KR20200016540A - 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치 - Google Patents

유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치 Download PDF

Info

Publication number
KR20200016540A
KR20200016540A KR1020180091757A KR20180091757A KR20200016540A KR 20200016540 A KR20200016540 A KR 20200016540A KR 1020180091757 A KR1020180091757 A KR 1020180091757A KR 20180091757 A KR20180091757 A KR 20180091757A KR 20200016540 A KR20200016540 A KR 20200016540A
Authority
KR
South Korea
Prior art keywords
light emitting
layer
dopant
host
organic light
Prior art date
Application number
KR1020180091757A
Other languages
English (en)
Other versions
KR102580803B1 (ko
Inventor
윤경진
노효진
백정은
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020180091757A priority Critical patent/KR102580803B1/ko
Priority to CN201910654437.XA priority patent/CN110818697B/zh
Priority to US16/516,758 priority patent/US11384072B2/en
Priority to EP19187595.4A priority patent/EP3608985B1/en
Publication of KR20200016540A publication Critical patent/KR20200016540A/ko
Application granted granted Critical
Publication of KR102580803B1 publication Critical patent/KR102580803B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • H01L51/0071
    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은, 하기 화학식으로 표시되는 유기 화합물 및 이를 이용하는 유기발광다이오드와 유기발광표시장치를 제공한다.
Figure pat00050

Description

유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치{ORGANIC COMPOUNDS, AND ORGANIC LIGHT EMITTING DIODE AND ORGNIC LIGHT EMITTING DISPLAY DEVICE INCLUDING THE SAME}
본 발명은 유기 화합물에 관한 것으로, 더욱 상세하게는 높은 삼중항 에너지를 갖고 n-타입 호스트로 이용되는 유기 화합물과, 이를 포함하는 유기발광다이오드 및 유기발광 표시장치에 관한 것이다.
최근 표시장치의 대형화에 따라 공간 점유가 적은 평면표시소자의 요구가 증대되고 있는데, 이러한 평면표시소자 중 하나로서 발광다이오드를 포함하며 유기전계발광소자(organic electroluminescent device: OELD)라고도 불리는 유기발광 표시장치(organic light emitting display (OLED) device)의 기술이 빠른 속도로 발전하고 있다.
발광다이오드는 전자 주입 전극(음극)과 정공 주입 전극(양극) 사이에 형성된 유기 발광층에 전하를 주입하면 전자와 정공이 쌍을 이룬 후 소멸하면서 빛을 내는 소자이다. 플라스틱 같은 휠 수 있는(flexible) 투명 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 낮은 전압에서 (10V이하) 구동이 가능하고, 또한 전력 소모가 비교적 적으며, 색순도가 뛰어나다는 장점이 있다.
유기 발광층은 발광 물질층의 단일층 구조를 갖거나, 발광 효율 향상을 위해 다층 구조를 가질 수 있다. 예를 들어, 유기발광층은, 정공 주입층(hole injection layer, HIL), 정공 수송층(hole transporting layer; HTL), 발광 물질층(emitting material layer; EML), 전자 수송층(electron transporting layer, ETL) 및 전자 주입층(electron injection layer, EIL)으로 구성되는 다층 구조를 가질 수 있다.
상기 발광 물질층은 발광을 위한 도펀트를 포함한다. 하지만 도펀트는 농도 소광 현상으로 급격한 효율감소가 발생하기 때문에, 발광 물질층이 도펀트만으로 이루어지는 경우 급격한 효율감소로 인해 표시장치에 적용하는데 한계가 있다. 따라서, 발광 물질층은 호스트를 더 포함한다.
예를 들어, CBP와 같은 유기 화합물이 발광 물질층의 호스트로 주로 이용되고 있다. 그런데, 종래 유기발광다이오드에서는, 예측되는 수명과 발광효율이 구현되지 못하는 문제가 있다.
즉, 유기발광다이오드 및 유기발광 표시장치의 수명과 발광효율에 한계가 있다.
본 발명은 종래 유기발광다이오드 및 유기발광 표시장치에서의 낮은 발광 효율과 수명 문제를 해결하고자 한다.
본 발명은, 하기 화학식으로 표시되며, X1은 산소 또는 황에서 선택되고, X2 내지 X7 각각은 독립적으로 탄소 또는 질소에서 선택되며, R1은 수소 또는 시아노기에서 선택되고, R2 및 R3 각각은 수소 또는 헤테로아릴기로부터 선택되는 유기 화합물을 제공한다.
Figure pat00001
본 발명의 유기 화합물은 하기 화합물 중 어느 하나이다.
Figure pat00002
Figure pat00003
Figure pat00004
Figure pat00005
Figure pat00006
Figure pat00007
Figure pat00008
Figure pat00009
다른 관점에서, 본 발명은, 제 1 전극과; 상기 제 1 전극과 마주보는 제 2 전극과; 상기 제 1 및 제 2 전극 사이에 위치하는 제 1 발광물질층을 포함하고, 상기 제 1 발광물질층은 전술한 유기 화합물을 포함하는 유기발광다이오드를 제공한다.
본 발명의 유기발광다이오드에 있어서, 상기 유기 화합물은 제 1 호스트로 이용되고, 상기 제 1 발광물질층은 지연 형광 물질인 제 1 도펀트를 더 포함한다.
본 발명의 유기발광다이오드에 있어서, 상기 제 1 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 제 1 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 제 1 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 제 1 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost- LUMODopant|)는 0.5eV 이하이다.
본 발명의 유기발광다이오드에 있어서, 상기 제 1 발광물질층은 형광 물질인 제 2 도펀트를 더 포함하며, 상기 제 1 도펀트의 단일항 에너지는 제 2 도펀트의 단일항 에너지보다 크다.
본 발명의 유기발광다이오드에 있어서, 상기 제 1 도펀트의 제 1 삼중항 에너지는 상기 제 1 호스트의 제 2 삼중항 에너지보다 작고 상기 제 2 도펀트의 제 3 삼중항 에너지보다 크다.
본 발명의 유기발광다이오드는, 제 2 호스트와 형광 물질인 제 2 도펀트를 포함하며 상기 제 1 전극과 상기 제 1 발광물질층 사이에 위치하는 제 2 발광물질층을 더 포함한다.
본 발명의 유기발광다이오드는, 상기 제 1 전극과 상기 제 2 발광물질층 사이에 위치하는 전자차단층을 더 포함하고, 상기 제 2 호스트는 상기 전자차단층의 물질과 동일하다.
본 발명의 유기발광다이오드는, 제 3 호스트와 형광 물질인 제 3 도펀트를 포함하며 상기 제 1 발광물질층과 상기 제 2 전극 사이에 위치하는 제 3 발광물질층을 더 포함한다.
본 발명의 유기발광다이오드는, 상기 제 2 전극과 상기 제 3 발광물질층 사이에 위치하는 정공차단층을 더 포함하고, 상기 제 3 호스트는 상기 정공차단층의 물질과 동일하다.
본 발명의 유기발광다이오드에 있어서, 상기 제 1 도펀트의 단일항 에너지는 상기 제 2 및 제 3 도펀트의 단일항 에너지보다 크다.
본 발명의 유기발광다이오드에 있어서, 상기 제 1 호스트의 단일항 에너지와 삼중항 에너지 각각은 상기 제 1 도펀트의 단일항 에너지와 삼중항 에너지보다 크고, 상기 제 2 호스트의 단일항 에너지는 상기 제 2 도펀트의 단일항 에너지보다 크며, 상기 제 3 호스트의 단일항 에너지는 상기 제 3 도펀트의 단일항 에너지보다 크다.
본 발명의 유기발광다이오드에 있어서, 상기 제 1 도펀트의 단일항 에너지는 상기 제 2 도펀트의 단일항 에너지보다 크다.
본 발명의 유기발광다이오드는, 상기 제 1 전극과 상기 제 1 발광물질층 사이의 정공수송층과, 상기 제 1 전극과 상기 정공수송층 사이의 정공주입층과, 상기 정공수송층과 상기 제 1 발광물질층 사이의 전자차단층과, 상기 제 1 발광물질층과 상기 제 2 전극 사이의 전자수송층과, 상기 전자수송층과 상기 제 2 전극 사이의 전자주입층과, 상기 제 1 발광물질층과 상기 전자수송층 사이의 정공차단층을 더 포함하고, 상기 유기 화합물은 상기 제 1 발광물질층에서 호스트로 이용되며, 상기 제 1 발광물질층은 도펀트를 더 포함한다.
본 발명의 유기발광다이오드에 있어서, 상기 제 2 호스트와 상기 제 3 호스트는 상기 유기 화합물이다.
또 다른 관점에서, 본 발명은, 기판과;
상기 기판 상부에 위치하는 전술한 유기발광다이오드와; 상기 기판과 상기 유기발광다이오드 사이에 위치하며 상기 유기발광다이오드에 연결되는 박막트랜지스터를 포함하는 유기발광 표시장치를 제공한다.
본 발명의 유기 화합물은 n-타입 특성과 높은 삼중항 에너지를 갖는다.
따라서, 본 발명의 유기 화합물이 유기 발광층에서 호스트로 이용되는 경우, 도펀트의 삼중항 여기자와 홀-폴라론(hole-polaron)의 상호 작용에 의한 삼중항 엑시톤 ?칭(quenching) 문제가 방지되어 유기발광다이오드의 발광 효율이 향상되고 도펀트의 삼중항 여기자가 호스트의 삼중항 에너지로 전이되는 것이 방지되어 유기발광다이오드의 발광 효율이 더욱 향상된다.
또한, 본 발명의 유기 화합물이 유기 발광층에서 호스트로 이용되는 경우, 발광 물질층과 정공 수송층(또는 전자 차단층)의 계면 근처에서 발광이 일어남으로써, 유기발광다이오드의 발광 효율과 수명이 향상된다.
즉, 본 발명의 유기발광다이오드와 유기발광 표시장치는 높은 삼중항 에너지를 갖는 n-타입의 유기 화합물을 호스트로 이용함으로써, 발광 효율과 수명 측면에서 장점을 갖는다.
도 1은 본 발명에 따른 유기발광 표시장치의 개략적인 회로도이다.
도 2는 본 발명의 유기발광 표시장치의 개략적인 단면도이다.
도 3은 본 발명의 실시예에 따른 유기발광다이오드의 개략적인 단면도이다.
도 4a 및 도 4b 각각은 p-타입 호스트를 이용한 유기발광다이오드와 본 발명의 유기발광다이오드에서의 발광을 설명하기 위한 개략적인 도면이다.
도 5는 지연 형광 화합물의 발광 메커니즘을 설명하기 위한 도면이다.
도 6은 본 발명의 유기발광다이오드에서의 발광 메커니즘을 설명하기 위한 도면이다.
도 7은 본 발명의 실시예에 따른 유기발광다이오드의 개략적인 단면도이다.
도 8은 본 발명의 실시예에 따른 유기발광다이오드의 개략적인 단면도이다.
이하, 본 발명에 따른 바람직한 실시예를 도면을 참조하여 설명한다.
도 1은 본 발명에 따른 유기발광 표시장치의 개략적인 회로도이다.
도 1에 도시한 바와 같이, 유기발광 표시장치에는, 서로 교차하여 화소영역(P)을 정의하는 게이트 배선(GL), 데이터 배선(DL) 및 파워 배선(PL)이 형성되고, 상기 화소영역(P)에는, 스위칭 박막트랜지스터(Ts), 구동 박막트랜지스터(Td), 스토리지 커패시터(Cst), 유기발광다이오드(D)가 형성된다.
상기 스위칭 박막트랜지스터(Ts)는 상기 게이트 배선(GL) 및 상기 데이터 배선(DL)에 연결되고, 상기 구동 박막트랜지스터(Td) 및 상기 스토리지 커패시터(Cst)는 상기 스위칭 박막트랜지스터(Ts)와 상기 파워 배선(PL) 사이에 연결된다. 상기 유기발광다이오드(D)는 상기 구동 박막트랜지스터(Td)에 연결된다.
이러한 유기발광다이오드 표시장치에서는, 상기 게이트 배선(GL)에 인가된 게이트 신호에 따라 상기 스위칭 박막트랜지스터(Ts)가 턴-온(turn-on) 되면, 상기 데이터 배선(DL)에 인가된 데이터 신호가 상기 스위칭 박막트랜지스터(Ts)를 통해 상기 구동 박막트랜지스터(Td)의 게이트 전극과 상기 스토리지 커패시터(Cst)의 일 전극에 인가된다.
상기 구동 박막트랜지스터(Td)는 게이트 전극에 인가된 데이터 신호에 따라 턴-온 되며, 그 결과 데이터 신호에 비례하는 전류가 상기 파워 배선(PL)으로부터 상기 구동 박막트랜지스터(Td)를 통하여 상기 유기발광다이오드(D)로 흐르게 되고, 상기 유기발광다이오드(D)는 구동 박막트랜지스터(Td)를 통하여 흐르는 전류에 비례하는 휘도로 발광한다.
이때, 상기 스토리지 커패시터(Cst)에는 데이터신호에 비례하는 전압으로 충전되어, 일 프레임(frame) 동안 상기 구동 박막트랜지스터(Td)의 상기 게이트 전극의 전압이 일정하게 유지되도록 한다.
따라서, 유기발광 표시장치는 원하는 영상을 표시할 수 있다.
도 2는 본 발명의 유기발광 표시장치의 개략적인 단면도이다.
도 2에 도시된 바와 같이, 유기발광 표시장치(100)는 기판(110) 상에 위치하는 박막트랜지스터(Tr)와 상기 박막트랜지스터(Tr)에 연결되는 유기발광다이오드(D)를 포함한다.
상기 기판(110)은 유리기판 또는 플라스틱 기판일 수 있다. 예를 들어, 상기 기판(110)은 폴리이미드로 이루어질 수 있다.
상기 기판(110) 상에는 버퍼층(120)이 형성되고, 상기 버퍼층(120) 상에 박막트랜지스터(Tr)가 형성된다. 상기 버퍼층(120)은 생략될 수 있다.
상기 버퍼층(120) 상에는 반도체층(122)이 형성된다. 상기 반도체층(122)은 산화물 반도체 물질로 이루어지거나 다결정 실리콘으로 이루어질 수 있다.
상기 반도체층(122)이 산화물 반도체 물질로 이루어질 경우, 상기 반도체층(122) 하부에는 차광패턴(도시하지 않음)이 형성될 수 있으며, 차광패턴은 반도체층(122)으로 빛이 입사되는 것을 방지하여 반도체층(122)이 빛에 의해 열화되는 것을 방지한다. 이와 달리, 반도체층(122)은 다결정 실리콘으로 이루어질 수도 있으며, 이 경우 반도체층(122)의 양 가장자리에 불순물이 도핑되어 있을 수 있다.
반도체층(122) 상부에는 절연물질로 이루어진 게이트 절연막(124)이 형성된다. 상기 게이트 절연막(124)은 산화 실리콘 또는 질화 실리콘과 같은 무기절연물질로 이루어질 수 있다.
상기 게이트 절연막(124) 상부에는 금속과 같은 도전성 물질로 이루어진 게이트 전극(130)이 반도체층(122)의 중앙에 대응하여 형성된다.
도 2에서는, 게이트 절연막(124)이 기판(110) 전면에 형성되어 있으나, 게이트 절연막(124)은 게이트 전극(130)과 동일한 모양으로 패터닝될 수도 있다.
상기 게이트 전극(130) 상부에는 절연물질로 이루어진 층간 절연막(132)이 형성된다. 층간 절연막(132)은 산화 실리콘이나 질화 실리콘과 같은 무기 절연물질로 형성되거나, 벤조사이클로부텐(benzocyclobutene)이나 포토 아크릴(photo-acryl)과 같은 유기 절연물질로 형성될 수 있다.
상기 층간 절연막(132)은 상기 반도체층(122)의 양측을 노출하는 제 1 및 제 2 콘택홀(134, 136)을 갖는다. 제 1 및 제 2 콘택홀(134, 136)은 게이트 전극(130)의 양측에 게이트 전극(130)과 이격되어 위치한다.
여기서, 제 1 및 제 2 콘택홀(134, 136)은 게이트 절연막(124) 내에도 형성된다. 이와 달리, 게이트 절연막(124)이 게이트 전극(130)과 동일한 모양으로 패터닝될 경우, 제 1 및 제 2 콘택홀(134, 136)은 층간 절연막(132) 내에만 형성될 수도 있다.
상기 층간 절연막(132) 상에는 금속과 같은 도전성 물질로 이루어지는 소스 전극(140)과 드레인 전극(142)이 형성된다.
소스 전극(140)과 드레인 전극(142)은 상기 게이트 전극(130)을 중심으로 이격되어 위치하며, 각각 상기 제 1 및 제 2 콘택홀(134, 136)을 통해 상기 반도체층(122)의 양측과 접촉한다.
상기 반도체층(122)과, 상기 게이트전극(130), 상기 소스 전극(140), 상기 드레인전극(142)은 상기 박막트랜지스터(Tr)를 이루며, 상기 박막트랜지스터(Tr)는 구동 소자(driving element)로 기능한다.
상기 박막트랜지스터(Tr)는 상기 반도체층(122)의 상부에 상기 게이트 전극(130), 상기 소스 전극(142) 및 상기 드레인 전극(144)이 위치하는 코플라나(coplanar) 구조를 가진다.
이와 달리, 박막트랜지스터(Tr)는 반도체층의 하부에 게이트 전극이 위치하고 반도체층의 상부에 소스 전극과 드레인 전극이 위치하는 역 스태거드(inverted staggered) 구조를 가질 수 있다. 이 경우, 반도체층은 비정질 실리콘으로 이루어질 수 있다.
도시하지 않았으나, 게이트 배선과 데이터 배선이 서로 교차하여 화소영역을 정의하며, 상기 게이트 배선과 상기 데이터 배선에 연결되는 스위칭 소자가 더 형성된다. 상기 스위칭 소자는 구동 소자인 박막트랜지스터(Tr)에 연결된다.
또한, 파워 배선이 상기 데이터 배선 또는 상기 데이터 배선과 평행하게 이격되어 형성되며, 일 프레임(frame) 동안 구동소자인 박막트랜지스터(Tr)의 게이트전극의 전압을 일정하게 유지되도록 하기 위한 스토리지 캐패시터가 더 구성될 수 있다.
상기 박막트랜지스터(Tr)의 상기 드레인 전극(142)을 노출하는 드레인 콘택홀(152)을 갖는 보호층(150)이 상기 박막트랜지스터(Tr)를 덮으며 형성된다.
상기 보호층(150) 상에는 상기 드레인 콘택홀(152)을 통해 상기 박막트랜지스터(Tr)의 상기 드레인 전극(142)에 연결되는 제 1 전극(160)이 각 화소 영역 별로 분리되어 형성된다. 상기 제 1 전극(160)은 애노드(anode)일 수 있으며, 일함수 값이 비교적 큰 도전성 물질로 이루어질 수 있다. 예를 들어, 상기 제 1 전극(160)은 인듐-틴-옥사이드(indium-tin-oxide, ITO) 또는 인듐-징크-옥사이드(indium-zinc-oxide, IZO)와 같은 투명 도전성 물질로 이루어질 수 있다.
한편, 본 발명의 표시패널(110)이 상부 발광 방식(top-emission type)인 경우, 상기 제 1 전극(160) 하부에는 반사전극 또는 반사층이 더욱 형성될 수 있다. 예를 들어, 상기 반사전극 또는 상기 반사층은 알루미늄-팔라듐-구리(aluminum-palladium-copper: APC) 합금으로 이루어질 수 있다.
또한, 상기 보호층(150) 상에는 상기 제 1 전극(160)의 가장자리를 덮는 뱅크층(166)이 형성된다. 상기 뱅크층(166)은 상기 화소영역에 대응하여 상기 제 1 전극(160)의 중앙을 노출한다.
상기 제 1 전극(160) 상에는 유기 발광층(162)이 형성된다. 상기 유기 발광층(162)은 발광물질로 이루어지는 발광물질층(emitting material layer)의 단일층 구조일 수 있다. 또한, 발광 효율을 높이기 위해, 상기 유기 발광층(162)은 다중 구조를 가질 수 있다.
상기 유기 발광층(162)이 형성된 상기 기판(110) 상부로 제 2 전극(164)이 형성된다. 상기 제 2 전극(164)은 표시영역의 전면에 위치하며 일함수 값이 비교적 작은 도전성 물질로 이루어져 캐소드(cathode)로 이용될 수 있다. 예를 들어, 상기 제 2 전극(164)은 알루미늄(Al), 마그네슘(Mg), 알루미늄-마그네슘 합금(AlMg) 중 어느 하나로 이루어질 수 있다.
상기 제 1 전극(160), 상기 유기발광층(162) 및 상기 제 2 전극(164)는 유기발광다이오드(D)를 이룬다.
상기 제 2 전극(164) 상에는, 외부 수분이 상기 유기발광다이오드(D)로 침투하는 것을 방지하기 위해, 인캡슐레이션 필름(encapsulation film, 170)이 형성된다. 상기 인캡슐레이션 필름(170)은 제 1 무기 절연층(172)과, 유기 절연층(174)과 제 2 무기 절연층(174)의 적층 구조를 가질 수 있으나, 이에 한정되지 않는다.
또한, 상기 인캡슐레이션 필름(170) 상에는 외부광 반사를 줄이기 위한 편광판(미도시)이 부착될 수 있다. 예를 들어, 상기 편광판은 원형 편광판일 수 있다.
또한, 상기 인캡슐레이션 필름(170) 또는 편광판 상에 커버 윈도우(미도시)가 부착될 수 있다. 이때, 상기 기판과 상기 커버 윈도우가 플렉서블 특성을 가져, 플렉서블 표시장치를 이룰 수 있다.
도 3은 본 발명의 실시예에 따른 유기발광다이오드의 개략적인 단면도이다.
도 3에 도시된 바와 같이, 유기발광다이오드(D)는 서로 마주하는 제 1 및 제 2 전극(160, 164)와 이들 사이에 위치하는 유기발광층(162)을 포함하며, 상기 유기발광층(162)은 상기 제 1 및 제 2 전극(160, 164) 사이에 위치하는 발광물질층(240)과, 상기 제 1 전극(160)과 상기 발광 물질층(240) 사이에 위치하는 정공 수송층(hole transporting layer, 220)과, 상기 제 2 전극(164)과 상기 발광 물질층(240) 사이에 위치하는 전자 수송층(electron transporting layer, 260)을 포함할 수 있다.
또한, 상기 유기 발광층(162)은 상기 제 1 전극(160)과 상기 정공 수송층(220) 사이에 위치하는 정공 주입층(hole injection layer, 210)과, 상기 제 2 전극(164)과 상기 전자 수송층(260) 사이에 위치하는 전자 주입층(electron injection layer, 270)을 더 포함할 수도 있다.
또한, 상기 유기 발광층(162)은 상기 정공 수송층(220)과 발광물질층(240) 사이에 위치하는 전자 차단층(electron blocking layer, 230)과 상기 발광 물질층(240)과 상기 전자 수송층(260) 사이에 위치하는 정공 차단층(hole blocking layer, 250)을 더 포함할 수도 있다.
상기 유기발광층(162), 보다 구체적으로 상기 발광물질층(240)은 하기 화학식으로 표시되는 유기 화합물을 호스트로 포함하고 도펀트를 더 포함한다.
[화학식1]
Figure pat00010
상기 화학식1에서, X1은 산소 또는 황에서 선택되고, X2 내지 X7 각각은 독립적으로 탄소 또는 질소에서 선택된다. 또한, R1은 수소 또는 시아노기에서 선택되고, R2 및 R3 각각은 수소 또는 헤테로아릴기로부터 선택된다.
예를 들어, X2 내지 X7 중 적어도 넷은 탄소일 수 있고, R2 및 R3일 수 있는 헤테로아릴기는 카바조일기일 수 있다.
즉, 본 발명의 유기 화합물은 치환 또는 비치환된 카바조일기인 전자주개 모이어티와 이에 연결된 전자주개 모이어티를 포함하며, 전자받개 모이어티는 제 1 및 제 2 전자받개 모이어티가 산소 원소 링커에 의해 결합된다. 다시 말해, 본 발명의 유기 화합물은 두 전자받개 모이어티를 포함하며 이에 따라 n타입 특성을 갖고, 두 전자받개 모이어티가 에테르 결합에 의해 연결됨으로써 컨쥬케이션 길이(conjugation length)가 감소하여 유기 화합물의 삼중항 에너지가 증가한다.
예를 들어, 전자받개 모이어티는 하기 화학식2로부터 선택되고, 전자주개 모이어티는 하기 화학식3으로부터 선택될 수 있다.
[화학식2]
Figure pat00011
Figure pat00012
Figure pat00013
Figure pat00014
Figure pat00015
Figure pat00016
Figure pat00017
[화학식3]
Figure pat00018
Figure pat00019
Figure pat00020
전술한 바와 같이, 본 발명의 유기 화합물은 n-타입 호스트로 이용될 수 있고 높은 삼중항 에너지를 갖는다.
따라서, 본 발명의 유기 화합물이 발광물질층의 호스트로 이용되는 경우, 유기발광다이오드 및 유기발광 표시장치의 발광효율과 수명이 향상된다.
본 발명의 유기 화합물인 호스트와 함께 발광물질층(240)에 이용되는 도펀트는 형광 도펀트, 인광 도펀트 및 지연 형광 도펀트 중 적어도 하나일 수 있다. 도펀트는 호스트에 대하여 약 1~50의 중량비(wt%)를 가질 수 있다.
발광물질층(240)에서는, 도펀트의 삼중항 여기자와 홀-폴라론의 상호 작용에 의해 여기자가 ?칭되는 문제가 발생하는데, 이를 방지하기 위해서 호스트는 n-타입 특성을 가져야 한다. 그러나, n-타입 특성이 증가하게 되면, 호스트의 삼중항 에너지가 감소하기 때문에, 도펀트의 삼중항 여기자가 호스트의 삼중항 에너지 레벨로 전이되어 발광 효율이 감소하게 된다.
그러나, 본 발명의 유기 화합물은 n-타입 특성을 가지면서 에테르 결합을 포함하여 높은 삼중항 에너지를 갖게 된다. 따라서, 본 발명의 유기발광다이오드(D)에서는 도펀트의 삼중항 에너지와 홀-폴라론의 상호작용에 의한 여기자의 ?칭 문제와 호스트의 낮은 삼중항 에너지에 의한 도펀트에서 호스트로의 에너지 전이 문제가 방지된다.
또한, n-타입 호스트를 이용하는 경우, 정공과 전자의 결합으로 인한 발광 영역이 발광 물질층(EML)과 전자 차단층(EBL)의 계면 근처에 형성됨으로써, 유기발광다이오드의 수명이 향상된다.
즉, p-타입 호스트를 이용한 유기발광다이오드에서의 발광을 설명하기 위한 개략적인 도면인 도 4a를 참조하면, 전자 차단층(EBL), 발광 물질층(EML), 정공 차단층(HBL)이 순차 적층된 구조에서, 발광 물질층(EML)의 p-타입 호스트에 의해 정공의 이동 속도가 상대적으로 빨라지고 이에 따라 정공과 전자의 결합으로 인한 발광 영역이 발광 물질층(EML)과 정공 차단층(HBL)의 계면 근처에 형성된다.
한편, 본 발명의 유기발광다이오드에서의 발광을 설명하기 위한 도 4b를 참조하면, 발광 물질층(EML)의 n-타입 호스트(본 발명의 유기 화합물)에 의해 전자의 이동 속도가 상대적으로 빨라지고 이에 따라 정공과 전자의 결합으로 인한 발광 영역이 발광 물질층(EML)과 전자 차단층(EBL)의 계면 근처에 형성된다.
이와 같이, p-타입 호스트와 n-타입 호스트의 차이에 의해 발광 영역의 위치가 다르게 되고, 유기발광다이오드(D)의 수명에서 차이가 발생한다.
즉, p-타입 호스트와 n-타입 호스트를 이용하는 경우 모두에서 발광은 발광 물질층(EML)의 중앙에서 일어나지 않고 어느 한쪽으로 이동하지만, 발광이 제 1 전극에 근접하여, 예를 들어 전자 차단층 또는 정공 수송층과 발광 물질층의 계면 근처에서 일어나는 경우 발광 효율과 수명이 증가한다.
예를 들어, 지연 형광 화합물의 발광 메커니즘을 설명하기 위한 도면인 도 5를 참조하면, 지연 형광 화합물에서는, 단일항 여기자와 삼중항 여기자 모두가 발광에 참여하여 양자 효율이 향상된다.
즉, 지연 형광 화합물은 전계 또는 열에 의해 삼중항 여기자가 활성화되어, 삼중항 여기자와 단일항 여기자가 중간 상태(intermediate state)로 이동하고 바닥상태(ground state)로 떨어지면서 발광하게 된다. 다시 말해, 단일항 여기자와 삼중항 여기자 모두가 발광에 참여함으로써, 발광 효율이 향상된다.
발광물질층(240)이 본 발명의 유기 화합물인 호스트와 지연 형광 도펀트를 포함하는 경우, 상기 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 지연 형광 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost-LUMODopant|)는 0.5eV이하가 되도록 한다. 이에 따라, 호스트에서 지연 형광 도펀트로의 전하이동(charge transfer) 효율이 향상된다.
이때, 상기 지연 형광 도펀트의 삼중항 에너지가 상기 호스트의 삼중항 에너지보다 작고, 지연 형광 도펀트의 단일항 에너지와 지연 형광 도펀트의 삼중항 에너지의 차이(ΔEST)는 0.3eV이하인 것을 특징으로 한다. ΔEST가 작을수록 발광효율이 증가하며, 지연 형광 도펀트의 단일항 에너지와 삼중항 에너지의 차이(ΔEST)가 비교적 큰 약 0.3eV가 되더라도 전계에 의해 단일항 상태 여기자와 삼중항 상태 여기자가 중간 상태로 전이 될 수 있다. (ΔEST≤0.3)
한편, 상기 발광물질층(240)은 본 발명의 유기 화합물을 호스트로 포함하고 지연 형광 도펀트(제 1 도펀트)와 형광 도펀트(제 2 도펀트)를 포함할 수 있다. 도핑된 상기 제 1 및 제 2 도펀트의 합은 호스트에 대하여 약 1~50wt%일 수 있다.
이때, 제 1 도펀트의 단일항 에너지는 호스트의 삼중항 에너지보다 작고 제 2 도펀트의 단일항 에너지보다 크다. 또한, 제 1 도펀트의 삼중항 에너지는 호스트의 삼중항 에너지보다 작고 제 2 도펀트의 삼중항 에너지보다 크다.
본 발명의 유기발광다이오드에서의 발광 메커니즘을 설명하기 위한 도면인 도 6을 참조하면, 역계간전이(RISC)에 의해 지연 형광 도펀트의 삼중항 에너지(ET1(TD))가 단일항 에너지(ES1(TD))로 전환되고, 지연 형광 도펀트의 단일항 에너지(ES1(TD))가 형광 도펀트의 단일항 에너지(ES1(FD))로 전달됨으로써(Foster Resonance Energy Transfer), 형광 도펀트에서 발광이 일어난다.
상기 발광물질층(240)이 호스트 물질과 제 1 및 제 2 도펀트 물질을 포함함으로써, 발광 효율 및 색감이 더욱 향상된다. 즉, 호스트에서 제 1 도펀트로 에너지 전이가 일어나고, 제 1 도펀트의 단일항 에너지와 삼중항에너지가 제 2 도펀트로 전달되어 제 2 도펀트에서 발광이 일어나기 때문에, 유기발광다이오드(D)의 양자 효율이 증가하고 반치폭이 좁아진다.
지연 형광 특성을 갖는 제 1 도펀트는 높은 양자효율을 갖지만 반치폭이 넓기 때문에 색순도가 좋지 않고, 형광 물질인 제 2 도펀트는 반치폭이 좁기 때문에 색순도에서 장점을 갖지만 삼중항 여기자가 발광에 참여하지 못하기 때문에 낮은 양자효율을 갖는다.
그러나, 발광물질층(340)이 지연 형광 물질인 제 1 도펀트와 형광 물질인 제 2 도펀트를 포함하는 경우, 발광효율과 색순도 모두에서 장점을 갖게 된다.
이때 높은 삼중항 에너지를 갖는 n-타입 호스트인 본 발명의 유기 화합물이 이용됨으로써, 발광 효율이 더욱 향상된다.
예를 들어, 화학식1의 유기 화합물은 하기 화학식4의 화합물 중 어느 하나일 수 있다.
[화학식4]
Figure pat00021
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
Figure pat00027
Figure pat00028
[유기 화합물의 합성]
1. 화합물1의 합성
(1) 화합물C
[반응식1-1]
Figure pat00029
질소 환경 하에서, 화합물B를 dioxane에 녹인 다음 0.9 당량의 화합물A를 첨가하였다. 4.0 당량의 potassium phosphate를 넣은 후, 0.2 당량의 CuI 및 1,2-diaminocyclohexane을 첨가하였다. 이후 반응 혼합물을 환류시키며 12시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물C를 얻었다.
(2) 화합물1
[반응식1-2]
Figure pat00030
질소 환경 하에서, 화합물C를 dimethylsulfoxide(DMSO)에 녹인 다음 1.4 당량의 화합물D를 첨가하였다. 2.0 당량의 potassium phosphate 를 넣은 후, 0.1 당량의 CuI 및 0.2 당량의 picolinic acid를 첨가하였다. 이후 반응 혼합물을 80℃에서 환류시키며 20시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물1을 얻었다.
2. 화합물5의 합성
(1) 화합물E
[반응식2-1]
Figure pat00031
질소 환경 하에서, 화합물B’를 DMSO에 녹인 다음 1.1 당량의 화합물D를 첨가하였다. 3.0 당량의 potassium phosphate를 넣은 후, 0.5 당량의 CuI 및 0.5 당량의 picolinic acid를 첨가하였다. 이후 반응 혼합물을 80℃에서 환류시키며 4시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물E를 얻었다.
(2) 화합물5
[반응식2-2]
Figure pat00032
질소 환경 하에서, 화합물E를 dioxane에 녹인 다음 1.2 당량의 화합물A를 첨가하였다. 4.0 당량의 potassium phosphate를 넣은 후, 0.2 당량의 CuI 및 1,2-diaminocyclohexane을 첨가하였다. 이후 반응 혼합물을 환류시키며 20시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물5를 얻었다.
3. 화합물9의 합성
(1) 화합물E'
[반응식3-1]
Figure pat00033
질소 환경 하에서, 화합물B”를 DMSO에 녹인 다음 1.1 당량의 화합물D를 첨가하였다. 3.0 당량의 potassium phosphate를 넣은 후, 0.5 당량의 CuI 및 0.5 당량의 picolinic acid를 첨가하였다. 이후 반응 혼합물을 80℃에서 환류시키며 4시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물E’를 얻었다.
(2) 화합물9
[반응식3-2]
Figure pat00034
질소 환경 하에서, 화합물E’를 dioxane에 녹인 다음 1.2 당량의 화합물A를 첨가하였다. 4.0 당량의 potassium phosphate를 넣은 후, 0.2 당량의 CuI 및 1,2-diaminocyclohexane을 첨가하였다. 이후 반응 혼합물을 환류시키며 20시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물9를 얻었다.
4. 화합물15의 합성
[반응식4]
Figure pat00035
질소 환경 하에서, 화합물C를 DMSO에 녹인 다음 1.4 당량의 화합물D’를 첨가하였다. 2.0 당량의 potassium phosphate를 넣은 후, 0.1 당량의 CuI 및 0.2 다량의 picolinic acid를 첨가하였다. 이후 반응 혼합물을 80℃에서 환류시키며 20시간 동안 교반하고 반응을 종결하였다. 유기 용매로 추출 후, 유기 용매를 제거하였다. 컬럼(column) 후 재침전을 통해 화합물15를 얻었다.
화학식3의 화합물1, 화합물3, 화합물5, 화합물9 및 화합물15와, 아래 화학식4 및 화학식5에 표시된 화합물의 물리적 특성(HOMO레벨, LUMO레벨, 삼중항 에너지(ET))을 측정하여 아래 표1에 기재하였다. (단위 [eV])
[화학식4]
Figure pat00036
[화학식5]
Figure pat00037
[표1]
Figure pat00038
표1에서 보여지는 바와 같이, 에테르 결합이 없는 화학식4 및 화학식5 화합물에 비해, 본 발명의 유기 화합물은 높은 삼중항 에너지를 갖는다. 따라서, 본 발명은 유기 화합물은 발광물질층의 호스트로 이용되어 높은 에너지 효율을 구현할 수 있고, n-타입 호스트로서 발광 영역의 이동으로 인해 발광 효율 및 수명에서 장점을 갖는다.
[유기발광다이오드]
진공 증착 챔버에서, 약 10-7 Torr 진공 하에 아래와 같은 순서로 층들을 ITO기판에 증착하였다.
(a) HIL (50 Å, HATCN)
(b) HTL (500 Å, NPB)
(c) EBL (100 Å, mCP)
(d) EML (300 Å, HOST: Dopant (30wt%, 화학식6))
(e) ETL (300 Å, TPBI)
(f) EIL (10 Å, LiF)
(h) Cathode (1000 Å, Al)
[화학식6]
Figure pat00039
(1) 비교예1(Ref1)
호스트로서 상기 화학식4의 화합물을 이용하였다.
(2) 비교예2(Ref2)
호스트로서 상기 화학식5의 화합물을 이용하였다.
(3) 실험예1(Ex1)
호스트로서 화학식3의 화합물1을 이용하였다.
(4) 실험예2(Ex2)
호스트로서 화학식2의 화합물5를 이용하였다.
(5) 실험예3(Ex3)
호스트로서 화학식2의 화합물9를 이용하였다.
비교예1 및 비교예2, 실험예1 내지 실험예3에서 제작된 유기발광다이오드의 특성을 측정하였다. 유기발광다이오드의 구동 전압, 외부양자효율(EQE), 전력효율(lm/W), CIE 색좌표 측정 결과를 하기 표 2에 기재하였다.
[표 2]
Figure pat00040
표 2에서 보여지는 바와 같이, 비교예1 및 2와 비교하여, 본 발명의 유기 화합물을 호스트로 이용하는 실험예1 내지 3의 발광효율(외부양자효율 및 전력효율)이 크게 증가한다.
도 7은 본 발명의 실시예에 따른 유기발광다이오드의 개략적인 단면도이다.
도 7에 도시된 바와 같이, 유기발광다이오드(D)는 서로 마주하는 제 1 및 제 2 전극(160, 164)와 이들 사이에 위치하는 유기발광층(162)을 포함하며, 상기 유기발광층(162)은 상기 제 1 및 제 2 전극(160, 164) 사이에 위치하며 제 1 및 제 2 층(342, 344)을 포함하는 발광물질층(340)과, 상기 제 1 전극(160)과 상기 발광 물질층(340) 사이에 위치하는 정공수송층(320)과, 상기 제 2 전극(164)과 상기 발광 물질층(340) 사이에 위치하는 전자 수송층(360)을 포함할 수 있다.
또한, 상기 유기 발광층(162)은 상기 제 1 전극(160)과 상기 정공 수송층(320) 사이에 위치하는 정공 주입층(310)과, 상기 제 2 전극(164)과 상기 전자 수송층(360) 사이에 위치하는 전자 주입층(370)을 더 포함할 수도 있다.
또한, 상기 유기 발광층(162)은 상기 정공 수송층(320)과 발광물질층(340) 사이에 위치하는 전자 차단층(330)과 상기 발광 물질층(340)과 상기 전자 수송층(360) 사이에 위치하는 정공 차단층(350)을 더 포함할 수도 있다.
예를 들어, 상기 발광물질층(340)에 있어서, 상기 제 1 층(342)은 본 발명의 유기 화합물을 제 1 호스트로 포함하고 지연 형광 도펀트(제 1 도펀트)를 더 포함하며, 상기 제 2 층(344)은 제 2 호스트와 형광 도펀트(제 2 도펀트)를 포함할 수 있다. 이와 달리, 제 2 층(344)이 본 발명의 유기 화합물을 제 1 호스트로 포함하고 지연 형광 도펀트(제 1 도펀트)를 더 포함하며, 상기 제 1 층(342)은 제 2 호스트와 형광 도펀트(제 2 도펀트)를 포함할 수 있다. 이때, 제 2 호스트 역시 본 발명의 유기 화합물일 수 있다. 이때, 지연 형광 도펀트의 단일항 에너지는 형광 도펀트의 단일항 에너지보다 큰 값을 갖는다.
이하, 제 1 층(342)이 지연 형광 도펀트를 포함하고 제 2 층(344)이 형광 도펀트를 포함하는 경우에 대하여 설명한다.
이와 같은 유기발광다이오드(D)에서는, 지연 형광 도펀트의 단일항 에너지와 삼중항에너지가 형광 도펀트로 전달되어 형광 도펀트에서 발광이 일어나기 때문에, 유기발광다이오드(D)의 양자 효율이 증가하고 반치폭이 좁아진다.
즉, 지연 형광 도펀트는 높은 양자효율을 갖지만 반치폭이 넓기 때문에 색순도가 좋지 않고, 형광 도펀트은 반치폭이 좁기 때문에 색순도에서 장점을 갖지만 삼중항 여기자가 발광에 참여하지 못하기 때문에 낮은 양자효율을 갖는다.
그러나, 발광물질층(340)이 지연 형광 도펀트를 포함하는 제 1 층(342)과 형광 도펀트를 포함하는 제 2 층(344)을 포함하는 경우, 발광효율과 색순도 모두에서 장점을 갖게 된다.
즉, 지연 형광 도펀트에서 역계간전이 효과에 의해 지연 형광 도펀트의 삼중항 에너지가 지연 형광 도펀트의 단일항 에너지로 전환되고, 지연 형광 도펀트의 단일항 에너지가 형광 도펀트의 단일항 에너지로 전달된다. 즉, 지연 형광 도펀트는 삼중항 에너지와 단일항 에너지의 차이가 0.3eV보다 작고, 이에 따라 지연 형광 도펀트의 삼중항 에너지가 지연 형광 도펀트의 단일항 에너지로 전환되는 역계간전이(reverse intersystem crossing, RISC) 현상이 일어난다.
따라서, 지연 형광 도펀트는 에너지를 형광 도펀트로 전달하는 역할을 할뿐 지연 형광 도펀트를 포함하는 제 1 층(342)은 발광에 참여하지 않고, 형광 도펀트를 포함하는 제 2 층(344)에서 발광이 일어난다.
즉, 역계간전이 현상에 의해 지연 형광 도펀트의 삼중항 에너지가 지연 형광 도펀트의 단일항 에너지로 전환되고 지연 형광 도펀트의 단일항 에너지는 형광 도펀트의 단일항 에너지보다 큰 값을 가져 지연 형광 도펀트의 단일항 에너지가 형광 도펀트의 단일항 에너지로 전달되기 때문에, 형광 도펀트는 단일항 에너지와 삼중항 에너지 모두를 이용하여 발광하게 된다. 따라서, 유기발광다이오드(D)의 양자 효율(발광효율)이 향상된다.
다시 말해, 본 발명의 따른 유기발광다이오드(D) 및 이를 포함하는 유기발광 표시장치(도 7의 100)는 양자 효율과 반치폭 모두에서 장점을 갖는다.
제 1 및 제 2 층(342, 344) 각각에서, 제 1 및 제 2 호스트는 지연 형광 도펀트 및 형광 도펀트보다 큰 중량비를 가질 수 있다. 또한, 제 1 층(342)에서 지연 형광 도펀트의 중량비는 제 2 층(344)에서 형광 도펀트의 중량비보다 클 수 있다. 이에 따라, 지연 형광 도펀트에서 형광 도펀트로의 에너지 전달이 충분히 일어날 수 있다.
이때, 제 1 호스트의 단일항 에너지는 지연 형광 도펀트의 단일항 에너지보다 큰 값을 갖고, 제 1 호스트의 삼중항 에너지는 지연 형광 도펀트의 삼중항 에너지보다 큰 값을 갖는다. 또한, 제 2 호스트의 단일항 에너지는 형광 도펀트의 단일항 에너지보다 큰 값을 갖는다.
이와 같은 조건을 만족시키지 못하면, 제 1 및 제 2 도펀트에서 ?칭(quenching)이 일어나거나 호스트에서 도펀트로의 에너지 전달이 일어나지 않아, 유기발광다이오드(D)의 양자 효율이 저하될 수 있다.
전술한 바와 같이, 본 발명의 유기 화합물은 높은 삼중항 에너지를 갖기 때문에, 지연 형광 도펀트로의 에너지 전달 효율이 증가하며 이에 따라 유기발광다이오드(D)의 발광 효율이 향상된다.
또한, n-타입인 본 발명의 유기 화합물이 호스트로 이용됨으로써, 도펀트의 삼중항 여기자와 홀-폴라론의 상호 작용에 의한 여기자의 ?칭이 방지되어 유기발광다이오드(D)의 발광 효율이 더욱 증가한다.
예를 들어, 형광 도펀트와 함께 상기 제 2 층(344)을 이루는 제 2 호스트는 정공차단층(350)의 물질과 동일한 물질일 수 있다. 이때, 상기 제 2 층(344)은 발광 기능과 함께 정공차단 기능을 갖는다. 즉, 제 2 층(344)은 정공차단을 위한 버퍼층의 기능을 갖는다. 한편, 정공차단층(350)은 생략될 수 있고, 이 경우 제 2 층(344)은 발광물질층과 정공차단층으로 이용된다.
또한, 제 1 층(342)이 형광 도펀트를 포함하고, 제 2 층(344)이 지연 형광 도펀트를 포함하는 경우, 제 1 층(342)의 제 1 호스트는 전자차단층(330)의 물질과 동일한 물질일 수 있다. 이때, 상기 제 1 층(342)은 발광 기능과 함께 전자차단 기능을 갖는다. 즉, 제 1 층(342)은 전자차단을 위한 버퍼층의 기능을 갖는다. 한편, 전자차단층(330)은 생략될 수 있고, 이 경우 제 1 층(342)은 발광물질층과 전자차단층으로 이용된다.
도 8은 본 발명의 실시예에 따른 유기발광다이오드의 개략적인 단면도이다.
도 8에 도시된 바와 같이, 유기발광다이오드(D)는 서로 마주하는 제 1 및 제 2 전극(160, 164)와 이들 사이에 위치하는 유기발광층(162)을 포함하며, 상기 유기발광층(162)은 상기 제 1 및 제 2 전극(160, 164) 사이에 위치하며 제 1 내지 제 3 층(442, 444, 446)을 포함하는 발광물질층(440)과, 상기 제 1 전극(160)과 상기 발광물질층(440) 사이에 위치하는 정공수송층(420)과, 상기 제 2 전극(164)과 상기 발광물질층(440) 사이에 위치하는 전자수송층(460)을 포함할 수 있다.
또한, 상기 유기발광층(162)은 상기 제 1 전극(160)과 상기 정공 수송층(420) 사이에 위치하는 정공 주입층(410)과, 상기 제 2 전극(164)과 상기 전자 수송층(460) 사이에 위치하는 전자 주입층(470)을 더 포함할 수도 있다.
또한, 상기 유기 발광층(162)은 상기 정공 수송층(420)과 발광물질층(440) 사이에 위치하는 전자 차단층(430)과 상기 발광 물질층(440)과 상기 전자 수송층(460) 사이에 위치하는 정공 차단층(450)을 더 포함할 수도 있다.
상기 발광물질층(440)에 있어서, 상기 제 1 층(442)은 제 2 층(444) 및 제 3 층(446) 사이에 위치한다. 즉, 제 2 층(444)은 전자차단층(430)과 제 1 층(442) 사이에 위치하고, 제 3 층(446)은 제 1 층(442)과 정공차단층(450) 사이에 위치한다.
상기 제 1 층(442)은 본 발명의 유기 화합물을 제 1 호스트로 포함하고 지연 형광 도펀트(제 1 도펀트)를 더 포함하며, 상기 2 층(444)은 제 2 호스트와 형광 도펀트(제 2 도펀트)를 포함하고, 상기 제 3 층(446)은 제 3 호스트와 형광 도펀트(제 3 도펀트)를 포함할 수 있다. 상기 2 층(444)과 상기 제 3 층(446)의 형광 도펀트는 같거나 다를 수 있다. 또한, 제 2 및 제 3 호스트는 본 발명의 유기 화합물일 수 있다. 이때, 지연 형광 도펀트의 단일항 에너지는 형광 도펀트의 단일항 에너지보다 큰 값을 갖는다.
이와 같은 유기발광다이오드(D)에서는, 제 1 층(442)의 지연 형광 도펀트의 단일항 에너지와 삼중항에너지가 2 층(444)과 제 3 층(446)의 형광 도펀트로 전달되어 형광 도펀트에서 발광이 일어나기 때문에, 유기발광다이오드(D)의 양자 효율이 증가하고 반치폭이 좁아진다.
이때, 제 1 내지 제 3 층(442, 444, 446) 각각에서, 제 1 내지 제 3 호스트는 지연 형광 도펀트 및 형광 도펀트보다 큰 중량비를 가질 수 있다. 또한, 제 1 층(442)에서 지연 형광 도펀트의 중량비는 제 2 층(444) 및 제 3 층(446)에서 형광 도펀트의 중량비보다 클 수 있다.
이때, 제 1 호스트의 단일항 에너지는 지연 형광 도펀트의 단일항 에너지보다 큰 값을 갖고, 제 2 및 제 3 호스트의 삼중항 에너지는 지연 형광 도펀트의 삼중항 에너지보다 큰 값을 갖는다. 또한, 제 2 호스트의 단일항 에너지는 제 2 층(444) 내 형광 도펀트의 단일항 에너지보다 큰 값을 갖고, 제 3 호스트의 단일항 에너지는 제 3 층(446) 내 형광 도펀트의 단일항 에너지보다 큰 값을 갖는다.
전술한 바와 같이, 본 발명의 유기 화합물은 높은 삼중항 에너지를 갖기 때문에, 지연 형광 도펀트로의 에너지 전달 효율이 증가하며 이에 따라 유기발광다이오드(D)의 발광 효율이 향상된다.
또한, n-타입인 본 발명의 유기 화합물이 호스트로 이용됨으로써, 지연 형광도펀트의 삼중항 여기자와 홀-폴라론의 상호 작용에 의한 여기자의 ?칭이 방지되어 유기발광다이오드(D)의 발광 효율이 더욱 증가한다.
예를 들어, 제 2 층(444)을 이루는 제 2 호스트는 전자차단층(430)의 물질과 동일한 물질일 수 있다. 이때, 상기 제 2 층(444)은 발광 기능과 함께 전자차단 기능을 갖는다. 즉, 제 2 층(444)은 전자차단을 위한 버퍼층의 기능을 갖는다. 한편, 전자차단층(430)은 생략될 수 있고, 이 경우 제 2 층(444)은 발광물질층과 전자차단층으로 이용된다.
또한, 제 3 층(446)의 제 3 호스트는 정공차단층(450)의 물질과 동일한 물질일 수 있다. 이때, 상기 제 3 층(446)은 발광 기능과 함께 전자차단 기능을 갖는다. 즉, 제 3 층(446)은 정공차단을 위한 버퍼층의 기능을 갖는다. 한편, 정공차단층(450)은 생략될 수 있고, 이 경우 제 3 층(446)은 발광물질층과 정공차단층으로 이용된다.
또한, 제 2 층(444)을 이루는 제 2 호스트는 전자차단층(430)의 물질과 동일한 물질이고 제 3 층(446)의 제 3 호스트는 정공차단층(450)의 물질과 동일한 물질일 수 있다. 이때, 상기 제 2 층(444)은 발광 기능과 함께 전자차단 기능을 갖고, 제 3 층(446)은 발광 기능과 함께 정공차단 기능을 갖는다. 즉, 제 2 층(444)과 제 3 층(446) 각각은 전자차단을 위한 버퍼층과 정공차단을 위한 버퍼층의 기능을 갖는다. 한편, 전자차단층(430)과 정공차단층(450)은 생략될 수 있고, 이 경우 제 2 층(444)은 발광물질층과 전자차단층으로 이용되며 제 3 층(446)은 발광물질층과 정공차단층으로 이용된다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허청구범위에 기재된 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
100: 유기발광표시장치 160: 제 1 전극
162: 유기발광층 210, 310, 410: 정공주입층
220, 320, 420: 정공수송층 230, 330, 430: 전자차단층
240, 340, 440: 발광물질층 250, 350, 450: 정공차단층
260, 360, 460: 전자수송층 270, 370, 470: 전자주입층
164: 제 2 전극 D: 유기발광다이오드

Claims (17)

  1. 하기 화학식으로 표시되며,
    X1은 산소 또는 황에서 선택되고, X2 내지 X7 각각은 독립적으로 탄소 또는 질소에서 선택되며,
    R1은 수소 또는 시아노기에서 선택되고, R2 및 R3 각각은 수소 또는 헤테로아릴기로부터 선택되는 유기 화합물.
    Figure pat00041

  2. 제 1 항에 있어서,
    상기 화학식으로 표시되는 유기 화합물은 하기 화합물 중 어느 하나인 유기 화합물.
    Figure pat00042

    Figure pat00043

    Figure pat00044

    Figure pat00045

    Figure pat00046

    Figure pat00047

    Figure pat00048

    Figure pat00049

  3. 제 1 전극과;
    상기 제 1 전극과 마주보는 제 2 전극과;
    상기 제 1 및 제 2 전극 사이에 위치하는 제 1 발광물질층을 포함하고,
    상기 제 1 발광물질층은 제 1 항 또는 제 2 항의 유기 화합물을 포함하는 유기발광다이오드.
  4. 제 3 항에 있어서,
    상기 유기 화합물은 제 1 호스트로 이용되고, 상기 제 1 발광물질층은 지연 형광 물질인 제 1 도펀트를 더 포함하는 유기발광다이오드.
  5. 제 4 항에 있어서,
    상기 제 1 호스트의 최고준위 점유 분자궤도 레벨(HOMOHost)과 상기 제 1 도펀트의 최고준위 점유 분자궤도 레벨(HOMODopant) 차이(|HOMOHost-HOMODopant|) 또는 상기 제 1 호스트의 최저준위 비점유 분자궤도 레벨(LUMOHost)과 상기 제 1 도펀트의 최저준위 비점유 분자궤도 레벨(LUMODopant) 차이(|LUMOHost- LUMODopant|)는 0.5eV 이하인 유기발광다이오드.
  6. 제 4 항에 있어서,
    상기 제 1 발광물질층은 형광 물질인 제 2 도펀트를 더 포함하며,
    상기 제 1 도펀트의 단일항 에너지는 제 2 도펀트의 단일항 에너지보다 큰 유기발광다이오드.
  7. 제 6 항에 있어서,
    상기 제 1 도펀트의 제 1 삼중항 에너지는 상기 제 1 호스트의 제 2 삼중항 에너지보다 작고 상기 제 2 도펀트의 제 3 삼중항 에너지보다 큰 유기발광다이오드.
  8. 제 4 항에 있어서,
    제 2 호스트와 형광 물질인 제 2 도펀트를 포함하며 상기 제 1 전극과 상기 제 1 발광물질층 사이에 위치하는 제 2 발광물질층을 더 포함하는 유기발광다이오드.
  9. 제 8 항에 있어서,
    상기 제 1 전극과 상기 제 2 발광물질층 사이에 위치하는 전자차단층을 더 포함하고, 상기 제 2 호스트는 상기 전자차단층의 물질과 동일한 유기발광다이오드.
  10. 제 8 항에 있어서,
    제 3 호스트와 형광 물질인 제 3 도펀트를 포함하며 상기 제 1 발광물질층과 상기 제 2 전극 사이에 위치하는 제 3 발광물질층을 더 포함하는 유기발광다이오드.
  11. 제 10 항에 있어서,
    상기 제 2 전극과 상기 제 3 발광물질층 사이에 위치하는 정공차단층을 더 포함하고, 상기 제 3 호스트는 상기 정공차단층의 물질과 동일한 유기발광다이오드.
  12. 제 10 항에 있어서,
    상기 제 1 도펀트의 단일항 에너지는 상기 제 2 및 제 3 도펀트의 단일항 에너지보다 큰 유기발광다이오드.
  13. 제 10 항에 있어서,
    상기 제 1 호스트의 단일항 에너지와 삼중항 에너지 각각은 상기 제 1 도펀트의 단일항 에너지와 삼중항 에너지보다 크고,
    상기 제 2 호스트의 단일항 에너지는 상기 제 2 도펀트의 단일항 에너지보다 크며,
    상기 제 3 호스트의 단일항 에너지는 상기 제 3 도펀트의 단일항 에너지보다 큰 유기발광다이오드.
  14. 제 8 항에 있어서,
    상기 제 1 도펀트의 단일항 에너지는 상기 제 2 도펀트의 단일항 에너지보다 큰 유기발광다이오드.
  15. 제 3 항에 있어서,
    상기 제 1 전극과 상기 제 1 발광물질층 사이의 정공수송층과, 상기 제 1 전극과 상기 정공수송층 사이의 정공주입층과, 상기 정공수송층과 상기 제 1 발광물질층 사이의 전자차단층과, 상기 제 1 발광물질층과 상기 제 2 전극 사이의 전자수송층과, 상기 전자수송층과 상기 제 2 전극 사이의 전자주입층과, 상기 제 1 발광물질층과 상기 전자수송층 사이의 정공차단층을 더 포함하고,
    상기 유기 화합물은 상기 제 1 발광물질층에서 호스트로 이용되며, 상기 제 1 발광물질층은 도펀트를 더 포함하는 유기발광다이오드.
  16. 제 8 항 또는 제 10 항에 있어서,
    상기 제 2 호스트와 상기 제 3 호스트는 상기 유기 화합물인 유기발광다이오드.
  17. 기판과;
    상기 기판 상부에 위치하는 제 3 항의 유기발광다이오드와;
    상기 기판과 상기 유기발광다이오드 사이에 위치하며 상기 유기발광다이오드에 연결되는 박막트랜지스터
    를 포함하는 유기발광 표시장치.
KR1020180091757A 2018-08-07 2018-08-07 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치 KR102580803B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180091757A KR102580803B1 (ko) 2018-08-07 2018-08-07 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
CN201910654437.XA CN110818697B (zh) 2018-08-07 2019-07-19 有机化合物以及包含其的有机发光二极管和有机发光显示装置
US16/516,758 US11384072B2 (en) 2018-08-07 2019-07-19 Organic compound, and organic light emitting diode and organic light emitting display device including the same
EP19187595.4A EP3608985B1 (en) 2018-08-07 2019-07-22 Organic compound, and organic light emitting diode and organic light emitting display device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180091757A KR102580803B1 (ko) 2018-08-07 2018-08-07 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치

Publications (2)

Publication Number Publication Date
KR20200016540A true KR20200016540A (ko) 2020-02-17
KR102580803B1 KR102580803B1 (ko) 2023-09-19

Family

ID=67438392

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180091757A KR102580803B1 (ko) 2018-08-07 2018-08-07 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치

Country Status (4)

Country Link
US (1) US11384072B2 (ko)
EP (1) EP3608985B1 (ko)
KR (1) KR102580803B1 (ko)
CN (1) CN110818697B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200068503A (ko) * 2018-12-05 2020-06-15 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
CN113582908B (zh) * 2021-09-08 2023-09-26 华南理工大学 一类基于苯氰基的近紫外有机电致发光材料及其制备方法与在制备oled中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021336A (ja) * 2008-07-10 2010-01-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
KR101736661B1 (ko) * 2016-03-03 2017-05-16 성균관대학교산학협력단 청색 인광 유기발광소자
WO2017115753A1 (ja) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 架橋化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20180090705A1 (en) * 2016-09-29 2018-03-29 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting display device including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149528B1 (ko) 2009-08-10 2012-05-29 에스에프씨 주식회사 방향족 화합물 및 이를 이용한 유기전계발광소자
KR102049973B1 (ko) * 2012-12-27 2019-11-28 엘지디스플레이 주식회사 청색 형광 화합물 및 이를 사용한 유기전계발광소자
KR101764976B1 (ko) * 2014-09-18 2017-08-04 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
JP6774432B2 (ja) * 2016-01-20 2020-10-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021336A (ja) * 2008-07-10 2010-01-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2017115753A1 (ja) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 架橋化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR101736661B1 (ko) * 2016-03-03 2017-05-16 성균관대학교산학협력단 청색 인광 유기발광소자
US20180090705A1 (en) * 2016-09-29 2018-03-29 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting display device including the same

Also Published As

Publication number Publication date
EP3608985A1 (en) 2020-02-12
EP3608985B1 (en) 2021-03-03
CN110818697A (zh) 2020-02-21
CN110818697B (zh) 2023-06-16
US11384072B2 (en) 2022-07-12
US20200048231A1 (en) 2020-02-13
KR102580803B1 (ko) 2023-09-19

Similar Documents

Publication Publication Date Title
KR100879477B1 (ko) 유기 발광 소자
KR20180035528A (ko) 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
KR20150026055A (ko) 파이렌 화합물 및 이를 포함하는 유기전계발광소자
US20200190122A1 (en) Delayed fluorescent compound, and organic light emitting diode and organic light emitting display device including the same
KR102571401B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
KR102580803B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
EP3608986B1 (en) Organic emitting compound, and organic light emitting diode and organic light emitting display device including the same
US10276801B2 (en) Triazine-based compound and light emitting device
KR20200073601A (ko) 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광표시장치
KR102517360B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
US20210408395A1 (en) Organic compound and organic light emitting diode and organic light emitting display device including the same
US11505557B2 (en) Organic compound, and organic light emitting diode and organic light emitting display device including the same
CN112300128B (zh) 有机化合物及包含其的有机发光二极管和有机发光显示装置
KR102534666B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
KR102562976B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
KR102560868B1 (ko) 공간 전하 이동 화합물, 이를 포함하는 유기발광다이오드 및 유기발광표시장치
US11981656B2 (en) Organic compound, organic light emitting diode and organic light emitting display device including the compound
US11667647B2 (en) Delayed fluorescent compound, and organic light emitting diode and organic light emitting display device including the same
KR102519548B1 (ko) 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광 표시장치
KR20210046439A (ko) 유기발광다이오드 및 유기발광장치
KR20200068505A (ko) 유기발광다이오드 및 이를 포함하는 유기발광표시장치
KR20100021232A (ko) 안트라센 유도체 및 이를 포함하는 유기전계발광소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant