KR102463587B1 - 전기 자동차의 충전 장치 - Google Patents

전기 자동차의 충전 장치 Download PDF

Info

Publication number
KR102463587B1
KR102463587B1 KR1020180078018A KR20180078018A KR102463587B1 KR 102463587 B1 KR102463587 B1 KR 102463587B1 KR 1020180078018 A KR1020180078018 A KR 1020180078018A KR 20180078018 A KR20180078018 A KR 20180078018A KR 102463587 B1 KR102463587 B1 KR 102463587B1
Authority
KR
South Korea
Prior art keywords
switch
power
bridge circuit
full
power input
Prior art date
Application number
KR1020180078018A
Other languages
English (en)
Other versions
KR20200004963A (ko
Inventor
김종필
양시훈
이우영
Original Assignee
현대자동차주식회사
기아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아 주식회사 filed Critical 현대자동차주식회사
Priority to KR1020180078018A priority Critical patent/KR102463587B1/ko
Priority to US16/171,002 priority patent/US10807488B2/en
Priority to EP18203413.2A priority patent/EP3591818A1/en
Priority to CN201811338336.3A priority patent/CN110690749A/zh
Publication of KR20200004963A publication Critical patent/KR20200004963A/ko
Application granted granted Critical
Publication of KR102463587B1 publication Critical patent/KR102463587B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • B60L2210/22AC to AC converters without intermediate conversion to DC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

본 발명은 전기 자동차의 충전 장치에 관한 것으로, 구조가 단순하고, 크기가 작으며, 다양한 형태의 전원으로부터 공급되는 전력으로 배터리를 충전할 수 있는 전기 자동차의 충전 장치를 제공하는데 그 목적이 있다. 이를 위해 본 발명에 따른 전기 자동차의 충전 장치는, 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과; 상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 복수의 풀 브리지 회로를 포함하는 역률 보정부와; 상기 역률 보정부를 통해 충전되는 링크 캐패시터와; 상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와; 상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고, 상기 적어도 하나의 제 2 스위치는, 상기 복수의 풀 브리지 회로 중 적어도 어느 하나의 풀 브리지 회로를 선택적으로 배터리의 (+) 전극에 연결하기 위한 복수의 스위치(S3)(S4)(S5)(S6)(S7)를 포함한다.

Description

전기 자동차의 충전 장치{BATTERY CHARGER FOR ELECTRIC VEHICLE}
본 발명은 자동차에 관한 것으로, 모터의 동력만을 이용하여 주행하는 전기 자동차의 충전 장치에 관한 것이다.
내연 기관 자동차가 화석 연료를 주 에너지원으로 사용하는 것과는 다르게, 전기 자동차는 전기 에너지를 주 에너지원으로 사용한다. 따라서 전기 자동차는 전기 에너지를 저장할 수 있는 고전압 배터리와, 동력원인 모터, 그리고 모터를 구동하기 위한 인버터가 필수적이다.
전기 자동차의 배터리를 충전하기 위한 충전기는 완속 충전기와 급속 충전기로 구분할 수 있다. 완속 충전기는 상용 교류 전력을 교류 전력 형태 그대로 자동차로 전달하는 반면, 급속 충전기는 상용 교류 전력을 직류로 변환하여 자동차로 전달한다. 완속 충전기의 경우 구조가 단순하고 가격도 저렴하기 때문에 보급율을 높이는데 유리하다. 다만, 완속 충전기를 사용하기 위해서는 전기 자동차에 차량 탑재용 충전기(On Board Charger, OBC)가 탑재되어 있어야 한다.
완속 충전기를 통해 제공되는 교류 전력은 완속 충전기가 설치되어 있는 국가에 따라 매우 다양하다. 이와 같은 다양한 형태의 교류 전력을 이용하여 전기 자동차의 배터리를 충전하기 위해서는 차량 탑재용 충전기가 다양한 형태의 상용 교류 전력에 대응할 수 있어야 한다.
전기 자동차의 1회 충전 주행 거리를 늘리기 위해서는 배터리의 용량은 클수록 좋다. 따라서 자동차 제조사에서는 전기 자동차의 배터리의 용량을 증가시키기 위해 노력하고 있다. 대용량 배터리의 채용은 충전 시간의 증가를 수반한다. 대용량 배터리의 충전 시간을 단축시키기 위해서는 차량 탑재 충전기(OBC)의 용량을 증가시켜야 한다. 차량 탑재 충전기(OBC)의 용량 증가는 구성품의 크기 증가 및 제조 원가 상승을 초래한다.
일 측면에 따르면, 구조가 단순하고, 크기가 작으며, 다양한 형태의 전원으로부터 공급되는 전력으로 배터리를 충전할 수 있는 전기 자동차의 충전 장치를 제공하는데 그 목적이 있다.
상술한 목적의 본 발명에 따른 전기 자동차의 충전 장치는, 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과; 상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 복수의 풀 브리지 회로를 포함하는 역률 보정부와; 상기 역률 보정부를 통해 충전되는 링크 캐패시터와; 상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와; 상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고, 상기 적어도 하나의 제 2 스위치는, 상기 복수의 풀 브리지 회로 중 적어도 어느 하나의 풀 브리지 회로를 선택적으로 배터리의 (+) 전극에 연결하기 위한 복수의 스위치(S3)(S4)(S5)(S6)(S7)를 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 복수의 풀 브리지 회로는 제 1 풀 브리지 회로와 제 2 풀 브리지 회로를 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고; 상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결된다.
상술한 전기 자동차의 충전 장치에서, 상기 제 2 풀 브리지 회로의 제 1 레그가 제 3 스위치(S2) 및 제 4 스위치(S5)의 조합을 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고; 상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 3 스위치(S2)를 통해 상기 교류 전력 입력단의 상기 제 3 교류 전력 입력 라인에 연결된다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상기 제 1 레그에 일단이 연결되는 제 5 스위치(S3)와; 상기 제 1 풀 브리지 회로의 상기 제 2 레그에 일단이 연결되는 제 6 스위치(S4)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 5 스위치(S3)의 타단과 상기 배터리의 (+) 전극 사이에 마련되는 제 7 스위치(S6)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 제 4 스위치(S5)는, 상기 제 5 스위치(S3)의 타단과 상기 제 2 풀 브리지 회로의 상기 제 1 레그 및 상기 제 2 레그 사이를 스위칭 하도록 마련된다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 2 풀 브리지 회로의 상단과 상기 제 5 스위치의 타단, 상기 제 1 풀 브리지 회로의 상단 사이를 스위칭 하도록 마련되는 제 8 스위치(S7)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 9 스위치(S8) 및 제 10 스위치(S9)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 11 스위치(S10)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 다상 및 단상의 조건을 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 대칭 및 비대칭의 전원 조건을 포함한다.
상술한 목적의 본 발명에 따른 또 다른 전기 자동차의 충전 장치는, 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과; 상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 제 1 풀 브리지 회로 및 제 2풀 브리지 회로를 포함하는 역률 보정부와; 상기 역률 보정부를 통해 충전되는 링크 캐패시터와; 상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와; 상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고, 상기 적어도 하나의 제 2 스위치는, 상기 복수의 풀 브리지 회로 중 적어도 어느 하나의 풀 브리지 회로를 선택적으로 배터리의 (+) 전극에 연결하기 위한 복수의 스위치(S3)(S4)(S5)(S6)(S7)를 포함하며, 상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고; 상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되며, 상기 제 2 풀 브리지 회로의 제 1 레그가 제 3 스위치(S2) 및 제 4 스위치(S5)의 조합을 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고; 상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 3 스위치(S2)를 통해 상기 교류 전력 입력단의 상기 제 3 교류 전력 입력 라인에 연결된다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상기 제 1 레그에 일단이 연결되는 제 5 스위치(S3)와; 상기 제 1 풀 브리지 회로의 상기 제 2 레그에 일단이 연결되는 제 6 스위치(S4)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 5 스위치(S3)의 타단과 상기 배터리의 (+) 전극 사이에 마련되는 제 7 스위치(S6)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 제 4 스위치(S5)는, 상기 제 5 스위치(S3)의 타단과 상기 제 2 풀 브리지 회로의 상기 제 1 레그 및 상기 제 2 레그 사이를 스위칭 하도록 마련된다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 2 풀 브리지 회로의 상단과 상기 제 5 스위치의 타단, 상기 제 1 풀 브리지 회로의 상단 사이를 스위칭 하도록 마련되는 제 8 스위치(S7)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 9 스위치(S8) 및 제 10 스위치(S9)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 11 스위치(S10)를 더 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 다상 및 단상의 조건을 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 대칭 및 비대칭의 전원 조건을 포함한다.
상술한 목적의 본 발명에 따른 또 다른 전기 자동차의 충전 장치는, 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과; 상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 제 1 풀 브리지 회로 및 제 2풀 브리지 회로를 포함하는 역률 보정부와; 상기 역률 보정부를 통해 충전되는 링크 캐패시터와; 상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와; 상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고, 상기 적어도 하나의 제 2 스위치는, 상기 복수의 풀 브리지 회로 중 적어도 어느 하나의 풀 브리지 회로를 선택적으로 배터리의 (+) 전극에 연결하기 위한 복수의 스위치(S3)(S4)(S5)(S6)(S7)를 포함하며, 상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고; 상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되며, 상기 제 2 풀 브리지 회로의 제 1 레그가 제 3 스위치(S2) 및 제 4 스위치(S5)의 조합을 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고; 상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 3 스위치(S2)를 통해 상기 교류 전력 입력단의 상기 제 3 교류 전력 입력 라인에 연결되며, 상기 스위치 네트워크는, 상기 제 1 풀 브리지 회로의 상기 제 1 레그에 일단이 연결되는 제 5 스위치(S3)와; 상기 제 1 풀 브리지 회로의 상기 제 2 레그에 일단이 연결되는 제 6 스위치(S4)와; 상기 제 5 스위치(S3)의 타단과 상기 배터리의 (+) 전극 사이에 마련되는 제 7 스위치(S6)와; 상기 제 2 풀 브리지 회로의 상단과 상기 제 5 스위치의 타단, 상기 제 1 풀 브리지 회로의 상단 사이를 스위칭 하도록 마련되는 제 8 스위치(S7)와; 상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 9 스위치(S8) 및 제 10 스위치(S9)와; 상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 11 스위치(S10)를 더 포함하며, 상기 제 4 스위치(S5)는, 상기 제 5 스위치(S3)의 타단과 상기 제 2 풀 브리지 회로의 상기 제 1 레그 및 상기 제 2 레그 사이를 스위칭 하도록 마련된다.
상술한 전기 자동차의 충전 장치에서, 상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 다상 및 단상의 조건을 포함한다.
상술한 전기 자동차의 충전 장치에서, 상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 대칭 및 비대칭의 전원 조건을 포함한다.
일 측면에 따르면, 구조가 단순하고, 크기가 작으며, 다양한 형태의 전원으로부터 공급되는 전력으로 배터리를 충전할 수 있는 전기 자동차의 충전 장치를 제공한다.
도 1은 본 발명의 일 실시 예에 따른 전기 자동차를 나타낸 도면이다.
도 2는 본 발명의 실시 예에 따른 전기 자동차의 충전 장치를 나타낸 도면이다.
도 3은 본 발명의 실시 예에 따른 차량 탑재 충전기의 구성을 나타낸 도면이다.
도 4는 본 발명의 실시 예에 따른 차량 탑재용 충전기가 수용할 수 있는 다양한 종류의 전원을 나타낸 도면이다.
도 5는 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 6은 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 7a 및 7b은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 8은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 9는 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 10은 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 11은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 12는 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 1은 본 발명의 일 실시 예에 따른 전기 자동차를 나타낸 도면이다.
도 1에 나타낸 전기 자동차(100)는 모터(도 2의 212 참조)를 구비한다. 따라서 모터(212)를 구동하기 위한 전력을 저장할 고전압 배터리(102)가 필요하다. 일반적인 내연 기관 자동차에도 엔진 룸의 한쪽에 보조 배터리(도 2의 208 참조)가 마련된다. 하지만 전기 자동차(100)의 경우 크기가 큰 대용량의 고전압 배터리(212)가 요구된다. 본 발명의 실시 예에 따른 전기 자동차(100)에서는 2열 승객석 하부 공간에 고전압 배터리(102)를 설치한다. 고전압 배터리(102)에 저장되는 전력은 모터(212)를 구동하여 동력을 발생시키는데 사용될 수 있다. 본 발명의 실시 예에 따른 고전압 배터리(102)는 리튬 배터리일 수 있다.
전기 자동차(100)에는 충전 소켓(104)이 마련된다. 충전 소켓(104)에는 외부의 완속 충전기(150)의 충전 커넥터(152)가 연결됨으로써 고전압 배터리(102)의 충전이 이루어질 수 있다. 즉 완속 충전기(150)의 충전 커넥터(152)를 전기 자동차(100)의 충전 소켓(104)에 연결하면 전기 자동차(100)의 고전압 배터리(102)가 충전된다.
도 2는 본 발명의 실시 예에 따른 전기 자동차의 충전 장치를 나타낸 도면이다.
전기 자동차(100)의 고전압 배터리(102)를 충전하기 위해 완속 충전기(150)가 사용될 수 있다. 고전압 배터리(102)는 400V~800V의 충전 전압을 가질 수 있다. 완속 충전기(150)는 상용 교류 전력(AC)을 교류 전력 형태 그대로 전기 자동차(100)로 공급한다. 완속 충전기(150)를 통해 공급되는 교류 전력은 전기 자동차(100) 내부에서 미리 설정된 레벨의 직류 전압으로 변환된다.
전기 자동차(100)의 내부에서는 차량 탑재 충전기(On Board Charger, OBC)(202)가 고전압 배터리(102)의 충전에 관여한다. OBC라고도 불리는 차량 탑재 충전기(202)는 완속 충전기(150)로부터 공급되는 상용 교류 전력을 800V의 직류 전압으로 변환하여 고전압 배터리(102)를 충전한다. 완속 충전기(150)는 상용 교류 전력을 교류 형태 그대로 전기 자동차(100)로 공급한다. 완속 충전기(150)로부터 공급되는 교류 전압은 전기 자동차(100)의 내부에서 차량 탑재 충전기(202)에 의해 직류 전압으로 변환된 후 고전압 배터리(102)를 충전하는데 사용된다.
도 2에서, 인버터(206)는 고전압 배터리(102)의 전력을 모터(212)에서 요구되는 전기적 특성을 갖도록 변환하여 모터(212)로 전달한다. 모터(212)는 인버터(206)를 통해 전달되는 전력에 의해 회전함으로써 동력을 발생시킨다. 도 2에 나타낸 충전 장치에서, 차량 탑재 충전기(202)만이 고전압 배터리(102)의 충전에 관여하고, 모터(212)와 인버터(206)는 고전압 배터리(102)의 충전에 관여하지 않는다.
도 3은 본 발명의 실시 예에 따른 차량 탑재 충전기의 구성을 나타낸 도면이다. 도 3의 고전압 배터리(102)는, 도 2에 나타낸 것처럼, 인버터(206)를 통해 모터(212)에 전력을 공급한다.
차량 탑재 충전기(202)는 입력부(312)와 부스트 역률 보정부(Boost Power Factor Corrector)(314), 파워 릴레이 회로부(316)를 포함한다.
입력부(312)에는 외부의 상용 교류 전원으로부터 상용 교류 전력이 입력된다. 입력부(312)는 5개의 입력 라인(L1)(L2)(L3)(N)(G)과 EMI 필터(Electro Magnetic Interference Filter)(322), 스위치(S1)를 포함한다.
EMI 필터(322)는 입력된 상용 교류 전력에 포함되어 있는 잡음을 제거하도록 마련된다. EMI 필터(322)는 5개의 입력 라인(L1)(L2)(L3)(N)(G)이 연결된다. 외부의 상용 교류 전원으로부터 입력 라인(L1)(L2)(L3)(N)(G)을 통해 EMI 필터(322)로 상용 교류 전력이 입력된다. L1과 L2, L3는 교류 전력 입력 라인이고, N은 중성선이며, G는 접지선이다.
입력 라인(L1)(L2)(L3)(N)(G) 가운데 교류 전력 입력 라인(L1)(L2)(L3)을 통해 최대 3상의 교류 전력이 EMI 필터(322)로 입력될 수 있다. 즉, 교류 전력 입력 라인(L1)(L2)(L3) 모두를 통해 3상의 교류 전력이 EMI 필터(322)로 입력될 수 있다. 또는 교류 전력 입력 라인(L1)(L2)만을 통해 2상의 교류 전력이 EMI 필터(322)로 입력될 수 있다. 또는 교류 전력 입력 라인(L1)과 중성선(N)만을 통해 단상 교류 전력이 EMI 필터(322)로 입력될 수 있다.
입력부(312)의 스위치(S1)는 교류 전력 입력 라인(L2)와 중성선(N) 가운데 어느 하나를 EMI 필터(322)로 연결한다. 입력 상용 교류 전력이 3상 또는 2상일 때에는 교류 전력 입력 라인(L2)이 EMI 필터(322)에 연결되도록 스위치(S1)가 제어된다. 만약 입력 상용 교류 전력이 단상이면 중성선(N)이 EMI 필터(322)에 연결되도록 스위치(S1)가 제어된다.
부스트 역률 보정부(314)는 기본적으로 스위칭 소자(Q1)(Q2)(Q3)(Q4)로 구성되는 제 1 풀 브리지 회로와 스위칭 소자(Q5)(Q6)(Q7)(Q8)로 구성되는 제 2 풀 브리지 회로로 구성된다. Q1과 Q3, Q2와 Q4, Q5와 Q7, Q6과 Q8 사이에 각각 형성되는 4 개의 레그(342)(344)(346)(348)는 EMI 필터(322)에 연결된다. 4 개의 레그(342)(344)(346)(348) 각각은 인덕터 성분을 포함할 수 있다.
도 3에 나타낸 본 발명의 실시 예에 따른 충전 장치에서, 부스트 역률 보정부(314)를 구성하는 풀 브리지 회로는 4개의 스위칭 소자(Q1)(Q2)(Q3)(Q4) 및 2개의 레그(342)(344)가 하나의 그룹(제 1 풀 브리지 회로)을 이루고, 또 다른 4개의 스위칭 소자(Q5)(Q6)(Q7)(Q8) 및 2개의 레그(346)(348)가 또 하나의 그룹(제 2 풀 브리지 회로)을 이룬다. 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로는 EMI 필터(322)와 후술하는 캐패시터(C1) 사이에 서로 병렬로 연결된다.
제 1 풀 브리지 회로에서, 레그(342)에는 교류 전력 입력 라인(L1)이 연결되고, 또 다른 레그(344)에는 교류 전력 입력 라인(L2) 및 중성선(N)이 연결된다. 교류 전력 입력 라인(L2)과 중성선(N) 가운데 어느 것이 레그(344)에 연결되는지는 입력단(312)에 마련되는 스위치(S1)의 온/오프 따라 결정된다. 스위치(S1)가 턴 오프 되면 교류 전력 입력 라인(L2)이 레그(344)에 연결되고, 스위치(S1)가 턴 온 되면 중성선(N)이 레그(344)에 연결된다.
제 2 풀 브리지 회로에서, 레그(346)에는 스위치(S5) 및 스위치(S3)를 통해 교류 전력 입력 라인(L1)이 연결되고, 스위치(S5) 및 스위치(S2)를 통해 교류 전력 입력 라인(L3)이 연결된다. 따라서 스위치(S3)가 턴 온 되고 스위치(S5)가 'A 접점'에 연결되면 레그(346)는 교류 전력 입력 라인(L1)에 연결된다. 만약 스위치(S3)가 턴 온 되고 스위치(S5)가 'B 접점'에 연결되며 스위치(S2)가 턴 온 되면 레그(346)는 교류 전력 입력 라인(L3)에 연결된다. 스위치(5)가 'B 접점'에 연결되면 제 2 풀 브리지 회로의 레그(346)와 레그(347)가 서로 연결될 수도 있다. 제 2 풀 브리지 회로의 또 다른 레그(348)에는 스위치(S4)를 통해 교류 전력 입력 라인(L2) 및 중성선(N)이 연결되고 또 스위치(S2)를 통해 교류 전력 입력 라인(L3)이 연결된다. 따라서, 스위치(S2)가 턴 오프 된 상태에서, 스위치(S3)가 턴 온 되면 레그(346)에는 교류 전력 입력 라인(L1)이 연결된다. 또한 스위치(S2)가 턴 오프 된 상태에서, 스위치(S4)가 턴 온 되면 레그(348)에는 교류 전력 입력 라인(L2) 및 중성선(N)이 연결된다. 교류 전력 입력 라인(L2)과 중성선(N) 가운데 어느 것이 레그(348)에 연결되는지는 입력단(312)에 마련되는 스위치(S1)의 온/오프 따라 결정된다. 스위치(S1)가 턴 오프 되면 교류 전력 입력 라인(L2)이 레그(348)에 연결되고, 스위치(S1)가 턴 온 되면 중성선(N)이 레그(348)에 연결된다. 반대로, 스위치(S2)가 턴 온 된 상태에서는, 레그(348)에는 교류 전력 입력 라인(L3)이 연결되고, 이 상태에서 스위치(S4)가 턴 온 되면 제 1 풀 브리지 회로의 레그(344)에도 교류 전력 입력 라인(L3)이 연결된다.
스위치(S3)와 제 2 풀 브리지 회로가 연결된 노드에는 또 다른 스위치(S6)의 일단이 연결되는데, 이 스위치(S6)의 타단은 후술하는 스위치(BS1)(BS2)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다. 따라서 스위치(S3)(S6)가 모두 턴 온 되면 교류 전력 입력 라인(L1)이 스위치(BS1)(BS2)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다. 이와 달리 스위치(S3)가 턴 오프 되고 스위치(S5)는 턴 온 되면 스위치(S7)의 상태에 따라 스위치(BS1)(BS2)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다.
부스트 역률 보정부(314)에는 앞서 언급한 바 있는 PFC 링크 캐패시터인 캐패시터(C1)가 마련된다. 캐패시터(C1)는 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로의 양단 사이에 마련된다.
또한, 부스트 역률 보정부(314)에는 스위치(S10)(S8)가 더 마련된다. 이 가운데 스위치(S10)는 제 1 풀 브리지 회로 및 제 2 풀 브리지 회로 각각의 상단과 앞서 설명한 캐패시터(C1)의 (+)전극 사이에 역률 보정 소자(P1)와 병렬로 연결된다. 스위치(S8)는 캐패시터(C1)의 양단에 마련되어 부스트 역률 보정부(314)와 후술하는 파워 릴레이 회로부(316) 사이를 전기적으로 연결한다. 즉, 부스트 역률 보정부(314)는 스위치(S8)를 통해 파워 릴레이 회로부(316)에 전기적으로 연결된다. 또한 부스트 역률 보정부(314)는 스위치(S8)를 통해 고전압 배터리(102)의 양단에도 전기적으로 연결된다.
제 1 풀 브리지 회로 및 제 2 풀 브리지 회로 각각의 하단과 고전압 배터리(102)의 (-) 전극 사이에는 스위치(S9)가 연결된다.
파워 릴레이 회로부(Power Relay Assembly)(316)에는 등가 모델링 Y 캐패시터인 캐패시터(CY1)(CY2)가 직렬 연결된다. 캐패시터(CY1)(CY2)가 서로 연결되는 노드는 접지된다.
캐패시터(CY1)와 고전압 배터리(102)의 (+) 전극 사이에는 두 개의 스위치(BS1)(BS2)와 하나의 파워 팩터 소자(P2)가 마련된다. 스위치(BS1)와 파워 팩터 소자(P1)는 캐패시터(CY1)와 고전압 배터리(102)의 (+) 전극 사이에 직렬 연결되고, 이 직렬 연결 구조에 스위치(BS2)가 병렬 연결된다.
캐패시터(CY2)와 고전압 배터리(102)의 (-) 전극 사이에는 스위치(BS3)가 마련된다.
도 3의 차량 탑재 충전기(202)에 마련되는 스위치 네트워크를 구성하는 복수의 스위치(S1)(S2)(S3)(S4)(S5)(S6)(S7)(S8)(S9)(S10)(BS1)(BS2)(BS3)는 앞서 도 2에서 설명한 제어부(210)에 의해 제어되어 턴 온 및 턴 오프 된다. 본 발명의 실시 예에서는, 스위치 네트워크를 구성하는 복수의 스위치(S1)(S2)(S3)(S4)(S5)(S6)(S7)(S8)(S9)(S10)(BS1)(BS2)(BS3)의 다양한 온/오프 조합을 통해 다양한 종류의 상용 교류 전력으로 고전압 배터리(102)의 충전이 이루어질 수 있도록 한다. 다양한 종류의 상용 교류 전력에 대해서는 다음의 도 4를 통해 자세히 설명하고자 한다.
도 3에 나타낸 복수의 스위치(S1)(S2)(S3)(S4)(S5)(S6)(S7)(S8)(S9)(S10)(BS1)(BS2)(BS3)와 복수의 스위칭 소자(Q1)(Q2)(Q3)(Q4)(Q5)(Q6)(Q7)(Q8)의 턴 온 및 턴 오프는 제어부(210)에 의해 제어된다.
도 4는 본 발명의 실시 예에 따른 차량 탑재용 충전기가 수용할 수 있는 다양한 종류의 전원을 나타낸 도면이다.
도 4의 (I)은 2상 대칭 전원(Bi-Phase Symmetric Power Source)을 나타낸 도면이다. 도 4의 (I)에 나타낸 바와 같이, 2상 대칭 전원은 공급 전력의 전압이 두 개의 전압(1/2Vac)(-1/2Vac)으로 나뉘어 공급된다. 두 개의 전압(1/2Vac)(-1/2Vac)이 서로 정 반대의 위상을 갖기 때문에 2상 대칭 전원이라 한다. 도 4의 (I)에 나타낸 것과 같은 2상 대칭 전원은 주로 북미 지역에서 사용된다.
도 4의 (II)는 단상 비대칭 전원(Single-Phase Asymmetric Power Source)을 나타낸 도면이다. 도 4의 (II)에 나타낸 바와 같이, 단상 비대칭 전원은 공급 전력의 전압이 단일 위상의 단일 전압(Vac)의 형태로 공급된다. 단일 전압(Vac)이 단일의 위상을 갖기 때문에 단상 비대칭 전원이라 한다. 도 4의 (II)에 나타낸 것과 같은 단상 비대칭 전원은 주로 한국과 북미 지역, 유럽 지역에서 사용된다.
도 4의 (III)은 3상 대칭 전원(3-Phase Symmetric Power Source)을 나타낸 도면이다. 도 4의 (III)에 나타낸 바와 같이, 3상 비대칭 전원은 공급 전력의 전압이 세 개의 전압(Va)(Vb)(Vc)으로 나뉘어 공급된다. 세 개의 전압(Va)(Vb)(Vc)이 서로 다른 위상을 갖기 때문에 3상 비대칭 전원이라 한다. 도 4의 (III)에 나타낸 것과 같은 3상 비대칭 전원은 주로 유럽 지역에서 사용된다.
이처럼, 국가별로 상용 교류 전원의 형태가 다양하기 때문에, 본 발명의 실시 예에 따른 차량 탑재용 충전기(202)는 스위치 네트워크의 온/오프 조합을 통해 다양한 형태의 국가별 상용 교류 전원에 대응하고자 한다. 예를 들면, 2상 대칭 전원에 대해서는 단상 풀 브리지 인버터 타입의 부스트 역률 보정부를 구현함으로써 고전압 배터리(102)가 충전될 수 있도록 한다. 또한, 예를 들면, 단상 비대칭 전원에 대해서는 단상 풀 브리지 인버터 타입의 부스트 역률 보정부를 구현하면서 벅 컨버터도 함께 구현함으로써 고전압 배터리(102)가 충전될 수 있도록 한다. 또한, 예를 들면, 3상 대칭 전원에 대해서는 3-레그 부스트 역률 보정부를 구현하면서 모터/인버터 벅 컨버터도 함께 구현함으로써 고전압 배터리(102)가 충전될 수 있도록 한다.
도 5 내지 도 12는 다양한 형태의 국가별 상용 교류 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다.
도 5 및 도 6은 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 5는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다. 또한 도 6은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 7 및 도 8은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 7은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다. 또한 도 8은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 9 및 도 10은 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 9는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다. 또한 도 10은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 11 및 도 12는 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 11은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 매우 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다. 또한 도 12는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 5는 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 5는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 5의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : B, S6 : ON, S7 : B, S8 : OFF, S9 : ON, S10 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(322)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S10)도 턴 온 되기 때문에 턴 온된 스위치(S1)(S10)을 통해 캐패시터(C1)가 충전될 수 있다. 스위치(S2)(S3)(S4)는 모두 턴 오프 되어 제 2 풀 브리지 회로의 레그(346)(348)에는 교류 전력 입력 라인(L1)(L2)(L3)이 연결되지 않는다. 다만, 스위치(S5)는 B접점으로 연결되기 때문에 레그(346)와 레그(348)가 서로 연결된다. 또한 스위치(S6)가 턴 온 되고 스위치(S7)가 B접점으로 연결되기 때문에, 제 2 풀 브리지 회로의 레그(346)(348)가 스위칭 소자(Q5)를 통해 고전압 배터리(102)의 (+) 전극에 연결될 수 있다. 스위치(S8)는 턴 오프 된다.
여기에 더하여 부스트 역률 보정부(314)의 스위칭 소자(Q1)(Q4)(Q5)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 5에 점선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로를 통해 캐패시터(C1)가 충전된다. 또한 캐패시터(C1)의 충전 전압은 도 5에 실선 화살표로 나타낸 경로를 따라 제 2 풀 브리지 회로를 통해 고전압 배터리(102)를 충전한다. 이와 같은 캐패시터(C1)의 충전 전압에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인버터 타입 부스트 역률 보정부와 벅 컨버터 모드를 구현함으로써 북미 지역의 2상 대칭 전원에 대응할 수 있다.
도 6은 북미 지역의 2상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 6은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 6의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : ON, S4 : ON, S5 : ON(A), S6 : OFF, S7 : ON(A), S8 : ON, S9 : ON, S10 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(422)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S2)(S6)는 턴 오프 되지만 스위치(S3)(S4)(S5)(S7)(S8)(S9)(S10)는 턴 온 된다. 이로써 턴 온 되는 스위치(S3) 및 A 접점에 연결되는 스위치(S5)를 통해 제 2 풀 브리지 회로의 레그(346)가 교류 전력 입력 라인(L1)에 연결되고, 턴 온 되는 스위치(S1)(S4)를 통해 레그(348)가 중성선(N)에 연결된다.
스위치(S7)가 A 접점에 연결됨으로써 제 1 풀 브리지 회로의 레그(346)가 스위칭 소자(Q5) 및 스위치(S10)(S8)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q4)(Q5)(Q8)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 6에 점선 화살표로 나타낸 경로를 따라 제 1풀 브리지 회로를 통해 고전압 배터리(102)가 직접 충전된다. 또한 도 6에 실선 화살표로 나타낸 경로를 따라 제 2 풀 브리지 회로를 통해서도 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 2상 대칭 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인터리브/병렬 인버터 타입 부스트 역률 보정부를 구현함으로써 북미 지역의 2상 대칭 전원에 대응할 수 있다.
도 7은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 7은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 7의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : OFF, S2 : ON, S3 : OFF, S4 : OFF, S5 : ON(A), S6 : ON, S7 : ON(A), S8 : OFF, S9 : ON, S10 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 교류 전력 입력 라인(L2)가 EMI 필터(322)에 연결되도록 턴 오프 된다. 스위치(S3)(S4)(S7)(S8)은 턴 오프 되고 스위치(S2)(S6)(S9)(S10)는 턴 온 되며, 스위치(S5)(S7)은 각각 A 접점에 연결된다. 스위치(S3)(S4)가 턴 오프 됨으로써 교류 전력 입력 라인(L1)이 제 1 풀 브리지 회로의 레그(342)에 연결되고 교류 전력 입력 라인(L2)가 또 다른 레그(344)에 연결된다(제 2 풀 브리지 회로에는 연결되지 않음). 또한 스위치(S2)(S6)가 턴 온 되고 스위치(S5)(S7)이 각각 A 접점에 연결됨으로써 제 2 풀 브리지 회로의 레그(346)가 고전압 배터리(102)의 (+) 전극에 연결되고 또 다른 레그(348)가 교류 전력 입력 라인(L3)에 연결된다.
도 7a에서, 점선 화살표는 3상 교류 전력 가운데 교류 전력 입력 라인(L1)을 통해 입력되는 1개 상의 전력의 흐름을 나타낸 것이고, 1점 쇄선 화살표는 교류 전력 입력 라인(L2)을 통해 입력되는 1개 상의 전력의 흐름을 나타낸 것이며, 2점 쇄선 화살표는 교류 전력 입력 라인(L3)을 통해 입력되는 1개 상의 전력의 흐름을 나타낸 것이다. 이와 같은 3상 교류 전력에 의해 캐피시터(C1)가 충전된다. 도 7b에서, 실선 화살표는 캐패시터(C1)에 충전된 전력에 의해 고전압 배터리(102)가 충전되는 경로를 나타낸 것이다. 이를 위해 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q2)(Q3)(Q4)(Q6)(Q8)가 각 상의 입력을 위해 선택적으로 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 7a에 나타낸 경로를 따라 캐패시터(C1)가 충전된다. 또한 캐패시터(C1)의 충전 전압은 도 7b에 실선 화살표로 나타낸 경로를 따라 고전압 배터리(102)를 충전한다. 이와 같은 캐패시터(C1)의 충전 전압에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 3상 부스트 역률 보정부 및 벅 컨버터 모드를 구현함으로써 유럽 지역의 3상 대칭 전원에 대응할 수 있다.
도 8은 유럽 지역의 3상 대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 8은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 8의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : OFF, S2 : ON, S3 : OFF, S4 : OFF, S5 : OFF, S6 : OFF, S7 : OFF, S8 : ON, S9 : ON, S10 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 교류 전력 입력 라인(L2)가 EMI 필터(322)에 연결되도록 턴 오프 된다. 스위치(S3)(S4)(S5)(S6)(S7)은 턴 오프 되고 스위치(S2)(S8)는 턴 온 된다. 스위치(S5)(S7)는 A와 B 어디에도 연결되지 않는다. 스위치(S3)(S4)가 턴 오프 됨으로써 교류 전력 입력 라인(L1)이 제 1 풀 브리지 회로의 레그(342)에 연결되고 교류 전력 입력 라인(L2)가 또 다른 레그(344)에 연결된다(제 2 풀 브리지 회로에는 연결되지 않음). 또한 스위치(S2)가 턴 온 됨으로써 제 2 풀 브리지 회로의 레그(348)가 교류 전력 입력 라인(L3)에 연결된다.
도 8에서, 점선 화살표는 3상 교류 전력 가운데 교류 전력 입력 라인(L1)을 통해 입력되는 1개 상의 전력의 흐름을 나타낸 것이고, 1점 쇄선 화살표는 교류 전력 입력 라인(L2)을 통해 입력되는 1개 상의 전력의 흐름을 나타낸 것이며, 2점 쇄선 화살표는 교류 전력 입력 라인(L3)을 통해 입력되는 1개 상의 전력의 흐름을 나타낸 것이다. 이와 같은 3상 교류 전력에 의해 고전압 배터리(102)가 직접 충전된다. 이를 위해 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q2)(Q3)(Q4)(Q6)(Q8)가 각 상의 입력을 위해 선택적으로 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 8에 나타낸 경로를 따라 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 3상 대칭 교류 전력에 의해 고전압 배터리(102)가 직접 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 3상 부스트 역률 보정부를 구현함으로써 유럽 지역의 3상 대칭 전원에 대응할 수 있다.
도 9는 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 9는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 9의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : B, S6 : ON, S7 : B, S8 : OFF, S9 : ON, S10 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(322)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S10)도 턴 온 되기 때문에 턴 온된 스위치(S1)(S10)을 통해 캐패시터(C1)가 충전될 수 있다. 스위치(S2)(S3)(S4)는 모두 턴 오프 되어 제 2 풀 브리지 회로의 레그(346)(348)에는 교류 전력 입력 라인(L1)(L2)(L3)이 연결되지 않는다. 다만, 스위치(S5)는 B접점으로 연결되기 때문에 레그(346)와 레그(348)가 서로 연결된다. 또한 스위치(S6)가 턴 온 되고 스위치(S7)가 B접점으로 연결되기 때문에, 제 2 풀 브리지 회로의 레그(346)(348)가 스위칭 소자(Q5)를 통해 고전압 배터리(102)의 (+) 전극에 연결될 수 있다. 스위치(S8)는 턴 오프 된다.
여기에 더하여 부스트 역률 보정부(314)의 스위칭 소자(Q1)(Q4)(Q5)(S6)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 9에 점선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로를 통해 캐패시터(C1)가 충전된다. 또한 캐패시터(C1)의 충전 전압은 도 9에 실선 화살표로 나타낸 경로를 따라 제 2 풀 브리지 회로를 통해 고전압 배터리(102)를 충전한다. 이와 같은 캐패시터(C1)의 충전 전압에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 큰 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인버터 타입 부스트 역률 보정부 및 벅 컨버터 모드를 구현함으로써 한국과 유럽 지역의 단상 비대칭 전원에 대응할 수 있다.
도 10은 한국 및 유럽의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 10은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 10의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : ON, S4 : ON, S5 : ON(A), S6 : OFF, S7 : ON(A), S8 : ON, S9 : ON, S10 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(422)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S2)(S6)는 턴 오프 되지만 스위치(S3)(S4)(S5)(S7)(S8)(S9)(S10)는 턴 온 된다. 이로써 턴 온 되는 스위치(S3) 및 A 접점에 연결되는 스위치(S5)를 통해 제 2 풀 브리지 회로의 레그(346)가 교류 전력 입력 라인(L1)에 연결되고, 턴 온 되는 스위치(S1)(S4)를 통해 레그(348)가 중성선(N)에 연결된다.
스위치(S7)가 A 접점에 연결됨으로써 제 1 풀 브리지 회로의 레그(346)가 스위칭 소자(Q5) 및 스위치(S10)(S8)를 통해 고전압 배터리(102)의 (+) 전극에 연결된다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q4)(Q5)(Q8)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 10에 점선 화살표로 나타낸 경로를 따라 고전압 배터리(102)가 직접 충전된다. 또한 도 10에 실선 화살표로 나타낸 경로를 따라 제 2 풀 브리지 회로를 통해서도 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인터리브/병렬 인버터 타입 부스트 역률 보정부를 구현함으로써 한국 및 유럽 지역의 단상 대칭 전원에 대응할 수 있다.
도 11은 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 11은, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 매우 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 11의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : ON(B), S6 : ON, S7 : ON(B), S8 : OFF, S9 : ON, S10 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(322)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 2상 대칭 교류 전력이 입력될 수 있다. 스위치(S10)도 턴 온 되기 때문에 턴 온된 스위치(S1)(S10)을 통해 캐패시터(C1)가 충전될 수 있다. 스위치(S2)(S3)(S4)는 모두 턴 오프 되어 제 2 풀 브리지 회로의 레그(346)(348)에는 교류 전력 입력 라인(L1)(L2)(L3)이 연결되지 않는다. 다만, 스위치(S5)는 B접점으로 연결되기 때문에 레그(346)와 레그(348)가 서로 연결된다. 또한 스위치(S6)가 턴 온 되고 스위치(S7)가 B접점으로 연결되기 때문에, 제 2 풀 브리지 회로의 레그(346)(348)가 스위칭 소자(Q5)를 통해 고전압 배터리(102)의 (+) 전극에 연결될 수 있다. 스위치(S8)는 턴 오프 된다.
여기에 더하여 부스트 역률 보정부(314)의 스위칭 소자(Q1)(Q4)(Q5)(S6)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 11에 점선 화살표로 나타낸 경로를 따라 제 1 풀 브리지 회로를 통해 캐패시터(C1)가 충전된다. 또한 캐패시터(C1)의 충전 전압은 도 11에 실선 화살표로 나타낸 경로를 따라 제 2 풀 브리지 회로를 통해 고전압 배터리(102)를 충전한다. 이와 같은 캐패시터(C1)의 충전 전압에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 매우 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인버터 타입 부스트 역률 보정부 및 풀 브리지 부스트 컨버터 모드를 구현함으로써 북미 지역의 단상 비대칭 전원에 대응할 수 있다.
도 12는 북미 지역의 단상 비대칭 전원에 대응하기 위한 스위치 네트워크의 온/오프 조합을 나타낸 도면이다. 특히 도 12는, 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 경우의 스위치 네트워크의 제어를 나타낸 도면이다.
도 12의 경우, 스위치 네트워크를 구성하는 각 스위치들의 온/오프 조합은 다음과 같다.
S1 : ON, S2 : OFF, S3 : OFF, S4 : OFF, S5 : OFF, S6 : OFF, S7 : OFF, S8 : ON, S9 : ON, S10 : ON
BS1 : ON, BS2 : ON, BS3 : ON
스위치(S1)는 중성선(N)이 EMI 필터(422)에 연결되도록 턴 온 된다. 이로써 교류 전력 입력 라인(L1)과 중성선(N)을 통해 교류 전력이 입력될 수 있다. 스위치(S2)(S3)(S4)(S5)(S6)(S7)는 턴 오프 되지만 스위치(S8)(S9)(S10)는 턴 온 된다. 이로써 제 1 풀 브리지 회로의 레그(342)가 교류 전력 입력 라인(L1)에 연결되고, 레그(344)가 중성선(N)에 연결된다. 제 2 풀 브리지 회로는 교류 전력 입력 라인에 연결되지 않는다.
여기에 더하여 부스트 역률 보정부(414)의 스위칭 소자(Q1)(Q4)가 턴 온 된다.
이와 같은 스위치 네트워크의 온/오프 조합에 의해, 도 12에 점선 화살표로 나타낸 경로를 따라 고전압 배터리(102)가 직접 충전된다. 이와 같이 EMI 필터(422)를 통해 입력되는 2상 대칭 교류 전력에 의해 고전압 배터리(102)가 충전되는 것은 캐패시터(C1)의 전압(Vc1)의 첨두치가 고전압 배터리(102)의 충전 요구 전압(Vbatt)보다 작은 것에 기인한다.
이와 같은 스위치 네트워크의 온/오프 조합을 통해 단상 풀 브리지 인버터 타입 부스트 역률 보정부를 구현함으로써 북미 지역의 단상 비대칭 전원에 대응할 수 있다.
위의 설명은 기술적 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명의 기술 분야에서 통상의 지식을 가진 자라면 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서 위에 개시된 실시 예 및 첨부된 도면들은 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예 및 첨부된 도면에 의하여 기술적 사상의 범위가 한정되는 것은 아니다. 그 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상은 권리 범위에 포함되는 것으로 해석되어야 할 것이다.
100 : 전기 자동차
104 : 충전 소켓
150 : 완속 충전기
152 : 충전 커넥터
202 : 차량 탑재 충전기
206 : 인버터
210 : 제어부
212 : 모터
312 : 입력부
314 : 부스트 역률 보정부
316 : 파워 릴레이 회로부
322 : EMI 필터

Claims (24)

  1. 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과;
    상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 복수의 풀 브리지 회로를 포함하는 역률 보정부와;
    상기 역률 보정부를 통해 충전되는 링크 캐패시터와;
    상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와;
    상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고,
    상기 적어도 하나의 제 2 스위치는, 상기 복수의 풀 브리지 회로 중 적어도 어느 하나의 풀 브리지 회로를 선택적으로 배터리의 (+) 전극에 연결하기 위한 복수의 스위치(S3)(S4)(S5)(S6)(S7)를 포함하는 전기 자동차의 충전 장치.
  2. 제 1 항에 있어서,
    상기 복수의 풀 브리지 회로는 제 1 풀 브리지 회로와 제 2 풀 브리지 회로를 포함하는 전기 자동차의 충전 장치.
  3. 제 2 항에 있어서,
    상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고;
    상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되는 전기 자동차의 충전 장치.
  4. 제 3 항에 있어서,
    상기 제 2 풀 브리지 회로의 제 1 레그가 제 3 스위치(S2) 및 제 4 스위치(S5)의 조합을 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고;
    상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 3 스위치(S2)를 통해 상기 교류 전력 입력단의 상기 제 3 교류 전력 입력 라인에 연결되는 전기 자동차의 충전 장치.
  5. 제 4 항에 있어서, 상기 스위치 네트워크는,
    상기 제 1 풀 브리지 회로의 상기 제 1 레그에 일단이 연결되는 제 5 스위치(S3)와;
    상기 제 1 풀 브리지 회로의 상기 제 2 레그에 일단이 연결되는 제 6 스위치(S4)를 더 포함하는 전기 자동차의 충전 장치.
  6. 제 5 항에 있어서, 상기 스위치 네트워크는,
    상기 제 5 스위치(S3)의 타단과 상기 배터리의 (+) 전극 사이에 마련되는 제 7 스위치(S6)를 더 포함하는 전기 자동차의 충전 장치.
  7. 제 5 항에 있어서, 상기 제 4 스위치(S5)는,
    상기 제 5 스위치(S3)의 타단과 상기 제 2 풀 브리지 회로의 상기 제 1 레그 및 상기 제 2 레그 사이를 스위칭 하도록 마련되는 전기 자동차의 충전 장치.
  8. 제 6 항에 있어서, 상기 스위치 네트워크는,
    상기 제 2 풀 브리지 회로의 상단과 상기 제 5 스위치의 타단, 상기 제 1 풀 브리지 회로의 상단 사이를 스위칭 하도록 마련되는 제 8 스위치(S7)를 더 포함하는 전기 자동차의 충전 장치.
  9. 제 8 항에 있어서, 상기 스위치 네트워크는,
    상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 9 스위치(S8) 및 제 10 스위치(S9)를 더 포함하는 전기 자동차의 충전 장치.
  10. 제 9 항에 있어서, 상기 스위치 네트워크는,
    상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 11 스위치(S10)를 더 포함하는 전기 자동차의 충전 장치.
  11. 제 1 항에 있어서,
    상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 다상 및 단상의 조건을 포함하는 전기 자동차의 충전 장치.
  12. 제 1 항에 있어서,
    상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 대칭 및 비대칭의 전원 조건을 포함하는 전기 자동차의 충전 장치.
  13. 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과;
    상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 제 1 풀 브리지 회로 및 제 2풀 브리지 회로를 포함하는 역률 보정부와;
    상기 역률 보정부를 통해 충전되는 링크 캐패시터와;
    상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와;
    상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고,
    상기 적어도 하나의 제 2 스위치는, 상기 복수의 풀 브리지 회로 중 적어도 어느 하나의 풀 브리지 회로를 선택적으로 배터리의 (+) 전극에 연결하기 위한 복수의 스위치(S3)(S4)(S5)(S6)(S7)를 포함하며,
    상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고;
    상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되며,
    상기 제 2 풀 브리지 회로의 제 1 레그가 제 3 스위치(S2) 및 제 4 스위치(S5)의 조합을 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고;
    상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 3 스위치(S2)를 통해 상기 교류 전력 입력단의 상기 제 3 교류 전력 입력 라인에 연결되는 전기 자동차의 충전 장치.
  14. 제 13 항에 있어서, 상기 스위치 네트워크는,
    상기 제 1 풀 브리지 회로의 상기 제 1 레그에 일단이 연결되는 제 5 스위치(S3)와;
    상기 제 1 풀 브리지 회로의 상기 제 2 레그에 일단이 연결되는 제 6 스위치(S4)를 더 포함하는 전기 자동차의 충전 장치.
  15. 제 14 항에 있어서, 상기 스위치 네트워크는,
    상기 제 5 스위치(S3)의 타단과 상기 배터리의 (+) 전극 사이에 마련되는 제 7 스위치(S6)를 더 포함하는 전기 자동차의 충전 장치.
  16. 제 14 항에 있어서, 상기 제 4 스위치(S5)는,
    상기 제 5 스위치(S3)의 타단과 상기 제 2 풀 브리지 회로의 상기 제 1 레그 및 상기 제 2 레그 사이를 스위칭 하도록 마련되는 전기 자동차의 충전 장치.
  17. 제 16 항에 있어서, 상기 스위치 네트워크는,
    상기 제 2 풀 브리지 회로의 상단과 상기 제 5 스위치의 타단, 상기 제 1 풀 브리지 회로의 상단 사이를 스위칭 하도록 마련되는 제 8 스위치(S7)를 더 포함하는 전기 자동차의 충전 장치.
  18. 제 17 항에 있어서, 상기 스위치 네트워크는,
    상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 9 스위치(S8) 및 제 10 스위치(S9)를 더 포함하는 전기 자동차의 충전 장치.
  19. 제 18 항에 있어서, 상기 스위치 네트워크는,
    상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 11 스위치(S10)를 더 포함하는 전기 자동차의 충전 장치.
  20. 제 13 항에 있어서,
    상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 다상 및 단상의 조건을 포함하는 전기 자동차의 충전 장치.
  21. 제 13 항에 있어서,
    상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 대칭 및 비대칭의 전원 조건을 포함하는 전기 자동차의 충전 장치.
  22. 단상 교류 전력과 다상 교류 전력 가운데 적어도 하나의 입력 교류 전력이 입력되는 교류 전력 입력단과;
    상기 교류 전력 입력단을 통해 상기 입력 교류 전력이 입력되는 제 1 풀 브리지 회로 및 제 2풀 브리지 회로를 포함하는 역률 보정부와;
    상기 역률 보정부를 통해 충전되는 링크 캐패시터와;
    상기 교류 전력 입력단을 구성하는 교류 전력 입력 라인과 중성선 가운데 어느 하나와 상기 역률 보정부를 연결하도록 마련되는 제 1 스위치(S1)와, 상기 교류 전력 입력단과 상기 역률 보정부, 상기 링크 캐패시터를 선택적으로 연결하도록 마련되는 적어도 하나의 제 2 스위치를 포함하는 스위치 네트워크와;
    상기 교류 전력 입력단을 통해 입력되는 입력 교류 전력의 조건에 따라 상기 역률 보정부와 상기 스위치 네트워크를 제어하도록 마련되는 제어부를 포함하고,
    상기 적어도 하나의 제 2 스위치는, 상기 복수의 풀 브리지 회로 중 적어도 어느 하나의 풀 브리지 회로를 선택적으로 배터리의 (+) 전극에 연결하기 위한 복수의 스위치(S3)(S4)(S5)(S6)(S7)를 포함하며,
    상기 제 1 풀 브리지 회로의 제 1 레그가 상기 교류 전력 입력단의 제 1 교류 전력 입력 라인에 연결되고;
    상기 제 1 풀 브리지 회로의 제 2 레그가 상기 제 1 스위치(S1)를 통해 상기 교류 전력 입력단의 제 2 교류 전력 입력 라인과 상기 중성선 가운데 어느 하나에 선택적으로 연결되며,
    상기 제 2 풀 브리지 회로의 제 1 레그가 제 3 스위치(S2) 및 제 4 스위치(S5)의 조합을 통해 상기 교류 전력 입력단의 제 3 교류 전력 입력 라인에 연결되고;
    상기 제 2 풀 브리지 회로의 제 2 레그가 상기 제 3 스위치(S2)를 통해 상기 교류 전력 입력단의 상기 제 3 교류 전력 입력 라인에 연결되며,
    상기 스위치 네트워크는,
    상기 제 1 풀 브리지 회로의 상기 제 1 레그에 일단이 연결되는 제 5 스위치(S3)와;
    상기 제 1 풀 브리지 회로의 상기 제 2 레그에 일단이 연결되는 제 6 스위치(S4)와;
    상기 제 5 스위치(S3)의 타단과 상기 배터리의 (+) 전극 사이에 마련되는 제 7 스위치(S6)와;
    상기 제 2 풀 브리지 회로의 상단과 상기 제 5 스위치의 타단, 상기 제 1 풀 브리지 회로의 상단 사이를 스위칭 하도록 마련되는 제 8 스위치(S7)와;
    상기 링크 캐패시터의 양단을 상기 배터리의 (+) 전극 및 (-) 전극 각각에 연결하도록 마련되는 제 9 스위치(S8) 및 제 10 스위치(S9)와;
    상기 제 1 풀 브리지 회로의 상단과 상기 링크 캐패시터의 일단을 연결하도록 마련되는 제 11 스위치(S10)를 더 포함하며,
    상기 제 4 스위치(S5)는, 상기 제 5 스위치(S3)의 타단과 상기 제 2 풀 브리지 회로의 상기 제 1 레그 및 상기 제 2 레그 사이를 스위칭 하도록 마련되는 전기 자동차의 충전 장치.
  23. 제 22 항에 있어서,
    상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 다상 및 단상의 조건을 포함하는 전기 자동차의 충전 장치.
  24. 제 22 항에 있어서,
    상기 입력 교류 전력의 조건은 상기 입력 교류 전력의 대칭 및 비대칭의 전원 조건을 포함하는 전기 자동차의 충전 장치.
KR1020180078018A 2018-07-05 2018-07-05 전기 자동차의 충전 장치 KR102463587B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180078018A KR102463587B1 (ko) 2018-07-05 2018-07-05 전기 자동차의 충전 장치
US16/171,002 US10807488B2 (en) 2018-07-05 2018-10-25 Charging apparatus for electric vehicle
EP18203413.2A EP3591818A1 (en) 2018-07-05 2018-10-30 Charging apparatus for electric vehicle
CN201811338336.3A CN110690749A (zh) 2018-07-05 2018-11-12 电动汽车的充电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180078018A KR102463587B1 (ko) 2018-07-05 2018-07-05 전기 자동차의 충전 장치

Publications (2)

Publication Number Publication Date
KR20200004963A KR20200004963A (ko) 2020-01-15
KR102463587B1 true KR102463587B1 (ko) 2022-11-07

Family

ID=64048780

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180078018A KR102463587B1 (ko) 2018-07-05 2018-07-05 전기 자동차의 충전 장치

Country Status (4)

Country Link
US (1) US10807488B2 (ko)
EP (1) EP3591818A1 (ko)
KR (1) KR102463587B1 (ko)
CN (1) CN110690749A (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102489957B1 (ko) * 2018-04-04 2023-01-19 현대자동차주식회사 전기 자동차의 충전 장치
USD918134S1 (en) * 2018-05-18 2021-05-04 Hubbell Incorporated Electric vehicle charging station
USD893414S1 (en) * 2019-05-13 2020-08-18 Volta Charing, LLC Charging station
USD962856S1 (en) * 2019-10-01 2022-09-06 Volta Charging, Llc Charging station
USD967011S1 (en) * 2019-10-11 2022-10-18 Volta Charging, Llc Charging station
USD967012S1 (en) * 2019-10-24 2022-10-18 Volta Charging, Llc Charging station

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2652010Y (zh) * 2003-09-18 2004-10-27 北京动力源科技股份有限公司 一种新型多功能应急电源系统
TWI297975B (en) * 2005-07-26 2008-06-11 Delta Electronics Inc Integrated converter having three-phase power factor correction
JP4491434B2 (ja) * 2006-05-29 2010-06-30 トヨタ自動車株式会社 電力制御装置およびそれを備えた車両
JP5043585B2 (ja) * 2007-10-10 2012-10-10 三菱電機株式会社 電力変換装置
US7929323B2 (en) 2008-09-26 2011-04-19 Rockwell Automation Technologies, Inc. Method and apparatus for pre-charging power converters and diagnosing pre-charge faults
KR20110077801A (ko) * 2009-12-30 2011-07-07 엘지전자 주식회사 직류전원 공급장치 및 직류전원 공급방법
DE102011007839A1 (de) 2011-04-21 2012-10-25 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugladevorrichtung
US8829722B2 (en) 2011-10-31 2014-09-09 General Electric Company Apparatus and method for rapidly charging an electric vehicle
KR20130078106A (ko) * 2011-12-30 2013-07-10 주식회사 효성 전기자동차 충전장치
WO2013182211A1 (en) * 2012-06-05 2013-12-12 Volvo Lastvagnar Ab Electrical apparatus and method for charging a battery
FR2991826B1 (fr) * 2012-06-07 2015-03-27 Intelligent Electronic Systems Dispositif de charge a entree adaptative
FR2992490B1 (fr) 2012-06-26 2014-07-18 Renault Sa Procede de commande d'un chargeur de batterie automobile a reduction de pertes par commutation.
EP2869445A1 (en) 2013-11-01 2015-05-06 DET International Holding Limited Adaptable rectifier arrangement for operation with different AC grids
US9312767B2 (en) * 2013-12-06 2016-04-12 Infineon Technologies Austria Ag Reconfigurable multiphase power stage for switched mode chargers
CN103779950B (zh) * 2013-12-31 2018-01-12 科世达(上海)管理有限公司 一种充电装置及方法
TWI514736B (zh) * 2014-04-25 2015-12-21 Mean Well Entpr Co Ltd 具有功率因素校正電路的電源供應器
CN105703420B (zh) * 2014-11-28 2018-06-29 上海汽车集团股份有限公司 控制系统及其控制方法和汽车
KR101684064B1 (ko) 2015-02-12 2016-12-07 현대자동차주식회사 전기 자동차의 충전 시스템
KR20170093014A (ko) * 2016-02-04 2017-08-14 계명대학교 산학협력단 대용량 고전력밀도 ev 탑재형 충전기를 위한 pfc 회로 장치
EP3242382A1 (en) * 2016-05-04 2017-11-08 ABB Schweiz AG Ac-to-dc converter system
US9729066B1 (en) * 2016-06-30 2017-08-08 Hella Kgaa Hueck & Co. Electric power conversion apparatus having single-phase and multi-phase operation modes
FR3060230B1 (fr) * 2016-12-14 2019-01-25 Renault S.A.S Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride.
US10351004B1 (en) * 2018-01-03 2019-07-16 Lear Corporation Pre-charging DC link capacitor of on-board charger (OBC) using traction battery

Also Published As

Publication number Publication date
KR20200004963A (ko) 2020-01-15
CN110690749A (zh) 2020-01-14
US20200009966A1 (en) 2020-01-09
US10807488B2 (en) 2020-10-20
EP3591818A1 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
KR102528230B1 (ko) 전기 자동차의 충전 장치
KR102463587B1 (ko) 전기 자동차의 충전 장치
KR102524188B1 (ko) 전기 자동차의 충전 장치
KR102486104B1 (ko) 전기 자동차의 충전 장치
KR102524192B1 (ko) 전기 자동차의 충전 장치
KR102523253B1 (ko) 전기 자동차의 충전 장치
KR102489957B1 (ko) 전기 자동차의 충전 장치
US11433774B2 (en) Battery charger for electric vehicle
JP2009033891A (ja) 電動車両
KR102526961B1 (ko) 전기 자동차 및 전기 자동차의 충전 장치
CN215681839U (zh) 一种动力电池充电电路及其车辆
KR20240002572A (ko) 전기 자동차의 충전 장치
KR20200008438A (ko) 전기 자동차의 충전 장치

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant