KR20200106290A - 초소형 렌즈형 광섬유 프로브를 갖는 내시현미경 - Google Patents

초소형 렌즈형 광섬유 프로브를 갖는 내시현미경 Download PDF

Info

Publication number
KR20200106290A
KR20200106290A KR1020190024600A KR20190024600A KR20200106290A KR 20200106290 A KR20200106290 A KR 20200106290A KR 1020190024600 A KR1020190024600 A KR 1020190024600A KR 20190024600 A KR20190024600 A KR 20190024600A KR 20200106290 A KR20200106290 A KR 20200106290A
Authority
KR
South Korea
Prior art keywords
optical fiber
lens
fiber probe
probe
endoscope
Prior art date
Application number
KR1020190024600A
Other languages
English (en)
Other versions
KR102191673B1 (ko
Inventor
정기훈
김재범
황경민
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020190024600A priority Critical patent/KR102191673B1/ko
Publication of KR20200106290A publication Critical patent/KR20200106290A/ko
Application granted granted Critical
Publication of KR102191673B1 publication Critical patent/KR102191673B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/362Mechanical details, e.g. mountings for the camera or image sensor, housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

본 발명은 초소형 광섬유 프로브를 갖는 내시현미경에 관한 것으로, 내시경에 장착되는 카테터(catheter)로서 광학주사영상을 얻기 위해 렌즈형 광섬유를 사용하여 초소형으로 제작되는 광섬유 프로브를 갖는 내시현미경에 관한 것이다. 관심 영역의 광학 영상을 얻기 위한 광섬유 프로브를 포함하는 내시경으로서, 상기 광섬유 프로브는, 일단면에 렌즈가 구비된 광섬유; 상기 광섬유를 서로 수직하는 2축으로 구동시키는 구동기; 상기 광섬유의 단부에 일체로 구비되는 질량체; 및 상기 광섬유의 일측에 일체로 구비되고, 상기 2축 방향의 형상이 다른 비대칭 구조물;을 포함한다. 본 발명의 광섬유 프로브를 갖는 내시현미경은 별도의 렌즈를 사용하지 않으므로 광섬유 프로브의 길이가 짧게 형성되어서 내시경에 장착되어 인체 내로 삽입될 때 내시경의 탐색부가 과도하게 꺾이는 현상을 방지할 수 있다.

Description

초소형 렌즈형 광섬유 프로브를 갖는 내시현미경{ENDOMICROSCOPIC HAVING ULTRA COMPACT LENSED FIBER PROBE}
본 발명은 초소형 광섬유 프로브를 갖는 내시현미경에 관한 것으로, 보다 구체적으로는 내시경에 장착되는 카테터(catheter)로서 광학주사영상을 얻기 위해 렌즈형 광섬유를 사용하여 초소형으로 제작되는 광섬유 프로브를 갖는 내시현미경에 관한 것이다.
일반적으로 내시경은 직달경(直達鏡)이라 하여 하나의 통(筒)으로 이루어지며, 치료와 진단을 목적으로 인체 내부를 관찰하기 위해 환자의 체내에 삽입(체내에 삽입하는 예로는 구강을 통하여 삽입할 수도 있으며, 수술 부위를 절개하고 절개한 곳에 삽입할 수 있다)하여 의사가 환자의 장기를 직접 육안으로 보며 치료할 경우에 사용하게 된다. 요즘은 보다 정밀한 진단을 위하여 광을 스캐닝하여 인체 조직으로부터 오는 정보를 얻는 광학 영상 시스템과 결합하는 내시경에 대한 수요가 높아지고 있는 추세이다.
광섬유 프로브란, 광섬유를 사용하여 외부 영상을 획득하기 위한 장비로서, 촬영대상에 접근 및 조작이 용이하여 다양한 산업분야에 적용된다. 특히, 장비의 소형화가 용이하여, 의료용 스캐너 및 내시경에 장착되는 스캐너로 그 활용도가 높다.
종래의 내시경에 삽입되는 광섬유 프로브는 광섬유로부터 전달된 빛을 집속하기 위한 렌즈(예를 들어, graded index 렌즈) 또는 렌즈 세트를 사용함으로 인해 패키징 사이즈가 크고, 광섬유와 렌즈 사이의 광정렬이 어긋나면 바이오 이미지의 해상도가 저하되고, 렌즈가 고정된 위치에 배치되기 때문에 개구수와 관측 범위가 제한되는 문제점이 있다. 또한, 이러한 별도의 렌즈 사용으로 인해 프로브를 제작하는 비용이 많이 드는 문제점이 있다.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 내시경에 장착되어 사용이 용이할 수 있도록 출력단면에 렌즈가 일체로 형성된 광섬유를 사용하여 작은 단면적뿐만 아니라 짧은 길이로 제작되는 광섬유 프로브를 갖는 내시현미경을 제공하는 것을 목적으로 한다.
또한, 인체 내부의 조사 대상물의 해상도가 높은 광학 영상을 얻기 위하여 렌즈형 광섬유의 파라미터들이 조절되고, 교차 결합 현상이 일어나지 않는 2차원 스캐닝이 가능한 광섬유 프로브를 갖는 내시현미경 및 이를 채용한 영상 기기를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 광섬유 프로브는 일단에 렌즈가 구비된 광섬유; 상기 광섬유를 서로 수직하는 2축으로 구동시키는 구동기; 상기 광섬유의 단부에 일체로 구비되는 질량체; 및 상기 광섬유의 일측에 일체로 구비되고, 상기 2축 방향의 형상이 다른 비대칭 구조물;을 포함한다.
또한, 상기 질량체 및 비대칭 구조물이 일체로 구비되는 광섬유와 상기 구동기를 수용하는 하우징을 더 포함하는 것을 특징으로 한다.
또한, 상기 광섬유는 코어가 있는 광섬유, 코어가 없는 광섬유 및 렌즈가 일체로 형성되는 것을 특징으로 한다.
또한, 상기 렌즈는 구면(spherical) 렌즈, 비구면(aspherical) 렌즈 및 이중 곡률(double curvature)을 가지는 렌즈 중에서 선택되는 어느 하나의 굴절면으로 형성되는 것을 특징으로 한다.
또한, 상기 질량체 및 상기 비대칭 구조물은 코어가 없는 광섬유로 이루어지는 것을 특징으로 한다.
또한, 상기 비대칭 구조물이 상기 광섬유의 상기 2축 각각의 공진 주파수를 서로 다르게 분리시킴으로써 상기 광섬유 프로브가 래스터 또는 스파이럴 또는 리사쥬 스캐닝을 수행하는 것을 특징으로 한다.
또한, 상기 광섬유 프로브의 스캔 속도 및 스캔 범위는 상기 질량체가 광섬유에 일체로 구비되는 위치 및 상기 질량체의 질량에 따라 제어되는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 광섬유 프로브를 갖는 내시경은 관심 영역의 광학 영상을 얻기 위한 광섬유 프로브를 포함하는 내시경으로서, 상기 광섬유 프로브는, 일단에 렌즈가 구비된 광섬유; 상기 광섬유를 서로 수직하는 2축으로 구동시키는 구동기; 상기 광섬유의 단부에 일체로 구비되는 질량체; 상기 광섬유의 일측에 일체로 구비되고, 상기 2축 방향의 형상이 다른 비대칭 구조물; 및 상기 질량체 및 비대칭 구조물이 일체로 구비되는 광섬유와 상기 구동기를 수용하는 하우징;을 포함하는 것을 특징으로 한다.
또한, 상기 광섬유는 코어가 있는 광섬유, 코어가 없는 광섬유 및 렌즈가 일체로 형성되는 것을 특징으로 한다.
또한, 상기 렌즈는 구면(spherical) 렌즈, 비구면(aspherical) 렌즈 및 이중 곡률(double curvature)을 가지는 렌즈 중에서 선택되는 어느 하나의 굴절면으로 형성되는 것을 특징으로 한다.
또한, 상기 질량체 및 상기 비대칭 구조물은 광섬유로 이루어지는 것을 특징으로 한다.
또한, 상기 비대칭 구조물이 상기 광섬유의 상기 2축의 각각에 대한 공진 주파수를 서로 다르게 분리시킴으로써 상기 광섬유 프로브가 래스터 또는 스파이럴 또는 리사쥬 스캐닝을 수행하는 것을 특징으로 한다.
또한, 상기 광섬유 프로브의 스캔 속도 및 스캔 범위는 상기 질량체가 광섬유에 일체로 구비되는 위치 및 상기 질량체의 질량에 따라 제어되는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 영상 기기는 광원부; 상기 광원부에서의 광을 검사 대상물에 스캐닝 조사하는 것으로, 제8항 내지 제13항 중 어느 한 항의 광섬유 프로브를 갖는 내시경; 상기 검사 대상물로부터 발생된 신호를 수신하는 수신부; 및 상기 수신부에서 수신된 신호를 처리하여 영상 신호를 생성하는 신호처리부;를 포함한다.
또한, 상기 신호처리부는 공초점 현미경 또는 OCT 또는 이광자 현비경 방법을 사용하여 수신된 신호를 처리한다.
본 발명의 광섬유 프로브를 갖는 내시현미경은 별도의 렌즈를 사용하지 않으므로 저비용 제작이 가능하며 광섬유 프로브의 길이가 짧게 형성되어서 광섬유 프로브가 기존의 내시경 내에 결합되어 내시경이 인체 내로 삽입될 때 탐색부가 과도하게 꺾이는 현상을 방지할 수 있고, 단일 광섬유를 사용하여 내시경의 직경을 최소화할 수 있어서 인체 내 삽입이 용이하다.
또한, 본 발명의 광섬유 프로브는 렌즈 일체형으로 제작되어 광정렬이 필요없고 이러한 광정렬 불량으로 인한 광 손실이 적고, 렌즈형 광섬유의 파라미터들이 조절되어 구성됨으로써 해상도가 우수한 광학 영상을 획득할 수 있다.
또한, 본 발명의 광섬유 프로브는 광섬유의 유효 질량을 높이는 수단 및 공진 주파수 변조 수단이 광섬유에 일체로 형성됨으로써 교차 결합 현상 없이 2차원 스캐닝을 원활히 수행할 수 있다.
도 1은 본 발명의 일 실시예에 따른 광섬유 프로브를 갖는 내시경의 부분 사시도이다.
도 2는 본 발명의 일 실시예에 따른 광섬유 프로브의 사시도이다.
도 3은 본 발명의 일 실시예에 따른 광섬유 프로브의 단면도이다.
도 4는 도 3의 A 부분의 확대도이다.
도 5는 본 발명의 광섬유의 제조과정을 나타내는 공정도이다.
도 6은 본 발명의 일 실시예에 따른 광섬유 프로브의 광 특성 결과를 나타내는 도면이다.
도 7은 본 발명에 따른 광섬유 프로브의 질량체의 다양한 형태를 도시한 단면도이다.
도 8은 본 발명에 따른 광섬유 프로브의 렌즈 굴절면의 다양한 형상을 도시한 단면도이다.
도 9는 본 발명에 따른 광섬유 프로브의 비대칭 구조물의 형성 과정을 도시한 공정도이다.
도 10은 본 발명의 광섬유 프로브를 갖는 내시경을 채용한 영상 기기의 블록도이다.
이하, 상기한 바와 같은 구성을 가지는 본 발명의 실시예들을 첨부된 도면을 참고하여 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 광섬유 프로브를 갖는 내시경의 사시도를 나타낸다. 일반적인 내시경(1000)은 관 형상의 몸체와 몸체의 일단에 조작부와 몸체의 타단에 인체 내 삽입되어 관찰, 검사 및 수술의 역할을 수행하는 탐색부를 포함한다. 도 1은 본 발명의 일 실시예에 따른 광섬유 프로브를 갖는 내시경의 일단에 형성된 탐색부를 도시하며, 본 발명의 일 실시예에 따른 광섬유 프로브를 갖는 내시경(1000)은 광섬유 프로브(100), 조명(200), 카메라(300), 노즐(400)을 포함한다. 상기 광섬유 프로브(100)는 검사 대상물의 광학주사영상을 얻기 위한 구성이다. 상기 내시경은 인체 내의 관심 영역을 관찰 및 진단하기 위하여 좁은 구강 및 대장 등에 용이하게 삽입되어야하기 때문에, 내시경의 탐색부에 형성된 상기의 구성들은 단면적이 작게 형성되어야 할뿐만 아니라 삽입 시 꺾이거나 구부러지지 않기 위해 단부에 형성되는 단단한 구성들의 길이도 짧아야 되는 조건을 만족하여야 한다. 아래에서, 상기 조건을 만족하는 초소형으로 제작되는 광섬유 프로브(100)에 대하여 도면을 참조하여 설명한다.
도 2는 본 발명의 일 실시예에 따른 광섬유 프로브의 사시도이고, 도 3은 본 발명의 일 실시예에 따른 광섬유 프로브의 단면도이고, 도 4는 도 3의 A 부분의 확대도를 나타낸다.
도 2 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 광섬유 프로브(100)는 연성 또는 경성 내시경의 탐색부에 장착 가능하고, 검사 대상물의 광학 주사 영상 획득을 위한 스캐너로 사용되고, 광섬유(110), 구동기(120), 질량체(130), 비대칭 구조물(140) 및 하우징(150)을 포함한다.
상기 구동기(120)는 상기 광섬유(110)에 구동력을 가하기 위한 구성으로서, 상기 광섬유(110)에서 출력된 광이 검사 대상물의 표면을 이루는 평면 내의 서로 수직하는 2축(여기서, X축 및 Y축이라 한다) 방향 각각으로 검사 대상물의 표면을 스캐닝하도록 X축 및 Y축 방향으로 광섬유에 구동력을 가한다. 상기 구동기(120)는 압전소자로 구성된 튜브 형태로 구성될 수 있으나, 본 발명은 이에 한정되지 아니한다.
상기 하우징(150)은 질량체(130) 및 비대칭 구조물(140)이 일체로 구비되는 광섬유(110) 및 구동기(120)를 수용하고, 원통형의 튜브 형상을 지닌다. 상기 하우징은 광섬유 프로브가 내시경에 장착되도록 스테인리스강(stainless steel) 튜브로 구성될 수 있으며, 이에 한정되지 않는다. 광섬유(110) 및 구동기(120)를 수용하여 하우징(150)에 패키징하면, 광섬유 프로브(100)는 원통형의 형상을 지니고 외경(S) 2.6mm이고 길이(L)가 20mm로 형성될 수 있다. 이러한 사이즈를 가지는 광섬유 프로브(100)는 경성 내시경에 장착 가능하며, 연성 내시경에 장착되는 경우 내시경의 탐색부가 인체 내로 삽입될 때 과도하게 구부러져 꺾이는 현상이 발생하지 않고 삽입이 용이하다.
상기 질량체(130)는 광섬유의 단부에 구비되어, 광섬유(110)의 유효질량을 증가시켜 광섬유의 스캔 속도(전력 효율 측면에서 구동기의 구동 주파수는 구동 대상 물체 즉, 광섬유의 공진주파수에 맞춤)를 광섬유를 투과한 광을 검출하는 디텍터 또는 수신부의 검출 속도(검출 최대 주파수)와 일치시키는 역할을 한다. 또한, 상기 질량체(130)는 광섬유(110)의 유효질량을 증가시켜 광섬유의 Q-factor(주파수 특성 곡선)를 증가시켜 광섬유가 미세한 구동력에도 높은 스캔 범위를 가지게 하는 역할을 한다. 따라서 광섬유 프로브(100)의 스캔 속도 및 스캔 범위는 질량체(130)가 광섬유(110)의 단부에 구비되는 위치 및 질량체의 질량에 따라 제어된다.
질량체가 없는 광섬유 프로브가 디텍터 등의 검출 속도와 일치되는 속도로 스캔하기 위해서는 광섬유가 길게 형성되어야 하지만, 질량체(130)의 상기 파라미터들을 조절하여 짧은 길이를 갖는 광섬유(110)에 구비시킨 본 발명의 광섬유 프로브(100)는, 스캔 속도를 디텍터 또는 수신부의 검출 속도와 일치시켜 높은 해상도의 광학 주사 영상을 얻을 수 있고, 미세한 구동력으로도 넓은 스캔 범위(즉, 스캔 광의 시야(FOV))를 가질 수 있는 이점이 있다.
본 발명에 따른 상기 질량체(130)는 광섬유(110)의 단부에 일체로 구비되고, 코어가 없는 광섬유로 이루어진다. 종래의 광섬유 프로브에 설치되는 질량체는 광섬유와 별개로 실리콘을 이용하여 제작됨으로써, 고비용의 반도체 공정이 필요하고 질량체가 광섬유에 장착되기 위해서 에폭시 등의 후공정을 사용함으로써 잘못 접착하게 되면 원래 원하던 특성을 가지지 못하는 제조공정 및 장착이 까다로운 단점이 있었다. 본 발명에서는 질량체(130)를 대구경을 갖는 코어가 없는 광섬유를 이용하여 광섬유(110)에 일체로 구비시킴으로써 원하는 조건의 정확한 위치에 질량체(130)가 위치될 수 있고 저비용으로 제조가 가능하다는 장점이 있다.
상기 비대칭 구조물(140)은 구동기가 광섬유를 구동함에 있어, 광섬유의 두 축방향의 공진주파수를 서로 다르게 분리시키는 역할을 한다. 구동기가 광섬유의 어느 일축방향으로만 구동력을 전달할 때 광섬유는 직선 경로를 갖도록 진동하여야 하는데 다른 일축방향으로의 진동 성분도 갖는 현상이 발생하며 이러한 현상을 교차 결합 현상이라고 한다. 교차 결합 현상으로 인하여 광섬유가 정확한 스캐닝 경로를 확보하기가 어려우며, 이것은 스캐닝 동작 시 광섬유의 구동되는 두 방향에 대한 공진주파수가 동일하기 때문이다. 진동체의 공진 주파수는 굽힘 모멘트에 비례하므로 광섬유의 두 축방향의 굽힘 모멘트를 다르게 하여 두 축 방향의 공진 주파수를 다르게 할 수 있다.
따라서 본 발명에서는 광섬유(110)에 도 3에 도시된 광섬유의 스캔 구동 2축 방향의 형상이 다른 비대칭 구조물(140)을 설치함으로써 광섬유의 서로 수직하는 두 축 방향의 공진주파수가 약 50Hz 분리되고 본 발명의 광섬유 프로브는 무리 없이 2차원 스캐닝, 특히 래스터(raster) 또는 스파이럴(spiral) 또는 리사쥬(Lissajous) 스캐닝을 수행한다.
본 발명에 따른 상기 비대칭 구조물은(130)는 광섬유(110)의 일측에 일체로 구비되고, 코어가 없는 광섬유로 이루어진다. 종래의 광섬유 프로브에 설치되는 비대칭 구조물은 광섬유와 별개로 실리콘을 이용하여 제작됨으로써, 고비용의 반도체 공정이 필요하고 비대칭 구조물이 광섬유에 장착되기 위해서 에폭시 등의 후공정을 사용함으로써 잘못 접착하게 되면 원래 원하던 특성을 가지지 못하는 제조공정 및 장착이 까다로운 단점이 있었다. 본 발명에서는 비대칭 구조물(140)을 대구경을 갖는 코어가 없는 광섬유를 이용하여 광섬유(110)에 일체로 구비시킴으로써 원하는 조건의 정확한 위치에 비대칭 구조물(140)이 위치될 수 있고 저비용으로 제조가 가능하다는 장점이 있다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 광섬유(110)는 일단에서 광과 결합하여 코어를 통해 광을 전달하고 타단에서 광을 출력하는 코어가 있는 단일 모드 광섬유(SMF: Single-Mode Fiber, 이하, SMF라 한다)(111), SMF로부터 전달된 광의 크기를 확장시키는 코어가 없는 광섬유(CSF: Coreless Silica Fiber, 이하 CSF라 한다)(112) 및 CSF로부터 확장된 광을 집속하는 렌즈(113)가 일체로 형성된다. 코어가 있는 광섬유는 단일 모드 광섬유에 한정되지 않으며, 일단에서 광과 결합하고 길이 방향으로 광 전달이 가능한 광섬유는 본 발명에 사용 가능하다.
광섬유의 단면에 렌즈가 일체로 구비된 광섬유를 프로브로 사용하는 경우 렌즈가 개별적으로 구성되는 프로브보다 동일 물질로 이루어지고, 광섬유와 렌즈 사이의 별도의 광정렬이 필요없어서 광 손실이 적고, 광학 수차가 감소하여 높은 해상도의 영상을 획득할 수 있으며 광섬유 프로브를 초소형으로 제작할 수 있는 장점이 있다.
도 4를 참조하면, 상기 광섬유(110)의 렌즈의 굴절면에서 초점까지의 거리인 동작 거리(d) 및 렌즈의 초점 거리에서 집속된 광의 크기(2wf)는 CSF의 길이(LCSF) 및 렌즈의 곡률 반경에 의해 결정되며, 두 가지의 파라미터로 시뮬레이션하면 CSF의 길이가 길고 렌즈의 곡률 반경이 낮을수록 상기 동작 거리(d)가 짧아지고 집속된 광의 크기가 작아져 해상도가 높아진다.
도 5는 본 발명에 따른 광섬유의 제조방법을 나타내는 공정도이며, 도 5를 참조하면, 본 발명에 따른 렌즈가 일체로 구비되는 광섬유를 단부에 형성하는 과정은 SMF의 단면에 CSF를 융착 접착(fusion splicing)하는 단계, CSF를 일정길이 만큼만 남도록 자르는 단계 및 CSF의 단면을 fusion splicer를 활용하여 용융시켜 원하는 곡률 반경을 가지는 렌즈를 형성하는 단계를 포함한다.
상기 CSF를 일정길이 만큼만 남도록 자르는 단계에서 상기 시뮬레이션 결과를 바탕으로 광섬유의 작동 거리 및 해상도를 고려한 최적의 CSF의 길이가 결정된다.
또한, 상기 렌즈를 형성하는 단계에서 상기 시뮬레이션 결과를 바탕으로 광섬유의 작동 거리 및 해상도를 고려한 최적의 렌즈의 곡률 반경이 결정되며, 결정된 곡률 반경은 또한 fusion splicer로 구현 가능해야 한다. 두 조건을 만족하는 최소의 곡률 반경인 약 75㎛로 렌즈가 형성되었다.
따라서, 본 발명에 따른 광섬유의 동작 거리(working distance) 및 광섬유의 렌즈의 초점 위치에서 집속된 빔의 크기는 CSF(112)의 길이 및 렌즈(113)의 굴절면의 곡률 반경에 따라 결정되고, 구체적인 CSF(112)의 길이 및 렌즈(113)의 굴절면의 곡률 반경은 광섬유(110)의 제조 과정에서 fusion splicer의 작동 조건을 조절하여 형성되게 된다.
도 6은 본 발명의 일 실시예에 따른 광섬유 프로브의 광 특성 평가 결과를 나타낸다. 도 6(a)는 상기에서 설명한 방법으로 형성되는 본 발명의 광섬유(110)를 통과한 광의 특성을 나타내며 상기 광은 약 2.3㎛ 반치폭(full width at half maximum, FWHM)을 가지며, 도 6(b)는 상기 광섬유(110)를 갖는 광섬유 프로브(100)로 리사쥬 스캐닝을 실행하여 얻은 알루미늄 패턴으로 이루어진 USAF resolution target의 영상이다. 도 6(b)에 도시된 바와 같이 그룹 7의 element 6의 약 2.19㎛도 잘 관측되었고 스캔 범위, 즉, 광섬유 프로브의 시야는 약 217㎛×217㎛이다. 따라서 본 발명에 따른 광섬유 프로브(100)는 상기의 결과들을 통해 고해상도의 광학 주사 영상을 제공할 수 있음을 확인하였다.
도 7은 본 발명에 따른 광섬유 프로브의 질량체의 다양한 형태를 도시한 단면도이다.
도 7을 참조하면, 도 7(a)은 질량체(130)가 광섬유(110)보다 2배 큰 직경을 가지는 코어가 없는 실리카 광섬유로 형성된 실시예를 나타낸다. 도 7(b)는 질량체(130)가 광섬유(110)보다 2배 큰 직경을 가지는 코어가 없는 실리카 광섬유로 형성되고 질량체와 함께 질량체의 일단면에 렌즈(113)가 형성되는 다른 실시예를 나타낸다. 질량체을 형성하는 광섬유는 광섬유(110)보다 2배 큰 직경을 가진다는 특성에 한정되지 않으며 질량체를 형성하는 광섬유 재료의 직경 및 질량체의 크기 조절을 통해 스캔 속도 및 스캔 범위가 변할 수 있는 것은 상기에서 설명한 바와 같다.
도 8은 본 발명에 따른 광섬유 프로브의 렌즈 굴절면의 다양한 형상을 도시한 단면도이다. 도 8(a) 내지 도 8(c)을 참조하면, 본 발명에 따른 광섬유 단면에 형성되는 렌즈는 구면(spherical) 렌즈, 비구면(aspherical) 렌즈 및 이중 곡률(double curvature)을 가지는 렌즈 등 다양한 형태의 굴절면을 가진다.
도 8(a)는 구면 렌즈의 일예를 도시하며 구면 렌즈는 상기 광섬유의 제조과정 중 렌즈를 형성하는 단계에서 CSF 단면에 열을 가하면 CSF가 녹으면서 표면장력에 의해 굴절면이 원형으로 형성된 것이다. 구면 렌즈는 제조과정이 단순하다는 장점이 있다.
도 8(b)에 도시된 이중 곡률을 가지는 렌즈는 굴절면이 구면으로 형성되어 있는 렌즈의 굴절면에 직경이 보다 작은 CSF를 용융 접착하고 접착면의 반대편 단면에 열을 가하여 녹임으로써 형성된 것이다. 이중 곡률을 가지는 렌즈는 초점이 두 군데 형성되며 초점의 깊이를 늘리는 역할을 수행할 수 있다.
도 8(c)에 도시된 비구면 렌즈는 이중 곡률을 가지는 렌즈의 제조과정을 모두 거친 후 용융과정을 한 번 더 실시하게 되면 형성된다. 비구면 렌즈는 수차를 줄일 수 있는 장점이 있다.
도 9는 본 발명에 따른 광섬유 프로브의 비대칭 구조물의 형성 과정을 도시한 공정도이다. 도 9를 참조하면, 본 발명에 따른 광섬유 프로브의 비대칭 구조물(140)의 형성 과정은 제1 소구경을 가지는 CSF(112)의 단면에 제1 대구경을 가지는 CSF(141)를 용융 접착하는 단계, 제1 대구경을 가지는 CSF(141)의 단면에 제2 소구경을 가지는 CSF(112)을 용융 접착하는 단계, 제2 소구경을 가지는 CSF(112)의 단면에 제2 대구경을 가지는 CSF(142)를 용융 접착하는 단계, 제2 대구경을 가지는 CSF(142)의 단면에 제3 소구경을 가지는 CSF(112)을 용융 접착하는 단계 및 제1 대구경을 가지는 CSF와 제2 대구경을 가지는 CSF를 서로 연결하는 연결 부재를 용융 접착하는 단계를 포함한다.
상기 비대칭 구조물(140)의 형성 과정으로 비대칭 구조물(140)이 광섬유(100)에 일체로 구비되며 광섬유의 두 축방향 공진 주파수를 약 50Hz 분리시킨다.
도 10은 본 발명의 광섬유 프로브를 갖는 내시경을 채용한 영상 기기의 블록도를 나타낸다.
영상 기기는 광원부, 광원부에서의 광을 검사 대상물에 스캐닝 조사하는 광섬유 프로브를 갖는 내시경, 검사 대상물로부터 발생된 신호를 수신하는 수신부 및 수신부에서 수신된 신호를 처리하여 영상 신호를 생성하는 신호처리부를 포함한다.
광섬유 프로브를 통해 검사 대상물에 광이 조사되면, 검사 대상물의 특성 정보를 담은 새로운 신호가 형성되고 수신부는 이 신호를 수신하며, 수신부는 포토 다이오드로 구성될 수 있다.
또한 영상 기기는 사용자 인터페이스와 제어부를 더 구비할 수 있다. 사용자 인터페이스는 입력부와 디스플레이부를 구비할 수 있으며, 이를 이용하여 제어부에 필요한 입력을 전송할 수 있다. 제어부는 사용자 인터페이스에서 입력되는 명령에 따라 의료 영상 기기를 이루는 각 구성요소들을 제어한다. 광섬유 프로브의 스캐닝 구동을 제어할 수 있다. 제어부는 마이크로 프로세서 등으로 구현될 수 있다.
또한 영상 기기는 OCT(optical coherence tomography), 공초점 현미경(confocal microscopy), 이광자 현미경(multiphoton microscopy) 등의 방법을 사용할 수 있도록 각 구성요소의 세부적인 사항들이 정해질 수 있다. 예를 들어, 검사 대상물에서 발생하는 신호의 종류에 따라 수신부에 구비된 검출 센서가 달라질 수 있으며, 신호처리부는 각 방법에 따라 수신된 신호를 처리할 수 있다.
예를 들어, 공초점 현미경(confocal microscopy)의 방법을 사용하는 경우, 광원부는 특정 형광물질에 반응하는 특정 파장대의 레이저가 사용될 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 것을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구 범위의 기술적 사상에 의하여 정해져야 할 것이다.
1000 : 광섬유 프로브를 갖는 내시경
100 : 광섬유 프로브
110 : 광섬유
111 : SMF 112 : CSF
113 : 렌즈
120 : 구동기 130 : 질량체
140 : 비대칭 구조물 150 : 하우징

Claims (15)

  1. 일단에 렌즈가 구비된 광섬유;
    상기 광섬유를 서로 수직하는 2축으로 구동시키는 구동기;
    상기 광섬유의 단부에 일체로 구비되는 질량체; 및
    상기 광섬유의 일측에 일체로 구비되고, 상기 2축 방향의 형상이 다른 비대칭 구조물;을 포함하는 광섬유 프로브.
  2. 제1항에 있어서,
    상기 질량체 및 비대칭 구조물이 일체로 구비되는 광섬유와 상기 구동기를 수용하는 하우징을 더 포함하는 것을 특징으로 하는 광섬유 프로브.
  3. 제1항에 있어서,
    상기 광섬유는 코어가 있는 광섬유, 코어가 없는 광섬유 및 렌즈가 일체로 형성되는 것을 특징으로 하는 광섬유 프로브.
  4. 제1항에 있어서,
    상기 렌즈는 구면(spherical) 렌즈, 비구면(aspherical) 렌즈 및 이중 곡률(double curvature)을 가지는 렌즈 중에서 선택되는 어느 하나의 굴절면으로 형성되는 것을 특징으로 하는 광섬유 프로브.
  5. 제1항에 있어서,
    상기 질량체 및 상기 비대칭 구조물은 광섬유로 이루어지는 것을 특징으로 하는 광섬유 프로브.
  6. 제1항에 있어서,
    상기 비대칭 구조물이 상기 광섬유의 상기 2축 각각의 공진 주파수를 서로 다르게 분리시킴으로써 상기 광섬유 프로브가 래스터 또는 스파이럴 또는 리사쥬 스캐닝을 수행하는 것을 특징으로 하는 광섬유 프로브.
  7. 제1항에 있어서,
    상기 광섬유 프로브의 스캔 속도 및 스캔 범위는 상기 질량체가 광섬유에 일체로 구비되는 위치 및 상기 질량체의 질량에 따라 제어되는 것을 특징으로 하는 광섬유 프로브.
  8. 관심 영역의 광학 영상을 얻기 위한 광섬유 프로브를 포함하는 내시경으로서,
    상기 광섬유 프로브는,
    일단에 렌즈가 구비된 광섬유;
    상기 광섬유를 서로 수직하는 2축으로 구동시키는 구동기;
    상기 광섬유의 단부에 일체로 구비되는 질량체;
    상기 광섬유의 일측에 일체로 구비되고, 상기 2축 방향의 형상이 다른 비대칭 구조물; 및
    상기 질량체 및 비대칭 구조물이 일체로 구비되는 광섬유와 상기 구동기를 수용하는 하우징;을 포함하는 것을 특징으로 하는 광섬유 프로브를 갖는 내시경.
  9. 제8항에 있어서,
    상기 광섬유는 코어가 있는 광섬유, 코어가 없는 광섬유 및 렌즈가 일체로 형성되는 것을 특징으로 하는 광섬유 프로브를 갖는 내시경.
  10. 제8항에 있어서,
    상기 렌즈는 구면(spherical) 렌즈, 비구면(aspherical) 렌즈 및 이중 곡률(double curvature)을 가지는 렌즈 중에서 선택되는 어느 하나의 굴절면으로 형성되는 것을 특징으로 하는 광섬유 프로브를 갖는 내시경.
  11. 제8항에 있어서,
    상기 질량체 및 상기 비대칭 구조물은 광섬유로 이루어지는 것을 특징으로 하는 광섬유 프로브를 갖는 내시경.
  12. 제8항에 있어서,
    상기 비대칭 구조물이 상기 광섬유의 상기 2축의 각각에 대한 공진 주파수를 서로 다르게 분리시킴으로써 상기 광섬유 프로브가 래스터 또는 스파이럴 또는 리사쥬 스캐닝을 수행하는 것을 특징으로 하는 광섬유 프로브를 갖는 내시경.
  13. 제8항에 있어서,
    상기 광섬유 프로브의 스캔 속도 및 스캔 범위는 상기 질량체가 광섬유에 일체로 구비되는 위치 및 상기 질량체의 질량에 따라 제어되는 것을 특징으로 하는 광섬유 프로브를 갖는 내시경.
  14. 광원부;
    상기 광원부에서의 광을 검사 대상물에 스캐닝 조사하는 것으로, 제8항 내지 제13항 중 어느 한 항의 광섬유 프로브를 갖는 내시경;
    상기 검사 대상물로부터 발생된 신호를 수신하는 수신부; 및
    상기 수신부에서 수신된 신호를 처리하여 영상 신호를 생성하는 신호처리부;를 포함하는 영상 기기.
  15. 제14항에 있어서,
    상기 신호처리부는 공초점 현미경 또는 OCT(optical coherence tomography) 또는 이광자 현미경 방법을 사용하여 수신된 신호를 처리하는 영상 기기.
KR1020190024600A 2019-03-04 2019-03-04 초소형 렌즈형 광섬유 프로브를 갖는 내시현미경 KR102191673B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190024600A KR102191673B1 (ko) 2019-03-04 2019-03-04 초소형 렌즈형 광섬유 프로브를 갖는 내시현미경

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190024600A KR102191673B1 (ko) 2019-03-04 2019-03-04 초소형 렌즈형 광섬유 프로브를 갖는 내시현미경

Publications (2)

Publication Number Publication Date
KR20200106290A true KR20200106290A (ko) 2020-09-14
KR102191673B1 KR102191673B1 (ko) 2020-12-17

Family

ID=72471275

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190024600A KR102191673B1 (ko) 2019-03-04 2019-03-04 초소형 렌즈형 광섬유 프로브를 갖는 내시현미경

Country Status (1)

Country Link
KR (1) KR102191673B1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513198A (ja) * 1997-02-20 2001-08-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア プラズモン共鳴粒子、方法、および装置
JP3387846B2 (ja) * 1999-03-04 2003-03-17 セイコーインスツルメンツ株式会社 走査型プローブ顕微鏡
JP2003114182A (ja) * 2001-06-19 2003-04-18 Japan Science & Technology Corp カンチレバーアレイ、その製造方法及びそれを用いた走査型プローブ顕微鏡、案内・回転機構の摺動装置、センサ、ホモダインレーザ干渉計、試料の光励振機能を有するレーザドップラー干渉計ならびにカンチレバーの励振方法
JP2008107358A (ja) * 2001-06-19 2008-05-08 Japan Science & Technology Agency 光ファイバ式ホモダインレーザ干渉計
JP2011527587A (ja) * 2008-07-10 2011-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光学画像プローブ
KR20150052672A (ko) * 2013-11-06 2015-05-14 삼성전자주식회사 파이버 스캐닝 광 프로브 및 이를 구비한 의료 영상 기기
KR101583277B1 (ko) * 2014-08-25 2016-01-08 한국과학기술원 2차원 광학 스캐닝을 위한 스캐너, 그 제조방법 및 이를 채용한 의료 영상 기기
JP2016026300A (ja) * 2010-03-15 2016-02-12 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 光ファイバ適合音響センサ
JP5911238B2 (ja) * 2011-09-02 2016-04-27 オリンパス株式会社 光走査デバイス及びこれを備えた内視鏡、顕微鏡、プロジェクター

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513198A (ja) * 1997-02-20 2001-08-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア プラズモン共鳴粒子、方法、および装置
JP3387846B2 (ja) * 1999-03-04 2003-03-17 セイコーインスツルメンツ株式会社 走査型プローブ顕微鏡
JP2003114182A (ja) * 2001-06-19 2003-04-18 Japan Science & Technology Corp カンチレバーアレイ、その製造方法及びそれを用いた走査型プローブ顕微鏡、案内・回転機構の摺動装置、センサ、ホモダインレーザ干渉計、試料の光励振機能を有するレーザドップラー干渉計ならびにカンチレバーの励振方法
JP2008107358A (ja) * 2001-06-19 2008-05-08 Japan Science & Technology Agency 光ファイバ式ホモダインレーザ干渉計
JP2011527587A (ja) * 2008-07-10 2011-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光学画像プローブ
JP2016026300A (ja) * 2010-03-15 2016-02-12 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 光ファイバ適合音響センサ
JP5911238B2 (ja) * 2011-09-02 2016-04-27 オリンパス株式会社 光走査デバイス及びこれを備えた内視鏡、顕微鏡、プロジェクター
KR20150052672A (ko) * 2013-11-06 2015-05-14 삼성전자주식회사 파이버 스캐닝 광 프로브 및 이를 구비한 의료 영상 기기
KR101583277B1 (ko) * 2014-08-25 2016-01-08 한국과학기술원 2차원 광학 스캐닝을 위한 스캐너, 그 제조방법 및 이를 채용한 의료 영상 기기

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPTICS EXPRESS, Vol.22, No.5, Hyeon-Cheol Park, Yeong-Hyeon Seo, and Ki-Hun Jeong, Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation, Pages 5818* *
SCIENTIFIC REPORTS 7: 14075 DOI:10.1038/s41598-017-13634-3, Kyungmin Hwang, Yeong-Hyeon Seo, Jinhyo Ahn, Pilhan Kim & Ki-Hun Jeong, Frequency selection rule for high defnition and high frame rate Liss* *

Also Published As

Publication number Publication date
KR102191673B1 (ko) 2020-12-17

Similar Documents

Publication Publication Date Title
JP4338412B2 (ja) 共焦点プローブおよび共焦点顕微鏡
US9936865B2 (en) Fiber scanning optical probe and medical imaging apparatus including the same
EP2134236B1 (en) Compact scanning fiber device
US8926500B2 (en) Light irradiating device, scanning endoscopic device, manufacturing method of light irradiating device, and manufacturing method of scanning endoscopic device
US20090024191A1 (en) Multi-cladding optical fiber scanner
US9420954B2 (en) Fiber scanning optical probe and medical imaging apparatus including the same
JP5599818B2 (ja) 光学プローブ
US6643071B2 (en) Graded-index lens microscopes
US7969659B2 (en) Grin lens microscope system
US20080081950A1 (en) Method and arrangement for high-resolution microscope imaging or cutting in laser endoscopy
US20120140302A1 (en) Mems-based optical image scanning apparatus, methods, and systems
JP4248771B2 (ja) 内視鏡装置
WO2005087085A1 (en) Vision catheter
Do et al. Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator
Seibel et al. Microfabricated optical fiber with a microlens that produces large field-of-view video-rate optical beam scanning for microendoscopy applications
JP2011043793A (ja) 走査用対物レンズ、走査型プローブ、及び走査型内視鏡
KR102555734B1 (ko) 리사주 기반의 이미지 캘리브레이션 기술
WO2014057774A1 (ja) 内視鏡装置
JPH10507105A (ja) 内視鏡
Kim et al. Objective-lens-free confocal endomicroscope using Lissajous scanning lensed-fiber
KR102191673B1 (ko) 초소형 렌즈형 광섬유 프로브를 갖는 내시현미경
JP2002090650A (ja) 防振顕微鏡
KR20180034815A (ko) 삼차원 공초점 스캐닝 니들 프로브
EP2753967B1 (en) Optical microscopy probe for scanning microscopy of an associated object
JP4261216B2 (ja) 走査型共焦点プローブ

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right