KR20190118983A - pH 감응성 펩타이드 구조체, 및 이의 용도 - Google Patents

pH 감응성 펩타이드 구조체, 및 이의 용도 Download PDF

Info

Publication number
KR20190118983A
KR20190118983A KR1020190042543A KR20190042543A KR20190118983A KR 20190118983 A KR20190118983 A KR 20190118983A KR 1020190042543 A KR1020190042543 A KR 1020190042543A KR 20190042543 A KR20190042543 A KR 20190042543A KR 20190118983 A KR20190118983 A KR 20190118983A
Authority
KR
South Korea
Prior art keywords
peptide
formula
cyclic
rgd
peptide structure
Prior art date
Application number
KR1020190042543A
Other languages
English (en)
Other versions
KR102219828B1 (ko
Inventor
임용범
김효석
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of KR20190118983A publication Critical patent/KR20190118983A/ko
Application granted granted Critical
Publication of KR102219828B1 publication Critical patent/KR102219828B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/66Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 pH 감응성 펩타이드 구조체에 관한 것으로서, 상기 펩타이드 구조체는 pH에 따라 자가조립 및 역자가조립을 함으로써 약물 전달이 가능하며, 조영제로도 활용될 수 있다.

Description

pH 감응성 펩타이드 구조체, 및 이의 용도{A pH SENSITIVE PEPTIDE STRUCTURE AND USES THEREOF}
본 발명은 pH에 따라 자가조립 구조를 형성하는 펩타이드 구조체 및 이의 다양한 용도에 관한 것이다.
과거 수년간, 항체 단편 및 세포 표면 수용체에 대한 리간드를 포함하는 광범위한 종양 특이적 치료용 단백질이 개발되어 있으며, 임상에서 시험되었다. 펩타이드 자가조립 구조체는 의학분야 또는 나노기술 분야 등의 다양한 생물학적 으용 가능성 때문에 많은 각광을 받고 있다. 펩타이드 자가조립 구조체는 단백질의 짧은 단위체로 이루어지므로 태생적으로 생물학적 안정성이 높다. 경우에 따라 펩타이드 모노머는 β-sheet 2차 구조를 형성할 수 있으며, 소수성 결합, 수소결합, 정전기적 인력, 파이 파이 결합 등의 2차 결합을 통해 마이셀, 베시클, 나노파이버, 하이드로젤 등 다양한 구조를 형성할 수 있다. 또한 펩타이드는 서열에 따라 특정 단백질에 대한 특이적 결합이 가능하다.
최근 20년간 이와 같은 펩타이드 특성에 따라 다양한 구조뿐만 아니라 여러가지 기능을 부여하여 보다 정밀하고 안정한 기능성 구조체를 구현해 내는 연구가 진행되었다. 의학 분야의 약물 전달 시스템 분야에서 암세포에 대한 안전하고 효율이 높은 치료제로서 펩타이드 구조체가 연구되고 있다. 암세포는 일반세포들에 비해 세포 표면에 αvβ3인테그린 리셉터 단백질이 많이 발현되고 pH가 다소 낮으며 세포 내부에서 글루타 싸이온과 같은 펩타이드 혹은 단백질 효소 등이 존재한다.
많은 연구에서 암세포의 특성을 고려하여 선택성 있는 펩타이드 구조체를 디자인한다. 펩타이드 구조체가 세포 내부에서 정확히 치료 효과를 구현하기 위해서는 암세포와 특이적으로 결합할 수 있는 능력뿐만 아니라 구조체가 약물을 방출하는 과정 혹은 구조체의 구조 변화로 인해 세포를 파괴하는 과정 등이 요구되며, 이를 위해 세포 외부와 내부의 pH차이, 글루타 싸이온의 농도 차이, 온도 차이 등의 조건 등이 고려된다.
최근 펩타이드 구조체의 경우 약물 전달로 인한 암세포 파괴뿐만 아니라 암세포 특이적인 변화 요인에 의한 구조 변화를 유도함으로써 세포를 파괴하는 방안이 제안되고 있으며, 이를 역-자가조립 구조체라고 통칭한다. 본 발명자들은 특정 리셉터 단백질에 특이적으로 결합할 수 있으며, 리셉터에 결합한 구조체가 세포 내 이입 작용으로 세포 내부에 들어 갔을 때 산성 pH감응하여 역-자가조립하는 펩타이드 나노 구조체를 개발하였다.
한국공개특허 제10-2016-0127827호
본 발명의 목적은 pH 감응성 펩타이드 구조체를 제공하는 것이다.
본 발명의 다른 목적은 상기 pH 감응성 펩타이드 구조체를 포함하는 약물 전달용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 pH 감응성 펩타이드 구조체를 포함하는 조영제 조성물을 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명의 일 측면은 소수성 아미노산, 히스티딘 및 표적 지향성 펩타이드를 포함하는 펩타이드 구조체로서, 상기 소수성 아미노산, 히스티딘 및 표적 지향성 펩타이드는 하기 구조식 1 또는 구조식 2의 순서로 배열되는 것인, pH 감응성 펩타이드 구조체에 관한 것이다.
[구조식 1]
Xn-Hm-Rl
[구조식 2]
Xn-Rl-Hm
상기 식에서 상기 X는 1종의 소수성 아미노산 또는 2종 이상의 소수성 아미노산의 결합체이고;
상기 H는 히스티딘이고;
상기 R은 표적 지향성 펩타이드이고;
상기 n은 3 내지 8이고;
상기 m은 6 내지 10이고;
상기 l은 1 내지 5인 펩타이드 구조체.
구체적으로, 상기 X는 이소류신, 류신, 발린, 이소류신 및 류신의 결합체로 이루어진 군에서 선택된 하나 이상인 것일 수 있다.
또한 구체적으로, 상기 펩타이드 구조체는 서열번호 1 내지 서열번호 14 중 하나 이상의 아미노산 서열로 이루어진 것일 수 있다.
본 발명 일 실시예에서는 서열번호 1 내지 서열번호 14 중 하나 이상의 아미노산 서열로 이루어진 펩타이드 구조체를 제조하였으며, 상기 펩타이드 구조체가 pH에 따라 구조가 변형되는 것을 확인하였다.
구체적으로, 상기 펩타이드 구조체는 하기 화학식 1 내지 14로 표시되는 구조체 중 어느 하나 이상인 것을 특징으로 할 수 있다.
[화학식 1]
Figure pat00001
[화학식 2]
Figure pat00002
[화학식 3]
Figure pat00003
[화학식 4]
Figure pat00004
[화학식 5]
Figure pat00005
[화학식 6]
Figure pat00006
[화학식 7]
Figure pat00007
[화학식 8]
Figure pat00008
[화학식 9]
Figure pat00009
[화학식 10]
Figure pat00010
[화학식 11]
Figure pat00011
[화학식 12]
Figure pat00012
[화학식 13]
Figure pat00013
[화학식 14]
Figure pat00014
또한 구체적으로, 상기 본 발명의 표적 지향성 펩타이드는 RGD 펩타이드, 미토콘드리아 표적 펩타이드, Fc수용체 결합 펩타이드(Fc receptor binding peptide) 및 베타 엔도르핀 수용체 리간드(beta endorphine receptor ligand)로 이루어진 군에서 선택되는 하나 이상일 수 있다.
본 발명에서, “표적 지향성 펩타이드”는 생체 내 목적 부위로 본 발명의 펩타이드 구조체가 이동할 수 있도록 목적 부위의 세포 표면에 결합할 수 있는 펩타이드나 항체를 말한다.
상기 생체 내 목적 부위는 필요에 따라 달라질 수 있으며, 암세포 또는 염증세포와 같이 치료제 또는 약물의 목적이 되는 부분일 수 있다. 상기 표적 지향성 펩타이드를 통해 본 발명의 펩타이드 구조체는 암세포, 염증세포 등 목적이 되는 부위에 도입될 수 있으며, 목적이 되는 부위에 따라 적절히 표적 지향성 펩타이드를 변경하여 사용할 수 있다.
일 실시예에서, 상기 pH 감응성 펩타이드 구조체에 하나 이상의 아미노산을 추가적으로 더 포함할 수 있다.
상기 펩타이드 구조체는 아민기(-NH2)를 가진 아미노산을 추가로 더 포함할 수 있다. 예를 들어, 라이신은 아민기를 이용하여 고리형(cyclic) 펩타이드 구조체를 형성하는데 관여한다.
상기 펩타이드 구조체는 글라이신(G)을 추가로 더 포함할 수 있다. 예를 들어, 글라이신(G)은 블록과 블록 사이의 링커 역할을 한다. 또는 고리형 구조체에서 거울상 이성질체가 형성되는 것을 방지할 수 있다.
상기 펩타이드 구조체는 트립토판(W)을 추가로 더 포함할 수 있다. 예를 들어, 트립토판(W)은 aromatic ring 부분의 특정 파장의 빛을 흡광할 수 있어, 펩타이드 정제에 이용될 수 있다.
더욱 구체적으로, 상기 트립토판, 글라이신 또는 라이신이 추가로 더 포함된 펩타이드 구조체에 있어서, 상기 구조식 1 또는 2의 Xn 상단에 트립토판이 추가로 결합되거나, 상기 구조식 1 의 Rl 하단 또는 구조식 2의 Hm 하단에 글라이신 또는 라이신이 추가로 결합된 형태인 것일 수 있으나, 이에 제한되는 것은 아니며 필요에 따라 적절한 아미노산을 추가하거나 변경 적용할 수 있다.
상기 펩타이드 구조체는 pH에 따라 구조가 변화하는 것일 수 있으며, pH 6.0 이하의 조건에서 역 자가조립하는 것일 수 있다.
본 발명자들은 소수성 블록의 아미노산 개수 및 종류, 히스티딘의 개수 및
결합 위치, 선형 또는 고리형에 따라 펩타이드의 구조 변화를 관찰하였으며, pH에 따른 2차 구조 변화를 CD로 관찰하여 그 기작을 규명하였다.
상기 펩타이드 구조체는 RGD블록, H블록, 및 소수성 아미노산(I, L, V) 블록
으로 구성될 수 있다.
상기 펩타이드 구조체는 2종의 모이어티(친수성 및 소수성)로만 이루어진 종
래 펩타이드 대비 구조가 복잡하므로 다양한 구조로 자가조립할 수 있으며, 표적 지향성 및 pH 감응성을 나타낼 수 있다.
상기 표적 지향성 펩타이드, 예컨대 RGD 블록의 경우 암세포의 표면에 다량 발현되는 인테그린에 특이적으로 결합할 수 있고, 결합을 통해 엔도사이토시스를 유발하여 세포 내부로 도입될 수 있다.
또한, 상기 펩타이드 구조체는 친수성 특성을 가지므로 생체 조건에서 용이
하게 용해될 수 있다. 상기 표적 지향성 펩타이드는 다른 소수성 아미노산의 종류 및 개수를 고려하여 1회 이상 반복하여 연결시킴으로써 전체 친수성을 제어할 수 있다.
상기 히스티딘 블록의 경우 잔기의 imidazole 부분 질소의 pKa가 6.04이고pH가 pKa 이상일 때는 전기적으로 중성인 반면, pH가 pKa보다 낮아지면 +1 전하를나타낼 수 있다.
따라서 상기 펩타이드 구조체는 생체 조건인 pH 7.4 에서 소수성 성질이 강
해해지는 반면, 암세포의 엔도좀 또는 라이소좀 속 조건인 pH 4.5 내지 6에서는 전하를 띄어 친수성을 가질 수 있다.
즉, 상기 펩타이드 구조체는 pH 변화에 의해 친수성 아미노산 체인의 길이가
길어지며, 플러리 허긴스 상수가 변화하여 구조 변화가 유발될 수 있다.
또한 구체적으로, 상기 펩타이드 구조체는 자가조립 및 역자가조립 구조 변화를 통해 약물 전달이 가능한 것일 수 있다.
상기 펩타이드 구조체는 혈류 내에서는 안정적으로 자가조립 구조를 형성하는 반면, 산성의 pH조건에서 친수성이 강해지고 역-자가조립하는 특성을 가져 암조직 등 낮은 pH조건에서 담지되어 있는 약물을 방출할 수 있으므로 약물 전달체로서 사용될 수 있다.
상기 펩타이드 구조체는 혈액 내 pH에서 자가조립 구조를 형성하여 담지된약물의 손실없이 안전하게 표적 조직으로 수송할 수 있으며, 산성의 pH 조건인 표적 조직 도달 후 담지된 약물을 방출할 수 있으므로, 정맥 주사제로서 투여되는 경우 약물 전달 효과가 우수하여 약물 전달 용도로 활용될 수 있다.
본 발명의 다른 측면은 상기 펩타이드 구조체를 포함하는 약물 전달용 조성물에 관한 것이다.
구체적으로, 상기 약물은 저분자량 약물, 유전자 약물, 단백질 약물 또는 이의 혼합물일 수 있다.
상기 저분자량 약물은 해열제로서 안티피린(antipyrin), 안티페브린(antifebrin), 아스피린(aspyrin) 또는 살리피린(salipyrin)일 수 있고, 항염증제로서 아스피린(aspirin), 살리실레이트(salicylates), 이부프로펜(ibuprofen), 플루르비프로펜(Flurobiprofen), 피록시캄(pyroccikam), 나프로센(naproxen), 페노프로펜(fenoprofen), 인도메타신(indomethacin), 페닐부타존(phenyltazone), 메소트렉세이트(methotrexate), 메클로에타민(mechlorethamine), 덱사메타손(dexamethasone), 프레드니솔론(prednisolone), 셀레콕시브(celecoxib), 발데콕시브(valdecoxib), 니메슐리드(nimesulide), 코르티손(cortisone) 또는 코르티코스테로이드(corticosteroid)일 수 있으나, 이에 제한되는 것은 아니다.
상기 유전자(gene) 약물은 작은 간섭 리보핵산(small interfering RNA, siRNA), 작은 헤어핀 리보핵산(small hairpin RNA, shRNA), 마이크로 리보핵산(microRNA, miRNA) 또는 플라스미드 데옥시리보핵산(plasmid DNA)일 수 있으나, 이에 한정되는 것은 아니다.
상기 단백질(protein) 약물은 단일클론 항체(monoclonal antibody)계열의 트라스트주맵(trastuzumab), 리투시맵(rituximab), 베바시주맵(bevacizumab), 세투시맵(cetuximab), 보테조밉(bortezomib), 엘로티닙(erlotinib), 제피티닙(gefitinib), 이매티닙 메실레이트(imatinib mesylate), 수니티닙(sunitinib); 효소(enzyme)계열의 L-아스파라지나제(L-asparaginase); 호르몬(hormone)계의 트리톨레린 아세테이트(triptorelin acetate), 메제스트롤 아세테이트(megestrol acetate), 플루타미드(flutamide), 비카루타마이드(bicalutamide), 고세레린(goserelin); 시토크롬 씨(cytochrome c) 또는 p53 단백질일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 측면은 상기 펩타이드 구조체를 포함하는 조영제 조성물에 관한 것이다.
상기 펩타이드 구조체는 표적 지향성 펩타이드가 결합되어 있는 바 목적 부위에서의 pH 변화를 이용하여 조영 물질을 방출할 수 있다. 일 예로 pH가 상대적으로 낮은 암 조직에서 조영 물질을 방출할 수 있으므로, 다양한 종류의 암을 진단하기 위한 조영제로서 활용될 수 있다.
상기 조영제는 MRI 조영제로서 상자성 물질, 가돌리늄과 망간의 착화합물 형태로서, Gd-DTPA, Gd-DTPA-BMA, GdDOTA, Gd-DO3A 및 초상자성 물질인 산화철로 이루어지는 군으로부터 선택되는 하나 이상을 포함할 수 있고, PET 조영제로서 방사성 동위원소 18F, 124I, 64Cu, 99mTc 및 11In으로 이루어지는 군에서 선택된 하나 이상을 포함할 수 있으며, 킬레이트 DOTA 및 DTPA 착화합물 형태로서 상기 펩타이드 구조체에 도입될 수 있다.
상기 조영제 조성물은 추가적으로 약학적으로 허용 가능한 담체를 더욱 포함할 수 있다.
본 발명에 따른 조영제 조성물에 사용되는 담체는 의약 분야에서 통상 사용되는 담체 및 비히클을 포함하며, 구체적으로 이온 교환 수지, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 각종 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소캄륨, 염화나트륨 및 아연염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐피롤리돈, 셀룰로즈계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌 글리콜 또는 양모지 등을 포함하나 이에 제한되지 않는다. 본 발명의 조영제 조성물은 또한 상기 성분들 이외에 윤활제, 습윤제, 유화제, 현탁제, 또는 보존제 등을 추가로 포함할 수 있다.
본 발명에 따른 조영제 조성물을 생체 또는 시료에 투여하고, 상기 생체 또는 시료로부터 형광을 나타내는 나노구조체에 의해 발산되는 신호를 감지하여 영상을 수득할 수 있으며, 생체 또는 시료 내에서 발광되는 형태를 분석하여 질환에 대한 진단용도로 활용할 수 있다.
상기 “시료” 는 진단하고자 하는 대상으로부터 분리한 조직 또는 세포를 의미한다. 또한 상기 조영제 조성물을 생체 또는 시료에 주입하는 단계는 의약 분야에서 통상적으로 이용되는 경로를 통해 투여될 수 있으며, 예를 들어 정맥내, 복강내, 근육내, 피하 또는 국부 경로 등의 비경구 투여를 이용할 수 있다.
본 명세서에 의해 개시되는 기술에 따르면, 다음과 같은 효과가 발생한다.
본 명세서에서 개시하는 펩타이드 구조체는 소정의 pH 조건에서 역 자가조립하므로, 표적의 특성을 고려한 표적-특이적인 약물 전달체 및 조영제로서 활용이 가능하다.
또한, 본 발명의 펩타이드 구조체는 자가조립을 통해 다차원 구조체를 형성할 수 있는 바, 약물전달시스템, 생체모방소자, 나노센서 소재, 바이오이미징 소재 등으로 활용될 수 있다.
본 발명의 효과는 상기 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 펩타이드 구조체의 HPLC 정제 결과를 나타낸 그래프이다(가로축:시간(time, 분), 세로축: 강도(intensity, a.u.)).
도 2는 본 발명의 일 실시예에 따른 펩타이드 구조체의 MALDI-TOF 측정 결과를 나타낸 것이다(가로축:시간(time, 분), 세로축: 강도(intensity, a.u.)).
도 3은 본 발명의 일 실시예에 따른 펩타이드 구조체(Linear I6H6RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 4는 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic I6H6RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 5는 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic I8H6RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 6은 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic I6H10RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 7은 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic I6H10RGD buffer)를 AFM을 통해 관찰한 것이다(왼쪽부터 SABS buffer pH 4.5, KPBS buffer pH 7.5).
도 8은 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic I6RGDH6)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 9는 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic L6H10RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 10은 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic V6H10RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 11은 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic I3L3H10RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 12는 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic L3I3H10RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 13은 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic (IL)3H10RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 14는 본 발명의 일 실시예에 따른 펩타이드 구조체(Cyclic (LI)3H10RGD)를 AFM을 통해 관찰한 것이다(왼쪽부터 pH 4.5, pH 6, pH 7.5).
도 15는 본 출원의 일 실시예에 따른 펩타이드 구조체를 TEM을 통해 관찰한 것이다.
도 16은 본 출원의 일 실시예에 따른 펩타이드 구조체를 Circular Dichroism spectrometer를 통해 관찰한 것이다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
1. 펩타이드 설계
디자인한 펩타이드 구조체는 14종이며 아미노산 서열은 하기 표 1과 같다.
펩타이드 구조체 아미노산 서열 서열번호
Linear I6H6RGD W-IIIIII-G-HHHHHH-G-RGDRGDRGD-K 1
Linear I8H6RGD W-IIIIIIII-G-HHHHHH-G-RGDRGDRGD-K 2
Linear I6H10RGD W-IIIIII-G-HHHHHHHHHH-G-RGDRGDRGD-K 3
Linear I6RGDH6 W-IIIIII-G-RGDRGDRGD-G-HHHHHH-K 4
Cyclic I6H6RGD W-IIIIII-G-HHHHHH-G-RGDRGDRGD-G 5
Cyclic I8H6RGD W-IIIIIIII-G-HHHHHH-G-RGDRGDRGD-G 6
Cyclic I6H10RGD W-IIIIII-G-HHHHHHHHHH-G-RGDRGDRGD-G 7
Cyclic I6RGDH6 W-IIIIII-G-RGDRGDRGD-G-HHHHHH-G 8
Cyclic L6H10RGD W-LLLLLL-G-HHHHHHHHHH-G-RGDRGDRGD-G 9
Cyclic V6H10RGD W-VVVVVV-G-HHHHHHHHHH-G-RGDRGDRGD-G 10
Cyclic I3L3H10RGD W-IIILLL-G-HHHHHHHHHH-G-RGDRGDRGD-G 11
Cyclic L3I3H10RGD W-LLLIII-G-HHHHHHHHHH-G-RGDRGDRGD-G 12
Cyclic (IL)3H10RGD W-ILILIL-G-HHHHHHHHHH-G-RGDRGDRGD-G 13
Cyclic (LI)3H10RGD W-LILILI-G-HHHHHHHHHH-G-RGDRGDRGD-G 14
히스티딘(H) 블록의 경우 히스티틴의 잔기에 이미다졸(imidazole) 부분 질소의 pKa가 6.04인데 이를 pH가 pKa 이상일 때는 전기적으로 중성인데 반해 pH가 pKa보다 낮아지면 + 1 전하를 띄게 된다. 이로 인해 생체 조건인 pH 7.4 에서는 소수성 성질이 강해지고 펩타이드 구조체가 암세포 안에 들어가 엔도좀이나 라이소좀의 내부 조건인 pH 4.5 ~ 6 환경이 되면 전하를 띄게 되어 친수성 성질을 갖게 되어 펩타이드의 친수성 아미노산 체인의 길이가 길어지게 되고 이로 인해 플러리 허긴스 상수가 변화하여 구조체의 구조 변화를 유발한다.
히스티딘(H)의 개수에 따른 구조 변화를 살피고자, 히스티딘이 6개인 서열 및 10개인 서열을 비교하였다. 또한, RGD와 H 블록의 위치에 따른 구조 변화를 살피고자, I6H6RGD와 I6RGDH6 와 같이 위치를 달리한 서열도 디자인 하였다.
RGD 블록의 경우 암세포의 표면에 많이 발현되는 αvβ3 인테그린에 특이적으로 결합할 수 있고 그 결합으로 인해 엔도사이토시스를 유발하여 펩타이드 나노 구조체가 세포 안으로 들어갈 수 있게 하는 기능을 갖는다. 또한 친수성 성질을 가지고 있어 펩타이드가 생체 조건에서 잘 용해될 수 있게 해주는 기능을 갖는다.
또한, 소수성을 나타내는 아이소류신(I), 류신(L) 또는 발린(V) 블록에 따른 구조 변화를 확인하였다. 상기 소수성 블록들은 생체 조건의 용액에 녹아 있을 때 Hydrophobic effect로 인해 코어를 형성하여 마이셀 베시클 튜브등과 같은 특정한 나노구조를 이루게 해주는 기능을 갖는다. 이들은 β-sheet을 형성하는 성질이 있어 pH에 따라 더 급격한 구조변화를 유발할 것으로 예측되었다.
또한, 아이소류신(I) 개수에 따른 구조 변화를 살피고자, I6H6RGD 와 I8H6RGD 와 같은 서열을 비교하였다.
또한, H10RGD의 플랫폼의 더 다양한 응용 가능성을 확인하고자 I 블록 외에도 L, V과 같이 소수성이며 β-sheet을 형성하는 성질을 가지는 아미노산(cyclic L6H10RGD, cyclic V6H10RGD,)으로 대체하여 cyclic I6H10RGD와 비교하였다.
또한, 소수성 아미노산의 조합을 활용하는 것이 가능한지 증명하기 위하여, I 또는 L을 조합한 아미노산(cyclic I3L3H10RGD, cyclic L3I3H10RGD, cyclic (IL)3H10RGD, cyclic (LI)3H10RGD)의 pH감응성을 확인하였다.
추가로, 라이신(K)은 선형 펩타이드를 고리형으로 합성하는 방식들을 고안하던 중 라이신의 아민기를 활용하는 방법을 시도하기 위해 배치하였다.
글라이신(G)은 블록과 블록 사이의 링커 역할을 한다. 또는 cyclic 펩타이드를 합성할 때 trityl resin을 사용하는데 이때 거울상 이성질체가 형성되는 것을 방지하고자 첫번째 서열로 글라이신을 이용하였다.
트립토판(W)은 aromatic ring 부분이 280 nm 파장의 빛을 흡광하므로 펩타이드 정제를 위해 배치하였다.
펩타이드 합성을 완료 후 원하는 최종 산물만을 정제하기 위해 HPLC를 이용하여 정제 과정을 거치는데 최종적으로 컬럼에서 흘러나오는 용액에 280nm 파장의 빛을 투사하면 용액에 용해된 펩타이드가 빛을 통과할 때 트립토판이 빛을 흡광하여 HPLC의 시그널을 발생시킬 수 있다.
2. 합성 및 실험 방법
2-1. 펩타이드 합성
선형 펩타이드의 경우 rink amide resin 상에서 solid phase peptide synthesis 방법을 통해 합성하였다. Fmoc chemistry를 이용하여 N-terminal에서부터 서열대로 아미노산 1개씩 순차적으로 합성하였다.
Resin은 100umol을 1당량으로 하여 합성하였다. 최초 resin에서 Fmoc을 제거할 때에는 부피비율 20% piperidine이 녹아있는 NMP 용액을 resin에 첨가하여 10분정도 반응시키고 DMF와 NMP로 세척하였다. 이후 합성할 아미노산을 HCTU, HOPt, DIPEA를 함께 NMP에 용해시킨 후 5분 정도 인큐베이션 하였다. Fmoc이 제거된 resin에 NMP에 리에이전트들과 녹아 있는 아미노산을 첨가하고 약 60분 동안 쉐이커에서 반응시켰다. 다음 아미노산을 합성시킬 때도 마찬가지 방법으로 Fmoc 제거하고 다음 아미노산을 합성하였고, 합성이 모두 완료될 때까지 서열대로 순차적으로 반복하였다.
합성이 완료된 후 펩타이드에 붙어있는 resin과 프로텍팅 그룹을 제거하기 위해 resin에 2.5% H20, 2.5% TIS가 녹아있는 TFA 용액인 reagent K 용액을 2시간 이상 처리하였다. Reagent K를 제거하기 위해 아르곤 가스로 휘발시키고 남은 reagent K용액에 TBME를 첨가하였다. 이후 용액을 3분 동안 원심 분리하여 펩타이드를 침전시키고 상층 용액을 제거하였으며, 당해 과정을 3회 반복함으로써 최종 산물인 펩타이드를 수득하였다.
고리형 펩타이드의 경우 trityl resin 상에서 solid phase peptide synthesis 방법을 통해 합성했다. Fmoc chemistry를 이용하여 N-terminal에서부터 서열대로 아미노산 1개씩 순차적으로 합성하였다.
Resin은 100umol을 1당량으로 하여 합성하였다. 처음 resin에서 Fmoc을 제거할 때에는 부피비율 20% 피페리딘(piperidine)이 녹아있는 NMP 용액을 resin에 첨가하여 10분 정도 반응시키고 DMF와 NMP로 세척하였다.
순차로 합성할 아미노산을 HCTU, HOBt, DIPEA를 함께 NMP에 용해시킨 후 약 5분 동안 인큐베이션 하였다. 고리형 펩타이드의 경우 거울상 이성질체가 생길 것을 우려하여 resin에 합성하는 첫 아미노산은 글라이신으로 합성하였다.
Fmoc이 제거된 resin에 NMP에 리에이전트들과 녹아 있는 아미노산을 첨가하고 60분정도 쉐이커에서 반응시켰다.
이후 아미노산을 합성시킬 때도 마찬가지 방법으로 Fmoc 제거하고 다음 아미노산을 합성하고, 합성이 모두 완료될 때까지 순차로 반복하였다.
마지막 서열까지 합성을 완료하고 Fmoc을 제거한 후 고리형을 만들기 위해 cyclization 과정을 수행하였다.
TFA : TFE : MC = 2 : 2 : 6 용액을 펩타이드에 처리하여 resin에서 분리해내고 용액에 녹은 펩타이드는 감압 증류를 통해 고체 상태로 수득하였다.
펩타이드 중 20 μmol을 1당량으로 하여 DIPEA 4당량과 함께 DMF 20 mL에 녹인 용액과 HATU 1당량을 DMF 20mL에 녹인 용액을 각각 따로 시린지에 준비하였다.
둥근 바닥 플라스크에 HOBt 1당량과 HATU 0.1당량을 DMF 20 mL에 녹인 용액을 준비하였다. 시린지 펌프를 이용하여 앞서 준비한 2개의 시린지에 있는 용액을 둥근 바닥 플라스크에 있는 용액에 0.06 mL/min 속력으로 흘려주었다.
시린지에 용액이 둥근플라스크 용액에 모두 흘러 들어가면 반응이 종료되고, 반응이 종료된 후 고체 상태의 펩타이드를 수득하고자 DMF를 감압증류로 최대한 제거하였다.
남은 DMF는 MC 1 mL에 녹여 50 mL 튜브에 옮기고 TBME 1 mL, Hexane 약 50mL를 차례로 첨가하며 각 용액을 첨가할 때마다 소니케이션을 하였다.
이후 용액을 3분 동안 원심 분리하여 펩타이드를 침전시키고 상층 용액을 제거하였으며, 본 과정을 3회 반복함으로써 최종 산물인 펩타이드를 수득하였다.
펩타이드에 남은 프로텍팅 그룹들을 제거하기 위해 reagent K용액을 2시간이상 처리하였다.
reagent K를 제거하기 위해 아르곤 가스로 휘발시키고 남은 reagent K 용액에 TBME를 첨가하였다.
용액을 3분 동안 원심 분리하여 펩타이드를 침전시키고 상층 용액을 제거하였으며, 당해과정을 3회 반복함으로써 최종 산물인 펩타이드를 수득하였다.
2-2. 펩타이드 정제
합성된 펩타이드를 HPLC로 정제하였다. 5 내지 10 umol 씩 나누어 고체 상태로 얻은 펩타이드 샘플을 H2O : ACN = 1 : 1 용액 1 mL에 소니케이션 처리를 하여 용해시키고 시린지 필터로 여과하였다.
여과된 샘플에 H2O 4 mL를 첨가하여 소니케이션 처리를 하고 HPLC 장비에 주입하여 정제하였다. TFA 0.1 % H2O 용액과 TFA 0.1 % ACN 용액을 이동상으로 하고 C 4 및 C 18 칼럼을 고정상으로 하여 분리하였다.
60분간 0.1 % TFA/ACN 용매를 5% 에서부터 50 % 기울기로 C4 컬럼을 통해 25℃에서 흘려주며 정제하였다. Cyclic I3L3H10RGD, Cyclic L3I3H10RGD, Cyclic (IL)3H10RGD, Cyclic (LI)3H10RGD는 10-37% 기울기로 0.1% TFA/ACN 용매를 60분간 C4 컬럼을 통해 25℃에서 흘려주며 정제하였다(도 1).
2-3. 펩타이드 분자량 및 정제 확인
MALDI-TOF로 합성 도중 또는 최종 합성 후, 샘플들을 측정하여 합성 및 정제 여부를 확인하였다.
샘플은 CHCA metrix와 1 : 1 부피 비율로 cocrystallization하여 고체화하고 linear 모드로 측정하였다(도 2).
2-4. pH에 따른 펩타이드 샘플 준비
pH7에 따른 펩타이드 자가조립 샘플을 준비하기 위해 각 펩타이드에 HFIP에 녹인 후 스피드백을 이용해 용매를 제거하였다.
pH 페이퍼를 이용하여 pH를 측정하였다. pH 4.5 수용액에 녹아 있는 펩타이드 샘플의 경우, 용매가 제거되어 펩타이드만 남아 있는 EP 튜브에 물과 HCl을 섞어 pH 4.5 가 된 수용액을 첨가하였다.
pH 7.5 수용액에 녹아있는 펩타이드 샘플도 마찬가지 방법으로 펩타이드만 남아 있는 EP 튜브에 물과 NH3를 혼합하여 pH 7.5로 조절된 수용액을 첨가하였다.
pH 별로 준비된 펩타이드의 최종 농도는 20 μM이며, 소니케이터를 이용하여 10분 이상 소니케이션을 가해주고 1일 동안 상온에 인큐베이션하였다.
Cyclic I6H10RGD의 경우 생체조건에서도 구조를 유지하는지 알아보기 위해 pH 4.5 SABS(Sodium acetate buffer 15mM) 및 pH 7.5 KPBS(Potassium Phosphate buffer 15mM) 상에서 샘플을 준비하였다.
동일한 방법으로 펩타이드에 HFIP에 녹인 후 스피드백을 이용해 용매를 제거하고 각 buffer를 첨가하였다.
펩타이드의 최종 농도는 20 μM이었으며, 소니케이터를 이용하여 10분 이상 소니케이션을 가해주고 1일 동안 상온에 인큐베이션하였다.
2-5. AFM(Atomic force microscopy) 측정
AFM 측정을 위해 준비된 pH별 펩타이드 샘플을 각각 20μL씩 신선한 마이카면에 올리고 수분을 완전히 증발시켰다.
Park NX10 장비를 이용하여 noncontact 모드로 이미지를 확보하였으며 샘플에 따라 셋 포인트는 8 내지 14 nm, Z servo gain 은 1.5 내지 4, 속도는 0.1 내지 0.5 Hz 로 스캔하였다.
2-6. TEM(Transmission Electron Microscopy) 측정
TEM 측정을 위해 준비된 pH별 펩타이드 샘플을 각각 2μL씩 carboncoated copper grid에 올리고 수분을 완전히 증발시켰다. 유기물 샘플은 전자 밀도가 낮아 TEM에서 관찰하기 어려우므로, 전자 밀도가 높은 2%(w/v) uranyl acetate를 펩타이드 샘플이 올려진 carbon-coated copper grid에 2 μL 처리하고 1분 후 필터 페이퍼로 완전히 흡수시켰다. 샘플들은 JEOL-JEM 2010로 120kV 전압에서 관찰하였다.
2-7. CD(Circular dichroism) 측정
준비된 pH별 펩타이드 샘플을 각각 100Μ씩 path length 1mm인 큐벳에서 Chirascan Circular Dichroism spectrometer 장비를 이용하여 CD 스펙트럼을 측정하였다(260 내지 190nm). Molar ellipticity는 펩타이드 농도 및 아미노산 개수로 나누어 산출하였다.
3. AFM 실험결과
고리형 펩타이드를 합성하기전 먼저 선형 펩타이드들을 합성하여 pH에 감응성 있게 나노 구조가 바뀌는지 AFM을 통해 관찰하였다.
3-1. 선형(Linear) I 6 H 6 RGD
Linear I6H6RGD의 경우 pH 4.5일 때 자가조립이 잘 되지 않는 것으로 판단되는 무정형화된 구조가 관찰되었다(도 3).
반면 pH가 6인 H2O상에서 20 nm 내외의 직경을 가지는 균일한 마이셀을 형성하였고 pH가 7.5 일 때는 40 내지 80 nm 직경의 다양한 크기를 가지는 베시클이나 베시클끼리 융합된 수 ㎛ 길이의 비정형한 구조를 형성하였다.
3-2. 고리형(Cyclic) I 6 H 6 RGD
linear I6H6RGD의 결과를 토대로 디자인된 펩타이드가 충분히 pH 감응성을 가지는 것을 확인하였기 때문에 더 급격한 구조변화를 보일 것으로 예상되는 고리형 펩타이드의 pH에 따른 구조변화를 관찰하였다.
Cyclic I6H6RGD의 경우 pH 4.5 환경에서는 자가조립 구조체가 거의 관찰 되지 않았으나 매우 드물게 직경 20 nm 내외의 마이셀 구조나 100 nm 이상의 베시클 구조가 관찰되었다.
pH 6 환경에서는 pH 4.5 에 비해 자가조립 구조체의 개수와 밀도가 훨씬 높았으며 직경 20 nm 내외의 마이셀 구조가 주로 관찰되었고 직경 수십 100 nm 내외의 베시클 구조가 관찰되었다.
pH 7.5 환경에서도 pH 6 환경과 마찬가지로 비슷한 크기의 마이셀과 베시클이 관찰되었다(도 4).
3-3. Cyclic I 8 H 6 RGD
Cyclic I8H6RGD의 경우 Cyclic I6H6RGD에 비해 pH에 따른 구조 차이가 더 명확 하였다. pH 4.5 환경에서는 직경 20 nm 내외의 마이셀 혹은 cylindrical 마이셀이 관찰되었고 pH 6에서는 수 ㎛의 다양한 크기를 갖는 판상 구조가 형성되었다.
pH 7.5 환경에서는 더 크기가 크고 비정형적인 뭉친 구조가 형성 되었다. Cyclic I8H6RGD의 경우 pH에 대한 감응성은 매우 높으나 높은 pH 환경에서 I의 개수가 많아 소수성 결합이 매우 커져서 모양이 과도하게 비정형적이고 고차원적인 자가조립을 하지 못한 것으로 판단된다(도 5).
3-4. Cyclic I 6 H 10 RGD
Cyclic I6H10RGD의 경우도 마찬가지로 Cyclic I6H6RGD에 비해 pH에 따른 구조 차이가 더 명확하였다.
pH 4.5 환경에서는 직경 20 nm 내외의 마이셀이 관찰되었고 pH 6에서도 직경 20 nm 내외의 마이셀이 관찰되었다(도 6).
pH 7.5 환경에서는 크기가 다양한 직경이 수십 nm 에서 약 500 nm 정도의 베시클과 베시클끼리 퓨전된것으로 추정되는 수 ㎛ 길이의 타원형 구조가 형성 되었다.
Cyclic I6H10RGD가 Cyclic I6H6RGD에 비해 pH에 따른 구조 차이가 더 명확한 이유는 H의 개수가 4개가 더 많기 때문인 것으로 판단되었다.
Cyclic I8H6RGD에 비해 높은 pH에서 안정된 베시클 구조를 갖는 것은 I의 개수가 적어 높은 pH에서도 비정형적인 구조를 형성하지 않고 적절한 소수성 결합을 하기 때문인 것으로 판단된다.
3-5. Cyclic I 6 H 10 RGD buffer
다른 펩타이드에 비해 homogeneous한 구조를 형성하며 마이셀과 베시클을 형성하는 점이 다양한 응용 가능성을 보여준다고 판단되어 생체 조건과 유사한 pH4.5인 SABS buffer 와 pH 7.5인 KPBS buffer 상에서도 구조를 형성하는지 관찰하였다.
기대하던 대로 SABS buffer에서도 pH 4.5인 수용액 환경과 마찬가지로 직경 20 nm 내외의 마이셀이 관찰되었고 KPBS buffer pH 7.5인 수용액 환경과 마찬가지로 수십에서 수백 nm 직경의 다양한 크기의 베시클이 관찰되었다.
즉, Cyclic I6H10RGD 펩타이드는 생체 내 환경 속에서도 구조와 기능을 유지하여 생체 응용이 가능할 것으로 판단된다(도 7).
3-6. Cyclic I 6 RGDH 6
Cyclic I6RGDH6의 경우 pH 4.5 환경에서는 구조가 잘 형성되지 않는 것으로 보이는 수 nm 크기의 비정형 구조와 20 nm 내외의 마이셀 구조가 관찰되었다.
pH 6 환경에서는 pH 4.5 에 비해 자가조립 구조체의 개수와 밀도가 훨씬 높았으며 20 nm 내외의 마이셀 구조가 주로 관찰되었다.
pH 7.5 환경에서는 Cyclic I8H6RGD의 경우와 유사한 수 ㎛ 크기의 비정형 구조가 관찰되었다(도 8).
소수성 블록에 대한 H블록 위치의 방향만 차이가 나고 있음에도, Cyclic I6RGDH6가 Cyclic I6H6RGD에 비해 pH에 따른 구조 변화가 명확한 것을 보아 소수성 블록 주변의 환경이나 방향성이 자가조립을 제어할 수 있는 중요한 요소인 것으로 판단된다.
고리형 펩타이드는 모두 pH에 따라 구조 변화를 이루었기 때문에 디자인된 서열의 일반화 가능성을 알아보고자 추가 펩타이드를 합성하였다.
4가지 펩타이드 중 Cyclic I6H10RGD 펩타이드가 pH에 따른 구조변화가 명확하였으며, pH에 따라 용용 가능성이 마이셀과 베시클을 homogeneous 하게 형성하였으므로 H10RGD 플랫폼의 확장 가능성을 알아보고자 소수성 펩타이드 moiety 부분(I)을 L, V 로 대체한 Cyclic L6H10RGD, Cyclic V6H10RGD를 합성하였다.
3-7. Cyclic L 6 H 10 RGD
Cyclic L6H10RGD의 경우 pH 4.5 환경에서는 직경 20nm 내외의 마이셀 구조나 수십 nm 정도의 베시클 구조가 관찰되었다.
pH 6 환경에서는 pH 4.5 에 비해 자가조립 구조체의 개수와 밀도가 훨씬 높았으며 20 nm 내외의 마이셀, 수십 nm 정도의 베시클, 뭉침 구조가 다양하게 관찰되었다(도 9).
pH 7.5 환경에서는 Cyclic I8H6RGD와 Cyclic I6RGDH6의 경우와 유사한 수 ㎛ 크기의 비정형적인 구조가 관찰되었다.
Cyclic I6H10RGD에 비해 크거나 비정형한 구조가 관찰되는 이유는 I에 비해 L이 더 소수성 성질을 갖기 때문으로 판단되었다.
3-8. Cyclic V 6 H 10 RGD
Cyclic V6H10RGD의 경우 pH 4.5 환경에서는 직경 100 ~ 200 nm 내외의 베시클 혹은 길다란 베시클 구조가 관찰되었다.
pH 6 환경에서는 직경 20 nm 내외의 마이셀, 수십 nm 정도의 베시클 구조가 다양하게 관찰되었다. pH 7.5 환경에서는 직경 20 nm 내외의 cylindrical 마이셀 구조가 관찰되었다(도 10).
Cyclic V6H10RGD는 다른 펩타이드의 양상과는 다르게 pH가 낮을 때 오히려 더 큰 구조가 형성되었다.
상기 결과는 packing parameter의 관점으로 봤을 때 소수성 체인의 부피 혹은 길이 비율이 낮아질수록 마이셀과 같은 더 작은 자가조립 구조를 형성하는 것과 상반되나, V이 다른 아미노산과는 다른 특이한 2차 β-sheet쌓음을 하기 때문으로 추정되었다.
Cyclic L6H10RGD 및 Cyclic V6H10RGD도 예측한 바와 같이 pH에 따라 구조가 확연히 변하였으므로, Cyclic Xn-Hm-Rl 펩타이드의 pH 감응성을 일반화 할 수 있을 것으로 판단하였다.
3-9. Cyclic I 3 L 3 H 10 RGD, Cyclic L 3 I 3 H 10 RGD, Cyclic (IL) 3 H 10 RGD 및 Cyclic (LI) 3 H 10 RGD
Cyclic I3L3H10RGD, Cyclic L3I3H10RGD, Cyclic (IL)3H10RGD 및 Cyclic (LI)3H10RGD의 경우 역시 pH에 따라 구조 변화가 나타남을 확인하였다. 구체적으로, pH 4.5 및 pH 6 환경에서 베시클과 같은 구조를 형성하였으며, pH 7.5 환경에서는 훨씬 거대하고 비정형한 불규칙적 구조가 형성되었다(도 11, 도 12, 도 13 및 도 14).
4. TEM 실험결과
AFM 데이터를 고려하면, Cyclic I6H10RGD의 경우 다른 펩타이드에 비해 homogeneous한 마이셀과 베시클 구조를 잘 형성한다고 판단되어 TEM으로 구조를 추가적으로 관찰하였다. pH 7.5 환경에서는 AFM과 마찬가지로 수십 nm 직경의 베시클이 잘 형성되었다(도 18).
다만 pH 4.5 환경에서는 AFM와 유사하게 마이셀 구조가 잘 관찰되지는 않았지만 직경 20nm이하의 작은 구조들이 관찰된 것으로 보아 Cyclic I6H10RGD의 pH감응성이 확인되었다.
5. CD 실험결과
펩타이드가 pH에 따라 어떻게 구조 변화를 하게 되는지 좀 더 명확한 기작을 가지고 설명하기 위해 CD를 측정하였다.
Cyclic X6H10RGD 펩타이드에 대한 CD를 측정한 결과 pH 4.5, pH 6 환경에서는 랜덤코일 2차구조를 형성하는데 반해 pH 7.5 환경에서는 β-sheet 2차 구조를 형성하였다(도 19).
상기 결과를 참조하면, pH가 증가함에 따라 히스티딘이 전하를 잃게 되어 소수성 성질이 강해지므로, 소수성 아미노산의 2차 구조 형성에 영향을 미쳐 β-sheet형성을 용이하게 하고 이로 인해 정형화된 고차원 구조를 형성시키는 것으로 판단할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<110> Industry-Academic Cooperation Foundation, Yonsei University <120> A pH SENSITIVE PEPTIDE STRUCTURE AND USES THEREOF <130> 19PP30240 <150> KR 10-2018-0042402 <151> 2018-04-11 <160> 14 <170> KoPatentIn 3.0 <210> 1 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Linear I6H6RGD <400> 1 Trp Ile Ile Ile Ile Ile Ile Gly His His His His His His Gly Arg 1 5 10 15 Gly Asp Arg Gly Asp Arg Gly Asp Lys 20 25 <210> 2 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> Linear I8H6RGD <400> 2 Trp Ile Ile Ile Ile Ile Ile Ile Ile Gly His His His His His His 1 5 10 15 Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Lys 20 25 <210> 3 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Linear I6H10RGD <400> 3 Trp Ile Ile Ile Ile Ile Ile Gly His His His His His His His His 1 5 10 15 His His Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Lys 20 25 <210> 4 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Linear I6RGDH6 <400> 4 Trp Ile Ile Ile Ile Ile Ile Gly Arg Gly Asp Arg Gly Asp Arg Gly 1 5 10 15 Asp Gly His His His His His His Lys 20 25 <210> 5 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Cyclic I6H6RGD <400> 5 Trp Ile Ile Ile Ile Ile Ile Gly His His His His His His Gly Arg 1 5 10 15 Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25 <210> 6 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> Cyclic I8H6RGD <400> 6 Trp Ile Ile Ile Ile Ile Ile Ile Ile Gly His His His His His His 1 5 10 15 Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25 <210> 7 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Cyclic I6H10RGD <400> 7 Trp Ile Ile Ile Ile Ile Ile Gly His His His His His His His His 1 5 10 15 His His Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25 <210> 8 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Cyclic I6RGDH6 <400> 8 Trp Ile Ile Ile Ile Ile Ile Gly Arg Gly Asp Arg Gly Asp Arg Gly 1 5 10 15 Asp Gly His His His His His His Gly 20 25 <210> 9 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Cyclic L6H10RGD <400> 9 Trp Leu Leu Leu Leu Leu Leu Gly His His His His His His His His 1 5 10 15 His His Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25 <210> 10 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Cyclic V6H10RGD <400> 10 Trp Val Val Val Val Val Val Gly His His His His His His His His 1 5 10 15 His His Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25 <210> 11 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Cyclic I3L3H10RGD <400> 11 Trp Ile Ile Ile Leu Leu Leu Gly His His His His His His His His 1 5 10 15 His His Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25 <210> 12 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Cyclic L3I3H10RGD <400> 12 Trp Leu Leu Leu Ile Ile Ile Gly His His His His His His His His 1 5 10 15 His His Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25 <210> 13 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Cyclic (IL)3H10RGD <400> 13 Trp Ile Leu Ile Leu Ile Leu Gly His His His His His His His His 1 5 10 15 His His Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25 <210> 14 <211> 29 <212> PRT <213> Artificial Sequence <220> <223> Cyclic (LI)3H10RGD <400> 14 Trp Leu Ile Leu Ile Leu Ile Gly His His His His His His His His 1 5 10 15 His His Gly Arg Gly Asp Arg Gly Asp Arg Gly Asp Gly 20 25

Claims (11)

  1. 소수성 아미노산, 히스티딘 및 표적 지향성 펩타이드를 포함하는 펩타이드 구조체로서,
    상기 소수성 아미노산, 히스티딘 및 표적 지향성 펩타이드는 하기 구조식 1 또는 구조식 2의 순서로 배열되는 것인, pH 감응성 펩타이드 구조체:
    [구조식 1]
    Xn-Hm-Rl
    [구조식 2]
    Xn-Rl-Hm
    상기 식에서 상기 X는 1종의 소수성 아미노산 또는 2종 이상의 소수성 아미노산의 결합체이고;
    상기 H는 히스티딘이고;
    상기 R은 표적 지향성 펩타이드이고;
    상기 n은 3 내지 8이고;
    상기 m은 6 내지 10이고;
    상기 l은 1 내지 5인 펩타이드 구조체.
  2. 제1항에 있어서,
    상기 X는 이소류신, 류신, 발린, 이소류신 및 류신의 결합체로 이루어진 군에서 선택된 하나 이상인 것인, 펩타이드 구조체.
  3. 제1항에 있어서,
    상기 펩타이드 구조체는 서열번호 1 내지 서열번호 14 중 하나 이상의 아미노산 서열로 이루어진 것인, 펩타이드 구조체.
  4. 제1항에 있어서,
    상기 펩타이드 구조체는 하기 화학식 1 내지 14로 표시되는 구조체 중 어느 하나 이상인 것을 특징으로 하는 펩타이드 구조체.
    [화학식 1]
    Figure pat00015

    [화학식 2]
    Figure pat00016

    [화학식 3]
    Figure pat00017

    [화학식 4]
    Figure pat00018

    [화학식 5]
    Figure pat00019

    [화학식 6]
    Figure pat00020

    [화학식 7]
    Figure pat00021

    [화학식 8]
    Figure pat00022

    [화학식 9]
    Figure pat00023

    [화학식 10]
    Figure pat00024

    [화학식 11]
    Figure pat00025

    [화학식 12]
    Figure pat00026

    [화학식 13]
    Figure pat00027

    [화학식 14]
    Figure pat00028
  5. 제1항에 있어서,
    상기 표적 지향성 펩타이드는 RGD 펩타이드, 미토콘드리아 표적 펩타이드, Fc 수용체 결합 펩타이드(Fc receptor binding peptide) 및 베타 엔돌핀 수용체 리간드(beta endorphin receptor ligand)로 이루어진 군에서 선택되는 하나 이상인 것인, 펩타이드 구조체.
  6. 제1항에 있어서,
    상기 구조식 1 또는 2의 Xn 상단에 트립토판이 추가로 결합되거나,
    상기 구조식 1 의 Rl 하단 또는 구조식 2의 Hm 하단에 글라이신 또는 라이신이 추가로 결합된 것인, 펩타이드 구조체.
  7. 제1항에 있어서,
    상기 펩타이드 구조체는 pH에 따라 구조가 변화하는 것인, 펩타이드 구조체.
  8. 제1항에 있어서,
    상기 펩타이드 구조체는 pH 6.0 이하의 조건에서 역 자가조립하는 것인, 펩타이드 구조체.
  9. 제1항에 있어서,
    상기 펩타이드 구조체는 자가조립 및 역자가조립 구조 변화를 통해 약물 전달이 가능한 것인, 펩타이드 구조체.
  10. 제1항 내지 제9항 중 어느 한 항의 펩타이드 구조체를 포함하는, 약물 전달용 조성물.
  11. 제1항 내지 제9항 중 어느 한 항의 펩타이드 구조체를 포함하는, 조영제 조성물.

KR1020190042543A 2018-04-11 2019-04-11 pH 감응성 펩타이드 구조체, 및 이의 용도 KR102219828B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180042402 2018-04-11
KR20180042402 2018-04-11

Publications (2)

Publication Number Publication Date
KR20190118983A true KR20190118983A (ko) 2019-10-21
KR102219828B1 KR102219828B1 (ko) 2021-02-24

Family

ID=68460231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190042543A KR102219828B1 (ko) 2018-04-11 2019-04-11 pH 감응성 펩타이드 구조체, 및 이의 용도

Country Status (1)

Country Link
KR (1) KR102219828B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071957A1 (ko) * 2022-09-27 2024-04-04 크리포 주식회사 주요 아미노산이 전하성 및 소수성 아미노산으로 구성된 비정형 펩타이드 태그를 포함하여 자가 조립체를 형성하는 융합 단백질 및 이를 이용하여 재조합 단백질을 정제하는 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045002A (ko) * 2013-10-16 2015-04-28 부산대학교 산학협력단 폴리히스티딘과 인지질의 결합체를 함유한 pH 감응형 지질펩타이드 및 그의 제조방법
KR101581926B1 (ko) * 2014-09-23 2016-01-04 연세대학교 산학협력단 자기조립 펩타이드 나노캡슐 및 이를 포함하는 약물전달담체
US20160213790A1 (en) * 2013-08-26 2016-07-28 The Trustees Of The University Of Pennsylvania Ph-sensitive peptides and their nanoparticles for drug delivery
KR20160091993A (ko) * 2013-11-30 2016-08-03 에이전시 포 사이언스, 테크놀로지 앤드 리서치 바이오패브리케이션 및 프린팅을 위한 빌딩 블록으로서의 자기 조립형 펩티드, 펩티드 모방체 및 펩티드 접합체
KR20160127827A (ko) 2014-03-10 2016-11-04 가부시끼가이샤 쓰리디 매트릭스 자가-조립 펩타이드 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160213790A1 (en) * 2013-08-26 2016-07-28 The Trustees Of The University Of Pennsylvania Ph-sensitive peptides and their nanoparticles for drug delivery
KR20150045002A (ko) * 2013-10-16 2015-04-28 부산대학교 산학협력단 폴리히스티딘과 인지질의 결합체를 함유한 pH 감응형 지질펩타이드 및 그의 제조방법
KR20160091993A (ko) * 2013-11-30 2016-08-03 에이전시 포 사이언스, 테크놀로지 앤드 리서치 바이오패브리케이션 및 프린팅을 위한 빌딩 블록으로서의 자기 조립형 펩티드, 펩티드 모방체 및 펩티드 접합체
KR20160127827A (ko) 2014-03-10 2016-11-04 가부시끼가이샤 쓰리디 매트릭스 자가-조립 펩타이드 조성물
KR101581926B1 (ko) * 2014-09-23 2016-01-04 연세대학교 산학협력단 자기조립 펩타이드 나노캡슐 및 이를 포함하는 약물전달담체

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071957A1 (ko) * 2022-09-27 2024-04-04 크리포 주식회사 주요 아미노산이 전하성 및 소수성 아미노산으로 구성된 비정형 펩타이드 태그를 포함하여 자가 조립체를 형성하는 융합 단백질 및 이를 이용하여 재조합 단백질을 정제하는 방법

Also Published As

Publication number Publication date
KR102219828B1 (ko) 2021-02-24

Similar Documents

Publication Publication Date Title
Guler et al. Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers
Matson et al. Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels
Rodríguez-Vázquez et al. Recent advances in controlling the internal and external properties of self-assembling cyclic peptide nanotubes and dimers
US7452679B2 (en) Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof
JP5271912B2 (ja) 標的化リガンドを固定化するための改良型リンカー
US8394758B2 (en) Tumor-targeting peptides and uses thereof
Kim et al. One-dimensional supramolecular nanoplatforms for theranostics based on co-assembly of peptide amphiphiles
JP2012518410A (ja) 癌標的ペプチドおよび癌の治療におけるこれの使用
CN103550781A (zh) 树状大分子自组装药物载体及其制备方法和应用
Li et al. Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G
US20120321697A1 (en) Bpb-based cargo delivery system
CN106831997B (zh) 多肽、脂蛋白样纳米粒子及其应用
KR100848643B1 (ko) 종양 진단 또는 치료용 나노하이브리드 입자
KR102219828B1 (ko) pH 감응성 펩타이드 구조체, 및 이의 용도
Accardo et al. Amphiphilic CCK peptides assembled in supramolecular aggregates: structural investigations and in vitro studies
KR101476953B1 (ko) 세포투과성이 증진된 헵신 표적 신규 펩타이드 및 그의 용도
ES2434418T3 (es) Conjugado de biciclamo para IRM y gammagrafía de enfermedades asociadas al receptor CXCR4
Accardo et al. Liposomes derivatized with tetrabranched neurotensin peptides via click chemistry reactions
KR102239886B1 (ko) 환원-감응성 펩타이드 구조체 및 이의 용도
KR101000480B1 (ko) 자성 나노복합체, 그 제조 방법 및 상기를 포함하는생물의학적 조성물
TW200819137A (en) Method for preparation of lipid-spacer radical- reactions of functional group-peptide
WO2022138637A1 (ja) ナノ粒子形成ペプチド及びそのペプチドで形成されるナノ粒子
KR102136657B1 (ko) 야누스 펩타이드 덴드리머 및 이의 용도
CN113577303B (zh) 三分枝rgd修饰的脑胶质瘤靶向脂质材料的制备和应用
KR20210095055A (ko) 헤테로키랄 펩티드 복합체 및 이의 자가조립 중간체를 포함한 핵자기공명분광 잔류쌍극결합 측정용 조성물

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant