KR20190120715A - 구조화된 광 투사 시스템 - Google Patents

구조화된 광 투사 시스템 Download PDF

Info

Publication number
KR20190120715A
KR20190120715A KR1020190043778A KR20190043778A KR20190120715A KR 20190120715 A KR20190120715 A KR 20190120715A KR 1020190043778 A KR1020190043778 A KR 1020190043778A KR 20190043778 A KR20190043778 A KR 20190043778A KR 20190120715 A KR20190120715 A KR 20190120715A
Authority
KR
South Korea
Prior art keywords
optical
optical axis
laser chip
light
disposed
Prior art date
Application number
KR1020190043778A
Other languages
English (en)
Inventor
샤오-웬 리
이-쒼 퉁
Original Assignee
리지텍 일렉트로닉스 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW108109014A external-priority patent/TWI693431B/zh
Application filed by 리지텍 일렉트로닉스 컴퍼니 리미티드 filed Critical 리지텍 일렉트로닉스 컴퍼니 리미티드
Publication of KR20190120715A publication Critical patent/KR20190120715A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

기판, 반도체 레이처 칩, 제1 광 모듈 및 제2 광 모듈을 포함하는 구조화된 광 투사 시스템이 제공된다. 반도체 레이처 칩은 기판에 전기적으로 연결된다. 제1 광 모듈은 기판 상에 배치된다. 제2 광 모듈은 제1 광 모듈 상에 배치된다. 제1 광 설계를 통해 기판을 직접 패키징하는 제1 광 모듈에 의해 광학 모듈들의 광 축들과 반도체 레이처 칩 사이의 편차율과 그 교정 시간이 감소되어, 구조화된 광 투사의 수율을 증가시킨다.

Description

구조화된 광 투사 시스템 {STRUCTURED LIGHT PROJECTION SYSTEM}
본 발명은 광학 시스템에 관한 것이며, 구체적으로는 구조화된 광 투사 시스템에 관한 것이다.
광학 기술의 번영과 함께, 구조화된 광은 3D 윤곽 재생, 거리 측정, 위조방지 인식 등과 같은 많은 영역들에서 더욱 응용되고 있다. 그러나, 현존하는 기술에서는, 구조화된 광을 생성하는 방법은 주로 발광 모듈, 렌즈 변환 모듈, 시준 렌즈, 및 회절 광학 소자(diffracting optical element, DOE)로 구성된다. 예컨대 "광학 장치"로 명명된 대만 발명특허 번호 I608252에 개시된 것처럼, 시준 렌즈, 변환 렌즈 모듈, 및 광학 소자 그룹이 케이스에 포함되고, 변환 렌즈 모듈은 적절한 간격들을 가지고 서로 간에 조합 및 중첩되는 상이한 굴절력(refractive power)을 가진 복수의 광학 렌즈로 구성된다. 그러므로, 5개 또는 그 이상의 광학 렌즈들이 케이스에 있게 된다. 상이한 굴절력들을 가진 복수의 광학 렌즈들이 서로 조합될 때, 광학 렌즈들의 광축(optical axe)들은 해상도 감소 문제를 피하기 위하여 정밀하게 정렬될 필요가 있다; 이에 더하여, 각각의 변환 광학 렌즈(conversion optical lens)는 특정한 간격들로 배치 및 조합될 필요가 있는데, 많은 제조 공정과 정밀한 캘리브레이션을 소모하는 일로서, 생산량을 늘리고 비용을 저감하기 어렵게 만든다; 게다가, 변환 렌즈 모듈 속의 복수의 광학 렌즈들은 적층될 때에는, 하나의 광학 렌즈의 광축이 틀어질 때 변환 렌즈 모듈의 전체적인 광학 효과가 영향을 받으며, 따라서 수율(yield)에도 영향을 준다. 그런데, 변환 렌즈 모듈 상의 각각의 렌즈가 독립적인 광축을 가지기 때문에, 하나의 광학 렌즈가 다른 광학 렌즈 상에 적층될 때, 광축 정렬의 틀어짐이 렌즈 레이어들의 숫자가 증가함에 따라 누적될 수 있고, 수율을 더 낮게 만들며, 따라서 두께 감소(thinning)의 효과를 달성할 수 없게 된다. 이에 더하여, 현존 기술에서는, 구조화된 광 투사기는 일반적으로 웨이퍼 렌즈 패키징(wafer lens packaging, WLP) 공정에 의해 제조되는데, 이것은 III-V 화합물 반도체 기판 상에서 수립된 패키징 공정이다. 그러나, 이 공정은 비싸고 설계가 어려우며, 최종 생산품에 안정성 문제를 야기하기 쉽다.
본 발명은 구조화된 광 투사 시스템을 제공하는 것을 목적으로 한다.
전술한 문제점을 고려하여, 본 발명의 발명자는 관련 제품들에 대한 다년간의 연구 및 개발 경험에 기초하여 전술한 요구조건을 충족하는 실제 제품을 설계하는 것을 목표로 광학 분야와 패키징 기술의 연구 및 분석을 수행하였다; 따라서, 본 개시내용은 광학 소자들의 광축 정렬의 시간들을 단순화하기 위해 기본 광학 설계를 제공하는 것이고, 구조화된 광 투사 시스템의 정밀도와 수율을 증가시킨다.
본 발명의 일 실시예 구조화된 광 투사 시스템으로서, 기판, 적어도 하나의 반도체 레이저 칩, 제1 광 모듈 및 제2 광 모듈을 포함하는 구조화된 광 투사 시스템을 제공하고, 여기서 기판은 반도체 또는 비-반도체 재질로 만들어지고, 설치 표면을 갖는다. 적어도 하나의 반도체 레이저 칩은 기판의 설치 표면 상에 전기적으로 연결되고 적어도 하나의 빔을 생성하도록 구성된다. 게다가, 제1 광 모듈은 몰딩에 의해 설치 표면 상에 배치되는데, 제1 광 모듈이 반도체 레이저 칩 상에 직접 배치되는 기본 광학 패키징 설계 방법을 채택함을 의미하여, 제1 광 모듈과 반도체 레이저 칩 및 기판 각각 사이에 공기 갭이 없게 된다. 게다가, 제1 광 모듈은 적어도 하나의 광학 렌즈로 구성된다; 게다가, 제2 광 모듈은 제1 광 모듈 상에 배치되고, 제2 광 모듈은 케이스와 적어도 하나의 회절 광학 소자를 포함한다. 본 발명의 실시예는 제1 광 모듈에 기본 광학 설계를 적용함으로써 제2 광 모듈의 광학 렌즈들의 레이어들의 숫자를 단순화하며, 제품의 수율을 증가시키기 위한 광축 정렬의 편차 값을 줄이게 된다.
게다가, 반도체 레이저 칩은 750nm 내지 1000nm 범위의 파장인 적외선광을 생성하도록 구성되고, 바람직하게는 790nm 내지 830nm 범위의 파장, 830nm 내지 870nm 범위의 파장, 및 900nm 내지 1000nm 범위의 파장의 적외선광을 생성하도록 구성된다.
게다가, 제1 광 모듈의 적어도 하나의 광학 렌즈의 굴절력은 양 또는 음일 수 있으며, 적어도 하나의 광학 렌즈는 경로를 변경하기 위하여 반도체 레이저 칩에 의해 생성된 빔을 확장하거나 수렴하도록 구성된다.
게다가, 반도체 레이저 칩은 제1 광축을 가지고, 제1 광 모듈은 제2 광출을 가지고, 제2 광 모듈은 제3 광축을 가진다. 반도체 레이저 칩과 각 광 모듈 사이의 조합이 완료된 경우, 동축 정렬이 광학 축들 사이에서 제공된다.
게다가, 제1 광축과 제2 광축 사이의 편차 값은 20μm 미만이다.
게다가, 제2 광축과 제3 광축 사이의 편차 값은 50μm 미만이다.
게다가, 제1 광축, 제2 광축과 제3 광축 중의 편차 값은 50μm 이하이다.
첨부된 도면들은 본 개시내용의 심화된 이해를 제공하기 위하여 포함된 것이며, 본 명세서에 통합되고 그 일부분을 이룬다. 도면들은 개시내용의 실시예를 도시하며, 발명의 상세한 설명과 함께, 본 발명의 원리를 설명하는 데 쓰인다.
도 1은 본 발명의 일 실시예에 따른 구조화된 광 투사 시스템의 분해도이다.
도 2는 도 1의 구조화된 광 투사 시스템의 단면의 개념도이다.
도 3은 본 발명의 다른 실시예에 따른 구조화된 광 투사 시스템의 단면의 개념도이다.
도 4는 본 발명의 또다른 실시예에 따른 구조화된 광 투사 시스템의 단면의 개념도이다.
도 5는 도 4의 구조화된 광 투사 시스템에서 반도체 레이저 칩과 반사기의 사시 개념도이다.
<관련 출원에의 상호 참조>
본 발명은 2018. 4. 16.에 출원된 대만 출원 일련번호 107113144의 우선권을 주장하며, 2019. 3. 14. 출원된 대만 출원 일련번호 108109014의 우선권을 주장한다. 전술한 각 특허출원들의 전체는 여기에 참조로서 통합되고 본 명세서의 일부를 이룬다.
<발명의 상세한 설명>
도 1은 본 발명의 일 실시예에 따른 구조화된 광 투사 시스템의 분해도이다. 도 2는 도 1의 구조화된 광 투사 시스템의 단면의 개념도이다. 도 1과 도 2를 참조해 보자. 도면들에서 보여지는 것과 같이, 구조화된 광 시스템(10)은 기판(101), 반도체 레이저 칩(102), 제1 광 모듈(103) 및 제2 광 모듈(104)을 포함하며, 여기서 기판(101)은 비-반도체 물질이나 반도체 물질로 만들어질 수 있다. 비-반도체 물질의 기판(101)은 금속 기판, 세라믹 기판, 유리 섬유 기판(예컨대 FR-4, FR-5, G-10 또는 G-11) 등일 수 있으나, 이것에 한정되지 않는다. 기판(101)은 설치 표면(1011)을 가진다. 반도체 레이저 칩(102)은 기판(101)의 설치 표면(1011) 상에 전기적으로 배치되고 제1 광축(1021)을 가진다. 반도체 레이저 칩(102)은 가시광 또는 비가시광을 생성하도록 구성되며, 예컨대 레이저 다이오드(laser diode, LD), 수직-공진 표면-발광 레이저(vertical-cavity surface-emitting laser, VCSEL), 또는 단면 발광 레이저(edge emitting laser, EEL)이나, 이것에 한정되지 않는다. 반도체 레이저 칩(102)은 700nm 내지 1000nm 범위의 파장의 적외선 비가시광을 생성하거나, (450nm 내지 480nm 범위의 파장인 청색광, 500nm 내지 560nm 범위의 파장인 녹색광, 또는 600nm 내지 700nm 범위의 파장인 적색광과 같은) 380nm 내지 780nm 범위의 가시광을 생성할 수 있다; 게다가 제1 광 모듈(103)은 몰딩에 의하여설치 표면(1011) 상에 배치된다. 제1 광 모듈(103)은 제2 광축(1032)를 가지고 그 굴절력이 양인 (또는 음인) 광학 렌즈(1031)를 포함하며, 광학 렌즈(1031)는 광 탈출 표면(1033)을 가진다. 구체적으로, 광학 렌즈(1031)의 물질은 에폭시 레진(epoxy resin), 아크릴 레진(acrylic resin), 실리콘 레진(silicone resin) 또는 실리콘 중에서 선택되고, 그 굴절률이 1.4 내지 1.6의 범위이고, 바람직하게는 1.4 내지 1.43 또는 1.5 내지 1.53의 범위이나, 이것에 한정되지 않는다. 광 탈출 표면(1033)의 설계는 구형 표면, 비구형 표면(aspheric surface), 원호형 표면(arc surface), 포물면(paraboloid), 쌍곡면(hyperboloid) 및 자유형 표면 중의 어느 하나일 수 있다. 게다가, 비구형 표면의 공식은, 예컨대, 아래와 같다:
Figure pat00001
여기서, r은 비구형 표면 상의 지점과 광축 사이의 거리이고; z는 비구형 깊이로서, 비구형 표면 상의 광축으로부터 거리 r인 지점과 비구형 광축 상의 꼭지점에 접하는 접평면 사이의 수직 거리이고; c는 접촉구(osculating sphere)의 반경의 역수로서, 광축에 가까운 곡률 반경이고; k는 원뿔 정수이고; ai는 i차 비구형 계수이다. c = 1/R인데, 여기서 R은 광축에 가까운 곡률 반경이다. 일 실시예에서, k < 0이고 1.5mm <= R <= 5mm이다.
광학 렌즈(1031)는 반도체 레이저 칩(102)을 직접 패키지하고 커버하며, 반도체 레이저 칩(102)에 단단하게 부착되어, 광학 렌즈(1031)와 기판(101)의 설치 표면(1011)과 반도체 레이저 칩(102) 각각의 사이에는 공기 갭이 없다. 몰딩 방법(molding method)은 광학 렌즈(1031)의 재료를 몰드의 공동(cavity)에 주입하고, 그 후 이미 설치 표면(1011) 상에 고정된 반도체 레이저 칩(102)을 삽입하고, 그 후 광학 렌즈(1031)의 재질이 경화되도록 직접적으로 가열하고, 그 후 성형된 재료를 몰드의 공동으로부터 꺼내는 것이다; 또는, 설치 표면(1011) 상의 반도체 레이저 칩(102)을 고정한 후에 몰드에서 반도체 레이저 칩(102)을 배치하고, 그 후 두 개의 상하부 몰드들을 유압 프레스로 클램프하고 몰드들의 공동을 진공화하고, 그 후 광학 렌즈(1031)의 물질을 몰딩 채널의 게이트로 넣고, 압력을 가하여 재료가 각 몰딩 공동에 채널을 따라 진입하도록 만들고 열을 가하여 재료들이 경화되도록 만들고, 그 후 성형된 재료를 몰드의 공동으로부터 꺼내는 것이다. 전술한 방법들을 통해, 광학 렌즈(1031)는 반도체 레이저 칩(102) 상에 통합되도록 형성될 수 있다; 게다가, 광 탈출 표면(1033)을 통해, 반도체 레이저 칩(102)에 의해 생성된 빔의 경로는 직접 조절될 수 있다; 반면, 전술한 방법을 통해서, 제1 광축(1021)과 제2 광축(1032)은 대량 생산 효과를 얻기 위하여 캘리브레이션 시간을 단순화하기 위해 제조 공정 동안 동축 정렬을 제공하도록 제조될 수 있다; 그리고 바람직한 실시예에서, 제1 광축(1021)과 제2 광축(1032) 사이의 편차 값(deviation value)은 20μm를 초과하지 않는다. 일 실시예에서, 제1 광축(1021)과 제2 광축(1032) 사이의 편차 값(deviation value)은 10μm를 초과하지 않는다. 게다가 제2 광 모듈(104)은 제1 광 모듈(103) 상에 배치되고, 제2 광 모듈(104)은 케이스(1041)와 회절 광학 소자(DOE)(1042)를 포함하며, 제3 광축(1045)을 가지는데, 여기서 케이스(1041)는 빈 방(room)과, 내부 공간이 서로 통하도록 하기 위하여 그 양 단부 각각에 개구부를 가진다. 케이스(1041)의 한 쪽 단부는 연결부(1046)를 가지도록 형성되는데, 접착성 또는 (버클링(buckling) 또는 플러깅(plugging)과 같은) 기계적 조합 방법을 통해 설치 표면(1011) 상에 배치될 수 있다. 연결부(1046)가 접착성 방법을 통해 설치 표면 상에 배치되었을 때, 접착제는 제3 광축(1045)이 제2 광축(1032)과 정렬되었음이 확인된 후에 (광-경화나 열 경화와 같은 방법으로) 경화될 수 있는데, 광축들 간의 동심성(concentricity)를 증가시키기 위함이다. 게다가, 회절 광학 소자(1042)는 연결부(1046)의 반대편에 케이스(1041)의 다른 단부 상에 배치된다; 그리고 바람직한 일 실시예에서, 회절 광학 소자(1042)는 개구부와 정렬될 수 있다. 도면에 의해 보여진 것처럼, 회절 광학 소자(1042)는 입력 빔 분할과 복수의 출력 빔들로의 복제를 하도록 구성되며, 이것은 입력광의 위상(phase)과 세기(amplitude)가 변화되고, 입사광의 에너지 파면(wave front)이 재분포되는 것을 의미하여, 투사 표면 P 상에 투사될 격자 패턴을 생성하게 되고, 제2 광 모듈(102)이 제1 광 모듈(103) 상에 배치되었을 때에는, 제1 광 모듈(103)은 제2 광 모듈(104)의 케이스(1041)에 수용된다; 따라서, 오직 제2 광축(1032)과 제3 광축(1045)이 동축 정렬되도록 만드는 것만이 필요하고, 그럼으로써 복수의 광학 렌즈들을 조절하기 위해 필요한 상황, 많은 캘리브레이션과 정렬 시간을 요하고, 큰 오류율을 야기하는 상황이 감소되어, 수율이 증가될 수 있다. 구체적으로, 제2 광축(1032)과 제3 광축(1045) 사이의 편차 값은 50μm를 초과하지 않는다. 본 실시예에서, 제1 광축(1021)을 따라 투과되고 그로부터 방출된 광선은 연이어 제2 광축(1032)과 제3 광축(1045)을 따라 투과되고 방출된다. 일 실시예에서, 제2 광축(1032)과 제3 광축(1045) 사이의 편차 값은 20μm를 초과하지 않는다. 게다가, 제1 광축(1021), 제2 광축(1032) 및 제3 광축(1045) 사이의 편차 값은 50μm 이하이다.
도 2를 다시 참조해보자. 먼저, 반도체 레이저 칩(102)은 적어도 하나의 빔 L을 생성한다. 제1 광 모듈(103)은 적어도 하나의 빔 L의 투과 경로 상에 배치되어, 빔 L이 출력 빔 L1으로 수렴 또는 확장하도록 하고(빔 L은 광 탈출 표면(1033)의 기본 광학 설계를 통해 출력 빔 L1으로 수렴하거나 확장한다), 출력 빔 L1은 제2 광 모듈(104)를 통해 케이스(1041) 외부의 투사 표면 P 상에 투사되며, 특정 거리 D는 투사 표면 P와 구조화된 광 시스템(10) 사이의 거리이다. 구체적으로, D는 300cm 내지 500cm의 범위이며, 출력 빔 L1이 투사 표면 P로 회절되어 회절 광학 소자(1042)에 입사한 후에 복수의 회절 광점(diffractive light spot)들을 형성한다. 달리 말하면, 회절 광학 소자(1042)는 출력 빔 L1의 투과 경로 상에 배치되며, 출력 빔 L1을 투사 표면 P에 투사된 후에 투사 표면 P상의 복수의 회절 광점들을 형성하는 구조화된 광 L3로 변환시킨다.
본 실시예에서, 광 탈출 표면(1033)은 실질적으로 빔 L에 수렴하거나(광 탈출 표면(1033)이 볼록한 경우) 또는 빔 L로부터 발산(광 탈출 표면(1033)이 오목한 경우)할 수 있는 부드러운 굴절 곡면이다. 이에 더하여, 기판(101)이 비-반도체 물질의 기판을 채택한 경우, 고비용의 웨이퍼 레벨 광학 제조 공정이 제1 광 모듈(103)과 제2 광 모듈(104)을 제조하기 위하여 채택되지 않을 수 있다. 그러므로, 구조화된 광 투사 시스템(10)의 제조 비용은 실질적으로 감소한다. 그런데, 웨이퍼 레벨 광학 제조 공정과 비교하여, 본 실시예에 의해 사용되는 몰딩 제조 공정에 의해 제조된 광학 렌즈(1031)의 광 탈출 표면(1033)은 더 정교할 수 있고, 설계 자유도가 더 높다(광 탈출 표면(1033)이 구형, 비구형, 또는 자유형 표면으로 설계될 수 있음을 의미); 그러므로, 구조화된 광 투사 시스템(10)의 광학 품질은 실질적으로 증가한다.
도 3은 본 발명의 다른 실시예에 따른 구조화된 광 투사 시스템의 단면의 개략도이다. 도 3을 참조해 보자. 본 실시예에서, 반도체 레이저 칩(102)은 비-반도체 물질의 기판(101) 상에 배치되고, 반도체 레이저 칩은 수직-공진 표면-발광 레이저 칩으로서, m개의 발광점들(m은 1보다 큰 양의 정수)을 가지고, 200 <= m <= 600이다; 게다가, 제1 광 모듈(103)은 기판(101) 상에 배치되고, 광학 렌즈(1031)는 반도체 레이저 칩(102)을 직접적으로 패키지하고 커버하며, 광학 렌즈(1031)의 광 탈출 표면(1033)는 자유형 표면이다. 그러나, 다른 실시에에서, 광 탈출 표면(1033)은 비구형이나 구형일 수도 있다. 게다가, 제2 광 모듈(104a)는 케이스(1041), 적어도 하나의 광 소자(1043) 및 회절 광학 소자(1042)를 포함하고, 여기서 케이스(1041)는 빈 방을 가지고, 케이스(1041)의 높이는 5mm 미만이거나 또는 3mm 미만이다. 케이스(1041)의 양 단부 각각은 개구부를 가지며, 케이스(1041)의 한 단부는 기판(101) 상에 배치된 연결부(1046)를 가지도록 형성되고, 제1 광 모듈(103)은 케이스(1041)에 수용된다; 게다가, 회절 광학 소자(1042)는 연결부(1046)의 반대에 케이스(1041)의 다른 단부 상에 배치되고, 광학 소자(1043)는 광학 렌즈(1031)와 회절 광학 소자(1042) 사이에 배치된다. 적절한 거리는 광학 소자(1043), 광학 렌즈(1031) 및 회절 광학 소자(1042) 사이에 있으며, 적절한 거리는 3mm를 초과하지 않거나 1mm를 초과하지 않는다; 게다가, 광학 소자(1043)는 양의 (또는 음의) 굴절력을 가진 광학 렌즈일 수 있다. 렌즈의 재료는 플라스틱이나 유리일 수 있으며, 여기서 플라스틱 재료는 레진이나 폴리머 등과 같은 재료들로부터 만들어질 수 있고, 구체적으로 폴리카보네이트, 폴리(메틸메타클리레이트)(poly(methyl methacrylate)), 시클로 올레핀 공중합체(cyclo olefin copolymer) 또는 폴리에스테르 레진 등을 포함하는 재료들에 의한 것일 수 있으나, 여기에 한정되지 않는다. 광학 렌즈의 재료가 플라스틱인 경우, 제조 비용과 무게를 효과적으로 감소시킬 수 있다; 한편, 광학 렌즈의 재질이 유리인 경우, 제2 광 모듈(104a)의 굴절력 처리의 설계 공간 및 자유도가 증가될 수 있다; 게다가, 광학 렌즈(들)의 숫자는 1 내지 3개인데, 여기서 각 렌즈(들)은 5mm 보다 작거나 또는 3mm 보다 작은 두께를 가지며, 1mm 내지 5mm의 범위 또는 1mm 내지 3mm의 범위의 두께를 가질 수 있다. 게다가, 회절 광학 소자의 차수는 5×5 내지 13×13 차수 범위이고, 여기서의 차수(order)는 회절 광점의 복제 숫자를 말한다; 그러므로, 반도체 레이저 칩(102)이 빔 L을 생성할 경우, 출력 빔 L1은 광 탈출 표면(1033)을 통해 먼저 방출되고, 적어도 하나의 시준 빔 L2가 출력 빔 L1이 광학 렌즈(광학 소자(1043)임)에 의해 굴절된 후에 출력되고, 시준된 빔 L2가 회절 광학 소자(1042)를 향해 입사한 경우, 복수의 회절 광점의 회절 격자 패턴이 시준 빔 L2가 회절 광학 소자(1042)에 의해 회절된 후에 투사 표면 P 상에 제시된다; 바람직하게는, 회절 광점의 숫자는 10000개, 15000개, 20000개, 30000개 또는 10000개 내지 40000개의 범위일 수 있다.
도 4는 본 발명의 또다른 실시예에 따른 구조화된 광 투사 시스템의 단면의 개념도이다. 도 5는 도 4의 구조화된 광 투사 시스템에서 반도체 레이저 칩과 반사기의 사시 개념도이다. 도 4와 도 5를 참조해 보자. 도면들에서 보여진 것과 같이, 구조화된 광 투사 시스템(10b)은 기판(101), 반도체 레이저 칩(302), 제1 광 모듈(103) 및 제2 광 모듈(104a)를 포함하고, 여기서 반도체 레이저 칩(302)은 단면 발광 레이저 칩이고 도 4 및 도 5에서 보여진 것과 같이 제1 광축(1021)을 가진다. 본 실시예와 전술한 실시예 사이의 차이는 구조화된 광 투사 시스템(10b)이 기판(101) 상에 배치되거나 통합되어 형성된 반사기(reflector)(40)를 더 포함한다는 것인데, 반사기(40)는 반사 표면(41)을 가지고, 반도체 레이저 칩(302)으로부터 방출된 빔 L이 반사 표면(41)에 의해 광 탈출 표면(1033)을 향해 반사되도록 만들고, 빔 L이 설치 표면(1011)으로부터 멀어지도록 만드는 반도체 레이저 칩(302)의 발광 단부로부터 반사 표면(41)과의 사이에 간격이 형성된다. 일 실시예에서, 반도체 레이저 칩(302)과 반사 표면(41) 사이의 관계는 0.17 <= W/S <= 0.73를 만족하며, 여기서 W는 반사 표면(41)의 긴 쪽의 길이이고, S는 반도체 레이저 칩(302)으로부터 제1 광축(1021) 상의 반사 표면(41)으로의 거리이다; 여기서, 수평 방향 상의 반도체 레이저 칩(302)의 발산 각도가 θ2라고 가정하는데, θ2는 대략 10도 내지 40도의 범위이다. 그러므로, 반도체 레이저 칩(302)과 반사 표면(41) 사이의 관계가 0.17 <= W/S <= 0.73를 만족하면, 반도체 레이저 칩(302)으로부터 방출된 빔 L은 적어도 주요 부분을 반사 표면(41) 상에 조사(irradiate)하게 된다. 본 실시예에서, 반도체 레이저 칩(302)으로부터 방출된 빔 L은 반사 표면(41)에 의해 기판(101)에 수직하게 위쪽으로 반사될 수 있고, 빔 L이 광 탈출 표면(1033)으로부터 방출되도록 만들며, 여기서 반사 표면(41)과 반도체 레이저 칩(302)의 제1 광축(1021)은 30도 내지 60도의 범위, 바람직하게는 45도일 수 있는의 끼임각 θ1을 형성한다; 그러므로, 본 실시예는 반도체 레이저 칩(302)의 빔 L의 발광 방향을 반사기(40)를 통해 변화시키며, 제1 광 모듈(103)의 높이를 감소시키켜 두께 절감에 향상된 효과를 달성할 수 있다. 본 실시예에서, 제1 광 모듈(103)의 높이는 1mm 내지 2mm의 범위이며, 본 실시예의 구조화된 광 투사 시스템의 전체적인 총 높이는 5mm 미만이다.
본 실시예에서, 광학 렌즈(1031)는 몰딩에 의해 설치 표면(1011) 상에 배치되며, 반도체 레이저 칩(302)과 반사기(40)를 커버하고 패키징한다. 달리 말하면, 광학 렌즈(1031)와 반도체 레이저 칩(302) 사이에는 또한 광학 렌즈(1031)와 반사기(40) 사이에는 공기 갭이 없다. 그러므로, 반사 표면(41)에 관한 제1 광축(1021)의 거울상(1022)과 제2 광축(1032) 사이의 동축 정렬이 몰딩 공정 동안 쉽게 제공될 수 있다. 본 실시예에서, 동축 정렬은 반사 표면(41)에 관한 제1 광축(1021)의 거울상(1022)과 제2 광축(1032) 사이에서 제공되며, 그 편차 값은 20μm 이하이다. 거울상(1022)과 제1 광축(1021)은 반사 표면(41)을 대칭 평면으로 사용하여 서로 거울 대칭이다. 그런데, 본 실시예에서, 동축 정렬은 반사 표면(41)에 관한 제1 광축(1021)의 거울상(1022), 제2 광축(1032), 및 제3 광축(1045) 사이에서 제공되고, 그 편차값은 50μm 이하이다.
전술한 설명들에서, 본 발명의 실시예의 구조화된 광 투사 시스템은 기판, 반도체 레이저 칩, 제1 광 모듈과 제2 광 모듈을 포함하는 것이 알려질 수 있고, 여기서 반도체 레이저 칩은 제1 광축을 가지고, 제1 광 모듈은 제2 광축을 가지고, 제2 광 모듈은 제3 광축을 가진다. 반도체 레이저 칩이 기판 상에 전기적으로 배치된 후에, 제1 광 모듈은 몰딩에 의해 반도체 레이저 칩에 직접적으로 패키징되어, 제1 광 모듈과 각각의 기판 및 반도체 레이저 칩 사이에는 공기 갭이 없게 되고(이것이 기본 광학 설계임), 제1 광축과 제2 광축이 동축 정렬을 제공하게 만든다; 게다가, 제2 광 모듈은 제1 광 모듈 상에 배치되며, 제3 광축과 제2 광축은 일치하여 동축 정렬을 제공하여, 예상되는 광학 효과를 달성할 수 있다; 따라서, 본 발명이 구현된 후에, 기본 광학 설계를 통해 광축 정렬 시간을 단순화하여 정확성과 수율을 증가시키는 구조화된 광 투사 시스템이 달성될 수 있다.
당업자에게는 본 발명의 범위와 정신을 벗어나지 않으면서 개시내용의 구조에 다양한 수정과 변형이 만들어질 수 있음이 명백할 것이다. 전술한 것을 볼 때, 개시내용은 이하의 청구범위와 그 균등물의 범위 내에서 속하는 본 개시내용의 수정과 변형들을 포함하는 것으로 의도된 것이다.

Claims (20)

  1. 구조화된 광 투사 시스템(structured light projection system)으로서,
    설치 표면(installation surface)을 구비한 비-반도체 재질의 기판;
    적어도 하나의 빔을 생성하도록 구성되고, 상기 설치 표면 상에 배치되며 제1 광축을 가지는, 반도체 레이저 칩;
    상기 적어도 하나의 빔의 투과 경로 상에 배치되고, 제2 광축을 가지며, 광 탈출 표면(light exit surface)을 구비한 광학 렌즈를 포함하고, 상기 광학 렌즈와 상기 반도체 레이저 칩 사이에는 공기 갭(air gap)이 없는, 제1 광 모듈; 및
    상기 제1 광 모듈 상에 배치되고, 제3 광축을 가지며, 빈 케이스(hollow case)와 상기 적어도 하나의 빔의 상기 투과 경로 상에 배치된 적어도 하나의 회절 광학 소자(diffractive optical element)를 포함하고, 상기 적어도 하나의 빔을 구조화된 광으로 변환하는, 제2 광 모듈;을 포함하고,
    상기 제1 광 모듈은 상기 빈 케이스 내에 수용되고, 상기 제1 광축을 따라 투과되고 상기 제1 광축으로부터 방출된 광 빔은 그 후 순서대로 상기 제2 광축과 상기 제3 광축을 따라 투과되는, 구조화된 광 투사 시스템.
  2. 제1항에 있어서,
    상기 광학 렌즈는 몰딩에 의해 상기 설치 표면 상에 배치되고, 상기 반도체 레이저 칩을 커버하고 패키징하는, 구조화된 광 투사 시스템.
  3. 제2항에 있어서,
    상기 빈 케이스의 한 단부는 상기 설치 표면 상에 배치된 연결부를 가지도록 형성되고, 상기 회절 광학 소자는 상기 연결부의 반대에 상기 빈 케이스의 다른 단부 상에 배치되는, 구조화된 광 투사 시스템.
  4. 제3항에 있어서,
    상기 제2 광 모듈은 상기 제1 광 모듈과 상기 회절 광학 소자 사이에 배치된 적어도 하나의 광 소자를 더 포함하는, 구조화된 광 투사 시스템.
  5. 제4항에 있어서,
    상기 광학 렌즈의 상기 광 탈출 표면은 상기 빔을 상기 광학 소자로 투과시키도록 구성되고, 적어도 하나의 시준된 빔(collimated beam)은 상기 빔이 상기 광학 소자에 의해 굴절되고 상기 회절 광학 소자로 입사된 후에 생성되고; 상기 시준된 빔은 상기 회절 광학 소자에 의해 회절된 후에 투사 표면(projection surface) 상에 복수의 회절 광점들(diffractive light spots)을 제공하는, 구조화된 광 투사 시스템.
  6. 제4항에 있어서,
    상기 빈 케이스의 두께는 5mm 미만인, 구조화된 광 투사 시스템.
  7. 제5항에 있어서,
    상기 회절 광학 소자와 상기 투사 표면 사이의 거리는 300cm 내지 500cm의 범위인, 구조화된 광 투사 시스템.
  8. 제5항에 있어서,
    상기 반도체 레이저 칩은 수직-공진 표면-발광 레이저 칩(vertical-cavity surface-emitting laser chip)인, 구조화된 광 투사 시스템.
  9. 제8항에 있어서,
    상기 수직-공진 표면-발광 레이저 칩은 200개 내지 600개의 발광점들(light emitting spots)을 가지는, 구조화된 광 투사 시스템.
  10. 제9항에 있어서,
    상기 회절 광학 소자의 차수(order)는 5×5 내지 13×13차의 범위인, 구조화된 광 투사 시스템.
  11. 제10항에 있어서,
    상기 복수의 회절 광점들의 숫자는 10000개 내지 40000개의 범위인, 구조화된 광 투사 시스템.
  12. 제2항에 있어서,
    상기 제1 광축, 상기 제2 광축 및 상기 제3 광축 사이에 동축 정렬(coaxial alignment)이 제공되고, 그 편차 값은 50μm 이하인, 구조화된 광 투사 시스템.
  13. 제2항에 있어서,
    상기 제1 광축과 상기 제2 광축 사이에 동축 정렬이 제공되고, 그 편차 값은 20μm 이하인, 구조화된 광 투사 시스템.
  14. 제1항에 있어서,
    비-반도체 재질의 상기 기판은 금속 기판, 세라믹 기판, 또는 유리 섬유 기판인, 구조화된 광 투사 시스템.
  15. 제1항에 있어서,
    상기 반도체 레이저 칩은 단면 발광 레이저 칩(edge emitting laser chip)이고, 상기 구조화된 광 투사 시스템은 상기 설치 표면 상에 배치된 반사기(reflector)를 더 포함하고; 상기 반사기는, 상기 단면 발광 레이저 칩으로부터 방출된 상기 빔을 상기 광 탈출 표면으로 반사시키고 상기 빔이 상기 설치 표면으로부터 멀어지도록 만들도록 구성되는 반사 표면(reflective surface)을 구비하고; 상기 광학 렌즈와 각각의 상기 기판, 상기 단면 발광 레이저 칩 및 상기 반사기 사이에는 공기 갭이 없는, 구조화된 광 투사 시스템.
  16. 제15항에 있어서,
    상기 반사 표면에 관한 상기 제1 광축의 거울상, 상기 제2 광축 및 상기 제3 광축 사이에 동축 정렬이 제공되고, 그 편차 값은 50μm 이하인, 구조화된 광 투사 시스템.
  17. 제15항에 있어서,
    상기 반사 표면에 관한 상기 제1 광축의 거울상과 상기 제2 광축 사이에 동축 정렬이 제공되고, 그 편차 값은 20μm 이하인, 구조화된 광 투사 시스템.
  18. 제15항에 있어서, 상기 광학 렌즈는 몰딩에 의해 상기 설치 표면 상에 배치되고, 상기 단면 발광 레이저 칩과 상기 반사기를 커버하고 패키징하는, 구조화된 광 투사 시스템.
  19. 제18항에 있어서,
    상기 반사 표면과 상기 제1 광축은 30도 내지 60도 범위의 끼임각(included angle)을 형성하는, 구조화된 광 투사 시스템.
  20. 제19항에 있어서, 상기 빈 케이스의 상기 두께는 5mm 미만인, 구조화된 광 투사 시스템.
KR1020190043778A 2018-04-16 2019-04-15 구조화된 광 투사 시스템 KR20190120715A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW107113144 2018-04-16
TW107113144 2018-04-16
TW108109014A TWI693431B (zh) 2018-04-16 2019-03-14 結構光投射系統
TW108109014 2019-03-14

Publications (1)

Publication Number Publication Date
KR20190120715A true KR20190120715A (ko) 2019-10-24

Family

ID=68160353

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190043778A KR20190120715A (ko) 2018-04-16 2019-04-15 구조화된 광 투사 시스템

Country Status (3)

Country Link
US (1) US10890837B2 (ko)
KR (1) KR20190120715A (ko)
CN (1) CN110389457A (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262644B1 (en) * 2019-05-10 2022-03-01 Facebook Technologies, Llc Structured light projector with solid optical spacer element
DE102021133748A1 (de) 2021-12-17 2023-06-22 Ifm Electronic Gmbh Laservorrichtung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5257051A (en) * 1992-12-24 1993-10-26 The Walt Disney Company Method and apparatus for adjusting the optical alignment of a film projection system
US6252252B1 (en) * 1998-04-16 2001-06-26 Sanyo Electric Co., Ltd. Optical semiconductor device and optical semiconductor module equipped with the same
GB0010164D0 (en) * 2000-04-27 2000-06-14 Suisse Electronique Microtech Technique for hybrid integration of heteropolysiloxane lenses and alignment structures onto vertical cavity surface emitting laser chips
JP4192722B2 (ja) * 2003-08-25 2008-12-10 株式会社デンソーウェーブ ホログラム画像投影装置及びそれを用いた情報コード読取装置
US8749796B2 (en) * 2011-08-09 2014-06-10 Primesense Ltd. Projectors of structured light
WO2015110927A1 (en) * 2014-01-23 2015-07-30 Koninklijke Philips N.V. Light emitting device with self-aligning preformed lens
JP2017003461A (ja) * 2015-06-11 2017-01-05 東芝テック株式会社 距離測定装置
US20160377414A1 (en) * 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
CN106911877A (zh) * 2015-12-23 2017-06-30 高准精密工业股份有限公司 光学装置
CN105929558A (zh) * 2016-06-20 2016-09-07 深圳奥比中光科技有限公司 用于产生结构光的激光模组
TWI608252B (zh) 2016-10-14 2017-12-11 高準精密工業股份有限公司 光學裝置
DE102016120635B4 (de) * 2016-10-28 2021-12-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laserbauelement und verfahren zum herstellen eines laserbauelements
CN206833136U (zh) * 2017-06-14 2018-01-02 深圳奥比中光科技有限公司 投影模组及深度相机
TWI693431B (zh) * 2018-04-16 2020-05-11 立碁電子工業股份有限公司 結構光投射系統

Also Published As

Publication number Publication date
CN110389457A (zh) 2019-10-29
US10890837B2 (en) 2021-01-12
US20190317390A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
TWI709776B (zh) 具有光線偏轉元件之光學構件,其製造方法及適合於光學構件之線偏轉元件
CN103181040B (zh) 用于垂直外部腔体表面发射激光器的光学元件
JP6355558B2 (ja) 改善された光学系を備えているオプトエレクトロニクスモジュール
US6985658B2 (en) Method for the manufacture of optical modifier
US20030016539A1 (en) High efficiency non-imaging optics
JP2016029739A (ja) オプトエレクトロニクスチップオンボードモジュール用のコーティング法
WO2015134563A2 (en) Methods of forming a fiber coupling device and fiber coupling device
JP2005506556A (ja) 反射光学系及び反射屈折系を利用した結像システム
KR20190120715A (ko) 구조화된 광 투사 시스템
US10609266B2 (en) Camera for wide field of view with an arbitrary aspect ratio
TW201903451A (zh) 光學鏡頭、光學元件和光學模組及其製造方法
CN108508544B (zh) 光耦合系统及光耦合方法
TWI693431B (zh) 結構光投射系統
CN213987055U (zh) 基于微透镜的光投射器
Lan et al. Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45 micro-reflector
JP3828755B2 (ja) 変位光量変換装置
CN107209333A (zh) 光模块
JP2021085931A (ja) 光レセプタクルおよび光モジュール
TWI744911B (zh) 光源模組
CN219389492U (zh) 一种透镜及其发光器件
CN212781511U (zh) 一种具有准直效果的衍射光学元件
WO2024029616A1 (ja) 光学素子、光学系装置および光学系装置の製造方法
CN113740865A (zh) 一种结构光投射模组及电子设备
JP2021157098A (ja) 光レセプタクルおよび光モジュール
TW202024717A (zh) 自由形衍射光學元件的製造方法及使用該自由形衍射光學元件的光模組

Legal Events

Date Code Title Description
E902 Notification of reason for refusal