KR20200029759A - Ship structure manufacturing and design process for realizing smart factory - Google Patents

Ship structure manufacturing and design process for realizing smart factory Download PDF

Info

Publication number
KR20200029759A
KR20200029759A KR1020180108193A KR20180108193A KR20200029759A KR 20200029759 A KR20200029759 A KR 20200029759A KR 1020180108193 A KR1020180108193 A KR 1020180108193A KR 20180108193 A KR20180108193 A KR 20180108193A KR 20200029759 A KR20200029759 A KR 20200029759A
Authority
KR
South Korea
Prior art keywords
design
information
production
modeling
block
Prior art date
Application number
KR1020180108193A
Other languages
Korean (ko)
Inventor
곽병준
이학곤
허순행
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to KR1020180108193A priority Critical patent/KR20200029759A/en
Publication of KR20200029759A publication Critical patent/KR20200029759A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Computer Hardware Design (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides a ship structure manufacture and design process for realizing a smart factory. The ship structure manufacture and design process comprises the steps of: generating blocks and establishing a block unit reference plan including a design schedule and a production schedule for each block; completing design modeling by reflecting design information and detailed structural design information according to a basic design, and production technology data of possessed production technology to a modeling and inputting the same to a design integration DB; extracting design information from the design integration DB; storing the extracted design information in a design information transmission DB for each block unit; verifying a design information transmission time point based on the reference plan and determining whether to reflect final information in each step and whether to change the reference plan; and generating and storing production information by transmitting the verified design information to a production integration DB. Therefore, the ship structure manufacture and design process removes design change factors due to production conditions at a production site and transmits the design information stored in the DB to the production site without creating a separate design drawing, thereby realizing an intelligent ship production factory.

Description

스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스{SHIP STRUCTURE MANUFACTURING AND DESIGN PROCESS FOR REALIZING SMART FACTORY}Ship structure production design process for smart factory implementation {SHIP STRUCTURE MANUFACTURING AND DESIGN PROCESS FOR REALIZING SMART FACTORY}

본 발명은 선박 구조생산설계 프로세스에 관한 것으로, 보다 상세하게는 현장의 생산조건에 의한 설계변경요소를 제거하고, 별도의 설계도면 작성없이 DB화된 설계정보를 생산현장에 전송하여서, 지능형 선박생산공장을 구현할 수 있는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스에 관한 것이다.The present invention relates to a ship structure production design process, and more specifically, to remove a design change factor due to production conditions at the site, and transmit DB-designed information to the production site without creating a separate design drawing, an intelligent ship production plant. It relates to a ship structure production design process for implementing a smart factory, which can be implemented.

통상, 종래의 선박 구조생산설계 과정은 초기에 하드카피 형태로 접수된 각종 선행정보, 설계 전 결정된 공장의 조업능력(Capacity) 및 조립공법을 취합하고 고려하여 모델링에 수기로 반영하고 이를 바탕으로 생산기술 및 선행설계(구조상세설계 및 의장설계)에 다시 피드백한후 재 반영하여 최종 구조생산설계 모델링을 완성하고 도면화 및 데이터화 한 두 가지 형태의 정보를 동시에 전달한다.In general, the conventional ship structure production design process combines and takes into account various prior information received in the form of a hard copy in the early stage, the capacity and assembly method of the factory determined before design, and reflects them in modeling by considering them and produces them based on this. Feedback to technology and prior design (structural detail design and chairman design) and then reflected again to complete the final structural production design modeling and simultaneously deliver two types of information: drawing and data.

이러한 과정은 설계자가 수기로 모델링에 반영 및 검증하는 과정에서, 모델링 재작업 및 오류의 가능성을 내포하여 구조생산설계의 품질이 저하되는 원인이 된다.This process is a process that the designer reflects and verifies in modeling by hand, which implies the possibility of modeling rework and errors, which causes the quality of structural production design to deteriorate.

한편, 도 1에 도시된 바와 같이, 전술한 바와 같은 선박 구조생산설계 과정은, 기본적으로, 블록을 생성하며 생산계획을 수립하고 설계일정을 수립하는 기준계획을 수립하는 단계(S10)와, 기본설계(구조설계와 의장설계) 및 생산기술의 선행정보를 하드카피 형태의 도면으로 접수하는 단계(S20)와, 각 블록별 구조생산설계 모델링을 수행하고 모델링 입력 중 발견된 오류사항은 선행부서로 피드백하고 협의하여 반영하는 선행정보 수기입력 단계(S30)와, 조립 시퀀스와 송선을 입력하는 트리분석(tree analysis) 및 모델링에 대한 가공 송선과 공법을 고려한 베벨(bevel) 정보를 입력하는 생산공법 입력단계(S40)와, 트라이본 또는 AM과 같은 조선전용 3차원 모델링 소프트웨어를 사용하여 정의한 선각부재에 대한 정보를 추출하는 프로그램 예들 들면, DWP(DaeWoo Ppanparts; 트라이본 모델링 프로그램을 사용하여 정의한 선각부재에 대한 정보를 추출하는 인하우스 PGM)에 의해 모델링에 입력된 정보를 추출하고 HiBS(Hull information data Bank System) DB에 저장하는 모델링정보 추출 및 저장단계(S50)와, 오토네스팅 프로그램 예를 들면, DPN(DSME Plate auto-Nesting;가공도 작성 PGM)에서 가공도와 조립도를 작성하고 온라인으로 도면품질을 검증하는 도면작성단계(S60)와, 가공도와 조립도를 출도하고 HiBS DB의 설계데이터를 통합생산 시스템으로 전송하는 현장 전송 단계(S70)로 구성된다.On the other hand, as shown in Figure 1, the ship structure production design process as described above, basically, a step of creating a block and establishing a production plan and establishing a reference plan for establishing a design schedule (S10), the basic The step (S20) of receiving the preliminary information of the design (structural design and design of the design) and production technology in a hard copy form (S20), and conducting structural production design modeling for each block and finding errors during modeling input to the preceding department Feedback information and consultation and reflecting prior information Handwriting input step (S30), tree analysis (tree analysis) for inputting assembly sequence and transmission line, and production method for inputting bevel information considering processing line and method for modeling Step (S40), and a program for extracting information about the hull member defined using shipbuilding-specific three-dimensional modeling software such as tri-bon or AM, for example, DWP (DaeWoo Ppanparts) ; Modeling information extraction and storage step of extracting information input to modeling by in-house PGM that extracts information about the hull members defined using the tri-bone modeling program and storing it in the HiBS (Hull information data Bank System) DB ( S50), and an auto-nesting program, for example, DPN (DSME Plate auto-Nesting; PGM) to create a process drawing and assembly drawing and online drawing verification step quality (S60), and work drawing It consists of an on-site transmission step (S70) of delivering an assembly drawing and transmitting the design data of the HiBS DB to the integrated production system.

하지만, 이와 같은 종래기술에 의한 선박 구조생산설계 과정은, 선행 설계정보를 하드카피 형태의 도면으로 접수하고 설계원에 의한 수기입력으로 인해서 입력오류에 따른 품질문제가 발생할 위험성이 상존하며, 생산공장 변경에 따른 설계 수정사항 발생시, 설계정보 전달과 접수와 반영과 피드백의 복잡한 작업단계를 거쳐야 하므로 재작업 발생의 요소가 적지 않고, 설계반영 소요시간이 길어지는 문제점이 있다.However, in the ship construction production design process according to the prior art, there is a risk that quality problems due to input errors occur due to handwriting input by the designer and receiving prior design information in the form of a hard copy. When a design modification occurs due to a change, it is necessary to go through a complicated work step of design information transmission, reception, reflection, and feedback, so there is not a small number of rework occurrences, and there is a problem that the design reflection time is lengthened.

한국공개특허공보 제20140052166호(선박의 곡 외판 수율 향상을 위한 프리 네스팅 방법. 2014.05.07)Korean Patent Publication No. 20140052166 (Free nesting method for improving the yield of ship's outer shell. 2014.05.07) 한국등록특허공보 제1115152호(선박 건조 시 연간 생산계획 수립 방법. 2012.02.13)Korean Registered Patent Publication No. 1115152 (How to establish an annual production plan for ship construction. 2012.02.13) 한국공개특허공보 제2013-0119559호(선박 부재의 조립 트리 모델링 시스템 및 방법. 2013.11.01)Korean Patent Publication No. 2013-0119559 (Assembly tree modeling system and method for ship members. 2013.11.01)

본 발명의 사상이 이루고자 하는 기술적 과제는, 현장의 생산조건에 의한 설계변경요소를 제거하고, 별도의 설계도면 작성없이 설계정보를 생산현장에 전송하여서 지능형 선박생산공장 구현할 수 있는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스를 제공하는 데 있다.The technical problem to be achieved by the idea of the present invention is to remove a design change factor due to production conditions at the site, and to transmit a design information to a production site without creating a separate design drawing, to realize a smart factory that can realize an intelligent ship production factory. The aim is to provide a ship structure production design process.

전술한 목적을 달성하고자, 본 발명은, 블록을 생성하고, 상기 블록별 설계일정 및 생산일정을 포함하는 블록단위 기준계획을 수립하는 단계; 기본설계에 따른 의장설계정보와 구조상세설계정보, 및 보유한 생산기술의 생산기술데이터를 모델링에 반영하고 설계통합DB로 입력하여 설계 모델링을 완성하는 단계; 상기 설계통합DB로부터 설계정보를 추출하는 단계; 상기 추출된 설계정보를 설계정보전송DB에 상기 블록 단위별로 저장하는 단계; 상기 기준계획에 입각한 설계정보 전송시점을 검증하고, 각 단계별 최종정보 반영여부 및 기준계획 변동여부를 판단하는 단계; 및 상기 검증된 설계정보를 생산통합DB로 전송하여 생산정보를 생성하고 저장하는 단계;를 포함하는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스를 제공한다.In order to achieve the above object, the present invention, generating a block, and establishing a block unit reference plan including the design schedule and production schedule for each block; Completing design modeling by reflecting design information according to the basic design, detailed structural design information, and production technology data of the production technology possessed in the model and inputting it into the design integration DB; Extracting design information from the design integrated DB; Storing the extracted design information for each block unit in a design information transmission DB; Verifying the design information transmission time point based on the reference plan, and determining whether to reflect the final information at each step and whether to change the reference plan; And generating and storing production information by transmitting the verified design information to a production integration DB. It provides a ship structure production design process for implementing a smart factory.

여기서, 상기 설계정보전송 검증단계는, 상기 기준계획에 의한 블록별 데이터 전송시점을 확인하고, 각 단계별 최종정보의 상기 모델링에 대한 반영여부를 판단하여 미반영이면 상기 설계통합DB로부터 설계정보를 재 추출하는 단계와, 반영이면 상기 기준계획의 변동여부를 판단하여 변동이면 상기 기준계획에 의한 블록별 데이터 전송시점을 재확인하는 단계로 구성될 수 있다.Here, in the design information transmission verification step, the data transmission time of each block according to the reference plan is checked, and it is determined whether or not the final information of each step is reflected on the modeling, and if not reflected, the design information is re-extracted from the design integrated DB It may be composed of a step of determining whether the reference plan is changed if it is reflected, and re-checking the data transmission time of each block according to the reference plan if it is changed.

또한, 상기 설계통합DB 입력단계는, 통합생산시스템으로부터 상기 생산정보의 피드백 데이터를 입력 받아 상기 모델링에 반영하는 단계를 더 포함할 수 있다.In addition, the design integrated DB input step may further include receiving feedback data of the production information from the integrated production system and reflecting the modeling data.

또한, 상기 설계통합DB는, 블록 분할, 용접 수축치, 주판가공 요령도, 리프팅 플랜, TEMP.ACC.HOLE, 및 발판배치 홀을 포함하는 생산기술데이터를 블록별로 관리하는 생산기술DB와, 상기 생산정보의 피드백 데이터를 블록별로 관리하는 생산정보피드백DB와, 상기 구조상세설계정보로부터 블록구분없이 구조 모델링하며, 상기 의장설계정보로부터 의장 모델링정보를 추가하며, 상기 생산기술DB로부터 생산기술정보를 입력받고, 상기 생산정보피드백DB로부터 생산정보 피드백 데이터를 입력받아 상기 모델링에 반영하는 모델링DB로 구성될 수 있다.In addition, the design integrated DB is a production technology DB for managing block-by-block production technology data including block division, welding shrinkage, abacus processing tips, lifting plans, TEMP.ACC.HOLE, and scaffolding holes, and Production information feedback DB that manages feedback data of production information for each block, structural modeling without block division from the structural detailed design information, and design modeling information from the design design information, and adds production technology information from the production technology DB. It may be configured as a modeling DB that receives input, receives production information feedback data from the production information feedback DB, and reflects it in the modeling.

또한, 상기 설계정보 추출단계에서는, 설계 모델링을 완성하며, 피스 단위로 분할된 각 부재에 대해 조선전용 3차원 모델링 소프트웨어 상의 고유명칭을 부여하여 모델링 부재목록을 생성하고, 상기 설계 모델링에 대한 오류를 검증할 수 있다.In addition, in the design information extraction step, design modeling is completed, and each member divided into pieces is assigned a unique name on the shipbuilding-specific 3D modeling software to generate a modeling member list, and errors in the design modeling are generated. Can be verified.

또한, 상기 설계정보전송DB는, 부재고유명칭, 모델링 부재목록, 부재중량과 무게중심과 면적, 부재형상정보, 용접각목, 결합길이, 및 커브드 모델링 정보를 포함하는 각 블록별 설계데이터DB와, 각 블록별 3D 모델 정보DB로 구성될 수 있다.In addition, the design information transmission DB, the design data DB for each block including the member's unique name, modeling member list, member weight and center of gravity and area, member shape information, welding angle, joint length, and curved modeling information. , 3D model information DB for each block.

또한, 상기 기본설계의 의장설계정보는, 의장품 배치정보, 홀정보, 국부보강재정보, 및 선각화 선형 의장품정보를 포함하고, 상기 기본설계의 구조상세설계정보는, 구조형상, 구조위치, 두께정보, 재질정보, 이음새 배치정보, 용접각목정보, 및 개구정보를 포함할 수 있다.In addition, the design design information of the basic design includes design information, arrangement information, hole information, local stiffener information, and linearized linear design information, and structural detailed design information of the basic design includes structure shape, structure location, and thickness information. , Material information, seam placement information, welding angle information, and opening information.

본 발명에 의하면, 설계통합DB를 구축하여 각 선행부서간 선체구조 모델링을 공유하고 부서별 반영사항을 모델링에 직접 입력할 수 있게 구현하여서, 하드카피 형태의 정보전달 및 구조생산설계원의 타 부서 정보를 모델링에 수기 입력하는 과정을 제거하여 보다 정확한 설계품질을 확보할 수 있는 효과가 있다.According to the present invention, a design integrated DB is built to share modeling of the hull structure between each of the preceding departments and implement the information to directly input the reflections of each department into the modeling, so that hard copy form information transfer and other department information of the Structural Production Design Institute There is an effect that can secure a more accurate design quality by eliminating the process of manual input to the modeling.

또한, 생산의 지능형 선박생산공장 구현에 맞는 설계정보를 전달할 수 있는 설계정보전송DB를 구축하고, 선각 부재의 명칭을 트라이본 또는 AM과 같은 조선전용 3차원 모델링 소프트웨어 상의 고유부재 명칭으로 부여하여서, 생산공법변경에 따른 설계 재작업 요소를 제거하고, 생산공장의 공법 변경을 자유자재로 변경할 수 있도록 구현할 수 있는 효과가 있다.In addition, by constructing a design information transmission DB capable of delivering design information suitable for the implementation of an intelligent ship production plant of production, and giving the name of the hull member as a unique member name on 3D modeling software for shipbuilding such as tri-bone or AM, There is an effect that can be implemented to remove the design rework elements due to the change of the production method, and to freely change the change of the construction method of the production plant.

더 나아가, 정보 전달체계를 간소화하며, 각 부서별 설계정보를 직접 입력하도록 하며, 각 부서별 설계정보를 실시간 공유하고, 피드백 절차를 간소화하여서, 설계투시시간을 절감하면서도 설계도면 품질을 향상시킬 수 있는 효과가 있다.Furthermore, it simplifies the information delivery system, directly inputs design information for each department, shares design information for each department in real time, simplifies the feedback process, and reduces design fluoroscopy time while improving design drawing quality. There is.

도 1은 종래기술에 의한 선박 구조생산설계 과정을 예시한 것이다.
도 2는 본 발명에 의한 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스의 전체 흐름도를 도시한 것이다.
도 3은 도 2의 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스의 설계정보입력 과정을 상세히 도시한 것이다.
도 4는 도 2의 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스의 설계정보추출 과정을 상세히 도시한 것이다.
도 5는 도 2의 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스의 설계정보저장 과정을 상세히 도시한 것이다.
도 6은 도 2의 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스의 설계정보전송 검증 과정을 상세히 도시한 것이다.
Figure 1 illustrates a ship structure production design process according to the prior art.
Figure 2 shows the overall flow diagram of the ship structure production design process for implementing a smart factory according to the present invention.
3 is a view showing in detail the design information input process of the ship structure production design process for implementing the smart factory of FIG.
FIG. 4 is a detailed view illustrating a process of extracting design information of a ship structure production design process for implementing the smart factory of FIG. 2.
FIG. 5 is a detailed view of a design information storage process of a ship structure production design process for implementing the smart factory of FIG. 2.
6 is a view showing in detail the process of design information transmission verification of the ship structure production design process for the implementation of the smart factory of FIG.

이하, 첨부된 도면을 참조로 전술한 특징을 갖는 본 발명의 실시예를 더욱 상세히 설명하고자 한다.Hereinafter, embodiments of the present invention having the above-described features will be described in more detail with reference to the accompanying drawings.

도 2를 참조하면, 본 발명에 의한 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스는, 전체적으로, 기준계획 수립단계(S110)와, 설계통합DB 입력단계(S120)와, 설계정보 추출단계(S130)와, 설계정보전송DB 저장단계(S140)와, 설계정보전송 검증단계(S150)와, 생산통합DB 저장단계(S160)를 포함하여서, 지능형 선박생산공장을 구현할 수 있도록 구성된다.Referring to FIG. 2, the ship structure production design process for the implementation of a smart factory according to the present invention includes, as a whole, a reference plan establishment step (S110), a design integration DB input step (S120), and a design information extraction step (S130). And, including the design information transmission DB storage step (S140), the design information transmission verification step (S150), and the production integrated DB storage step (S160), it is configured to implement an intelligent ship production plant.

우선, 기준계획 수립단계(S110)에서는, 도 2 및 도 3에 도시된 바와 같이, 블록(LOT)을 생성하고(S111), 블록별 설계일정, 생산일정(또는 생산계획), 및 제작샵을 포함하는 블록단위 기준계획을 수립한다.First, in the reference plan establishment step (S110), as shown in FIGS. 2 and 3, a block LOT is generated (S111), a design schedule for each block, a production schedule (or production plan), and a production shop. Establish a block-by-block reference plan.

여기서, 생산기술데이터는, 블록 분할(block division), 용접 수축치, 주판가공 요령도, 리프팅 플랜(lift'g plan), TEMP.ACC.HOLE, 및 발판배치 홀을 포함하고, 블록생성은 생산기술데이터의 블록분할 데이터를 활용하여 수행할 수 있다.Here, the production technology data includes block division, welding shrinkage, abacus processing tips, lift'g plan, TEMP.ACC.HOLE, and scaffolding holes, and block generation is produced. It can be performed by utilizing block division data of technical data.

구체적으로, 기본설계의 의장설계정보는, 의장품 배치정보, 홀(hole)정보, 국부보강재(carling)정보, 및 선각화 선형 의장품정보를 포함하고, 기본설계의 구조상세설계정보는, 구조형상, 구조위치, 두께정보, 재질정보, 이음새(seam) 배치정보, 용접각목정보, 및 개구(large opening)정보를 포함할 수 있다.Specifically, the design design information of the basic design includes the arrangement information of the design, the hole information, the local reinforcement (carling) information, and the linearized linear design information, and the structural detailed design information of the basic design includes the structural shape, It may include structure location, thickness information, material information, seam placement information, welding angle information, and large opening information.

다음, 설계통합DB 입력단계(S120)에서는, 도 2 및 도 3에 도시된 바와 같이, 기본설계에 따른 의장설계정보와 구조상세설계정보, 및 보유한 생산기술의 생산기술데이터를 모델링에 반영하고 설계통합DB(120)로 입력하여 설계 모델링을 완성한다(S131).Next, in the design integration DB input step (S120), as shown in Fig. 2 and Fig. 3, design and design design data of the design information and structure detailed design information according to the basic design and the production technology possessed in the modeling The design modeling is completed by inputting into the integrated DB 120 (S131).

한편, 설계통합DB 입력단계(S120)는, 통합생산시스템으로부터 생산정보의 피드백 데이터를 입력받아 모델링에 반영하는 단계(S161)를 더 포함할 수 있다.On the other hand, the design integrated DB input step (S120) may further include a step of receiving feedback data of production information from the integrated production system and reflecting it in modeling (S161).

구체적으로, 설계통합DB(120)는, 블록 분할, 용접 수축치, 주판가공 요령도, 리프팅 플랜, TEMP.ACC.HOLE, 및 발판배치 홀을 포함하는 생산기술데이터를 블록별로 관리하는 생산기술DB(121)와, 생산정보의 피드백 데이터를 블록별로 관리하는 생산정보피드백DB(122)와, 구조상세설계정보로부터 블록 구분없이 구조 모델링하며(S121), 의장설계정보로부터 의장 모델링정보를 추가하며(S122), 생산기술DB(121)로부터 생산기술정보를 입력받고(S123), 생산정보피드백DB(122)로부터 생산정보 피드백 데이터를 입력받아(S124) 모델링에 반영하는 모델링DB(123)로 구성될 수 있다.Specifically, the design integrated DB 120 is a production technology DB for managing block-by-block production technology data including block division, welding shrinkage, abacus processing tips, lifting plans, TEMP.ACC.HOLE, and scaffold placement holes. (121), production information feedback DB (122) that manages the feedback data of production information for each block, structural modeling without block classification from structural detailed design information (S121), and design modeling information added from design design information ( S122), the production technology information from the production DB (121) input (S123), the production information feedback DB (122) input the production information feedback data (S124) to be composed of a modeling DB (123) reflected in the modeling You can.

여기서, 모델링DB(123)는 트라이본 또는 AM과 같은, 조선전용 3차원 모델링 소프트웨어의 자료DB인 구조부재모델 저장DB(부재 모델링 후 저장해 두는 전체 스트럭쳐에 대한 데이터베이스)를 포함하고, 모델링DB(123)내 단계(S121 내지 S124)의 각 공종별 실시간 검증이 이루어질 수 있다.Here, the modeling DB 123 includes a structural member model storage DB (database for the entire structure stored after member modeling), which is a data DB of shipbuilding-specific 3D modeling software, such as a tribon or AM, and the modeling DB (123). ) In step (S121 to S124) of each type of real-time verification can be made.

또한, 생산기술DB(121)에서, 블록 분할은 모델링 분할정보 입력에 따른 구조모델 블록분할을 의미하며, 용접 수축치는 구조별 용접 수축치 데이터입력을 의미하고, 주판가공 요령도에서는 블록 분할된 구조 모델을 검토하는데 블록 버트(butt) 개선정보를 입력하며, 발판배치 홀은 홀 위치(hole location) 입력을 의미한다.In addition, in the production technology DB 121, the block division means structural model block division according to input of modeling division information, and the welding shrinkage value means welding shrinkage data input for each structure, and the block division structure in the abacus processing method diagram. In reviewing the model, block butt improvement information is input, and a scaffolding hole means inputting a hole location.

이에 따라, 설계통합DB(120)를 구축하여 각 선행부서간 선체구조 모델링을 공유하고 부서별 반영사항을 모델링에 직접 입력할 수 있게 구현하여서, 하드카피 형태의 정보전달 및 구조생산설계원의 타 부서 정보를 모델링에 수기 입력하는 과정을 제거하여 보다 정확한 설계품질을 확보할 수 있다.Accordingly, the design integrated DB (120) was built to share the hull structure modeling between each of the preceding departments and to implement the departmental reflection directly into the modeling. By eliminating the process of manually inputting information into modeling, more accurate design quality can be secured.

또한, 정보 전달체계를 간소화하며, 각 부서별 설계정보를 직접 입력하도록 하며, 각 부서별 설계정보를 실시간 공유하고, 피드백 절차를 간소화하여서, 설계투시시간을 절감하면서도 설계도면 품질을 향상시킬 수 있다.In addition, it simplifies the information delivery system, directly inputs design information for each department, shares design information for each department in real time, simplifies the feedback process, and reduces design fluoroscopy time while improving design drawing quality.

다음, 설계정보 추출단계(S130)에서는, 도 2 및 도 4에 도시된 바와 같이, 설계통합DB(120)로부터 설계정보를 추출한다.Next, in the design information extraction step (S130), as shown in FIGS. 2 and 4, the design information is extracted from the design integration DB 120.

예컨대, 설계정보 추출단계(S130)에서는, 설계 모델링을 완성하며(S131), 피스(piece) 단위로 분할된 각 부재에 대해 조선전용 3차원 모델링 소프트웨어 상의 고유명칭(name)을 부여하여 모델링 부재목록(BOM; Bill of Material)을 생성하고(S132), 설계 모델링에 대한 오류를 검증할 수 있다(S133).For example, in the design information extraction step (S130), design modeling is completed (S131), and each member divided into pieces is assigned a unique name on the shipbuilding-specific 3D modeling software to give a modeling member list. (BOM; Bill of Material) is generated (S132), and errors in design modeling can be verified (S133).

여기서, 고유명칭 부여 및 모델링 부재목록 생성은 앞서 언급한 DWP와 같은 선각부재에 대한 정보를 추출하는 프로그램에 의해 수행될 수 있다.Here, the unique name assignment and modeling member list generation can be performed by a program that extracts information about the hull member, such as the DWP mentioned above.

다음, 설계정보전송DB 저장단계(S140)에서는, 도 2 및 도 5에 도시된 바와 같이, 앞서 추출된 설계정보를 설계정보전송DB(140)에 블록 단위별로 저장한다.Next, in the design information transmission DB storage step (S140), as shown in FIGS. 2 and 5, the previously extracted design information is stored in the design information transmission DB 140 for each block unit.

여기서, 설계정보전송DB(140)는, 부재고유명칭, 모델링 부재목록, 부재중량과 무게중심(COG)과 면적, 부재형상정보, 용접각목, 결합길이(joint length), 및 커브드 모델링(curved modeling) 정보를 포함하는 각 블록별 설계데이터DB(141)와, 각 블록별 3D 모델 정보DB(142)로 구성될 수 있다.Here, the design information transmission DB 140 includes a member name, modeling member list, member weight and center of gravity (COG) and area, member shape information, welding angle, joint length, and curved modeling. modeling) may include a design data DB 141 for each block including information, and a 3D model information DB 142 for each block.

이에 따라, 생산의 지능형 선박생산공장 구현에 맞는 설계정보를 전달할 수 있는 설계정보전송DB(140)를 구축하고, 선각부재의 명칭을 트라이본 또는 AM과 같은 조선전용 3차원 모델링 소프트웨어 상의 고유부재 명칭으로 부여하여서, 생산공법변경에 따른 설계 재작업 요소를 제거하고, 생산공장의 공법 변경을 자유자재로 변경할 수 있도록 구현할 수 있다.Accordingly, a design information transmission DB 140 capable of delivering design information suitable for the implementation of an intelligent ship production plant of production is built, and the name of the hull member is on shipbuilding 3D modeling software such as tri-bone or AM. By assigning it as a unique member name, it can be implemented to remove design rework elements due to a change in the production method and to freely change the method of the manufacturing plant.

다음, 설계정보전송 검증단계(S150)에서는, 도 2 및 도 6에 도시된 바와 같이, 기준계획에 입각한 설계정보 전송시점, 예컨대 전송일을 검증하고, 각 단계별 최종정보 반영여부 및 기준계획 변동여부를 판단한다.Next, in the design information transmission verification step (S150), as shown in FIGS. 2 and 6, the design information transmission point based on the reference plan is verified, for example, the transmission date, and whether the final information is reflected in each step and the reference plan changes Judge whether or not.

여기서, 설계정보전송 검증은 생산부하와 일정과 품질에 대한 검증을 포함할 수 있다.Here, the verification of the design information transmission may include verification of production load, schedule, and quality.

구체적으로, 설계정보전송 검증단계(S150)는, 기준계획에 의한 블록별 데이터 전송시점, 예컨대 전송일을 확인하고(S151), 각 단계별 최종정보의 모델링에 대한 반영여부를 판단하여(S152) 미반영이라고 판단되면 최종정보를 반영하여 설계통합DB(120)로 전송하는(S153) 단계와, 반영이라고 판단되면 후속하여 기준계획의 변동여부를 판단하여(S154) 변동이라고 판단되면 기준계획에 의한 블록별 데이터 전송시점을 재확인하는(S155) 단계로 구성될 수 있다.Specifically, in the design information transmission verification step (S150), the data transmission time for each block according to the reference plan is checked, for example, the transmission date (S151), and it is determined whether or not to reflect the modeling of the final information at each step (S152). If it is determined that the final information is reflected and transmitted to the design integrated DB 120 (S153), and if it is judged to reflect, it is subsequently determined whether the reference plan is changed (S154). It may be configured as a step of re-checking the data transmission time (S155).

최종적으로, 생산통합DB 저장단계(S160)에서는, 도 2 및 도 6에 도시된 바와 같이, 앞서 검증된 설계정보를 생산통합DB로 전송하여 생산정보를 생성하고 저장한다.Finally, in the production integrated DB storage step (S160), as shown in FIGS. 2 and 6, the previously verified design information is transmitted to the production integrated DB to generate and store production information.

따라서, 전술한 바와 같은 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스의 구성에 의해서, 설계통합DB를 구축하여 각 선행부서간 선체구조 모델링을 공유하고 부서별 반영사항을 모델링에 직접 입력할 수 있게 구현하여서, 하드카피 형태의 정보전달 및 구조생산설계원의 타부서 정보를 모델링에 수기 입력하는 과정을 제거하여 보다 정확한 설계품질을 확보할 수 있으며, 생산의 지능형 선박생산공장 구현에 맞는 설계정보를 전달할 수 있는 설계정보전송DB를 구축하고, 선각 부재의 명칭을 트라이본 또는 AM과 같은 조선전용 3차원 모델링 소프트웨어 상의 고유부재 명칭으로 부여하여서, 생산공법변경에 따른 설계 재작업 요소를 제거하고, 생산공장의 공법 변경을 자유자재로 변경할 수 있도록 구현할 수 있고, 정보 전달체계를 간소화하며, 각 부서별 설계정보를 직접 입력하도록 하며, 각 부서별 설계정보를 실시간 공유하고, 피드백 절차를 간소화하여서, 설계투시시간을 절감하면서도 설계도면 품질을 향상시킬 수 있다.Therefore, by constructing the ship structure production design process for the implementation of the smart factory as described above, the design integrated DB is built to share the hull structure modeling between each of the preceding departments and implement the departmental reflections directly into the modeling. By eliminating the process of manual input of information from other departments in the hard copy form of information transfer and structural production design in modeling, more accurate design quality can be secured, and design information suitable for the implementation of an intelligent ship production plant in production can be delivered. Build a design information transfer DB and assign the name of the hull member as a unique member name on 3D modeling software for shipbuilding such as Tri-Bone or AM to remove design rework elements due to the change in production method and It can be implemented to freely change the construction method, simplify the information transmission system, It is possible to directly input design information for each department, share design information for each department in real time, and simplify the feedback process, thereby reducing design fluoroscopy time and improving design drawing quality.

본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The configurations shown in the embodiments and drawings described in this specification are only one of the most preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, and various equivalents that can replace them at the time of this application It should be understood that there may be water and variations.

S110 : 기준계획 수립단계 S120 : 설계통합DB 입력단계
S130 : 설계정보 추출단계 S140 : 설계정보전송DB 저장단계
S150 : 설계정보전송 검증단계 S160 : 생산통합DB 저장단계
120 : 설계통합DB 121 : 생산기술DB
122 : 생산정보피드백DB 123 : 모델링DB
140 : 설계정보전송DB
S110: Base planning stage S120: Design integration DB input stage
S130: Design information extraction step S140: Design information transmission DB storage step
S150: Design information transmission verification step S160: Production integrated DB storage step
120: Design integrated DB 121: Production technology DB
122: Production information feedback DB 123: Modeling DB
140: design information transfer DB

Claims (7)

블록을 생성하고, 상기 블록별 설계일정 및 생산일정을 포함하는 블록단위 기준계획을 수립하는 단계;
기본설계에 따른 의장설계정보와 구조상세설계정보, 및 보유한 생산기술의 생산기술데이터를 모델링에 반영하고 설계통합DB로 입력하여 설계 모델링을 완성하는 단계;
상기 설계통합DB로부터 설계정보를 추출하는 단계;
상기 추출된 설계정보를 설계정보전송DB에 상기 블록 단위별로 저장하는 단계;
상기 기준계획에 입각한 설계정보 전송시점을 검증하고, 각 단계별 최종정보 반영여부 및 기준계획 변동여부를 판단하는 단계; 및
상기 검증된 설계정보를 생산통합DB로 전송하여 생산정보를 생성하고 저장하는 단계;를 포함하는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스.
Generating a block, and establishing a block unit reference plan including the block-specific design schedule and production schedule;
Completing design modeling by reflecting design design information, structural detailed design information according to the basic design, and production technology data of owned production technology into the modeling and inputting it into the design integration DB;
Extracting design information from the design integrated DB;
Storing the extracted design information for each block unit in a design information transmission DB;
Verifying the design information transmission time point based on the reference plan, and determining whether to reflect the final information at each step and whether to change the reference plan; And
And generating and storing production information by transmitting the verified design information to a production integrated DB. The ship structure production design process for implementing a smart factory.
제1항에 있어서,
상기 설계정보전송 검증단계는,
상기 기준계획에 의한 블록별 데이터 전송시점을 확인하고, 각 단계별 최종정보의 상기 모델링에 대한 반영여부를 판단하여 미반영이면 상기 설계통합DB로부터 설계정보를 재 추출하는 단계와,
반영이면 상기 기준계획의 변동여부를 판단하여 변동이면 상기 기준계획에 의한 블록별 데이터 전송시점을 재확인하는 단계로 구성되는 것을 특징으로 하는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스.
According to claim 1,
The design information transmission verification step,
Checking the data transmission time for each block according to the reference plan, determining whether to reflect the modeling of the final information at each step, and re-extracting design information from the design integrated DB if it is not reflected;
If reflected, it is determined whether or not the reference plan is changed. If the change is, it consists of re-checking the data transmission time for each block according to the reference plan.
제1항에 있어서,
상기 설계통합DB 입력단계는, 통합생산시스템으로부터 상기 생산정보의 피드백 데이터를 입력받아 상기 모델링에 반영하는 단계를 더 포함하는 것을 특징으로 하는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스.
According to claim 1,
The design integrated DB input step further comprises the step of receiving feedback data of the production information from the integrated production system and reflecting it in the modeling, ship structure production design process for implementing a smart factory.
제3항에 있어서,
상기 설계통합DB는,
블록 분할, 용접 수축치, 주판가공 요령도, 리프팅 플랜, TEMP.ACC.HOLE, 및 발판배치 홀을 포함하는 생산기술데이터를 블록별로 관리하는 생산기술DB와,
상기 생산정보의 피드백 데이터를 블록별로 관리하는 생산정보피드백DB와,
상기 구조상세설계정보로부터 블록구분없이 구조 모델링하며, 상기 의장설계정보로부터 의장 모델링정보를 추가하며, 상기 생산기술DB로부터 생산기술정보를 입력받고, 상기 생산정보피드백DB로부터 생산정보 피드백 데이터를 입력받아 상기 모델링에 반영하는 모델링DB로 구성되는 것을 특징으로 하는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스.
According to claim 3,
The design integrated DB,
A production technology DB that manages production technology data for each block, including block division, welding shrinkage, abacus processing tips, lifting plans, TEMP.ACC.HOLE, and scaffolding holes;
A production information feedback DB that manages the feedback data of the production information for each block,
Structural modeling without block classification from the structural detailed design information, add design modeling information from the design design information, receive production technology information from the production technology DB, and receive production information feedback data from the production information feedback DB. Ship structure production design process for implementing a smart factory, characterized in that it consists of a modeling DB reflected in the modeling.
제1항에 있어서,
상기 설계정보 추출단계에서는,
설계 모델링을 완성하며, 피스 단위로 분할된 각 부재에 대해 조선전용 3차원 모델링 소프트웨어 상의 고유명칭을 부여하여 모델링 부재목록을 생성하고, 상기 설계 모델링에 대한 오류를 검증하는 것을 특징으로 하는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스.
According to claim 1,
In the design information extraction step,
A smart factory characterized by completing a design modeling, generating a modeling member list by giving a unique name on a ship-specific 3D modeling software for each member divided into pieces, and verifying errors in the design modeling. Ship structure production design process for implementation.
제5항에 있어서,
상기 설계정보전송DB는,
부재고유명칭, 모델링 부재목록, 부재중량과 무게중심과 면적, 부재형상정보, 용접각목, 결합길이, 및 커브드 모델링 정보를 포함하는 각 블록별 설계데이터DB와,
각 블록별 3D 모델 정보DB로 구성되는 것을 특징으로 하는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스.
The method of claim 5,
The design information transmission DB,
Design data DB for each block including the member name, modeling member list, member weight and center of gravity and area, member shape information, welding angle, joint length, and curved modeling information,
Ship structure production design process for implementing a smart factory, characterized by consisting of a 3D model information DB for each block.
제1항에 있어서,
상기 기본설계의 의장설계정보는, 의장품 배치정보, 홀정보, 국부보강재정보, 및 선각화 선형 의장품정보를 포함하고,
상기 기본설계의 구조상세설계정보는, 구조형상, 구조위치, 두께정보, 재질정보, 이음새 배치정보, 용접각목정보, 및 개구정보를 포함하는 것을 특징으로 하는, 스마트 팩토리 구현을 위한 선박 구조생산설계 프로세스.
According to claim 1,
The design design information of the basic design includes design arrangement information, hole information, local reinforcement information, and linearized linear design information,
Structural detailed design information of the basic design includes a structural shape, a structure location, thickness information, material information, seam placement information, welding angle information, and aperture information, a ship structure production design for smart factory implementation process.
KR1020180108193A 2018-09-11 2018-09-11 Ship structure manufacturing and design process for realizing smart factory KR20200029759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180108193A KR20200029759A (en) 2018-09-11 2018-09-11 Ship structure manufacturing and design process for realizing smart factory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180108193A KR20200029759A (en) 2018-09-11 2018-09-11 Ship structure manufacturing and design process for realizing smart factory

Publications (1)

Publication Number Publication Date
KR20200029759A true KR20200029759A (en) 2020-03-19

Family

ID=69957146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180108193A KR20200029759A (en) 2018-09-11 2018-09-11 Ship structure manufacturing and design process for realizing smart factory

Country Status (1)

Country Link
KR (1) KR20200029759A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115152B1 (en) 2004-02-20 2012-03-08 대우조선해양 주식회사 Establishment method of producting plan when vessel is constructed
KR20130119559A (en) 2012-04-24 2013-11-01 대우조선해양 주식회사 Assembly tree modeling system and method for member of vessel
KR20140052166A (en) 2012-10-22 2014-05-07 대우조선해양 주식회사 Pre nesting method for plate yield rate of vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115152B1 (en) 2004-02-20 2012-03-08 대우조선해양 주식회사 Establishment method of producting plan when vessel is constructed
KR20130119559A (en) 2012-04-24 2013-11-01 대우조선해양 주식회사 Assembly tree modeling system and method for member of vessel
KR20140052166A (en) 2012-10-22 2014-05-07 대우조선해양 주식회사 Pre nesting method for plate yield rate of vessel

Similar Documents

Publication Publication Date Title
KR100846275B1 (en) Web-based collaboration method and realtime collaboration system for re-organization, re-modeling, innovation of industry and embodiment the virtual manufacturing
KR101837473B1 (en) Smart ordering and manufacturing system and method thereof
CN107545120A (en) The method and computing device that a kind of prefabricated components based on BIM are split automatically
CN109344900A (en) A kind of component identification method, apparatus, equipment and computer readable storage medium
CN107810525A (en) Node mesh generation for trellis
CN101221590A (en) Computer implemented method for defining an input product
JP6811703B2 (en) Production planning support system
Fernandes Advantages and disadvantages of BIM platforms on construction site
CN107895294A (en) Furniture manufacturing management system
US11868325B2 (en) Data management system, management method, and storage medium
KR20200029759A (en) Ship structure manufacturing and design process for realizing smart factory
Marzullo et al. Design progress of the DEMO divertor locking system according to IPADeP methodology
CN114202018A (en) Modular joint learning method and system
CN107679305B (en) Road network model creating method and device
CN109767179A (en) Three-dimensional tool management and Fast design method
KR20200056851A (en) Method of managing bill of material on hull structure in ship design for implementing smart factory
CN112199745A (en) BIM-based template bent frame construction method and device
KR102411460B1 (en) System and Method for verifying vessel design drawings
CN109615472B (en) Method for combining purchase orders based on nursery stock transaction platform, terminal and storage medium
KR20200029758A (en) Ship manufacturing process for realizing smart factory
KR102172748B1 (en) Method for auto-setting classification code for assembling process of vessel
JP2003044519A (en) Meeting system to discuss development for packing product
KR20200071895A (en) Structure and design process through unique unified design database based on 3d cad
US20180207747A1 (en) System and method for processing parts on a workpiece
CN107480886A (en) Mission bit stream processing method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal