를 분해할 수 있다. 그러므로, 오토파지 플럭스에서 상기 약학적 조성물의 정확한 효과를 인지하는 것이 필요하다.
[화학식 2]
Figure pat00003
일 실시예에서, 상기 약학적 조성물은 설트라린 및 이의 약학적으로 허용 가능한 염으로 이루어진 군으로부터 선택되는 하나 이상을 유효성분으로 하며, 퇴행성 뇌질환 예방 또는 치료 효과를 제공할 수 있다. 상기 퇴행성 뇌질환은 헌팅턴병(Huntington's disease; HD), 파킨슨병(Parkinson's disease; PD), 알츠하이머병(Alzheimer's disease; AD), 프리온병/인간 광우병(Prion disease), 근위축성 측삭경화증(amyotrophic lateral sclerosis; ALS) 및 이들의 조합으로 구성된 군으로부터 선택되는 질환일 수 있으나, 이에 한정되지는 아니한다.
상기 약학적 조성물은 정제, 산제, 캡슐제, 환제, 과립제, 현탁액, 에멀젼, 시럽, 에어로졸, 외용제, 좌제, 액제 및 주사제로 이루어진 군으로부터 선택되는 어느 하나의 제형으로 제조될 수 있으나, 이에 제한되는 것은 아니다. 다른 실시예에서는, 상기 약학적 조성물은 피부외용 조성물로도 사용될 수 있다.
상기 약학적 조성물은 설트라린은 약학적으로 허용 가능한 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용가능한 유리산(free acid)에 의해 형성된 산부가염이 유용할 수 있다. 예를 들면, 상기 산부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요오드화수소산, 아질산 도는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산으로부터 획득될 수 있다. 상기 무독한 염류는 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이트, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, β-하이드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트를 포함할 수 있다.
본 발명에 따른 산 부가염은 통상의 방법, 예를 들면, 상기 설트라린을 과량의 산 수용액 중에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들면, 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜 제조할 수 있다. 동량의 설트라린 및 물 중의 산 또는 알코올을 가열하고, 이어서 이 혼합물을 증발시켜 건조시키거나 또는 석출된 염을 흡입 여과시켜 제조할 수도 있다.
또한, 염기를 사용하여 약학적으로 허용 가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속 염은, 예를 들면, 화합물을 과량의 알킬리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고, 여액을 증발, 건조시켜 얻을 수 있다. 이 때, 금속염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다. 또한, 이에 대응하는 은염은 알칼리금속 또는 알칼리 토금속 염을 적당한 은염(예, 질산은)과 반응시켜 획득할 수 있다. 또한, 본 발명의 상기 약학적 조성물은 약학적으로 허용되는 염 뿐만 아니라, 통상의 방법에 의해 제조될 수 있는 모든 염, 수화물 및 용매화물을 모두 포함할 수 있다.
일 실시예에서, 본 발명에 따른 부가염은 통상의 방법으로 제조할 수 있으며, 상세하게는, 설트라린을 수혼화성 유기용매, 예를 들면, 아세톤, 메탄올, 에탄올, 또는 아세토니트릴 등에 녹이고 과량의 유기산을 가하거나 무기산의 산수용액을 가한 후 침전시키거나 결정화시켜 제조할 수 있다. 이어 이 혼합물에서 용매나 과량의 산을 증발시킨 후 건조시켜 부가염을 얻거나 또는 석출된 염을 흡인 여과시켜 제조할 수 있다.
본 발명의 약학적 조성물을 의약품으로 사용하는 경우, 설트라린 및/또는 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하는 약학적 조성물은 임상투여시 다양한 하기의 경구 또는 비경구 투여 형태로 제제화되어 투여될 수 있으나, 이에 한정되는 것은 아니다. 경구 투여용 제형으로는, 예를 들면, 정제, 환제, 경/연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제, 엘릭시르제 등이 있고, 이들 제형은 유효성분 이외에 희석제, 예를 들면, 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로즈 및/또는 글리신, 및 활택제, 예를 들면, 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리 에틸렌 글리콜을 함유하고 있다. 정제는 또한 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및/또는 폴리비닐피롤리딘과 같은 결합제를 함유할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제 또는 비등 혼합물 및/또는 흡수제, 착색제, 향미제, 및 감미제를 함유할 수 있다.
다른 실시예에서, 본 발명의 설트라린 및/또는 이의 약학적으로 허용가능한 염을 유효 성분으로 하는 약학적 조성물은 비경구 투여할 수 있으며, 비경구 투여는 피하주사, 정맥주사, 근육 내 주사 또는 흉부 내 주사를 주입하는 방법에 의할 수 있다. 이 때, 비경구 투여용 제형으로 제제화하기 위하여 상기 설트라린 및/또는 이의 약학적으로 허용가능한 염을 안정제 또는 완충제와 함께 물에 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알 단위 투여형으로 제조할 수 있다. 상기 조성물은 멸균되고/되거나 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제, 및 기타 치료적으로 유용한 물질을 함유할 수 있으며, 통상적인 방법은 혼합, 과립화 또는 코팅 방법에 따라 제제화할 수 있다.
또한, 본 발명의 약학적 조성물의 인체에 대한 투여량은 환자의 나이, 몸무게, 성별, 투여형태, 건강상태 및 질환 정도에 따라 달라질 수 있으며, 몸무게가 60 kg인 성인 환자를 기준으로 할 때, 일반적으로 0.001 내지 1,000 mg/일이며, 바람직하게는 0.01 내지 500 mg/일이며, 의사 또는 약사의 판단에 따라 일정시간 간격으로 1일 1회 내지 수회로 분할 투여할 수도 있다.
본 발명은 설트라린 및 이를 약학적으로 허용가능한 염으로 이루어진 군에서 선택되는 하나 이상을 유효성분으로 포함하는 퇴행성 뇌질환 예방 또는 치료 효과를 갖는 의약외품 조성물을 제공한다. 본 발명의 설트라린을 의약외품 조성물의 유효성분으로 사용할 경우, 상기 설트라린을 그대로 첨가하거나, 다른 의약외품 또는 의약외품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효 성분의 혼합량은 사용 목적에 따라 적합하게 사용될 수 있다.
상기 의약외품 조성물은 과립, 분말, 용액, 크림, 연고, 에어로솔, 페이스트, 겔 또는 왁스 등의 형태로 제조될 수 있고, 용액은 유효성분이 용매에 용해된 상태뿐만 아니라, 현탁액이나 에멀젼 상태 또는 포함할 수 있다. 상기 제형화된 의약품의 예로는 연고제, 패치, 필터 충진제, 마스크, 손 세정제, 헤어 제품, 물티슈, 소독청결제, 비누, 또는 세제비누 등이 있으며, 통상적인 의미에서의 의약외품을 모두 포함할 수 있다.
또한, 각 제형에 있어서, 퇴행성 뇌질환 예방 또는 치료 효과, 바람직하게는, 아밀로이드 분해 효과를 갖는 의약외품 조성물은 다른 성분들을 기타 의약외품의 제형 또는 사용목적 등에 따라 임의로 선정하여 배합할 수 있다. 유효 성분의 혼합량은 사용목적에 따라 적합하게 결정될 수 있고, 예를 들면 점증제, 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제, 및 담체 등을 포함할 수 있다. 상기 조성물의 함량은 총 중량을 기준으로 각각 0.0001 내지 10 중량%인 것이 바람직하고, 10 중량%를 초과하는 경우에는 조성물 제조시 안정성이 떨어지며, 0.0001 중량% 미만일 경우에는 그 효과가 미미하다는 단점이 있다.
본 발명의 설트라린을 유효성분으로 포함하는 의약외품 조성물은 세포에 대한 독성 및 부작용이 거의 없어 의약외품 재료로서 유용하게 사용될 수 있다. 또한, 본 발명은 설트라린 및 이의 약학적으로 허용 가능한 염으로 이루어진 군에서 선택되는 하나 이상을 유효성분으로 포함하는 퇴행성 뇌질환 예방 또는 치료, 바람직하게는, 아밀로이드 분해 효과를 갖는 화장료 조성물을 제공한다. 본 발명의 화장료 조성물에 포함되는 성분은 유효 성분으로서의 설트라린 및/또는 이의 약학적으로 허용 가능한 염 이외에 화장품 조성물에 통상적으로 이용되는 성분들을 포함하며, 예컨대 항산화제, 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제, 그리고 담체를 포함한다.
본 발명의 화장료 조성물은 당업계에서 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있으며, 예를 들어, 용액, 현탁액, 유탁액, 페이스트, 겔, 크림, 로션, 파우더, 비누, 계면활성제-함유 클린싱, 오일, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션 및 스프레이 등으로 제형화될 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명은 설트라린 및 이의 약학적으로 허용 가능한 염으로 이루어진 군에서 선택되는 하나 이상을 유효성분으로 포함하는 퇴행성 뇌질환 예방 또는 치료, 바람직하게는, 아밀로이드 분해 효과를 갖는 건강기능성 식품 조성물을 제공한다. 본 발명에 따른 식품 조성물은 당업계에 공지된 통상적인 방법에 따라 다양한 형태로 제조할 수 있다. 일반 식품으로는 이에 한정되지 않지만 음료(알콜성 음료 포함), 과실 및 그의 가공식품(예: 과일통조림, 병조림, 잼, 마아말레이드 등), 어류, 육류 및 그 가공식품(예: 햄, 소시지 콘비이프 등), 빵류 및 면류(예: 우동, 메밀국수, 라면, 스파게이트, 마카로니 등), 과즙, 각종 드링크, 쿠키, 엿, 유제품(예: 버터, 치이즈 등), 식용 식물 유지, 마아가린, 식물성 단백질, 레토르트 식품, 냉동식품, 각종 조미료(예: 된장, 간장, 소스 등) 등에 본 발명의 설트라린을 첨가하여 제조할 수 있다. 또한, 영양보조제로는 이에 한정되지 않지만 캡슐, 타블렛, 환 등에 본 발명의 설트라린을 첨가하여 제조할 수 있다. 또한, 건강기능식품으로는 이에 한정되지 않지만 예를 들면, 본 발명의 설트라린 자체를 차, 쥬스 및 드링크의 형태로 제조하여 음용(건강음료)할 수 있도록 액상화, 과립화, 캡슐화 및 분말화하여 섭취할 수 있다. 또한, 본 발명의 설트라린을 식품 첨가제의 형태로 사용하기 위해서는 분말 또는 농축액 형태로 제조하여 사용할 수 있다. 또한, 본 발명의 설트라린과 퇴행성 뇌질환 예방 또는 치료 효과가 있다고 알려진 공지의 활성 성분과 함께 혼합하여 조성물의 형태로 제조할 수 있다.
본 발명의 설트라린을 건강음료로 이용하는 경우, 상기 건강음료 조성물은 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로 함유할 수 있다. 상술한 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드; 말토스, 슈크로스와 같은 디사카라이드; 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드; 자일리톨, 소르비톨, 에리트리톨 등의 당알콜일 수 있다. 감미제는 타우마틴, 스테비아 추출물과 같은 천연 감미제; 사카린, 아스파르탐과 같은 합성 감미제 등을 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 mL 당 일반적으로 약 0.01~0.04 g, 바람직하게는 약 0.02~0.03 g 일 수 있다.
또한, 본 발명의 설트라린은 항스트레스, 항우울 또는 항불안 효과를 갖는 건강기능식품의 유효성분으로 함유될 수 있는데, 그 양은 아밀로이드 분해 효과를 달성하기에 유효한 양으로 특별히 한정되는 것은 아니나, 전체 조성물 총 중량에 대하여 0.01 내지 100 중량%인 것이 바람직하다. 본 발명의 식품 조성물은 설트라린과 함께 퇴행성 뇌질환의 예방 또는 치료 효과가 있는 것으로 알려진 다른 활성 성분과 함께 혼합하여 제조될 수 있다. 상기 외에 본 발명의 건강식품은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산, 펙트산의 염, 알긴산, 알긴산의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올 또는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 건강식품은 천연 과일주스, 과일주스 음료, 또는 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 혼합하여 사용할 수 있다. 이러한 첨가제의 비율은 크게 중요하진 않지만 본 발명의 조성물 100 중량부당 0.01 ~ 0.1 중량부의 범위에서 선택되는 것이 일반적이다.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예를 통하여 쉽게 이해될 것이다. 본 발명은 여기서 설명하는 실시예에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예에 의해 본 발명이 제한되어서는 안된다.
먼저, 본 발명의 일 실시예에 따른 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물의 오토파지 유도 및 이로 인한 퇴행성 뇌질환 예방 또는 치료용 약리효과를 입증하기 위하여, 다음과 같이 실험을 수행하였다. 존스홉킨스 약물 라이브러리(JHDL)로부터 획득한 2,386 개의 화합물로부터 본 발명의 약학적 조성물인 설트라린을 스크리닝하였다.
도 1a 내지 도 1g는 본 발명의 일 실시예에 따른 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물인 설트라린의 오토파지 유도에 대한 실험 이미지들이다. 도 1a 및 도 1b는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 오토파지 유도를 면역형광염색법(immunofluorescence staining)에 의하여 관찰한 것이고, 도 1c는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 자가식포에 대한 오토파지 유도를 MDC 형광 염색법으로 촬영한 이미지 및 그래프이다. 또한, 도 1d는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 LC3-Ⅱ 및 p62 에의 영향을 살펴보기 위한 면역블롯팅 실험 결과이다. 도 1e는 본 발명의 일 실시예에 따른 약학적 조성물의 E64D 존재여부에 따른 오토파지 유도 정도를 살펴보기 위한 것이고, 도 1f는 본 발명의 일 실시예에 따른 약학적 조성물을 처리한 샘플을 GFP 및/또는 mRFP 형광법으로 관찰한 이미지이다. 도 1g는 본 발명의 일 실시예에 따른 약학적 조성물의 리소좀 활동성을 조사하기 위해 아크리딘 오렌지 염색법으로 살펴본 결과이다.
일 실시예에서, 설트라린에 의한 오토파지의 유도는 LC3 면역형광염색법에 의하여 입증될 수 있다. 도 1a를 참조하면, 샘플에 아무런 처리도 하지 아니한 비교군(Control), 인다트랄린(Indatraline)을 처리한 실험군(Inda), 및 본 발명의 약학적 조성물인 설트라린을 처리한 실험군(Sert)에 LC3 에 대한 면역형광염색법을 수행한 결과, 비선택적 모노아민 전달 억제제로부터 오토파지 유도 및 항우울제로 알려진 인다트랄린으로 처리된 경우와 유사하게 설트라린으로 처리된 세포들도 세포질 내에서 LC3가 유도됨을 확인할 수 있다. 또한, 도 1b를 참조하면, 설트라린을 각각 0.1, 2, 5 uM 을 투여하거나 비교군으로 설트라린을 투여하지 아니한 샘플에 대하여 세포질 내에서 LC3의 유도량을 측정한 결과, 설트라린은 투여량에 비례하여 세포질 내에서 LC3를 유도시키는 것을 확인할 수 있다.
일 실시예에서, 설트라린에 의한 오토파지의 유도는 자가식포(autophagic vacuoles)와 결합하는 형광 염료인 MDC(monodansylcadaverine) 염색법을 이용하여 상기 자가식포를 염색하여 조사할 수 있다. 도 1c를 참조하여 자가식포에 대하여 어떠한 약학적 조성물도 처리하지 아니한 비교군(Control), 인다트랄린을 처리한 세포들(Inda), 및 설트라린를 처리한 세포들(Sert)의 LC3 발현을 살펴보면, 인다트랄린을 처리한 세포들과 설트라린을 처리한 세포들 모두 LC3 가 발현됨을 알 수 있다. 또한, 인다트릴란 및 설트라린을 처리한 세포들 각각에 대하여 MDC 염색법을 수행한 결과, 설트라린을 처리한 세포에서 인다트릴린을 처리한 세포에서보다 약 1.5 배 이상의 LC3 가 발현됨을 확인하였다. 즉, 설트라린의 자가식포에 대한 오토파지 유도에 대한 효과가 인다트릴린에 비하여 현저하게 우수함을 알 수 있다.
상기 약학적 조성물이 단백질 턴-오버 및 오토파지의 운동성을 촉발시키는지 여부를 조사하기 위하여 이용가능한 다양한 방법들이 자가소화 작용퇴화(autophagic degradation)를 발견하고, 오토파직 플럭스(autophagic flux)를 모니터링하기 위하여 이용되었다. 먼저, 리소좀-의존 방식을 통하여 어느 정도의 오토파지 기질들이 분해되었는지를 살펴보는 방법으로 기본적인 시간에 따른 면역블롯팅 방법으로 LC3-Ⅱ 및 p62 레벨을 측정하였다. LC3-Ⅱ 및 p62 는 오토파지 중에만 선택적으로 분해되기 때문에, 이들의 분해는 오토파지 플럭스를 평가하기 위해 널리 이용된다.
도 1d를 참조하면, 본 발명의 일 실시예에 따른 약학적 조성물인 설트라린을 처리한 경우(Sert), 24 시간동안 LC3-Ⅱ 및 p62 의 레벨이 급격하게 증가되어 48시간째 피크를 보이고, 이후 72시간에는 감소됨을 볼 수 있다. 이는 상기 LC3-Ⅱ 및 p62 단백질의 분해가 오토파지의 뒷 단계에서 일어남을 나타낸다. 반면, V-ATPase 억제제인 바필로마이신 A(Baf)는 24 시간 내에 LC3-Ⅱ 및 p62 의 레벨을 증가시키고, 72시간의 후처리 시간동안 상기 두 종류의 단백질들이 높은 레벨로 유지되는 것을 관찰할 수 있다. 이는 상기 바필로마이신 A가 오토파지 플럭스를 억제하기 때문이다. 따라서, 본 발명의 약학적 조성물이 오토파지를 유도하는 것을 확인할 수 있다.
또한, 다른 실시예에서, 리소좀 프로테아제 억제제인 E64D 의 존재 및 비존재 하에서 LC3-Ⅱ 레벨에 대한 상기 약학적 조성물인 설트라린의 효과를 조사하였다. 만일 상기 약학적 조성물의 처리가 결과적으로 LC3-Ⅱ의 정상적인 플럭스 상태를 나타낸다면, 프로테아제 억제제만을 처리하는 경우보다 상기 약학적 조성물과 및 리소좀 프로테아제 억제제를 함께 처리하는 경우 LC3-Ⅱ의 발현이 더 증가할 수 있다.
도 1e를 참조하면, E64D와 본 발명의 일 실시예에 따른 약학적 조성물을 함께 처리하는 경우(도 1e의 오른쪽 Sert)는 상기 약학적 조성물만을 처리하는 경우(도 1e의 왼쪽 Sert)와 비교하면, 상기 약학적 조성물과 E64D를 함께 처리하는 경우의 LC3-Ⅱ 레벨이 더욱 증가하므로, 이는 상기 약학적 조성물에 의한 오토파지 플럭스의 활성을 나타내는 것이다. 반면, 바필로마이신 A(Baf)의 경우, E64D의 존재 여부와 관계없이 LC3-Ⅱ 발현 정도는 유사하다. 따라서, 본 발명의 약학적 조성물인 설트라린은 프로테아제 억제제와 함께 처리하는 경우 오토파지 플럭스의 활성을 더 증가시킴을 알 수 있다.
또한, mRFP-LC3 및 GFP-LC3 사이의 다른 pH 안정도에 기초하여 중성 오토파고좀으로부터 산성의 오토파고좀으로의 변화를 시각화하기 위하여 mRFP/mCherry-GFP 로 더블 태깅된 LC3를 이용할 수 있다. mRFP의 형광은 로소좀 내에서도 상대적으로 안정화된 반면, GFP 형광은 산성 물질 내에서는 불안정하다. 따라서, 오토파지 플럭스는 오토파고좀에 의한 녹색 및 적색 형광이 국지 영역에서 감소하고 오토로소좀에 의한 적색 형광이 증가하는 것을 관찰함으로써 확인할 수 있다. 도 1f를 참조하면, 바필로마이신 A, 인다트랄린, 설트라린을 처리한 샘플들에 대하여 GFP, mRFP, 및 GFP와 mRFP를 모두 처리하였으며, 본 발명의 일 실시예에 따른 약학적 조성물인 설트라린을 처리한 경우에는 적색 형광(R value=0.517)을 증가시키나, 바필로마이신 A를 처리하는 경우에는 HUVEC 내의 노란색 형광(R value=0.943)을 축적시킬 수 있다. 그러므로, 본 발명의 약학적 조성물인 설트라린은 오토파지를 크게 유도함을 알 수 있다.
일 실시예에서는, 리소좀의 역할 및 신뢰도를 조사하기 위한 분석 방법인 아크리딘 오렌지 염색을 이용하여 리소좀 활동성을 조사하였다. 도 1g를 참조하면, 설트라린 처리는 아크리딘 오렌지의 밀도를 현저하게 증가시키며, 이는 리소좀 활동성을 활성화함으로써 설트라린은 오토파지 플럭스를 유도하는 것을 나타낸다. 이러한 결과들을 통하여 본 발명의 일 실시예에 따른 약학적 조성물은 오토파지 플럭스를 활성화시킴이 증명되었다.
또한, 상기 약학적 조성물의 오토파지 유도를 수반하는 시그날링 경로를 특정하기 위하여, 정규 경로에 대한 효과들을 조사하였다. AMPK-mTOR 정규 경로는 불충분한 세포 에너지를 생성함으로써 활성화되어 오토파지가 유도될 수 있다. 도 2a는 본 발명의 일 실시예에 따른 약학적 조성물의 HUVEC 내의 세포 ATP 레벨을 ATPlite 발광 분석 시스템(ATPlite luminescence assay system)으로 측정한 결과이다.
도 2a를 참조하면, 0 내지 360 분 동안 상기 약학적 조성물을 처리하는 경우, 시간에 비례하여 세포내의 ATP 레벨이 감소됨을 확인할 수 있다. 세포내의 AMP-ATP 비율의 증가는 AMPK 경로를 차례로 활성화시킨다. 각각 라파마이신, 인다트랄린, 및 설트라린을 처리한 샘플들에서 p-AMPK/AMPK 의 비율을 측정한 결과, 라파마이신을 처리한 샘플과 비교하여 인다트랄린 및 설트라린을 처리한 샘플들에서 상대적으로 높은 p-AMPK/AMPK 이 관찰됨을 확인할 수 있으며, 이는 AMPK 경로가 활성화됨을 나타낸다.
도 2b는 본 발명의 일 실시예에 따른 약학적 조성물이 mTOR/S6K 시그날링을 억제하는지 여부를 확인하기 위한 면역블롯팅 실험 결과이다. 도 2b를 참조하면, 상기 약학적 조성물은 AMPK 활성을 유도하여 mTOR 및 이의 다운스트림인 S6K의 인산화 레벨을 감소시켜 시그날링을 억제하는 것을 확인할 수 있으며, 상세하게는, p-mTOR/mTOR 의 상대비율이 라파마이신이나 인다트랄린을 처리한 경우에 비해 설트라린을 처리한 경우 낮음을 통하여 확인할 수 있다. 그러나, 라파마이신을 처리한 경우는 AMPK의 인산화 레벨에 영향을 주지 아니하고, 직접적으로 mTOR의 인산화를 억제하고 따라서 S6K의 인산화도 억제하는 것을 확인할 수 있다. 따라서, 상기 약학적 조성물의 효과는 라파마이신을 처리하는 경우와 구별되며, 상기 약학적 조성물은 AMPK의 확성을 유도하여 이의 다운스트림인 mTOR 및 S6K의 시그날링을 억제할 수 있다.
도 2c는 본 발명의 일 실시예에 따른 약학적 조성물인 설트라린의 EGFP-LC3 반점에 대한 영향을 관찰한 이미지들이다. 도 2c를 참조하면, 화합물 C의 처리는 라파마이신 유도 오토파지에 영향을 미치지 아니하는 크게 영향을 미치지 아니하는 반면, 화합물 C와 설트라린을 함께 처리함으로써 세포기질 내의 EGFP-LC3 반점이 현저하게 감소함을 확인할 수 있다.
도 2d는 본 발명의 일 실시예에 따른 약학적 조성물인 설트라린에 의한 오토파지 유도가 mTOR 상류의 시그날링 경로를 수반하는 것을 관찰한 결과 이미지 및 그래프들이다. 설트라린 유도 오토파지가 mTOR 상류의 시그날링 경로를 수반한다는 것을 조사하기 위하여, PI3K 억제제인 3-MA, PI3K/AKT 억제제인 워트마닌(wortmannin), 및 MEK/ERK 억제제인 PD98059를 포함하는 오토파지 억제제들이 설트라린 처리 1시간 전에 준비되었다. 도 2d를 참조하면, 상기 EGFP-LC3 양성 반점은 각각의 오토파지 억제제의 존재에도 불구하고 세포기질 내에 잔존함을 알 수 있다. 이러한 결과는 설트라린 유도 오토파지는 PI3K/AKT 및 MEK/ERK 시그날링 경로를 조절하지 않는다는 것을 나타내는 것이다.
최근, 오토파지 유도 및 리소좀의 생물속생설(biogenesis) 의 주요 조절자인 전사 인자 EB(TFEB)가 mTOR 시그날링 경로와 커뮤니케이션 하는 것으로 알려졌다. mTOR 가 활성화되어 V-ATPase/Regulator-Rag 단백질 콤플렉스의 형성을 거쳐 리소좀의 표면에 위치를 나타낼 때, 상기 형성된 단백질 콤플렉스는 TFEB를 인산화시키고, TFEB의 핵 전좌를 억제할 수 있으며, 타겟 염색체의 발현을 방지할 수 있다.
도 2e는 본 발명의 일 실시예에 따른 약학적 조성물이 상기 단백질 콤플렉스로부터의 mTOR 분리로 인한 TFEB의 전좌를 동작시키는 것을 조사하기 위하여 강화된 녹색 형광 단백질(EGFP)-TFEB 플라스미드를 HUVEC에 감염시킴으로써 직접적으로 TFEB의 핵 전좌를 관찰하였다. 도 2e를 참조하면, TFEB의 핵 전좌는 2 내지 24 시간 동안 상기 약학적 조성물을 처리하는 동안 감지되지 아니하였으나, TFEB 및 오토파지의 저분자(small molecule) 유도제로 알려진 MSL은 HUVEC 내에서 TFEB 핵 전좌를 유도함을 알 수 있다. 그러므로, 본 발명의 일 실시예에 따른 약학적 조성물은 TFEB 의 인산화를 억제하고 핵 전좌를 가능하게 하므로 타겟 염색체의 발현을 활성화시킬 수 있다.
도 2f는 본 발명의 일 실시예에 따른 약학적 조성물을 처리한 샘플의 오토파지 유도를 살펴보기 위한 웨스턴 블롯을 시행한 결과 이미지들이다. 실험을 위하여, 야생 타입 및 TFEB 를 없앤 헬라 세포(Hela cell)에 DMSO, 라파마이신, 또는 상기 약학적 조성물인 설트라린을 도 2f에 기재된 각각의 농도로 처리하고, 셀 추출물들을 오토파지를 살펴보기 위하여 웨스턴 블롯 분석을 수행하였다. 도 2f를 참조하면, 상기 약학적 조성물의 처리는 TFEB+/+ 및 TFEB-/- 헬라 세포들 모두에서 LC3-Ⅱ 변환을 유도하고 있다. 이는 상기 약학적 조성물이 TFEB에 독립적인 방법으로 오토파지를 유도함을 나타낸다.
산화적 인산화반응을 거치는 ATP 생성에서 미토콘드리아가 중요한 역할을 하고, 상기 약학적 조성물이 PI3K/AKT 및 MEK/ERK 시그날링 경로와 독립적으로 오토파지를 활성화시키는 것과 같이, 미토콘드리아의 외부 멤브레인에 존재하는 채널인 전위의존성 음이온 채널-1(Voltage-dependent anion channel-1, 이하 VDAC1 라고 지칭함)을 설트라린의 후보 타겟 물질로 선정하였다. VDAC1은 ATP를 전달함으로써 세포 물질 대사에 중요한 역할을 하고 다른 소형 대사 물질들은 외부 미토콘드리아 멤브레인을 지나 TOR 활성과 연관됨이 알려졌다.
최근, VDAC1의 저분자(small molecule) 길항제인 이트라코나졸은 AMPK/mTOR 시그날링 축을 제어함으로써 혈관생성의 주요한 억제제로서 발견되었다. VDAC1 과 설트라린 사이의 직접적인 상호작용이 어떠한 것인지 확인하기 위하여, 약물 친화 반응적 타겟 안정도(DARTS) 분석이 적용되었다.
도 3a는 본 발명의 일 실시예에 따른 약학적 조성물이 저분자(small molecule)와 결합함에 따른 단백질의 가수분해 민감도 변화를 나타내는 결과이다. 상기 가수분해 민감도 변화는 DARTS법을 이용하여 관찰되며, 상기 DARTS법은 저분자 결합에 따른 단백질의 가수분해 민감도에서의 변화를 이용하는 타겟 인식 및 입증을 위한 무표지 검출법이다. 도 3a를 참조하면, VDAC1 및 β-액틴에 대하여 설트라린을 처리한 후 프로나아제를 첨가하는 경우, VDAC1는 증가된 안정성을 나타내지만, 설트라린과 결합 친화도를 갖지 아니하는 단백질인 β-액틴은 설트라린 처리에 대해 단백질 가수분해 민감도가 변화하지 아니하므로, 프로나아제에 의하여 분해됨을 알 수 있다.
또한, 도 3b는 본 발명의 일 실시예에 따른 약학적 조성물이 다른 저분자(small molecule)와 결합함에 따른 단백질의 가수분해 민감도 변화를 나타내는 결과이다. 이 실험에서는, 항우울 활동과 관련있는 설트라린의 공지된 타겟 단백질인 세로토닌 재흡수 전달(SRT) 단백질을 이용하여 DARTS 분석을 시행하였다. 상기 세로토닌 재흡수 전달 단백질의 설트라린 유도 탈감작(desensitization)은 나노분자의 농도를 증명할 수 있다. 도 3b를 참조하면, 나노분자 농도에서 설트라린은 VDAC1가 아닌 상기 세로토닌 재흡수 전달 단백질의 프로나아제에 대해 20분 이상 안정성을 증가시킨다. 그러므로, 본 발명의 약학적 조성물(설트라린)은 VDAC1 보다 상기 세로토닌 재흡수 전달(SRT) 단백질에 더 큰 결합 친화도를 가질 수 있다.
그럼에도 불구하고, 이는 설트라린이 세포내의 VDAC1에 직접 결합하는 것을 증명할 수 있다. 도 3c 내지 도 3e는 본 발명의 일 실시예에 따른 약학적 조성물의 단백질 내의 결합 위치를 나타내는 이미지이다. 도 3c를 참조하면, 설트라린의 ATP 및 DIDS는 가장 안정된 상태에서 α-헬릭스 및 β-시트 사이의 VDAC1와 결합할 수 있고, 결합 모티브를 설트라린과 VDAC1 포켓 사이의 고-친화성 상호작용으로 묘사하였다. 리간드들은 도시된 수소 결합 표면상에 회색 막대로 표현하였고, 소수성 상호작용은 주황색으로, 정전적 상호작용은 보라색으로, 수소 결합은 녹색 및 하늘색으로 표시하였다.
도 3d 및 도 3e를 참조하면, VDAC1과 설트라린 사이의 수소 결합(H184, S196)과 소수성 상호작용(A17, V20)은 VDAC1 억제제인 ATP(d) 및 DIDS(e) 로서 VDAC1에 대하여 높은 결합력을 부여하는 것을 확인할 수 있다. 바람직하게는, 상기 약학적 조성물은 상기 전위의존성 음이온 채널인 VDAC1의 ATP 결합 도메인과 결합할 수 있고, 상기 ATP 결합 도메인의 아스파르트산(Aspartic acid) 12, 알라닌(Alanine) 17, 발린(Valine) 20, 히스티딘(Histidine) 184, 및 세린(Serine) 196 과 결합할 수 있다. 이와 같이, 상기 ATP 결합 도메인과 결합한 상기 약학적 조성물은 상기 ATP 결합 도메인을 억제함으로써 세포 내에서의 오토파지를 유도할 수 있다.
도 3f 및 도 3g는 본 발명의 일 실시예에 따른 약학적 조성물에 의한 AMPK/mTOR/S6K 시그날링의 조절이 VDAC1와의 직접 결합에 의해 시작되는지 실험한 결과이다. 이번 실험에서는 VDAC1 와일드-타입과 VDAC1-/- MEFs(Mouse Embryonic Fibroblasts)을 이용하여 수행하였고, 와일드-타입(WT MEFs) 및 VDAC1이 없는 MEFs(VDAC1-/-MEFs) 모두 라파마이신(Rapa)과 설트라린(Sert)를 처리하였다. 도 3f를 참조하면, 와일드-타입 MEFs에서 설트라린은 AMPK를 크게 활성화시켰으며, mTOR/S6K 인산화는 억제시킴을 알 수 있다. 반대로, VDAC1이 없는 MEFs에서는 라파마이신은 VDAC1 발현과 관계없이 mTOR의 활성을 여전히 억제하지만 설트라린은 AMPK/mTOR/S6K 시그날링을 조절하지 않는 것을 확인할 수 있다. 도 3g를 참조하면, 설트라린 처리시 와일드-타입의 MEFs에 비하여 VDAC이 없는 MEFs에서 EGFP-LC3의 반점이 현저하게 감소되었다.
도 3h는 본 발명의 일 실시예에 따른 약학적 조성물의 VDAC1에 대한 활성 의존도를 나타내기 위한 결과이다. 도 3h를 참조하면, 세포들은 48 시간 동안 설트라린으로 처리되었고, 세포 확산 및 미토콘드리아 활성이 평가되었다. 와일드-타입 MEFs 는 설트라린에 의하여 세포 확산이 지속적으로 억제되지만, VDAC1이 없는 MEFs에서는 10uM 정도로 설트라린을 많은 양으로 투여했을 때, 72시간 째에 50% 이상의 세포 확산이 지속됨을 확인할 수 있다. 따라서, VDAC1은 AMPK/mTOR/S6K 시그날링 및 오토파지 유도 활성을 조절하기 위한 설트라린의 생물학적으로 관련된 타겟 단백질일 수 있다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 약학적 조성물의 타우병증 치료효과에 대한 실험결과이다. 본 발명의 일 실시예 따른 약학적 조성물은 타우 단백질의 분해를 촉진하여 타우병증(taupathy)을 억제할 수 있으며, 따라서, 퇴행성 뇌질환의 예방 또는 치료효과를 제공할 수 있다. 타우 단백질은 오토파지를 통해 분해되는 것으로 알려졌고, 타우 집합체의 생성은 알츠하이머의 초기 단계에서 특히 중요하기 때문에 타우 단백질을 기질로서 이용하였다.
도 4a를 참조하면, 타우 및 길이를 줄인 타우(truncated tau)가 존재하는 샘플에 라파마이신 또는 설트라린을 처리하는 경우, 라파마이신 처리시 상기 타우 및 길이를 줄인 타우는 모두 감소함을 알 수 있다. 이러한 효과는 mTOR에 의존하는 오토파지를 유도함으로써 타우 병증의 진행을 약화시키기 때문이다. 라파마이신 처리시와 유사하게, 설트라린을 처리하는 것도 타우 및 길이를 줄인 타우를 현저하게 감소시킬 수 있다. 세포내의 타우 올리고머화를 시각화하고 정량화하기 위하여, 생체 분자 형광 상보법(BiFC)과 함께 타우 셀 라인을 이용하였다.
도 4b를 참조하면, 비너스 단백질의 아미노-말단 및 카르복실-말단 부분은 htau40에 독립적으로 융합되며, 정상적인 컨디션 하에서는 기저 형광 신호로 조사된다(1번째 레인). 그러나, 타우 올리고머화의 결과로 발생하는 것과 동일한 오카다 산과 같은 타우 고-인산화의 화학적 유도가 발생하는 경우 형광 신호는 강하게 발생할 수 있으므로, 타우 단백질이 존재하는 샘플들은 노란색 형광 물질을 보인다(2번째 레인). 반면, 라파마이신 또는 설트라린으로 처리된 타우-BiFC 세포들은 DMSO로 처리된 세포들과 달리 타우 집합체가 현저히 적게 발견되었다(3, 4번째 레인). 따라서, 본 발명의 약학적 조성물인 설트라린은 오토파지를 유도하여 단백질 독성 스트레스가 발생되는 동안의 타우 단백질의 분해를 촉진할 수 있다.
임상 약물 라이브러리에서 표현형에 기초하는 스크리닝은 효과적일 수 있으나, 저분자 활성의 주요 메커니즘을 확립하기 위해 오토파지 관련 질병의 치료를 위한 저분자들의 번역은 중요하다. 본 발명의 일 실시예에 따른 약학적 조성물인 설트라린은 항우울제로서 의약용도로 승인된 선택적 세로토닌 전달 억제제이다. 상기 설트라린은 본 명세서를 통하여 오토파지 유도를 위한 주요 물질임이 밝혀졌다. 상세하게는, 설트라린의 나노몰 농도 수준은 DARTS 분석에서 세로토닌 재흡수 전달자와 결합하기는 충분하지만, 오토파지를 일으키지는 아니한다.
도 5는 본 발명의 일 실시예에 따른 약학적 조성물의 오토파지 유도 방식을 나타내는 것이다. 설트라린 유도의 오토파지가 수행되는 분자적 메커니즘을 알기 위하여, 설트라린의 새로운 타겟 단백질으로서 미토콘드리아 외벽 멤브레인 단백질인 VDAC1에 대한 연구를 진행하였다. 도 5과 함께 상술한 실험예 및 실시예를 참조하면, 본 발명의 일 실시예에 따른 약학적 조성물인 설트라린은 VDAC1와 결합하여, 세포내의 ATP 레벨을 감소시키고, AMPK를 활성화하며, mTOR 를 억제함으로써, 오토파지를 유도할 수 있다. 또한, 다른 실시예에서는, 설트라린이 오토파지를 유도함으로써 효과적으로 타우 독성 효과를 감소시킬 수 있다.
또한, 화학적 변경없이 저분자들의 타겟 단백질들을 확인하기 위하여, 라벨 프리 방법론인 DARTS를 이용하였다. DARTS 웨스턴 분석을 포함하는 시스템 타겟 확인, 인실리코 도킹 시뮬레이션 및 VDAC1를 제거한 세포들의 실험에 의하여 VDAC1는 오토파지 유도 활성화를 위한 설트라린의 생물학적인 관련 타겟임을 알 수 있다.
이트라코나졸 및 DIDS와 같은 저분자 억제제들에 의한 VDAC1의 약학적 억제는 VDAC1과 미토콘드리아 물질 대사 사이의 표현형적인 연관 상태를 나타낼 수 있다. 또한, VDAC1의 억제는 Ca2+-조정되는 산화 스트레스 및 세포자멸사(Apoptosis)를 방지할 수 있다. 본 발명의 일 실시예에 따른 약학적 조성물은 인다트랄린과 구조적으로 유사하지만 상대적으로 높은 정도의 인산화를 진행하기 때문에, 인다트랄린 보다 VDAC1와 밀접하게 상호작용을 할 수 있다. 따라서, 상기 약학적 조성물은 HUVEC 및 SMC 에서의 오토파지 및 항증식성 활동에 있어서 인다트랄린 보다 나은 생물학적 활성을 제공할 수 있다.
또한, 다른 실시예에서, 오토파지를 유도하기 위한 본 발명의 일 실시예에 따른 약학적 조성물의 주요 타겟으로서 VDAC1를 확인하였으며, 이는 퇴행성 뇌질환의 예방 또는 치료에 활용될 수 있다. 세포자멸사와 독립적인 효과와 함께 설트라린의 VDAC1를 조절하는 오토파지는 세포독성이 없는 오토파지 치료법에 적용될 수 있다. 또한, 상기 설트라린의 타겟 단백질로서 VDAC1의 확인은 오토파지 관련 질병들을 위한 새로운 치료 물질의 발전을 촉진할 뿐만 아니라 오토파지 시그날링 및 오토파지 관련 질병들에서 VDAC1의 기능을 밝히기 위한 새로운 화학적 조사를 제공할 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (20)

  1. 하기 화학식 1로 표시되는 화합물 및 이의 약학적으로 허용 가능한 염으로 이루어진 군으로부터 선택되는 하나 이상을 유효성분으로 함유하는 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물.
    [화학식 1]
    Figure pat00004

    상기 화학식에서, R1은 C1-C3 알킬이고, R2 및 R3는 각각 독립적으로 수소 또는 할로겐이며, R2 및 R3는 동시에 수소가 아니다.
  2. 제 1 항에 있어서, 상기 화학식 1의 R1은 C1 알킬이고, R2 및 R3는 염소인 것을 특징으로 하는 약학적 조성물.
  3. 제 1 항에 있어서,
    상기 퇴행성 뇌질환은 헌팅턴병(Huntington's disease; HD), 파킨슨 병(Parkinson's disease; PD), 알츠하이머병(Alzheimer's disease; AD), 프리온병/ 인간 광우병(Prion disease), 근위축성 측삭경화증(amyotrophic lateral sclerosis; ALS) 및 이들의 조합으로 구성된 군으로부터 선택되는 질환인 것인, 약 학적 조성물.
  4. 제 1 항에 있어서,
    상기 화합물은 미토콘드리아의 전위의존성 음이온 채널 1(Voltage-dependent anion channel-1, VDAC1)과 결합하는 것을 특징으로 하는 약학적 조성물.
  5. 제 4 항에 있어서,
    상기 화합물은 상기 전위의존성 음이온 채널의 아스파르트산(Aspartic acid) 12, 알라닌(Alanine) 17, 발린(V aline) 20, 히스티딘(Histidine) 184, 및 세린(Serine) 196 과 결합하는 것을 특징으로 하는 약학적 조성물.
  6. 제 4 항에 있어서,
    상기 화합물은 상기 전위의존성 음이온 채널의 ATP 결합 도메인과 결합하여 상기 전위의존성 음이온 채널의 ATP 결합 도메인을 억제하여 오토파지를 유도하는 것을 특징으로 하는 약학적 조성물.
  7. 제 4 항에 있어서,
    상기 화합물은 상기 전위의존성 음이온 채널과의 수소 결합 및 소수성 상호작용에 의하여 상기 전위의존성 음 이온 채널과 결합하는 것을 특징으로 하는 약학적 조성물.
  8. 제 4 항에 있어서,
    상기 화합물은 상기 전위의존성 음이온 채널과의 결합으로 인한 오토파지를 유도함으로써 아밀로이드를 분해하는 것을 특징으로 하는 약학적 조성물.
  9. 제 4 항에 있어서,
    상기 화합물은 상기 전위의존성 음이온 채널과의 결합으로 인해 세포 내의 활성 단백질 키나아제(AMPK)의 발현을 활성화함으로써 오토파지를 유도하여 세포 내의 타우 단백질 응집체를 분해하는 것을 특징으로 하는 약학적 조성물.
  10. 하기 화학식 1로 표시되는 화합물 및 이의 약학 적으로 허용 가능한 염으로 이루어진 군으로부터 선택되는 하나 이상 을 유효성분으로 함유하는 퇴행성 뇌질환 개선용 기능성 식품 조성물.
    [화학식 1]
    Figure pat00005

    상기 화학식에서, R1은 C1-C3 알킬이고, R2 및 R3는 각각 독립적으로 수소 또는 할로겐이며, R2 및 R3는 동시에 수소가 아니다.
  11. 제 10 항에 있어서, 상기 화학식 1의 R1은 C1 알킬이고, R2 및 R3는 염소인 것을 특징으로 하는 기능성 식품 조성물.
  12. 제 10 항에 있어서,
    상기 퇴행성 뇌질환은 헌팅턴병(Huntington's disease; HD), 파킨슨 병(Parkinson's disease; PD), 알츠하이머병(Alzheimer's disease; AD), 프리온병/ 인간 광우병(Prion disease), 근위축성 측삭경화증(amyotrophic lateral sclerosis; ALS) 및 이들의 조합으로 구성된 군으로부터 선택되는 질환인 것을 특징으로 하는 기능성 식품 조성물.
  13. 제 10 항에 있어서,
    상기 화합물은 미토콘드리아의 전위의존성 음이온 채널(Voltage-dependent anion channel-1, VDAC1)과 결합하는 것을 특징으로 하는 기능성 식품 조성물.
  14. 제 13 항에 있어서,
    상기 전위의존성 음이온 채널은 ATP 결합 도메인을 포함하며,
    상기 ATP 결합 도메인은 아스파르트산(Aspartic acid) 12, 알라닌(Alanine) 17, 발린(Valine) 20, 히스티딘(Histidine) 184, 및 세린(Serine) 196을 포함하는 것을 특징으로 하는 기능성 식품 조성물.
  15. 제 14 항에 있어서,
    상기 화합물은 상기 ATP 결합 도메인과 결 합하여 상기 ATP 결합 도메인의 발현을 억제함으로써 오토파지를 유 도하는 것을 특징으로 하는 기능성 식품 조성물.
  16. 제 13 항에 있어서,
    상기 화합물은 상기 전위의존성 음이온 채널과의 수소 결합 및 소수성 상호작용에 의하여 상기 전위의존성 음 이온 채널과 결합하는 것을 특징으로 하는 기능성 식품 조성물.
  17. 제 13 항에 있어서,
    상기 화합물은 상기 전위의존성 음이온 채널과 결합하여 오토파지를 유도함 으로써 아밀로이드를 분해하는 것을 특징으로 하는 기능성 식품 조성물.
  18. 제 13 항에 있어서,
    상기 화합물은 상기 전위의존성 음이온 채널과 결합하여 오토파지를 유도함 으로써 세포 내의 타우 단백질 응집체를 분해하는 것을 특징으로 하는 기능성 식품 조성물.
  19. 하기 화학식 1로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염을 대상체에 투여하는 단계를 포함하는 대상체 내의 변성 단백질 분해 방법.
    [화학식 1]
    Figure pat00006

    상기 화학식에서, R1은 C1-C3 알킬이고, R2 및 R3는 각각 독립적으로 수소 또는 할로겐이며, R2 및 R3는 동시에 수소가 아니다.
  20. 제 19 항에 있어서, 상기 화학식 1의 R1은 C1 알킬이고, R2 및 R3는 염소인 것을 특징으로 하는 약학적 조성물.
KR1020200057124A 2019-05-13 2020-05-13 오토파지 활성을 통한 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물 KR20200131182A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/610,879 US20220202743A1 (en) 2019-05-13 2020-05-13 Pharmaceutical composition for preventing or treating degenerative brain disease using autophagy activation
PCT/KR2020/006306 WO2020231185A1 (ko) 2019-05-13 2020-05-13 오토파지 활성을 통한 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물
JP2021568096A JP2022532638A (ja) 2019-05-13 2020-05-13 オートファジー活性を通じた退行性脳疾患の予防または治療用薬学的組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190055857 2019-05-13
KR1020190055857 2019-05-13

Publications (1)

Publication Number Publication Date
KR20200131182A true KR20200131182A (ko) 2020-11-23

Family

ID=73680255

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200057124A KR20200131182A (ko) 2019-05-13 2020-05-13 오토파지 활성을 통한 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물

Country Status (3)

Country Link
EP (1) EP3970710A4 (ko)
KR (1) KR20200131182A (ko)
CN (1) CN114340607A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240107016A (ko) 2022-12-29 2024-07-08 한국화학연구원 티아가빈을 유효성분으로 포함하는 신경보호용 약학적 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694009B2 (en) 2002-12-27 2017-07-04 Otsuka Pharmaceutical Co., Ltd. Carbostyril derivatives and serotonin reuptake inhibitors for treatment of mood disorders

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597826A (en) * 1994-09-14 1997-01-28 Pfizer Inc. Compositions containing sertraline and a 5-HT1D receptor agonist or antagonist
WO2006001877A2 (en) * 2004-04-13 2006-01-05 Myriad Genetics, Inc. Combination treatment for neurodegenerative disorders comprising r-flurbiprofen
US20160367503A1 (en) * 2015-06-20 2016-12-22 Cary Erwin Fechter Combination Medication for Neuro-Degenerative Diseases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694009B2 (en) 2002-12-27 2017-07-04 Otsuka Pharmaceutical Co., Ltd. Carbostyril derivatives and serotonin reuptake inhibitors for treatment of mood disorders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240107016A (ko) 2022-12-29 2024-07-08 한국화학연구원 티아가빈을 유효성분으로 포함하는 신경보호용 약학적 조성물

Also Published As

Publication number Publication date
EP3970710A1 (en) 2022-03-23
EP3970710A4 (en) 2023-06-14
CN114340607A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
DE69524628T2 (de) Verfahren und mittel zur inhibierung von proteinkinasen
CN102481271A (zh) 利用表观代谢转变剂、多维细胞内分子或环境影响剂治疗代谢障碍的方法
JP7287631B2 (ja) 食品用組成物
Xue et al. HGSD attenuates neuronal apoptosis through enhancing neuronal autophagy in the brain of diabetic mice: The role of AMP-activated protein kinase
KR20150086357A (ko) 항인지증 및 학습 기억 개선제
Li et al. Protective effect of arctigenin against MPP+ and MPTP-induced neurotoxicity
IL295753A (en) Cannabidiol compounds and therapeutic uses
Yang et al. Piperlonguminine is neuroprotective in experimental rat stroke
KR20200131182A (ko) 오토파지 활성을 통한 퇴행성 뇌질환 예방 또는 치료용 약학적 조성물
US20220202743A1 (en) Pharmaceutical composition for preventing or treating degenerative brain disease using autophagy activation
EP3218721B1 (en) Compounds for use as imaging agents
Zhang et al. Design, synthesis and biological evaluation of novel osthole-based derivatives as potential neuroprotective agents
Zhang et al. Liraglutide provides neuroprotection by regulating autophagy through the AMPK-FOXO3 signaling pathway in a spinal contusion injury rat model
EP3970711A1 (en) Composition for preventing or treating cardio-cerebrovascular diseases comprising autophagy activator as active ingredient
KR101491763B1 (ko) 1-(2-((4-클로로-2-메톡시-5-메칠페닐)아미노)-2-옥소에틸)-n-(2-하이드록시페닐)-피페리딘-4-카복사마이드 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 프리온 질환 예방 및 치료용 약학적 조성물
KR20200080892A (ko) 피페로날을 유효성분으로 함유하는 근력강화, 근육증강, 근육분화, 근육재생, 근감소증 억제효과를 갖는 조성물
KR102374440B1 (ko) 후코스테롤을 유효성분으로 함유하는 난소암 예방 또는 치료용 조성물
US20220265579A1 (en) Composition for preventing or treating cardio-cerebrovascular disease comprising autophagy activator as active ingredient
JP6502603B2 (ja) 眼科用組成物及び機能性食品
WO2017124969A1 (zh) 一种二咖啡酰亚精胺环化衍生物及其用途
KR102274174B1 (ko) 알파피넨을 유효성분으로 함유하는 메스암페타민 중독 예방 또는 치료용 조성물
KR102478582B1 (ko) 에버닉산을 유효성분으로 함유하는 파킨슨 질환 예방 또는 치료용 조성물
KR102631480B1 (ko) 산달로레를 유효성분으로 포함하는 노화 억제용 조성물
KR20180119466A (ko) 비텍신을 유효성분으로 포함하는 항암 조성물
KR102415196B1 (ko) 살비아놀산 b를 유효성분으로 함유하는 암 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
E902 Notification of reason for refusal