KR20200078099A - 투명전극 및 그의 제조방법 - Google Patents

투명전극 및 그의 제조방법 Download PDF

Info

Publication number
KR20200078099A
KR20200078099A KR1020180167681A KR20180167681A KR20200078099A KR 20200078099 A KR20200078099 A KR 20200078099A KR 1020180167681 A KR1020180167681 A KR 1020180167681A KR 20180167681 A KR20180167681 A KR 20180167681A KR 20200078099 A KR20200078099 A KR 20200078099A
Authority
KR
South Korea
Prior art keywords
layer
metal
metal oxide
transparent electrode
nanowire
Prior art date
Application number
KR1020180167681A
Other languages
English (en)
Other versions
KR102349582B1 (ko
Inventor
김형근
이규현
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to KR1020180167681A priority Critical patent/KR102349582B1/ko
Publication of KR20200078099A publication Critical patent/KR20200078099A/ko
Application granted granted Critical
Publication of KR102349582B1 publication Critical patent/KR102349582B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

우수한 신뢰성의 투명전극 및 그의 제조방법이 제안된다. 본 투명전극은 투명전극은 그래핀층; 및 그래핀층 상의, 표면에 금속산화물층이 형성된 금속나노와이어층;을 포함한다.

Description

투명전극 및 그의 제조방법{Transparent electrode and manufacturing method thereof}
본 발명은 투명전극 및 그의 제조방법에 관한 것으로, 보다 상세하게는 우수한 신뢰성의 투명전극 및 그의 제조방법에 관한 것이다.
투명 전극은 광 투과성과 도전성이 있는 전극으로, 평판 액정 표시장치(flat liquid crystal display), 터치 패널(touch panel), 전자 발광 장치(electroluminescent device) 및 박막 광전지(thin film photovoltaic cell) 등다양한 분야에 응용하기 위해 점차 기술이 개발되고 있는 분야이다.
현재, 인듐 주석 산화물(indium tin oxide; ITO)과 같은 진공 증착 금속 산화물들(vacuum deposited metal oxides)은 글래스(glass)와 중합체막들(polymeric films)과 같은 유전체 표면들에 대해 광학적 투명성 및 전기적 도전성을 제공하기 위한 산업 표준 물질들이다. 그러나, 금속 산화막들(metal oxide films)은 높은 도전성 수준을 달성하기 위해 높은 증착 온도 또는 높은 어닐링 온도를 필요로 하며, 외부의 물리적인 자극에 의하여 깨지기 쉽고 휨 변형 등에 취약하다. 또한 폴리머 기판 위에 코팅했을 때 기판을 구부리면 막이 부서지는 단점이 있다.
이러한 문제점들을 해결하기 위한 방안으로, 전도성 고분자(Conducting Polymer), 탄소 나노 튜브(Carbon Nano Tube), 그래핀(Graphene), 그리고 금속 나노 와이어가 주목받고 있다.
금속 나노 와이어 중 은(Ag) 또는 구리(Cu) 나노 와이어의 경우 용액 기반의 코팅공정이 가능하고, 가시광선 영역에서 투과율이 높고 면 저항도 ITO와 유사하여 향후 플렉시블 디스플레이에의 응용 가능성이 매우 높다. 특히, 은나노와이어들이 투명기판 위에 그물망처럼 네트워크를 형성하면서 코팅되는 경우, 비교적 높은 광투과율과 함께 우수한 전도성을 갖는 투명 전극으로 제조될 수 있다.
금속 나노와이어를 적용한 투명전극은 낮은 저항과 높은 광투과율에도 불구하고, 금속 나노와이어로 인하여 헤이즈가 높거나, 매끄러운 표면의 투명전극을 제조하기 어려운 문제점이 여전히 존재한다. 아울러, 금속의 특성상 고온에서 용융되어 회로연결이 끊어질 수 있거나 외부환경에 의한 오염과 산화 등의 문제가 발생하게 된다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 우수한 신뢰성의 투명전극 및 그의 제조방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 투명전극은 그래핀층; 및 그래핀층 상의, 표면에 금속산화물층이 형성된 금속나노와이어층;을 포함한다.
금속나노와이어는 은나노와이어이고, 금속산화물층은 AZO일 수 있다.
금속산화물층은 두께가 10 내지 30nm일 수 있다.
금속산화물층은 금속산화물 원자층이 2내지 10층으로 구성될 수 있다.
금속산화물층은 금속나노와이어층의 빈공간의 적어도 일부를 채울 수 있다.
금속산화물층은 전도성 금속산화물을 포함할 수 있다.
본 발명의 다른 측면에 따르면, 금속기판 상에 화학기상증착공정으로 그래핀층을 형성하는 단계; 그래핀층 상에 금속나노와이어층을 형성하는 단계; 원자층증착공정으로 금속나노와이어 표면에 금속산화물층을 형성하는 단계; 및 금속기판을 제거하는 단계;를 포함하는 투명전극 제조방법이 제공된다.
금속산화물층을 형성하는 단계는 금속나노와이어층의 적어도 일부의 빈공간을 채우도록 금속산화물층을 형성하는 단계일 수 있다.
본 발명의 실시예들에 따르면, 투명전극용으로 사용되는 금속나노와이어의 표면에 원자층 증착공정으로 금속산화물 박막층을 형성하여 투명도는 유지하면서 금속나노와이어의 산화를 방지하고, 고온신뢰성을 보장할 수 있도록 하여 금속나노와이어의 성능을 개선하는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 투명전극의 단면도이고, 도 2는 투명전극 상의 금속나노와이어의 단면도이다.
도 3은 표면에 AZO(Zn:Al=20:1)층이 형성된 은나노와이어의, AZO층의 두께에 따른 광투과도 및 헤이즈특성을 나타낸 그래프이다.
도 4는 본 발명의 다른 실시예에 따른 투명전극의 단면도이다.
도 5 내지 도 8은 본 발명의 또다른 실시예에 따른 투명전극의 제조방법의 설명에 제공되는 도면들이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.
도 1은 본 발명의 일실시예에 따른 투명전극의 단면도이고, 도 2는 투명전극 상의 금속나노와이어의 단면도이다. 본 발명에 따른 투명전극(100)은 그래핀층(110); 및 그래핀층(110) 상의, 표면에 금속산화물층(130)이 형성된 금속나노와이어층(120);을 포함한다.
본 발명에 따른 투명전극(100)은 그래핀층(110)을 포함한다. 그래핀은 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하여 층 또는 시트 형태를 형성한 것이다. 그래핀은 화학적, 열적 안정성이 매우 높고 층상구조로 전도성 및 방열성이 높기 때문에 투명전극에 사용할 수 있다.
그래핀층(110) 상에는 금속나노와이어층(120)이 형성된다. 본 발명에 따른 금속나노와이어층(120)은 표면에 금속산화물층(130)이 형성되어 있다. 도 2를 참조하면, 와이어 형상의 금속나노와이어(121) 외부에 금속산화물층(130)이 형성되어 있다.
본 발명에 따른 투명전극(100)은 그래핀층(110) 및 금속나노와이어층(120)을 포함하여 전극으로 기능한다. 금속나노와이어는 금속이므로 전도성이 높으나, 통상 투명하지 않은 것이 일반적이다. 그러나, 금속나노와이어는 나노사이즈에 기인하여 소정 수준까지 투명할 수 있으므로 투명전극(100)에 사용될 수 있다. 다만, 금속나노와이어(121)가 너무 두껍게 형성되면 불투명해질 수 있으므로 전도성의 판상형 그래핀층(110) 상에 형성하여 전도성이 보조되고, 금속나노와이어층(120)을 형성할 수 있는 기판의 기능도 수행한다.
금속나노와이어(121)는 금속이라는 특성상 금속나노와이어는 고온내구성이 우수하지 않고, 고온 다습한 환경에서 산화나 손상이 발생한다. 본 발명에 따른 투명전극용 나노와이어(100)는 고온, 다습한 환경에서 손상없이 신뢰성 높은 전극형성이 가능하도록 금속나노와이어(121)의 표면을 금속산화물층(130)으로 덮는다.
금속나노와이어(121)는 나노미터 사이즈의 금속입자 중 형상이 봉 형상 또는 가늘고 긴 형상의 와이어 형상의 입자를 의미한다. 즉, 금속나노와이어(121)는 지름이 나노미터 사이즈인 금속을 의미한다. 또한 본 명세서에 있어서, 나노와이어는 다공성 또는 중공형 금속나노튜브도 포함한다.
금속 나노와이어의 금속은 전기 전도성이 있는 금속이면 어느 것이나 사용 가능하고, 구체적으로 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 니켈(Ni), 철(Fe), 아연(Zn), 알루미늄(Al), 몰리브덴(Mo) 및 이들의 합금으로 이루어진 군에서 선택되는 어느 하나의 금속의 나노와이어일 수 있으며, 바람직하게는 은 나노와이어일 수 있다.
또한 금속나노와이어(121)의 직경은 10 내지 300㎚이고, 길이는 3 내지 500㎛일 수 있다. 금속나노와이어(121)의 직경이 너무 가늘면 투명전극으로 사용할 때강도가 충분하지 않고, 너무 굵으면 투명도가 저하된다. 금속나노와이어(121)의 길이가 너무 짧으면 효과적으로 교점이 겹쳐질 수 없고, 너무 길면 인쇄성이 저하되는 문제점이 있다.
금속산화물층(130)은 금속나노와이어(121)의 표면을 덮는다. 본 발명에서는 금속나노와이어(121)의 표면을 가장 얇은 두께로 덮되, 효과적으로 온도상승이나 수분침투를 방지할 필요가 있다. 금속산화물층(130)은 원자층 증착공정(Atomic layer deposition, ALD)으로 형성되면, 박막이면서도 평면이 아닌 나노와이어의 표면을 효과적으로 감쌀 수 있다.
원자층증착 공정은 원자단위의 증착공정으로서, 증착하고자 하는 원자의 전구체 가스를 주입하고 반응가스를 함께 주입하여 증착대상기판에 원자를 층으로 적층하여 박막을 형성시키는 공정이다. 원자층증착공정에서는 복수 회(약 5회)의 원자층증착공정을 통하여 1층의 원자층이 형성된다. 원자층 증착공정을 이용하면, 금속산화물층(130)은 금속산화물 원자층이 2내지 10층으로 구성될 수 있고, 두께가 10 내지 30nm일 수 있다.
금속산화물층(130)에 사용될 수 있는 금속산화물로는 규소 산화물, 규소 질화물, 규소 질화산화물, 알루미늄 산화물, 알루미늄 질화물 또는 알루미늄 질화산화물 등이 있다. 금속산화물층은 예를 들어, Al2O3, ZnO, 또는 AZO(Zinc dope Aluminum Oxide)일 수 있다.
금속나노와이어(121)는 은나노와이어이고, 금속산화물층(130)은 AZO일 수 있다. 금속산화물층(130)은 두께가 10 내지 30nm일 수 있고, 금속산화물층(130)은 금속산화물 원자층이 2내지 10층으로 구성될 수 있다.
도 3은 표면에 AZO(Zn:Al=20:1)층이 형성된 은나노와이어의, AZO층의 두께에 따른 광투과도 및 헤이즈특성을 나타낸 그래프이다. 도 3을 참조하면, AZO(Zn:Al=20:1)층의 두께가 0nm, 즉 AZO(Zn:Al=20:1)층이 없는 은나노와이어일 때보다 AZO(Zn:Al=20:1)층의 두께가 10nm일 때, 광투과도가 증가하였음을 확인할 수 있다. 즉, 금속산화물층이 은나노와이어 표면에 형성되어 산화방지 및 고온내구성을 향상시키면서도 광투과도는 오히려 높아진 것을 확인할 수 있다. 이후, AZO(Zn:Al=20:1)층의 두께가 증가할 수록 광투과도는 낮아지고, 헤이즈도 낮아지는 경향이 나타났다.
도 3에서, AZO(Zn:Al=20:1)층이 없는 은나노와이어 상태일 때의 광투과도보다 높고, 헤이즈는 더 낮은 구간은 AZO(Zn:Al=20:1)층의 두께가 10nm 내지 20nm인 구간이다. 따라서, 이러한 두께구간에서는 금속산화물층이 형성되었음에도 불구하고 광투과도는 향상되고, 헤이즈는 낮아져 투명전극으로 유용하게 사용되면서도 금속산화물층이 배리어층으로 기능하여 투명전극용 나노와이어의 기계적 물성이나 신뢰성을 향상시키는 것을 알 수 있다.
도 4는 본 발명의 다른 실시예에 따른 투명전극의 단면도이다. 본 실시예에서는 금속산화물층(130)은 금속나노와이어(121)의 주변부를 둘러싸고, 금속나노와이어(121)가 서로 교차하면서 생성된 빈 공간을 일부 채울 수 있다. 금속산화물층(130)이 원자층 증착공정에 의해 형성되는 경우, 금속나노와이어(121)의 표면에 원자층이 형성되면서, 금속나노와이어(121)가 그래핀층(110)과 접촉하게 되는 면에 도 4와 같이 금속산화물층(130)이 형성될 수 있다.
이 경우, 금속산화물층(130)이 금속나노와이어(121)의 주변을 둘러싸고, 금속나노와이어(121)를 그래핀층(110)에 보다 강하게 접착시킬 수 있으므로 투명전극의 신뢰성을 높일 수 있다. 아울러, 금속산화물층(130)에 사용된 금속산화물이 전도성 금속산화물인 경우에는 금속나노와이어(121) 및 그래핀층(110)과의 전기적 접속이 불량한 경우나 금속나노와이어(121) 간의 전기적 접속이 불량한 경우 전도성 금속산화물층이 금속나노와이어(121)의 전극기능을 보조가능하다. 즉, 전도성 금속산화물이 금속나노와이어(121)를 연결하면서 그래핀층(110) 상에 하나의 층으로 형성될 수 있다.
도 5 내지 도 9는 본 발명의 또다른 실시예에 따른 투명전극의 제조방법의 설명에 제공되는 도면들이다. 본 실시예에 따르면, 금속기판(140) 상에 화학기상증착공정으로 그래핀층(110)을 형성하는 단계; 그래핀층(110) 상에 금속나노와이어층(120)을 형성하는 단계; 원자층증착공정으로 금속나노와이어(121) 표면에 금속산화물층(130)을 형성하는 단계; 및 금속기판(140)을 제거하는 단계;를 포함하는 투명전극 제조방법이 제공된다.
금속기판(140)은 그래핀층(110)이 성장하기 위한 기판으로서, 금속기판(110)으로는 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함할 수 있다. 금속기판(110)을 사용하는 경우, 형성되는 그래핀층(120)의 특성이 우수하나, 금속의 특성상 후공정에서 금속기판(110)에 영향을 미칠 수 있다.
본 발명에 따르면, 투명전극을 제조하기 위해, 금속기판(140) 상에 화학기상증착공정으로 그래핀층(110)을 형성한다(도 5). 그래핀은 다양한 방법으로 제조될 수 있는데, 화학기상증착(chemical vapor deposition, CVD)공정을 이용하면 그래핀 특성이 우수하고 대량생산가능하다. 화학기상증착법은 고온화학기상증착(RTCVD), 유도결합플라즈마 화학기상증착(ICP-CVD), 저압 화학기상증착(LPCVD), 상압화학기상증착(APCVD), 금속 유기화학기상증착(MOCVD) 또는 화학기상증착(PECVD) 등으로 세분될 수 있다.
금속기판(140) 상에 그래핀층(110)이 형성되면, 그래핀층(110) 상에 금속나노와이어층(120)을 형성한다(도 6).
이후, 원자층증착공정으로 금속나노와이어(121) 표면에 금속산화물층(130)을 형성하고(도 7); 및 금속기판(140)을 제거(도 8)하여 투명전극을 제조한다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.
100: 투명전극
110: 그래핀층
120: 금속나노와이어층
121: 금속나노와이어
130: 금속산화물층
140: 금속기판

Claims (8)

  1. 그래핀층; 및
    그래핀층 상의, 표면에 금속산화물층이 형성된 금속나노와이어층;을 포함하는 투명전극.
  2. 청구항 1에 있어서,
    금속나노와이어는 은나노와이어이고,
    금속산화물층은 AZO인 것을 특징으로 하는 투명전극.
  3. 청구항 1에 있어서,
    금속산화물층은 두께가 10 내지 30nm인 것을 특징으로 하는 투명전극.
  4. 청구항 1에 있어서,
    금속산화물층은 금속산화물 원자층이 2내지 10층으로 구성되는 것을 특징으로 하는 투명전극.
  5. 청구항 1에 있어서,
    금속산화물층은 금속나노와이어층의 빈공간의 적어도 일부를 채우는 것을 특징으로 하는 투명전극.
  6. 청구항 5에 있어서,
    금속산화물층은 전도성 금속산화물을 포함하는 것을 특징으로 하는 투명전극.
  7. 금속기판 상에 화학기상증착공정으로 그래핀층을 형성하는 단계;
    그래핀층 상에 금속나노와이어층을 형성하는 단계;
    원자층증착공정으로 금속나노와이어 표면에 금속산화물층을 형성하는 단계; 및
    금속기판을 제거하는 단계;를 포함하는 투명전극 제조방법.
  8. 청구항 7에 있어서,
    금속산화물층을 형성하는 단계는 금속나노와이어층의 적어도 일부의 빈공간을 채우도록 금속산화물층을 형성하는 것을 특징으로 하는 투명전극 제조방법.
KR1020180167681A 2018-12-21 2018-12-21 투명전극 및 그의 제조방법 KR102349582B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180167681A KR102349582B1 (ko) 2018-12-21 2018-12-21 투명전극 및 그의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180167681A KR102349582B1 (ko) 2018-12-21 2018-12-21 투명전극 및 그의 제조방법

Publications (2)

Publication Number Publication Date
KR20200078099A true KR20200078099A (ko) 2020-07-01
KR102349582B1 KR102349582B1 (ko) 2022-01-11

Family

ID=71601647

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180167681A KR102349582B1 (ko) 2018-12-21 2018-12-21 투명전극 및 그의 제조방법

Country Status (1)

Country Link
KR (1) KR102349582B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140129690A (ko) * 2013-04-30 2014-11-07 한국교통대학교산학협력단 표면조도가 낮은 은 나노와이어 - 그라핀 하이브리드 전극 및 그 제조 방법
KR20150096218A (ko) * 2014-02-14 2015-08-24 서울대학교산학협력단 코어-쉘 구조의 은 나노 와이어 제조방법
KR20160022148A (ko) * 2014-08-19 2016-02-29 서울과학기술대학교 산학협력단 투명 전극 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140129690A (ko) * 2013-04-30 2014-11-07 한국교통대학교산학협력단 표면조도가 낮은 은 나노와이어 - 그라핀 하이브리드 전극 및 그 제조 방법
KR20150096218A (ko) * 2014-02-14 2015-08-24 서울대학교산학협력단 코어-쉘 구조의 은 나노 와이어 제조방법
KR20160022148A (ko) * 2014-08-19 2016-02-29 서울과학기술대학교 산학협력단 투명 전극 및 그 제조 방법

Also Published As

Publication number Publication date
KR102349582B1 (ko) 2022-01-11

Similar Documents

Publication Publication Date Title
Zhu et al. Flexible transparent electrodes based on silver nanowires: material synthesis, fabrication, performance, and applications
JP5694427B2 (ja) 透明電極及びこれを含む電子材料
Kim et al. Highly reliable AgNW/PEDOT: PSS hybrid films: efficient methods for enhancing transparency and lowering resistance and haziness
JP4648451B2 (ja) 電子素子
US9237646B2 (en) Electrical and thermal conductive thin film with double layer structure provided as a one-dimensional nanomaterial network with graphene/graphene oxide coating
US9892821B2 (en) Electrical conductors and electronic devices including the same
CN107025953B (zh) 透明电极和包括其的电子器件
US9137892B2 (en) Laminated structure, method of manufacturing laminated structure, and electronic apparatus
Kim et al. Thermally evaporated indium-free, transparent, flexible SnO2/AgPdCu/SnO2 electrodes for flexible and transparent thin film heaters
KR101682501B1 (ko) 은 나노와이어 패턴층 및 그래핀층을 포함하는 투명전극 및 그 제조방법
KR101519888B1 (ko) 하이브리드 투명전극 및 이의 제조방법
KR20170075507A (ko) 전도성 소자 및 이를 포함하는 전자 소자
TW201503243A (zh) 導電結構及其製造方法和以導電結構作爲電極的元件
EP2669773A2 (en) Touch panel
KR20170067204A (ko) 금속 나노선 전극의 제조 방법
KR102349582B1 (ko) 투명전극 및 그의 제조방법
KR100989409B1 (ko) 다층구조 플렉시블 투명전극 및 그 제조방법
KR20150075173A (ko) 투명 전도성 산화물과 은 나노 와이어를 포함하는 투명 전극 및 그 제조방법
KR101079664B1 (ko) 탄소나노튜브 박막 후처리 공정
KR101892542B1 (ko) 투명전극
KR102304515B1 (ko) 투명전극용 나노와이어
WO2016086632A1 (zh) 触控面板及其制备方法、显示装置
KR20180000173A (ko) 투명전극
Kim et al. Electrical and optical properties of flexible SiInZnO/Ag/SiInZnO multilayer electrodes
KR102633284B1 (ko) 균열 길이 제어 가능한 금속 고분자 하이브리드 나노 구조 투명유연전극 및 그 제조 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant