KR20190115831A - 전기 자동차의 충전 장치 - Google Patents
전기 자동차의 충전 장치Info
- Publication number
- KR20190115831A KR20190115831A KR1020180039010A KR20180039010A KR20190115831A KR 20190115831 A KR20190115831 A KR 20190115831A KR 1020180039010 A KR1020180039010 A KR 1020180039010A KR 20180039010 A KR20180039010 A KR 20180039010A KR 20190115831 A KR20190115831 A KR 20190115831A
- Authority
- KR
- South Korea
- Prior art keywords
- switch
- power
- full bridge
- bridge circuit
- power input
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/63—Monitoring or controlling charging stations in response to network capacity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
- B60L53/22—Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0083—Converters characterised by their input or output configuration
- H02M1/0085—Partially controlled bridges
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/10—Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4233—Arrangements for improving power factor of AC input using a bridge converter comprising active switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/23—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y02B70/126—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
본 발명은 전기 자동차의 충전 장치에 관한 것으로, 구조가 단순하고, 크기가 작으며, 다양한 형태의 전원으로부터 공급되는 전력으로 배터리를 충전할 수 있는 전기 자동차의 충전 장치를 제공하는데 그 목적이 있다. 이를 위해 본 발명에 따른 전기 자동차의 충전 장치는, 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과; 상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 복수의 풀 브리지 회로를 포함하는 역률 보정부와; 상기 역률 보정부를 통해 충전되는 링크 캐패시터와; 상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와; 상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고, 상기 적어도 하나의 제 2 스위치는, 상기 역률 보정부를 구성하는 상기 복수의 풀 브리지 회로 각각을 배터리의 (+) 전극에 연결하기 위한 제 3 스위치 및 제 4 스위치를 포함한다.
Description
본 발명은 자동차에 관한 것으로, 모터의 동력만을 이용하여 주행하는 전기 자동차의 충전 장치에 관한 것이다.
내연 기관 자동차가 화석 연료를 주 에너지원으로 사용하는 것과는 다르게, 전기 자동차는 전기 에너지를 주 에너지원으로 사용한다. 따라서 전기 자동차는 전기 에너지를 저장할 수 있는 고전압 배터리와, 동력원인 모터, 그리고 모터를 구동하기 위한 인버터가 필수적이다.
전기 자동차의 배터리를 충전하기 위한 충전기는 완속 충전기와 급속 충전기로 구분할 수 있다. 완속 충전기는 상용 교류 전력을 교류 전력 형태 그대로 자동차로 전달하는 반면, 급속 충전기는 상용 교류 전력을 직류로 변환하여 자동차로 전달한다. 완속 충전기의 경우 구조가 단순하고 가격도 저렴하기 때문에 보급율을 높이는데 유리하다. 다만, 완속 충전기를 사용하기 위해서는 전기 자동차에 차량 탑재용 충전기(On Board Charger, OBC)가 탑재되어 있어야 한다.
완속 충전기를 통해 제공되는 교류 전력은 완속 충전기가 설치되어 있는 국가에 따라 매우 다양하다. 이와 같은 다양한 형태의 교류 전력을 이용하여 전기 자동차의 배터리를 충전하기 위해서는 차량 탑재용 충전기가 다양한 형태의 상용 교류 전력에 대응할 수 있어야 한다.
전기 자동차의 1회 충전 주행 거리를 늘리기 위해서는 배터리의 용량은 클수록 좋다. 따라서 자동차 제조사에서는 전기 자동차의 배터리의 용량을 증가시키기 위해 노력하고 있다. 대용량 배터리의 채용은 충전 시간의 증가를 수반한다. 대용량 배터리의 충전 시간을 단축시키기 위해서는 차량 탑재 충전기(OBC)의 용량을 증가시켜야 한다. 차량 탑재 충전기(OBC)의 용량 증가는 구성품의 크기 증가 및 제조 원가 상승을 초래한다.
일 측면에 따르면, 구조가 단순하고, 크기가 작으며, 다양한 형태의 전원으로부터 공급되는 전력으로 배터리를 충전할 수 있는 전기 자동차의 충전 장치를 제공하는데 그 목적이 있다.
상술한 목적의 본 발명에 따른 전기 자동차의 충전 장치는, 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과; 상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 복수의 풀 브리지 회로를 포함하는 역률 보정부와; 상기 역률 보정부를 통해 충전되는 링크 캐패시터와; 상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와; 상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고, 상기 적어도 하나의 제 2 스위치는, 상기 역률 보정부를 구성하는 상기 복수의 풀 브리지 회로 각각을 배터리의 (+) 전극에 연결하기 위한 제 3 스위치(S5) 및 제 4 스위치(S6)를 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 복수의 풀 브리지 회로는 제 1 풀 브리지 회로와 제 2 풀 브리지 회로를 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고; 상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결된다.
상술한 전기 자동차의 충전 장치에서, 상기 제 2 풀 브리지 회로의 제 1 레그가 제 5 스위치(S2)를 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고; 상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 4 스위치(S6)를 통해 상기 배터리의 (+) 전극에 연결된다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상기 제 1 레그와 상기 제 2 풀 브리지 회로의 상기 제 1 레그를 연결하도록 마련되는 제 6 스위치(S3)와; 상기 제 1 풀 브리지 회로의 상기 제 2 레그와 상기 제 2 풀 브리지 회로의 상기 제 2 레그를 연결하도록 마련되는 제 7 스위치(S4)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 7 스위치와 상기 제 2 풀 브리지 회로의 상기 제 2 레그가 연결된 점을 상기 제 1 풀 브리지 회로의 상단에 연결하도록 마련되는 제 8 스위치(S10)와; 상기 제 1 풀 브리지 회로의 상단과 상기 제 2 풀 브리지 회로의 상단을 연결하도록 마련되는 제 9 스위치(S11)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 10 스위치(S8) 및 제 11 스위치(S9)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 12 스위치(S7)를 더 포함한다.
상술한 목적의 본 발명에 따른 또 다른 전기 자동차의 충전 장치는, 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과; 상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 포함하는 역률 보정부와; 상기 역률 보정부를 통해 충전되는 링크 캐패시터와; 상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와; 상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고, 상기 적어도 하나의 제 2 스위치는, 상기 역률 보정부를 구성하는 상기 제 1 풀 브리지 회로 및 상기 제 2 풀 브리지 회로 각각을 배터리의 (+) 전극에 연결하기 위한 제 3 스위치(S5) 및 제 4 스위치(S6)를 포함하고; 상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고; 상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되며; 상기 제 2 풀 브리지 회로의 제 1 레그가 제 5 스위치(S2)를 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고; 상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 4 스위치(S6)를 통해 상기 배터리의 (+) 전극에 연결된다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상기 제 1 레그와 상기 제 2 풀 브리지 회로의 상기 제 1 레그를 연결하도록 마련되는 제 6 스위치(S3)와; 상기 제 1 풀 브리지 회로의 상기 제 2 레그와 상기 제 2 풀 브리지 회로의 상기 제 2 레그를 연결하도록 마련되는 제 7 스위치(S4)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 7 스위치와 상기 제 2 풀 브리지 회로의 상기 제 2 레그가 연결된 점을 상기 제 1 풀 브리지 회로의 상단에 연결하도록 마련되는 제 8 스위치(S10)와; 상기 제 1 풀 브리지 회로의 상단과 상기 제 2 풀 브리지 회로의 상단을 연결하도록 마련되는 제 9 스위치(S11)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 10 스위치(S8) 및 제 11 스위치(S9)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 12 스위치(S7)를 더 포함한다.
상술한 목적의 본 발명에 따른 또 다른 전기 자동차의 충전 장치는, 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과; 상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 포함하는 역률 보정부와; 상기 역률 보정부를 통해 충전되는 링크 캐패시터와; 상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와; 상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고, 상기 적어도 하나의 제 2 스위치는, 상기 역률 보정부를 구성하는 상기 제 1 풀 브리지 회로 및 상기 제 2 풀 브리지 회로 각각을 배터리의 (+) 전극에 연결하기 위한 제 3 스위치(S5) 및 제 4 스위치(S6)를 포함하고; 상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고; 상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되며; 상기 제 2 풀 브리지 회로의 제 1 레그가 제 5 스위치(S2)를 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고; 상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 4 스위치(S6)를 통해 상기 배터리의 (+) 전극에 연결되며; 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상기 제 1 레그와 상기 제 2 풀 브리지 회로의 상기 제 1 레그를 연결하도록 마련되는 제 6 스위치(S3)와; 상기 제 1 풀 브리지 회로의 상기 제 2 레그와 상기 제 2 풀 브리지 회로의 상기 제 2 레그를 연결하도록 마련되는 제 7 스위치(S4)와; 상기 제 7 스위치와 상기 제 2 풀 브리지 회로의 상기 제 2 레그가 연결된 점을 상기 제 1 풀 브리지 회로의 상단에 연결하도록 마련되는 제 8 스위치(S10)와; 상기 제 1 풀 브리지 회로의 상단과 상기 제 2 풀 브리지 회로의 상단을 연결하도록 마련되는 제 9 스위치(S11)와; 상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 10 스위치(S8) 및 제 11 스위치(S9)와; 상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 12 스위치(S7)를 더 포함한다.
일 측면에 따르면, 구조가 단순하고, 크기가 작으며, 다양한 형태의 전원으로부터 공급되는 전력으로 배터리를 충전할 수 있는 전기 자동차의 충전 장치를 제공한다.
도 1은 본 발명의 일 실시 예에 따른 전기 자동차를 나타낸 도면이다.
도 2는 본 발명의 실시 예에 따른 전기 자동차의 충전 장치를 나타낸 도면이다.
도 3은 본 발명의 실시 예에 따른 차량 탑재 충전기의 구성을 나타낸 도면이다.
도 4는 본 발명의 실시 예에 따른 차량 탑재용 충전기가 수용할 수 있는 다양한 종류의 전원을 나타낸 도면이다.
도 5는 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 6은 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 7은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 8은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 9는 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 10은 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 11은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 12는 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 13은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 14는 본 발명의 실시 예에 따른 차량 탑재 충전기의 제 1 변형 실시 예를 나타낸 도면이다.
도 15는 본 발명의 실시 예에 따른 차량 탑재 충전기의 제 1 변형 실시 예를 나타낸 도면이다.
도 2는 본 발명의 실시 예에 따른 전기 자동차의 충전 장치를 나타낸 도면이다.
도 3은 본 발명의 실시 예에 따른 차량 탑재 충전기의 구성을 나타낸 도면이다.
도 4는 본 발명의 실시 예에 따른 차량 탑재용 충전기가 수용할 수 있는 다양한 종류의 전원을 나타낸 도면이다.
도 5는 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 6은 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 7은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 8은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 9는 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 10은 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 11은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 12는 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 13은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 14는 본 발명의 실시 예에 따른 차량 탑재 충전기의 제 1 변형 실시 예를 나타낸 도면이다.
도 15는 본 발명의 실시 예에 따른 차량 탑재 충전기의 제 1 변형 실시 예를 나타낸 도면이다.
도 1은 본 발명의 일 실시 예에 따른 전기 자동차를 나타낸 도면이다.
도 1에 나타낸 전기 자동차(100)는 모터(도 2의 212 참조)를 구비한다. 따라서 모터(212)를 구동하기 위한 전력을 저장할 고전압 배터리(102)가 필요하다. 일반적인 내연 기관 자동차에도 엔진 룸의 한쪽에 보조 배터리(도 2의 208 참조)가 마련된다. 하지만 전기 자동차(100)의 경우 크기가 큰 대용량의 고전압 배터리(212)가 요구된다. 본 발명의 실시 예에 따른 전기 자동차(100)에서는 2열 승객석 하부 공간에 고전압 배터리(102)를 설치한다. 고전압 배터리(102)에 저장되는 전력은 모터(212)를 구동하여 동력을 발생시키는데 사용될 수 있다. 본 발명의 실시 예에 따른 고전압 배터리(102)는 리튬 배터리일 수 있다.
전기 자동차(100)에는 충전 소켓(104)이 마련된다. 충전 소켓(104)에는 외부의 완속 충전기(150)의 충전 커넥터(152)가 연결됨으로써 고전압 배터리(102)의 충전이 이루어질 수 있다. 즉 완속 충전기(150)의 충전 커넥터(152)를 전기 자동차(100)의 충전 소켓(104)에 연결하면 전기 자동차(100)의 고전압 배터리(102)가 충전된다.
도 2는 본 발명의 실시 예에 따른 전기 자동차의 충전 장치를 나타낸 도면이다.
전기 자동차(100)의 고전압 배터리(102)를 충전하기 위해 완속 충전기(150)가 사용될 수 있다. 고전압 배터리(102)는 400V~800V의 충전 전압을 가질 수 있다. 완속 충전기(150)는 상용 교류 전력(AC)을 교류 전력 형태 그대로 전기 자동차(100)로 공급한다. 완속 충전기(150)를 통해 공급되는 교류 전력은 전기 자동차(100) 내부에서 미리 설정된 레벨의 직류 전압으로 변환된다.
전기 자동차(100)의 내부에서는 차량 탑재 충전기(On Board Charger, OBC)(202)가 고전압 배터리(102)의 충전에 관여한다. OBC라고도 불리는 차량 탑재 충전기(202)는 완속 충전기(150)로부터 공급되는 상용 교류 전력을 800V의 직류 전압으로 변환하여 고전압 배터리(102)를 충전한다. 완속 충전기(150)는 상용 교류 전력을 교류 형태 그대로 전기 자동차(100)로 공급한다. 완속 충전기(150)로부터 공급되는 교류 전압은 전기 자동차(100)의 내부에서 차량 탑재 충전기(202)에 의해 직류 전압으로 변환된 후 고전압 배터리(102)를 충전하는데 사용된다.
도 2에서, 인버터(206)는 고전압 배터리(102)의 전력을 모터(212)에서 요구되는 전기적 특성을 갖도록 변환하여 모터(212)로 전달한다. 모터(212)는 인버터(206)를 통해 전달되는 전력에 의해 회전함으로써 동력을 발생시킨다. 도 2에 나타낸 충전 장치에서, 차량 탑재 충전기(202)만이 고전압 배터리(102)의 충전에 관여하고, 모터(212)와 인버터(206)는 고전압 배터리(102)의 충전에 관여하지 않는다.
도 3은 본 발명의 실시 예에 따른 차량 탑재 충전기의 구성을 나타낸 도면이다. 도 3의 고전압 배터리(102)는, 도 2에 나타낸 것처럼, 인버터(206)를 통해 모터(212)에 전력을 공급한다.
차량 탑재 충전기(202)는 입력부(312)와 부스트 역률 보정부(Boost Power Factor Corrector)(314), 파워 릴레이 회로부(316)를 포함한다.
입력부(312)에는 외부의 상용 교류 전원으로부터 상용 교류 전력이 입력된다. 입력부(312)는 5개의 입력 라인(L1)(L2)(L3)(N)(G)과 EMI 필터(Electro Magnetic Interference Filter)(322), 스위치(S1)를 포함한다.
EMI 필터(322)는 입력된 상용 교류 전력에 포함되어 있는 잡음을 제거하도록 마련된다. EMI 필터(322)는 5개의 입력 라인(L1)(L2)(L3)(N)(G)이 연결된다. 외부의 상용 교류 전원으로부터 입력 라인(L1)(L2)(L3)(N)(G)을 통해 EMI 필터(322)로 상용 교류 전력이 입력된다. L1과 L2, L3는 교류 전력 입력 라인이고, N은 중성선이며, G는 접지선이다.
입력 라인(L1)(L2)(L3)(N)(G) 가운데 교류 전력 입력 라인(L1)(L2)(L3)을 통해 최대 3상의 교류 전력이 EMI 필터(322)로 입력될 수 있다. 즉, 교류 전력 입력 라인(L1)(L2)(L3) 모두를 통해 3상의 교류 전력이 EMI 필터(322)로 입력될 수 있다. 또는 교류 전력 입력 라인(L1)(L2)만을 통해 2상의 교류 전력이 EMI 필터(322)로 입력될 수 있다. 또는 교류 전력 입력 라인(L1)과 중성선(N)만을 통해 단상 교류 전력이 EMI 필터(322)로 입력될 수 있다.
입력부(312)의 스위치(S1)는 교류 전력 입력 라인(L2)과 중성선(N) 가운데 어느 하나를 EMI 필터(322)로 연결한다. 입력 상용 교류 전력이 3상 또는 2상일 때에는 교류 전력 입력 라인(L2)이 EMI 필터(322)에 연결되도록 스위치(S1)가 제어된다. 만약 입력 상용 교류 전력이 단상이면 중성선(N)이 EMI 필터(322)에 연결되도록 스위치(S1)가 제어된다.
부스트 역률 보정부(314)는 기본적으로 스위칭 소자(Q1)(Q2)(Q3)(Q4)로 구성되는 제 1 풀 브리지 회로와 스위칭 소자(Q5)(Q6)(Q7)(Q8)로 구성되는 제 2 풀 브리지 회로로 구성된다. Q1과 Q3, Q2와 Q4, Q5와 Q7, Q6과 Q8 사이에 각각 형성되는 4 개의 레그(342)(344)(346)(348)는 EMI 필터(322)에 연결된다. 4 개의 레그(342)(344)(346)(348) 각각은 인덕터 성분을 포함할 수 있다.
도 3에 나타낸 본 발명의 실시 예에 따른 충전 장치에서, 부스트 역률 보정부(314)를 구성하는 풀 브리지 회로는 4개의 스위칭 소자(Q1)(Q2)(Q3)(Q4) 및 2개의 레그(342)(344)가 하나의 그룹(제 1 풀 브리지 회로)을 이루고, 또 다른 4개의 스위칭 소자(Q5)(Q6)(Q7)(Q8) 및 2개의 레그(346)(348)가 또 하나의 그룹(제 2 풀 브리지 회로)을 이룬다. 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로는 EMI 필터(322)와 후술하는 캐패시터(C1) 사이에 서로 병렬로 연결된다.
제 1 풀 브리지 회로에서, 레그(342)에는 교류 전력 입력 라인(L1)이 연결되고, 또 다른 레그(344)에는 교류 전력 입력 라인(L2) 및 중성선(N)이 연결된다. 교류 전력 입력 라인(L2)과 중성선(N) 가운데 어느 것이 레그(344)에 연결되는지는 입력단(312)에 마련되는 스위치(S1)의 온/오프에 따라 결정된다. 스위치(S1)가 턴 오프 되면 교류 전력 입력 라인(L2)이 레그(344)에 연결되고, 스위치(S1)가 턴 온 되면 중성선(N)이 레그(344)에 연결된다.
제 2 풀 브리지 회로에서, 레그(346)에는 스위치(S3)를 통해 교류 전력 입력 라인(L1)이 연결되고, 또 다른 레그(348)에는 스위치(S4)를 통해 교류 전력 입력 라인(L2) 및 중성선(N)이 연결되고 또 스위치(S2)를 통해 교류 전력 입력 라인(L3)이 연결된다. 따라서, 스위치(S2)가 턴 오프 된 상태에서, 스위치(S3)가 턴 온 되면 레그(346)에는 교류 전력 입력 라인(L1)이 연결된다. 또한 스위치(S2)가 턴 오프 된 상태에서, 스위치(S4)가 턴 온 되면 레그(348)에는 교류 전력 입력 라인(L2) 및 중성선(N)이 연결된다. 교류 전력 입력 라인(L2)과 중성선(N) 가운데 어느 것이 레그(348)에 연결되는지는 입력단(312)에 마련되는 스위치(S1)의 온/오프 따라 결정된다. 스위치(S1)가 턴 오프 되면 교류 전력 입력 라인(L2)이 레그(348)에 연결되고, 스위치(S1)가 턴 온 되면 중성선(N)이 레그(348)에 연결된다. 반대로, 스위치(S2)가 턴 온 된 상태에서는, 레그(348)에는 교류 전력 입력 라인(L3)이 연결되고, 이 상태에서 스위치(S4)가 턴 온 되면 제 1 풀 브리지 회로의 레그(344)에도 교류 전력 입력 라인(L3)이 연결된다.
제 2 풀 브리지 회로의 레그(346)와 스위치(S3)가 연결된 노드에는 또 다른 스위치(S5)의 일단이 연결되는데, 이 스위치(S5)의 타단은 후술하는 스위치(BS1)(BS2)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다. 따라서 스위치(S3)(S5)가 모두 턴 온 되면 교류 전력 입력 라인(L1) 및 레그(342)가 스위치(BS1)(BS2)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다. 이와 달리 스위치(S3)가 턴 오프 되고 스위치(S5)는 턴 온 되면 제 2 풀 브리지 회로의 레그(346)만이 고전압 배터리(102)의 (+) 전극에 연결된다.
제 2 풀 브리지 회로의 레그(348)와 스위치(S4)가 연결된 노드에는 또 다른 스위치(S6)의 일단이 연결되는데, 이 스위치(S6)의 타단은 후술하는 스위치(BS1)(BS2)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다. 따라서 스위치(S4)(S6)가 모두 턴 온 되면 교류 전력 입력 라인(L2) 및 레그(344)가 스위치(BS1)(BS2)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다. 이와 달리 스위치(S4)가 턴 오프 되고 스위치(S6)는 턴 온 되면 제 2 풀 브리지 회로의 레그(348)만이 고전압 배터리(102)의 (+) 전극에 연결된다(단 스위치(S2)는 턴 오프 상태일 때). 만약 스위치(S2)가 턴 온 상태일 때 스위치(S4)가 턴 오프 되고 스위치(S6)가 턴 온 되면 교류 전력 입력 라인(L3)이 고전압 배터리(102)의 (+) 전극에 연결될 수 있다.
제 2 풀 브리지 회로의 레그(348)와 스위치(S4)가 연결된 노드는 스위치(S10)를 통해 제 1 풀 브리지 회로의 상단(Q1 및 Q2 측)과 스위치(S7) 사이에 연결된다. 또한 제 2 풀 브리지 회로의 상단(Q5 및 Q6 측)은 스위치(S11)을 통해 제 1 풀 브리지 회로의 상단(Q1 및 Q2 측)과 스위치(S7) 사이에 연결된다.
부스트 역률 보정부(314)에는 앞서 언급한 바 있는 PFC 링크 캐패시터인 캐패시터(C1)가 마련된다. 캐패시터(C1)는 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로의 양단 사이에 마련된다.
또한, 부스트 역률 보정부(314)에는 스위치(S7)(S8)가 더 마련된다. 이 가운데 스위치(S7)는 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로 각각의 상단과 앞서 설명한 캐패시터(C1)의 (+)전극 사이에 역률 보정 소자(P1)와 병렬로 연결된다. 스위치(S8)는 캐패시터(C1)의 양단에 마련되어 부스트 역률 보정부(314)와 후술하는 파워 릴레이 회로부(316) 사이를 전기적으로 연결한다. 즉, 부스트 역률 보정부(314)는 스위치(S8)를 통해 파워 릴레이 회로부(316)에 전기적으로 연결된다. 또한 부스트 역률 보정부(314)는 스위치(S8)를 통해 고전압 배터리(102)의 양단에도 전기적으로 연결된다.
제 1 풀 브리지 회로 및 제 2 풀 브리지 회로 각각의 하단과 고전압 배터리(102)의 (-) 전극 사이에는 스위치(S9)가 연결된다.
파워 릴레이 회로부(Power Relay Assembly)(316)에는 등가 모델링 Y 캐패시터인 캐패시터(CY1)(CY2)가 직렬 연결된다. 캐패시터(CY1)(CY2)가 서로 연결되는 노드는 접지된다.
캐패시터(CY1)와 고전압 배터리(102)의 (+) 전극 사이에는 두 개의 스위치(BS1)(BS2)와 하나의 파워 팩터 소자(P2)가 마련된다. 스위치(BS1)와 파워 팩터 소자(P1)는 캐패시터(CY1)와 고전압 배터리(102)의 (+) 전극 사이에 직렬 연결되고, 이 직렬 연결 구조에 스위치(BS2)가 병렬 연결된다.
캐패시터(CY2)와 고전압 배터리(102)의 (-) 전극 사이에는 스위치(BS3)가 마련된다.
도 3의 차량 탑재 충전기(202)에 마련되는 스위치 네트워크를 구성하는 복수의 스위치(S1)(S2)(S3)(S4)(S5)(S6)(S7)(S8)(S9)(S10)(S11)(BS1)(BS2)(BS3)는 앞서 도 2에서 설명한 제어부(210)에 의해 제어되어 턴 온 및 턴 오프 된다. 본 발명의 실시 예에서는, 스위치 네트워크를 구성하는 복수의 스위치(S1)(S2)(S3)(S4)(S5)(S6)(S7)(S8)(S9)(S10)(S11)(BS1)(BS2)(BS3)의 다양한 온/오프 조합을 통해 다양한 종류의 상용 교류 전력으로 고전압 배터리(102)의 충전이 이루어질 수 있도록 한다. 다양한 종류의 상용 교류 전력에 대해서는 다음의 도 4를 통해 자세히 설명하고자 한다.
도 3에 나타낸 복수의 스위치(S1)(S2)(S3)(S4)(S5)(S6)(S7)(S8)(S9)(S10)(S11)(BS1)(BS2)(BS3)와 복수의 스위칭 소자(Q1)(Q2)(Q3)(Q4)(Q5)(Q6)(Q7)(Q8)의 턴 온 및 턴 오프는 제어부(210)에 의해 제어된다.
도 4는 본 발명의 실시 예에 따른 차량 탑재용 충전기가 수용할 수 있는 다양한 종류의 전원을 나타낸 도면이다.
도 4의 (I)은 2상 대칭 전원(Bi-Phase Symmetric Power Source)을 나타낸 도면이다. 도 4의 (I)에 나타낸 바와 같이, 2상 대칭 전원은 공급 전력의 전압이 두 개의 전압(1/2Vac)(-1/2Vac)으로 나뉘어 공급된다. 두 개의 전압(1/2Vac)(-1/2Vac)이 서로 정 반대의 위상을 갖기 때문에 2상 대칭 전원이라 한다. 도 4의 (I)에 나타낸 것과 같은 2상 대칭 전원은 주로 북미 지역에서 사용된다.
도 4의 (II)는 단상 비대칭 전원(Single-Phase Asymmetric Power Source)을 나타낸 도면이다. 도 4의 (II)에 나타낸 바와 같이, 단상 비대칭 전원은 공급 전력의 전압이 단일 위상의 단일 전압(Vac)의 형태로 공급된다. 단일 전압(Vac)이 단일의 위상을 갖기 때문에 단상 비대칭 전원이라 한다. 도 4의 (II)에 나타낸 것과 같은 단상 비대칭 전원은 주로 한국과 북미 지역, 유럽 지역에서 사용된다.
도 4의 (III)은 3상 대칭 전원(3-Phase Symmetric Power Source)을 나타낸 도면이다. 도 4의 (III)에 나타낸 바와 같이, 3상 비대칭 전원은 공급 전력의 전압이 세 개의 전압(Va)(Vb)(Vc)으로 나뉘어 공급된다. 세 개의 전압(Va)(Vb)(Vc)이 서로 다른 위상을 갖기 때문에 3상 비대칭 전원이라 한다. 도 4의 (III)에 나타낸 것과 같은 3상 비대칭 전원은 주로 유럽 지역에서 사용된다.
이처럼, 국가별로 상용 교류 전원의 형태가 다양하기 때문에, 본 발명의 실시 예에 따른 차량 탑재용 충전기(202)는 스위치 네트워크의 온/오프 조합을 통해 다양한 형태의 국가별 상용 교류 전원에 대응하고자 한다. 예를 들면, 2상 대칭 전원에 대해서는 단상 풀 브리지 인버터 타입의 부스트 역률 보정부를 구현함으로써 고전압 배터리(102)가 충전될 수 있도록 한다. 또한, 예를 들면, 단상 비대칭 전원에 대해서는 단상 풀 브리지 인버터 타입의 부스트 역률 보정부를 구현하면서 벅 컨버터도 함께 구현함으로써 고전압 배터리(102)가 충전될 수 있도록 한다. 또한, 예를 들면, 3상 대칭 전원에 대해서는 3-레그 부스트 역률 보정부를 구현하면서 모터/인버터 벅 컨버터도 함께 구현함으로써 고전압 배터리(102)가 충전될 수 있도록 한다.
도 5 내지 도 13은 다양한 형태의 국가별 상용 교류 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 5 및 도 6은 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 5는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다. 또한 도 6은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 7 및 도 8은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 7은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 매우 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다. 또한 도 8은, 캐패시터(C1)의 전압(Vc1)의 첨두치와 고전압 배터리(102)의 충전 요구 전압(Vbatt)이 동일한 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 9 및 도 10은 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 9는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다. 또한 도 10은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 11 내지 도 13은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 11은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다. 또한 도 12 및 도 13은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 5는 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 5는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 5의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : ON, S4 : ON, S5 : OFF, S6 : OFF, S7 : ON, S8 : ON, S9 : ON, S10 : OFF, S11 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(422)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S2)(S5)는 턴 오프 되지만 스위치(S3)(S4)(S7)(S8)는 턴 온 된다. 이로써 턴 온 되는 스위치(S3)(S4)를 통해 제 2 풀 브리지 회로의 레그(346)가 교류 전력 입력 라인(L1)에 연결되고, 레그(348)가 중성선(N)에 연결된다.
또한 스위치(S11)가 턴 온 된다. 스위치(S11)가 턴 온 됨으로써 제 2 풀 브리지 회로와 스위치(S7)가 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q5)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 5에 점선 화살표로 나타낸 경로를 따라 제 1풀 브리지 회로 및 제 2 풀 브리지 회로 모두를 통해 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 2상 대칭 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 인터리브 인버터 타입 부스트 역률 보정부를 구현함으로써 북미 지역의 2상 대칭 전원에 대응할 수 있다.
도 6은 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 6은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 6의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : OFF, S6 : ON, S7 : OFF, S8 : OFF, S9 : ON, S10 : OFF, S11 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(322)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S2)(S3)(S4)는 모두 턴 오프 되어 제 2 풀 브리지 회로의 레그(346)(348)에는 교류 전력 입력 라인(L1)(L2)(L3)이 연결되지 않는다. 또한 스위치(S5)도 턴 오프 되기 때문에 교류 전력 입력 라인(L3)과 제 2 풀 브리지 회로의 레그(346)는 고전압 배터리(102)의 (+) 전극에 연결되지 않는다. 다만, 스위치(S6)(S11)는 턴 온 되기 때문에, 제 2 풀 브리지 회로의 레그(348)가 고전압 배터리(102)의 (+) 전극에 연결된다. 스위치(S7)(S8)는 턴 오프 되고 스위치(S9)는 턴 온 된다.
또한 스위치(S11)가 턴 온 된다. 스위치(S11)가 턴 온 됨으로써 제 2 풀 브리지 회로와 스위치(S7)가 연결된다.
여기에 더하여 부스트 역률 보정부(314)의 스위칭 소자(Q1)(Q6)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 6에 점선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 통해 고전압 배터리(102)가 직접 충전된다. 또한 캐패시터(C1)의 충전 전압은 도 6에 실선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 통해 고전압 배터리(102)를 충전한다. 이와 같은 고전압 배터리(102)의 충전은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인버터 타입 부스트 역률 보정부와 벅 컨버터 모드를 구현함으로써 북미 지역의 2상 대칭 전원에 대응할 수 있다.
도 7은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 7은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 7의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : ON, S6 : OFF, S7 : OFF, S8 : OFF, S9 : ON, S10 : ON, S11 : OFF
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(422)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S2)(S3)(S4)(S6)는 턴 오프 되지만 스위치(S5)는 턴 온 된다. 이로써 턴 온 되는 스위치(S5)를 통해 제 2 풀 브리지 회로의 레그(346)가 고전압 배터리(102)에 연결된다.
또한 스위치(S10)가 턴 온 된다. 스위치(S10)가 턴 온 됨으로써 제 2 풀 브리지 회로의 레그(348) 및 스위치(S4)가 연결된 노드가 스위치(S7)에 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q5)(Q6)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 7에 점선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 통해 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 2상 대칭 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 인버터 타입 부스트 역률 보정부 및 부스트 컨버터를 구현함으로써 북미 지역의 단상 비대칭 전원에 대응할 수 있다.
도 8은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 8은, 캐패시터(C1)의 전압(Vc1)의 첨두치와 고전압 배터리(102)의 충전 요구 전압(Vbatt)이 동일한 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 8의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : OFF, S6 : OFF, S7 : ON, S8 : ON, S9 : ON, S10 : OFF, S11 : OFF
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(422)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S2)(S3)(S4)(S5)(S6)(S11)는 모두 턴 오프 되어 제 2 풀 브리지 회로의 레그(346)(348)에는 교류 전력 입력 라인(L1)(L2)(L3)이 연결되지 않는다. 다만, 스위치(S1)(S7)(S8)는 턴 온 되기 때문에, 제 1 풀 브리지 회로의 스위칭 소자Q1)가 스위치(S7)(S8)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 8에 점선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로를 통해 고전압 배터리(102)가 직접 충전된다. 이와 같은 캐패시터(C1)의 충전 전압에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치와 고전압 배터리(102)의 충전 요구 전압(Vbatt)이 동일한 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인버터 타입 부스트 역률 보정부를 구현함으로써 북미 지역의 단상 비대칭 전원에 대응할 수 있다.
도 9는 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 9는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 9의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : ON, S4 : ON, S5 : OFF, S6 : OFF, S7 : ON, S8 : ON, S9 : ON, S10 : OFF, S11 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(422)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S2)(S5)는 턴 오프 되지만 스위치(S3)(S4)(S7)(S8)는 턴 온 된다. 이로써 턴 온 되는 스위치(S3)(S4)를 통해 제 2 풀 브리지 회로의 레그(346)가 교류 전력 입력 라인(L1)에 연결되고, 레그(348)가 중성선(N)에 연결된다.
또한 스위치(S11)가 턴 온 된다. 스위치(S11)가 턴 온 됨으로써 제 2 풀 브리지 회로와 스위치(S7)가 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q5)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 9에 점선 화살표로 나타낸 경로를 따라 제 1풀 브리지 회로 및 제 2 풀 브리지 회로 모두를 통해 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 2상 대칭 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 인터리브 인버터 타입 부스트 역률 보정부를 구현함으로써 북미 지역의 2상 대칭 전원에 대응할 수 있다.
도 10은 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 10은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 10의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : OFF, S6 : ON, S7 : OFF, S8 : OFF, S9 : ON, S10 : OFF, S11 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(322)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S2)(S3)(S4)는 모두 턴 오프 되어 제 2 풀 브리지 회로의 레그(346)(348)에는 교류 전력 입력 라인(L1)(L2)(L3)이 연결되지 않는다. 또한 스위치(S5)도 턴 오프 되기 때문에 교류 전력 입력 라인(L3)과 제 2 풀 브리지 회로의 레그(346)는 고전압 배터리(102)의 (+) 전극에 연결되지 않는다. 다만, 스위치(S6)(S11)는 턴 온 되기 때문에, 제 2 풀 브리지 회로의 레그(348)가 고전압 배터리(102)의 (+) 전극에 연결된다. 스위치(S7)(S8)는 턴 오프 되고 스위치(S9)는 턴 온 된다.
또한 스위치(S11)가 턴 온 된다. 스위치(S11)가 턴 온 됨으로써 제 2 풀 브리지 회로와 스위치(S7)가 연결된다.
여기에 더하여 부스트 역률 보정부(314)의 스위칭 소자(Q1)(Q6)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 10에 점선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 통해 고전압 배터리(102)가 직접 충전된다. 또한 캐패시터(C1)의 충전 전압은 도 10에 실선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 통해 고전압 배터리(102)를 충전한다. 이와 같은 고전압 배터리(102)의 충전은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 인터리브 인버터 타입 부스트 역률 보정부 및 벅 컨버터 모드를 구현함으로써 북미 지역의 2상 대칭 전원에 대응할 수 있다.
도 11은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 11은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 11의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : OFF, S2 : ON, S3 : OFF, S4 : OFF, S5 : OFF, S6 : OFF, S7 : ON, S8 : ON, S9 : ON, S10 : OFF, S11 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 턴 오프 된다. 이로써 교류 전력 입력 라인(L1)(L2)(L3)을 통해 3상 대칭 교류 전력이 입력될 수 있다. 스위치(S1)(S3)(S4)(S5)(S6)(S10)는 턴 오프 되지만 스위치(S2)(S7)(S8)(S9)(S11)는 턴 온 된다. 이로써 턴 온 되는 스위치(S2)(S7)(S8)(S9)(S11)를 통해 교류 전력 입력 라인(L1)이 고전압 배터리(102)의 (+) 전극에 연결되고, 제 2 풀 브리지 회로의 레그(346)가 교류 전력 입력 라인(L3)에 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q5)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 11에 점선 화살표로 나타낸 경로를 따라 풀 브리지 회로를 경유하지 않는 직접 경로(바이패스 경로) 및 제 2 풀 브리지 회로를 통해 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 3상 대칭 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 3-레그 부스트 역률 보정부를 구현함으로써 유럽 지역의 3상 대칭 전원에 대응할 수 있다.
도 12는 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 12는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 12의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : OFF, S2 : ON, S3 : OFF, S4 : OFF, S5 : OFF, S6 : ON, S7 : OFF, S8 : OFF, S9 : ON, S10 : OFF, S11 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 턴 오프 된다. 이로써 교류 전력 입력 라인(L1)(L2)(L3)을 통해 3상 대칭 교류 전력이 입력될 수 있다. 스위치(S1)(S3)(S4)(S5)(S7)(S8)(S10)는 턴 오프 되지만 스위치(S2)(S6)(S9)(S11)는 턴 온 된다. 이로써 턴 온 되는 스위치(S2)(S6)(S9)(S11)를 통해 교류 전력 입력 라인(L1)이 고전압 배터리(102)의 (+) 전극에 연결되고, 제 2 풀 브리지 회로의 레그(346)가 교류 전력 입력 라인(L3)에 연결되며, 제 2 풀 브리지 회로의 레그(348)가 고전압 배터리(102)의 (+) 전극에 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q5)(S6)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 12에 점선 화살표로 나타낸 경로를 따라 제 2 풀 브리지 회로를 통해 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 3상 대칭 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 3-레그 부스트 역률 보정부 및 벅 컨버터를 구현함으로써 유럽 지역의 3상 대칭 전원에 대응할 수 있다.
도 13은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 13은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 또 다른 스위치 네트워크의 제어를 나타낸 도면이다.
도 13의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : OFF, S6 : ON, S7 : OFF, S8 : OFF, S9 : ON, S10 : OFF, S11 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(422)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S3)(S4)(S5)(S7)(S8)(S10)는 턴 오프 되지만 스위치(S1)(S6)(S9)(S11)는 턴 온 된다. 이로써 턴 온 되는 스위치(S1)(S6)(S9)(S11)를 통해 교류 전력 입력 라인(L1)이 제 2 풀 브리지 회로의 레그(348)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(S6)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 13에 점선 화살표로 나타낸 경로를 따라 제 2 풀 브리지 회로를 통해 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 3상 대칭 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인버터 타입 부스트 역률 보정부 및 인터리브 벅 컨버터를 구현함으로써 유럽 지역의 3상 대칭 전원에 대응할 수 있다.
도 14는 본 발명의 실시 예에 따른 차량 탑재 충전기의 제 1 변형 실시 예를 나타낸 도면이다. 도 14에 나타낸 차량 탑재 충전기의 제 1 변형 실시 예에서는, 제 2 풀 브리지 회로의 레그(348)와 스위치(S4)가 연결된 노드를 연결하는 스위치(S10)를 제거하였다. 단상 부스트 컨버터가 필요치 않은 경우에 도 14에 나타낸 것과 같은 구조를 통해 차량 탑재 충전기(202)의 크기를 줄이고 구조를 단순화할 수 있다.
도 15는 본 발명의 실시 예에 따른 차량 탑재 충전기의 제 1 변형 실시 예를 나타낸 도면이다. 도 14에 나타낸 차량 탑재 충전기의 제 1 변형 실시 예에서는, 제 2 풀 브리지 회로의 레그(348)와 스위치(S4)가 연결된 노드를 연결하는 스위치(S10)를 제거하였다. 이와 같은 구조를 통해 단상 풀 브리지 인버터 타입 부스트 컨버터를 구현할 수 있다.
위의 설명은 기술적 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명의 기술 분야에서 통상의 지식을 가진 자라면 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서 위에 개시된 실시 예 및 첨부된 도면들은 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예 및 첨부된 도면에 의하여 기술적 사상의 범위가 한정되는 것은 아니다. 그 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상은 권리 범위에 포함되는 것으로 해석되어야 할 것이다.
100 : 전기 자동차
104 : 충전 소켓
150 : 완속 충전기
152 : 충전 커넥터
202 : 차량 탑재 충전기
206 : 인버터
210 : 제어부
212 : 모터
312 : 입력부
314 : 부스트 역률 보정부
316 : 파워 릴레이 회로부
322 : EMI 필터
104 : 충전 소켓
150 : 완속 충전기
152 : 충전 커넥터
202 : 차량 탑재 충전기
206 : 인버터
210 : 제어부
212 : 모터
312 : 입력부
314 : 부스트 역률 보정부
316 : 파워 릴레이 회로부
322 : EMI 필터
Claims (14)
- 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과;
상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 복수의 풀 브리지 회로를 포함하는 역률 보정부와;
상기 역률 보정부를 통해 충전되는 링크 캐패시터와;
상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와;
상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고,
상기 적어도 하나의 제 2 스위치는, 상기 역률 보정부를 구성하는 상기 복수의 풀 브리지 회로 각각을 배터리의 (+) 전극에 연결하기 위한 제 3 스위치(S5) 및 제 4 스위치(S6)를 포함하는 전기 자동차의 충전 장치. - 제 1 항에 있어서,
상기 복수의 풀 브리지 회로는 제 1 풀 브리지 회로와 제 2 풀 브리지 회로를 포함하는 전기 자동차의 충전 장치. - 제 2 항에 있어서,
상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고;
상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되는 전기 자동차의 충전 장치. - 제 3 항에 있어서,
상기 제 2 풀 브리지 회로의 제 1 레그가 제 5 스위치(S2)를 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고;
상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 4 스위치(S6)를 통해 상기 배터리의 (+) 전극에 연결되는 전기 자동차의 충전 장치. - 제 4 항에 있어서, 상기 스위치 네트워크는,
상기 제 1 풀 브리지 회로의 상기 제 1 레그와 상기 제 2 풀 브리지 회로의 상기 제 1 레그를 연결하도록 마련되는 제 6 스위치(S3)와;
상기 제 1 풀 브리지 회로의 상기 제 2 레그와 상기 제 2 풀 브리지 회로의 상기 제 2 레그를 연결하도록 마련되는 제 7 스위치(S4)를 더 포함하는 전기 자동차의 충전 장치. - 제 5 항에 있어서, 상기 스위치 네트워크는,
상기 제 7 스위치와 상기 제 2 풀 브리지 회로의 상기 제 2 레그가 연결된 점을 상기 제 1 풀 브리지 회로의 상단에 연결하도록 마련되는 제 8 스위치(S10)와;
상기 제 1 풀 브리지 회로의 상단과 상기 제 2 풀 브리지 회로의 상단을 연결하도록 마련되는 제 9 스위치(S11)를 더 포함하는 전기 자동차의 충전 장치. - 제 6 항에 있어서, 상기 스위치 네트워크는,
상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 10 스위치(S8) 및 제 11 스위치(S9)를 더 포함하는 전기 자동차의 충전 장치. - 제 7 항에 있어서, 상기 스위치 네트워크는,
상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 12 스위치(S7)를 더 포함하는 전기 자동차의 충전 장치. - 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과;
상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 포함하는 역률 보정부와;
상기 역률 보정부를 통해 충전되는 링크 캐패시터와;
상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와;
상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고,
상기 적어도 하나의 제 2 스위치는, 상기 역률 보정부를 구성하는 상기 제 1 풀 브리지 회로 및 상기 제 2 풀 브리지 회로 각각을 배터리의 (+) 전극에 연결하기 위한 제 3 스위치(S5) 및 제 4 스위치(S6)를 포함하고;
상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고;
상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되며;
상기 제 2 풀 브리지 회로의 제 1 레그가 제 5 스위치(S2)를 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고;
상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 4 스위치(S6)를 통해 상기 배터리의 (+) 전극에 연결되는 전기 자동차의 충전 장치. - 제 9 항에 있어서, 상기 스위치 네트워크는,
상기 제 1 풀 브리지 회로의 상기 제 1 레그와 상기 제 2 풀 브리지 회로의 상기 제 1 레그를 연결하도록 마련되는 제 6 스위치(S3)와;
상기 제 1 풀 브리지 회로의 상기 제 2 레그와 상기 제 2 풀 브리지 회로의 상기 제 2 레그를 연결하도록 마련되는 제 7 스위치(S4)를 더 포함하는 전기 자동차의 충전 장치. - 제 10 항에 있어서, 상기 스위치 네트워크는,
상기 제 7 스위치와 상기 제 2 풀 브리지 회로의 상기 제 2 레그가 연결된 점을 상기 제 1 풀 브리지 회로의 상단에 연결하도록 마련되는 제 8 스위치(S10)와;
상기 제 1 풀 브리지 회로의 상단과 상기 제 2 풀 브리지 회로의 상단을 연결하도록 마련되는 제 9 스위치(S11)를 더 포함하는 전기 자동차의 충전 장치. - 제 11 항에 있어서, 상기 스위치 네트워크는,
상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 10 스위치(S8) 및 제 11 스위치(S9)를 더 포함하는 전기 자동차의 충전 장치. - 제 12 항에 있어서, 상기 스위치 네트워크는,
상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 12 스위치(S7)를 더 포함하는 전기 자동차의 충전 장치. - 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과;
상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로를 포함하는 역률 보정부와;
상기 역률 보정부를 통해 충전되는 링크 캐패시터와;
상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와;
상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고,
상기 적어도 하나의 제 2 스위치는, 상기 역률 보정부를 구성하는 상기 제 1 풀 브리지 회로 및 상기 제 2 풀 브리지 회로 각각을 배터리의 (+) 전극에 연결하기 위한 제 3 스위치(S5) 및 제 4 스위치(S6)를 포함하고;
상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고;
상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되며;
상기 제 2 풀 브리지 회로의 제 1 레그가 제 5 스위치(S2)를 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고;
상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 4 스위치(S6)를 통해 상기 배터리의 (+) 전극에 연결되며;
상기 스위치 네트워크는,
상기 제 1 풀 브리지 회로의 상기 제 1 레그와 상기 제 2 풀 브리지 회로의 상기 제 1 레그를 연결하도록 마련되는 제 6 스위치(S3)와;
상기 제 1 풀 브리지 회로의 상기 제 2 레그와 상기 제 2 풀 브리지 회로의 상기 제 2 레그를 연결하도록 마련되는 제 7 스위치(S4)와;
상기 제 7 스위치와 상기 제 2 풀 브리지 회로의 상기 제 2 레그가 연결된 점을 상기 제 1 풀 브리지 회로의 상단에 연결하도록 마련되는 제 8 스위치(S10)와;
상기 제 1 풀 브리지 회로의 상단과 상기 제 2 풀 브리지 회로의 상단을 연결하도록 마련되는 제 9 스위치(S11)와;
상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 10 스위치(S8) 및 제 11 스위치(S9)와;
상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 12 스위치(S7)를 더 포함하는 전기 자동차의 충전 장치.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180039010A KR102489957B1 (ko) | 2018-04-04 | 2018-04-04 | 전기 자동차의 충전 장치 |
DE102018218804.1A DE102018218804A1 (de) | 2018-04-04 | 2018-11-05 | Ladeeinrichtung für Elektrofahrzeug |
CN201811313210.0A CN110341509B (zh) | 2018-04-04 | 2018-11-06 | 用于电动车辆的充电装置 |
US16/214,936 US10971998B2 (en) | 2018-04-04 | 2018-12-10 | Charging apparatus for electric vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180039010A KR102489957B1 (ko) | 2018-04-04 | 2018-04-04 | 전기 자동차의 충전 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190115831A true KR20190115831A (ko) | 2019-10-14 |
KR102489957B1 KR102489957B1 (ko) | 2023-01-19 |
Family
ID=67991174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180039010A KR102489957B1 (ko) | 2018-04-04 | 2018-04-04 | 전기 자동차의 충전 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10971998B2 (ko) |
KR (1) | KR102489957B1 (ko) |
CN (1) | CN110341509B (ko) |
DE (1) | DE102018218804A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3648322A1 (en) * | 2018-10-30 | 2020-05-06 | Mahle International GmbH | On-board chargers (obc) |
JP7398667B2 (ja) * | 2020-03-11 | 2023-12-15 | パナソニックIpマネジメント株式会社 | スイッチング装置、スイッチング電源装置、及び車両 |
EP4047782A1 (en) * | 2021-02-22 | 2022-08-24 | Watt & Well | Universal and versatile charger for electric vehicle battery |
KR20230001134A (ko) * | 2021-06-28 | 2023-01-04 | 현대자동차주식회사 | 충전 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090018974A (ko) * | 2006-05-29 | 2009-02-24 | 도요타 지도샤(주) | 전력제어장치 및 전력제어장치를 구비한 차량 |
KR20130078106A (ko) * | 2011-12-30 | 2013-07-10 | 주식회사 효성 | 전기자동차 충전장치 |
KR20170093014A (ko) * | 2016-02-04 | 2017-08-14 | 계명대학교 산학협력단 | 대용량 고전력밀도 ev 탑재형 충전기를 위한 pfc 회로 장치 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7403400B2 (en) * | 2003-07-24 | 2008-07-22 | Harman International Industries, Incorporated | Series interleaved boost converter power factor correcting power supply |
GB2420666B (en) * | 2003-08-08 | 2007-01-03 | Astec Int Ltd | A circuit for maintaining hold-up time while reducing bulk capacitor size and improving efficiency in a power supply |
JP5170096B2 (ja) * | 2007-07-09 | 2013-03-27 | 株式会社村田製作所 | Pfcコンバータ |
US7768800B2 (en) * | 2007-12-12 | 2010-08-03 | The Board Of Trustees Of The University Of Illinois | Multiphase converter apparatus and method |
CN101277024A (zh) * | 2008-01-31 | 2008-10-01 | 田家玉 | 智能充电器 |
US7929323B2 (en) | 2008-09-26 | 2011-04-19 | Rockwell Automation Technologies, Inc. | Method and apparatus for pre-charging power converters and diagnosing pre-charge faults |
JP5136364B2 (ja) * | 2008-11-06 | 2013-02-06 | 富士電機株式会社 | 力率改善回路の制御方式 |
JP4745406B2 (ja) * | 2009-01-27 | 2011-08-10 | 日本宅配システム株式會社 | 電気自動車の充電システム |
CN101697656A (zh) * | 2009-10-09 | 2010-04-21 | 徐州格利尔数码科技有限公司 | 民用与工业用氙气灯恒功率电源 |
DE102010043551A1 (de) * | 2009-12-04 | 2011-06-09 | Kia Motors Corporation | Verfahren zum Steuern einer Ladespannung einer 12V-Hilfsbatterie für ein Hybridfahrzeug |
JP5678344B2 (ja) * | 2010-07-13 | 2015-03-04 | ミネベア株式会社 | スイッチング電源装置の制御方法 |
FR2992490B1 (fr) | 2012-06-26 | 2014-07-18 | Renault Sa | Procede de commande d'un chargeur de batterie automobile a reduction de pertes par commutation. |
US10491137B2 (en) * | 2014-05-01 | 2019-11-26 | Schneider Electric It Corporation | Power supply control |
US10081261B2 (en) * | 2014-10-01 | 2018-09-25 | Ford Global Technologies, Llc | High-voltage battery off-board chargers |
KR101693995B1 (ko) * | 2015-05-21 | 2017-01-09 | 현대자동차주식회사 | 친환경 차량의 완속 충전기 충전 제어 방법 |
KR20170137478A (ko) * | 2016-06-03 | 2017-12-13 | 현대자동차주식회사 | 스위칭 소자 및 그 동작 방법 |
US10589633B2 (en) * | 2016-06-28 | 2020-03-17 | Ford Global Technologies, Llc | Fast charging battery system |
CN205901619U (zh) * | 2016-07-06 | 2017-01-18 | 内江市凌辉电子科技有限公司 | 一种交流输入带功率因数校正的全桥单极变换器 |
CN106451710A (zh) * | 2016-11-24 | 2017-02-22 | 湖北文理学院 | 充电桩、充电系统及充电控制方法 |
KR102524188B1 (ko) * | 2018-04-03 | 2023-04-21 | 현대자동차주식회사 | 전기 자동차의 충전 장치 |
KR102486104B1 (ko) * | 2018-04-03 | 2023-01-09 | 현대자동차주식회사 | 전기 자동차의 충전 장치 |
KR102463587B1 (ko) * | 2018-07-05 | 2022-11-07 | 현대자동차주식회사 | 전기 자동차의 충전 장치 |
-
2018
- 2018-04-04 KR KR1020180039010A patent/KR102489957B1/ko active IP Right Grant
- 2018-11-05 DE DE102018218804.1A patent/DE102018218804A1/de active Pending
- 2018-11-06 CN CN201811313210.0A patent/CN110341509B/zh active Active
- 2018-12-10 US US16/214,936 patent/US10971998B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090018974A (ko) * | 2006-05-29 | 2009-02-24 | 도요타 지도샤(주) | 전력제어장치 및 전력제어장치를 구비한 차량 |
KR20130078106A (ko) * | 2011-12-30 | 2013-07-10 | 주식회사 효성 | 전기자동차 충전장치 |
KR20170093014A (ko) * | 2016-02-04 | 2017-08-14 | 계명대학교 산학협력단 | 대용량 고전력밀도 ev 탑재형 충전기를 위한 pfc 회로 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN110341509B (zh) | 2023-06-09 |
US20190312509A1 (en) | 2019-10-10 |
CN110341509A (zh) | 2019-10-18 |
US10971998B2 (en) | 2021-04-06 |
DE102018218804A1 (de) | 2019-10-10 |
KR102489957B1 (ko) | 2023-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102486104B1 (ko) | 전기 자동차의 충전 장치 | |
KR102528230B1 (ko) | 전기 자동차의 충전 장치 | |
KR102524192B1 (ko) | 전기 자동차의 충전 장치 | |
KR102524188B1 (ko) | 전기 자동차의 충전 장치 | |
KR102523253B1 (ko) | 전기 자동차의 충전 장치 | |
KR102463587B1 (ko) | 전기 자동차의 충전 장치 | |
KR102489957B1 (ko) | 전기 자동차의 충전 장치 | |
CN112622658B (zh) | 用于电动车辆的电池充电器 | |
KR102526961B1 (ko) | 전기 자동차 및 전기 자동차의 충전 장치 | |
KR102717297B1 (ko) | 전기 자동차의 충전 장치 | |
US20210066954A1 (en) | Charging System | |
KR20240002572A (ko) | 전기 자동차의 충전 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |