KR20190109247A - Light irradiating apparatus - Google Patents

Light irradiating apparatus Download PDF

Info

Publication number
KR20190109247A
KR20190109247A KR1020190022921A KR20190022921A KR20190109247A KR 20190109247 A KR20190109247 A KR 20190109247A KR 1020190022921 A KR1020190022921 A KR 1020190022921A KR 20190022921 A KR20190022921 A KR 20190022921A KR 20190109247 A KR20190109247 A KR 20190109247A
Authority
KR
South Korea
Prior art keywords
light
mirror surface
irradiation
guide member
light emitting
Prior art date
Application number
KR1020190022921A
Other languages
Korean (ko)
Other versions
KR102476100B1 (en
Inventor
카츠미 아시다
카즈타카 시토
Original Assignee
호야 칸데오 옵트로닉스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 호야 칸데오 옵트로닉스 가부시키가이샤 filed Critical 호야 칸데오 옵트로닉스 가부시키가이샤
Publication of KR20190109247A publication Critical patent/KR20190109247A/en
Application granted granted Critical
Publication of KR102476100B1 publication Critical patent/KR102476100B1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70166Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention is to provide a light irradiation apparatus capable of irradiating approximately uniform light within an irradiation area while having an irradiation intensity distribution which rapidly rises. According to the present invention, the light irradiation apparatus for irradiating light to a rectangular irradiation area on an object to be irradiated, comprises: M × N number of light emitting elements in which M thereof (M is an integer equal to or greater than 2) is arranged on a substrate in a first direction, and N thereof (N is an integer equal to or greater than 2) is arranged in a second direction perpendicular to the first direction, a lens unit for molding light emitted from the light emitting elements into light having a predetermined diffusion angle, a first light guide member having a first mirror surface formed to surround optical axes of the M × N light emitting elements in a rectangular shape, and guiding light emitted from the lens unit, and a second light emitting member arranged to partition the light emitting elements arranged on four corners of the substrate, and formed with a second mirror surface for guiding the light from the light emitting elements arranged on the four corners, and a third mirror surface for guiding the light from the light emitting elements adjacent to the light emitting elements arranged on the four corners.

Description

광 조사장치 {LIGHT IRRADIATING APPARATUS}Light irradiation device {LIGHT IRRADIATING APPARATUS}

본 발명은, 감광성 레지스트를 도포한 기판(예를 들면, 반도체 기판, 액정 표시 장치용 유리 기판, 포토마스크용 유리 기판)의 주변 노광장치 등에 이용되는 광 조사장치에 관한 것으로서, 특히, 조사 대상물 상의 직사각형 형상의 조사 영역을 균일하게 조사하는 광 조사장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light irradiation apparatus used for a peripheral exposure apparatus of a substrate coated with a photosensitive resist (for example, a semiconductor substrate, a glass substrate for a liquid crystal display device, a glass substrate for a photomask), and the like. A light irradiation apparatus for uniformly irradiating a rectangular irradiation area.

종래에는, 반도체(예를 들면, IC(Integrated Circuit)나 LSI(Large Scale Integrated circuit))의 제조 공정에 있어서는, 반도체 웨이퍼의 표면에 감광성 레지스트를 도포하고, 상기 레지스트층에 마스크를 통해 노광·현상함으로써, 회로 패턴을 형성한다. Conventionally, in the manufacturing process of a semiconductor (for example, integrated circuit (IC) or large scale integrated circuit (LSI), a photosensitive resist is apply | coated to the surface of a semiconductor wafer, and it exposes and develops to the said resist layer through a mask. This forms a circuit pattern.

반도체 웨이퍼의 표면에 레지스트를 도포하는 방법으로서는, 일반적으로, 웨이퍼를 회전대 위에 탑재하고, 상기 웨이퍼 표면의 중심 부근에 레지스트를 적하하여 회전시켜, 원심력에 의해 웨이퍼의 표면 전체에 레지스트를 도포하는 스핀 코팅법이 이용되고 있다. Generally as a method of applying a resist to the surface of a semiconductor wafer, the spin coating which mounts a wafer on a swivel, drips and rotates the resist near the center of the said wafer surface, and apply | coats a resist to the whole surface of a wafer by centrifugal force Law is being used.

이러한 스핀 코팅법에 있어서는, 레지스트는, 웨이퍼 중앙부의 회로 패턴 형성 영역뿐만 아니라, 회로 패턴이 형성되지 않은 웨이퍼 단연부(端緣部)에도 도포되게 된다. 그러나, 웨이퍼 단연부(端緣部)는, 웨이퍼를 반송하기 위해 반송장치 등에 의해 파지(把持)되는 경우가 많고, 웨이퍼 단연부(端緣部)의 레지스트를 남긴 상태로 두게 되면, 웨이퍼 반송 중에 그 일부가 박리되어 결락(欠落)되는 문제가 있다. 그리고, 웨이퍼 단연부(端緣部)의 레지스트가 결락(欠落)되어, 그것이 웨이퍼의 회로 패턴 형성 영역에 부착되게 되면, 원하는 회로 패턴이 형성되지 않아, 수율이 저하되는 문제가 발생한다. 이로 인해, 일반적으로, 웨이퍼 단연부(端緣部)를 포함하는 그 주변에 자외광을 조사하는 주변 노광장치를 사용하여 레지스트의 노광을 실시하고, 웨이퍼 단연부(端緣部)에 도포된 불필요 레지스트를 제거하게 된다. In such a spin coating method, the resist is applied not only to the circuit pattern formation region in the wafer center portion, but also to the wafer edge portion where the circuit pattern is not formed. However, the wafer edge is often gripped by a conveying device or the like for conveying the wafer, and when the wafer edge is left in a state where a resist of the wafer edge is left, it is during wafer transfer. There is a problem that part of it is peeled off and missing. And if the resist of a wafer edge part falls and adheres to the circuit pattern formation area of a wafer, a desired circuit pattern will not be formed and a problem will arise that a yield falls. For this reason, generally, it is unnecessary to apply | coat the resist to the wafer edge part by exposing a resist using the peripheral exposure apparatus which irradiates an ultraviolet light to the periphery including a wafer edge part. The resist is removed.

이러한 주변 노광장치에 의한 노광후, 에칭 등에 의해 웨이퍼 단연부(端緣部)의 불필요 레지스트가 제거되지만, 불필요 레지스트가 완전히 제거되지 않고, 웨이퍼 상에 얇게 남겨지게 되면(소위 그레이 존이라고 불리는 영역이 발생하게 되면), 후공정에 있어서의 레지스트 결락(欠落)의 원인이 된다. 이로 인해, 불필요 레지스트가 제거된 후의 레지스트 단부의 단면 형상(즉, 회로 패턴 형성 영역에 남는 레지스트 단부의 단면 형상)은, 회로 패턴 형성 영역과 웨이퍼 단연부(端緣部)와의 사이에서 급격히 솟아 오르는(즉, 처짐이 적은) 형상이 되는 것이 바람직하다. After exposure by such a peripheral exposure apparatus, the unnecessary resist on the wafer edge is removed by etching or the like, but when the unnecessary resist is not completely removed and is left thin on the wafer (a region called a gray zone is formed). Generation | occurrence | production), it becomes a cause of the resist missing in a later process. For this reason, the cross-sectional shape of the resist end (that is, the cross-sectional shape of the resist end remaining in the circuit pattern formation area) after the unnecessary resist is removed rapidly rises between the circuit pattern formation area and the wafer edge. It is desirable to have a shape (that is, less sag).

이러한 그레이 존 영역의 발생은, 주변 노광장치로부터 기판의 단연부(端緣部)에 투영되는 자외광의 조사 강도 분포에 기인하는 것이 알려져 있다. 즉, 주변 노광장치로부터 기판의 단연부(端緣部)에 투영되는 자외광의 조사 강도 분포가, 회로 패턴 형성 영역과 웨이퍼 단연부(端緣部)와의 사이에서 완만하게 변화되는 것이면, 회로 패턴 형성 영역과 웨이퍼 단연부(端緣部)와의 사이에서 노광이 불충분한 영역이 생겨버려, 회로 패턴 형성 영역에 남는 레지스트 단부의 단면 형상도 완만한 것으로 되어버린다(즉, 그레이 존 영역이 발생한다). 이로 인해, 주변 노광장치로부터 기판의 단연부(端緣部)에 투영되는 자외광의 조사 강도 분포는, 회로 패턴 형성 영역과 웨이퍼 단연부(端緣部)와의 사이에서 급격히 솟아 오르는(즉, 처짐이 적은) 것이 바람직하며, 이러한 조사 강도 분포를 가지는 주변 노광장치가 실용화되어 있다(예를 들면, 특허문헌 1). It is known that generation of such a gray zone area is caused by irradiation intensity distribution of the ultraviolet light projected from the peripheral exposure apparatus to the edge of the substrate. That is, if the irradiation intensity distribution of the ultraviolet light projected from the peripheral exposure apparatus to the edge of the substrate is changed gently between the circuit pattern formation region and the wafer edge, the circuit pattern Insufficient exposure occurs between the formation region and the wafer edge, and the cross-sectional shape of the resist end remaining in the circuit pattern formation region is also smooth (that is, a gray zone region occurs). . For this reason, the irradiation intensity distribution of the ultraviolet light projected from the peripheral exposure apparatus to the edge of the substrate rapidly rises (that is, sags) between the circuit pattern formation region and the wafer edge. This is preferable, and the peripheral exposure apparatus which has such irradiation intensity distribution is put to practical use (for example, patent document 1).

일본 특허 제6002261호 명세서Japanese Patent No. 6002261

특허문헌 1에 기재된 주변 노광장치는, 기판 상에 2차원 배치된 복수의 발광 소자, 각 발광 소자로부터 출사된 광을 소정의 확산각의 광으로 성형하는 렌즈 유닛, 렌즈 유닛으로부터 출사된 광을 믹싱하여 도광하는 통 형상의 도광 부재, 및 도광 부재와 피조사 대상물과의 사이에 배치되는 구경 조리개(aperture stop)를 구비하고 있다. 그리고, 도광 부재 내면의 미러면을, 조사 대상물을 향해 소정의 각도로 넓어지도록 구성하고, 렌즈 유닛으로부터 출사된 광의 적어도 일부가, 미러면에 의해 반사되어, 구경 조리개의 구경의 단면부 근방을 통과하여, 조사 영역에 대해 대략 수직으로 입사하도록 구성되어 있다. The peripheral exposure apparatus of patent document 1 mixes the several light emitting element arrange | positioned two-dimensionally on the board | substrate, the lens unit which shape | molds the light radiate | emitted from each light emitting element into the light of a predetermined | prescribed diffusion angle, and the light radiate | emitted from the lens unit. And a cylindrical light guide member for guiding light, and an aperture stop disposed between the light guide member and the object to be irradiated. Then, the mirror surface of the inner surface of the light guide member is configured to be widened at a predetermined angle toward the irradiation object, and at least a part of the light emitted from the lens unit is reflected by the mirror surface and passes near the end face of the aperture of the aperture stop. Thus, it is configured to be incident substantially perpendicularly to the irradiation area.

특허문헌 1에 기재된 주변 노광장치에 의하면, 회로 패턴 형성 영역과 웨이퍼 단연부(端緣部)와의 사이에서 급격히 솟아 오르는 자외광이 얻어지기 때문에, 그레이 존 영역의 발생을 억제할 수 있다. 그러나, 특허문헌 1에 기재된 구성에 있어서는, 조사 영역의 네 모서리에 있어서 조사 강도가 높아지는 경향을 나타내기 때문에, 불필요 레지스트를 보다 안정적이면서 확실히 제거한다 라는 관점에서는, 보다 균일한 자외광을 조사할 수 있는 광 조사장치가 요구되고 있다. According to the peripheral exposure apparatus of patent document 1, since ultraviolet light which rises rapidly between a circuit pattern formation area and a wafer edge part is obtained, generation | occurrence | production of a gray zone area can be suppressed. However, in the structure described in Patent Literature 1, since the irradiation intensity tends to increase at the four corners of the irradiation area, more uniform ultraviolet light can be irradiated from the viewpoint of eliminating unnecessary and stable resists. There is a need for a light irradiation apparatus.

본 발명은, 이러한 사정을 감안하여 이루어진 것으로서, 그 목적으로 하는 것은, 급격히 상승하는 조사 강도 분포를 가지면서도, 조사 영역 내에서 대략 균일한 광을 조사할 수 있는 광 조사장치를 제공하는 것이다. This invention is made | formed in view of such a situation, Comprising: It aims at providing the light irradiation apparatus which can irradiate substantially uniform light in an irradiation area, while having a rapidly rising irradiation intensity distribution.

상기 목적을 달성하기 위해, 본 발명의 광 조사장치는, 조사 대상물 상의 직사각형 형상의 조사 영역에 대해 광을 조사하는 광 조사장치로서, 기판 상에, 제1 방향을 따라 M개(M은, 2 이상의 정수) 나열되고, 제1 방향과 직교하는 제2 방향으로 N개(N은, 2 이상의 정수) 나열된 M × N개의 발광 소자, 각 발광 소자의 광로 중에 각각 배치되고, 상기 발광 소자로부터 출사된 광을 소정의 확산각의 광으로 성형하는 렌즈 유닛, M × N개의 발광 소자의 광축을 직사각형 형상으로 둘러싸도록 형성된 제1 미러면을 가지고, 렌즈 유닛으로부터 출사되는 광을 도광하는 제1 도광 부재, 및 기판의 네 모서리에 배치된 발광 소자를 제1 방향 및 제2 방향으로 구획하도록 배치되고, 네 모서리에 배치된 발광 소자로부터의 광을 도광하는 제2 미러면과, 네 모서리에 배치된 발광 소자에 인접하는 발광 소자로부터의 광을 도광하는 제3 미러면이 형성된 제2 도광 부재를 구비하는 것을 특징으로 한다. In order to achieve the said objective, the light irradiation apparatus of this invention is a light irradiation apparatus which irradiates light with respect to the rectangular irradiation area | region on the irradiation object, M pieces (M is 2 in a 1st direction on a board | substrate) Above) and M x N light emitting elements arranged in the second direction orthogonal to the first direction and arranged in the optical path of each light emitting element, respectively, arranged in the second direction orthogonal to the first direction. A first light guide member for guiding light emitted from the lens unit, the lens unit for shaping the light into light having a predetermined diffusion angle, the first mirror surface formed to surround the optical axes of the M × N light emitting elements in a rectangular shape, And a second mirror surface for guiding light from the light emitting elements disposed at the four corners, the second light emitting element disposed at the four corners, to divide the light emitting elements disposed at the four corners of the substrate in the first direction and the second direction. It is characterized by including the 2nd light guide member in which the 3rd mirror surface which guides the light from the light emitting element adjacent to a ruler is provided.

이러한 구성에 의하면, 제2 도광 부재에 의해 네 모서리의 LED 소자로부터 조사 영역(P)의 네 모서리를 향하는 자외광의 조사 강도를 저하시킬 수 있기 때문에, 조사 영역의 네 모서리의 조사 강도를 대략 균일하게 할 수 있다. According to such a structure, since the irradiation intensity of the ultraviolet light toward the four corners of the irradiation area P from the four corner LED elements can be reduced by the second light guiding member, the irradiation intensity of the four corners of the irradiation area is substantially uniform. It can be done.

또한, 제2 도광 부재의, 제1 방향 및 제2 방향과 직교하는 제3방향의 길이가, 네 모서리에 배치된 발광 소자로부터 출사된 광의 적어도 일부가, 제2 미러면에서 1회만 반사하면서도, 또한, 제2 미러면에서 반사된 광이, 조사 영역 내에서, 기판의 네 모서리에 배치된 발광 소자의 광축보다 외측을 조사하도록 설정되어 있는 것이 바람직하다. In addition, while the length of the second light guide member in the first direction and the third direction orthogonal to the second direction reflects at least a portion of the light emitted from the light emitting elements arranged at the four corners only once in the second mirror surface, Moreover, it is preferable that the light reflected by the 2nd mirror surface is set so that it may irradiate outside the optical axis of the light emitting element arrange | positioned at the four corners of a board | substrate in an irradiation area.

또한, 이 경우, 제2 미러면의 반사율이, 제1 미러면의 반사율 이하인 것이 바람직하다. 또한, 이 경우, 제2 미러면의 반사율이, 90% 이하인 것이 바람직하다. In this case, it is preferable that the reflectance of the second mirror surface is equal to or less than the reflectance of the first mirror surface. In this case, the reflectance of the second mirror surface is preferably 90% or less.

또한, 제1 미러면은, 조사 대상물을 향해 넓어지도록, 제1 도광 부재의 광축에 대해, 확산각보다 작은 소정의 각도로 경사져 있는 것이 바람직하다. 또한, 이 경우, 확산각이 0.5° 이상 50° 이하의 범위이며, 소정의 각도가 확산각의 1/2보다 작은 것이 바람직하다. Moreover, it is preferable that the 1st mirror surface inclines at the predetermined angle smaller than a diffusion angle with respect to the optical axis of a 1st light guide member so that it may spread toward an irradiation object. In this case, it is preferable that the diffusion angle is in the range of 0.5 ° to 50 °, and the predetermined angle is smaller than 1/2 of the diffusion angle.

또한, 광은, 자외선 파장 영역의 광인 것이 바람직하다. In addition, it is preferable that light is light of an ultraviolet-ray wavelength range.

이상과 같이, 본 발명에 의하면, 급격히 상승하는 조사 강도 분포를 가지면서도, 조사 영역 내에서 대략 균일한 광을 조사할 수 있는 광 조사장치가 실현된다.As described above, according to the present invention, a light irradiation apparatus capable of irradiating substantially uniform light in the irradiation area while having a rapidly rising irradiation intensity distribution is realized.

도 1은 본 발명의 제1 실시형태에 따른 광 조사장치의 구성을 나타낸 모식도이다.
도 2는 본 발명의 제1 실시형태에 따른 광 조사장치에 구비된 렌즈 유닛으로부터 출사되는 자외광의 광로도이다.
도 3은 본 발명의 제1 실시형태에 따른 광 조사장치에 구비된 렌즈 유닛으로부터 출사되는 자외광의 광로도이다.
도 4는 본 발명의 제1 실시형태에 따른 광 조사장치에 구비된 렌즈 유닛으로부터 출사되는 자외광의 광로도이다.
도 5는 본 발명의 제1 실시형태에 따른 광 조사장치에 구비된 렌즈 유닛으로부터 출사되는 자외광의 광로도이다.
도 6은 본 발명의 제1 실시형태에 따른 광 조사장치로부터 출사되는 자외광의 조사 강도 분포이다.
도 7은 본 발명의 제1 변형예에 따른 광 조사장치의 구성을 나타낸 모식도 및 광로도이다.
도 8은 본 발명의 제2 변형예에 따른 광 조사장치의 구성을 나타낸 모식도 및 광로도이다.
도 9는 본 발명의 제3 변형예에 따른 광 조사장치의 구성을 나타낸 모식도 및 광로도이다.
도 10은 본 발명의 제1 실시형태에 따른 광 조사장치에 있어서, 제1 도광 부재의 미러면의 반사율과, 제2 도광 부재의 미러면의 반사율을 변경했을 때의 조사 강도 분포이다.
도 11은 본 발명의 제2 실시형태에 따른 광 조사장치의 구성을 나타낸 모식도이다.
도 12는 본 발명의 제2 실시형태에 따른 광 조사장치로부터 출사되는 자외광의 조사 강도 분포이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the structure of the light irradiation apparatus which concerns on 1st Embodiment of this invention.
2 is an optical path diagram of ultraviolet light emitted from the lens unit included in the light irradiation apparatus according to the first embodiment of the present invention.
3 is an optical path diagram of ultraviolet light emitted from a lens unit included in the light irradiation apparatus according to the first embodiment of the present invention.
4 is an optical path diagram of ultraviolet light emitted from the lens unit included in the light irradiation apparatus according to the first embodiment of the present invention.
5 is an optical path diagram of ultraviolet light emitted from the lens unit included in the light irradiation apparatus according to the first embodiment of the present invention.
6 is an irradiation intensity distribution of ultraviolet light emitted from the light irradiation apparatus according to the first embodiment of the present invention.
7 is a schematic view and an optical path diagram showing a configuration of a light irradiation apparatus according to a first modification of the present invention.
8 is a schematic view and an optical path diagram showing a configuration of a light irradiation apparatus according to a second modification of the present invention.
9 is a schematic view and an optical path diagram showing the configuration of a light irradiation apparatus according to a third modification of the present invention.
10 is a light intensity distribution when the reflectance of the mirror surface of the first light guide member and the reflectance of the mirror surface of the second light guide member are changed in the light irradiation apparatus according to the first embodiment of the present invention.
It is a schematic diagram which shows the structure of the light irradiation apparatus which concerns on 2nd Embodiment of this invention.
12 is an irradiation intensity distribution of ultraviolet light emitted from the light irradiation apparatus according to the second embodiment of the present invention.

이하, 본 발명의 실시형태에 대해 도면을 참조하여 상세하게 설명한다. 한편, 도면 중 동일 또는 상당하는 부분에는 동일한 부호를 붙이고, 그 설명은 생략한다. EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail with reference to drawings. In addition, the same code | symbol is attached | subjected to the same or corresponding part in drawing, and the description is abbreviate | omitted.

(제1 실시형태) (First embodiment)

도 1은, 본 발명의 제1 실시형태에 따른 광 조사장치(100)의 구성을 나타낸 모식도이다. 도 1(a)는, 광 조사장치(100)의 출사구(出射口) 쪽에서부터 보았을 때의 광 조사장치(100)의 정면도이다. 도 1(b)는, 도 1(a)의 A-A선에 따른 단면도이다. 본 실시형태의 광 조사장치(100)는, 주변 노광장치 등에 장착되어, 조사 대상물(W)(예를 들면, 유리 기판 상의 레지스트) 상의 직사각형 형상의 조사 영역(P)(예를 들면, 약 70mm × 약 70mm)에 대해, 자외선 파장 영역의 대략 평행광을 조사하는 장치이다. FIG. 1: is a schematic diagram which shows the structure of the light irradiation apparatus 100 which concerns on 1st Embodiment of this invention. FIG. 1A is a front view of the light irradiation apparatus 100 when viewed from the exit port side of the light irradiation apparatus 100. (B) is sectional drawing along the A-A line | wire of (a). The light irradiation apparatus 100 of the present embodiment is mounted on a peripheral exposure apparatus or the like, and has a rectangular irradiation area P (for example, about 70 mm) on the irradiation object W (for example, a resist on a glass substrate). X 70 mm), a device for irradiating substantially parallel light in an ultraviolet wavelength region.

도 1에 나타낸 바와 같이, 광 조사장치(100)는, LED 유닛(110), 렌즈 유닛(120), 제1 도광 부재(130), 제2 도광 부재(140), 및 이들 부품을 수용하는 케이스(도시하지 않음)를 구비하고 있다. LED 유닛(110), 렌즈 유닛(120), 제1 도광 부재(130), 제2 도광 부재(140)는, 조사 대상물(W)을 향해, 광축(AX)(광 조사장치(100)로부터 출사되는 광의 중심을 통과하는 축)을 따라 순서대로 배치되어 있다. 한편, 본 실시형태에 있어서는, 광 조사장치(100)의 워킹 디스턴스(working distance)(WD)(제1 도광 부재(130)의 출사 개구(130f)로부터 조사 대상물(W)까지의 거리)는, 약 10mm로 설정되어 있으며, 광 조사장치(100)로부터 출사되는 자외선 파장 영역의 광(이하, 「자외광」이라고 한다.)은, 조사 영역(P)을 균일한 광량 분포로 조사하고 있다(상세한 것은 후술). 한편, 도 1에 나타낸 바와 같이, 본 명세서에 있어서는, 광 조사장치(100)로부터 출사되는 자외광의 진행 방향(즉, 광축(AX)에 평행한 방향)을 Z축 방향이라고 하고, Z축 방향과 직교하면서, 또한, 서로 직교하는 2개의 방향을 X축 방향 및 Y축 방향으로 정의하여 설명한다. As shown in FIG. 1, the light irradiation apparatus 100 includes a LED unit 110, a lens unit 120, a first light guide member 130, a second light guide member 140, and a case accommodating these components. (Not shown) is provided. The LED unit 110, the lens unit 120, the first light guide member 130, and the second light guide member 140 are emitted from the optical axis AX (light irradiation apparatus 100) toward the irradiation target object W. It is arranged in order along the axis passing through the center of the light. In addition, in this embodiment, the working distance WD of the light irradiation apparatus 100 (distance from the exit opening 130f of the 1st light guide member 130 to the irradiation target object W) is It is set to about 10 mm, and the light of the ultraviolet wavelength region emitted from the light irradiation apparatus 100 (hereinafter referred to as "ultraviolet light") is irradiating the irradiation region P with a uniform amount of light distribution (detailed in detail). Will be described later). In addition, as shown in FIG. 1, in this specification, the advancing direction (i.e., direction parallel to optical axis AX) of the ultraviolet light radiate | emitted from the light irradiation apparatus 100 is called Z-axis direction, Two directions orthogonal to each other and orthogonal to each other are defined and described as the X-axis direction and the Y-axis direction.

본 실시형태의 LED 유닛(110)은, X축에 평행한 2변과 Y축에 평행한 2변을 가지는 직사각형 형상의 기판(112), 및 기판(112) 상에, X축 방향으로 소정의 피치(예를 들면, 26mm)로 M개(M은, 2 이상의 정수) 나열되고, Y축 방향으로 소정의 피치(예를 들면, 26mm)로 N개(N은, 2 이상의 정수) 나열되고, Z축 방향으로 광축을 맞춰 배치된 M × N개의 LED 소자(114)(발광 소자)를 구비하고 있다. 한편, X축 방향의 소정의 피치와 Y축 방향의 소정의 피치가 상이할 수도 있다. 또한, X축 방향의 소정의 피치 및 Y축 방향의 소정의 피치는 각각, X축 방향 또는 Y축 방향을 따라 균등하지 않을 수도 있으며, 예를 들면, 소정의 피치가 LED 유닛의 중심에 근접함에 따라, 넓어지도록 구성할 수도 있다. 도 1에서는, M=3, N=3의 경우, 즉, 9개의 LED 소자(114)가 배치된 경우를 나타내고 있다. The LED unit 110 of the present embodiment has a predetermined shape in the X-axis direction on the substrate 112 having a rectangular shape having two sides parallel to the X axis and two sides parallel to the Y axis, and the substrate 112. M pieces (M is an integer of 2 or more) are arranged by the pitch (for example, 26 mm), and N pieces (N are an integer of 2 or more) are arranged by the predetermined pitch (eg, 26 mm) in the Y-axis direction, M x N LED elements 114 (light emitting elements) are arranged so as to align the optical axis in the Z-axis direction. On the other hand, the predetermined pitch in the X-axis direction and the predetermined pitch in the Y-axis direction may be different. Further, the predetermined pitch in the X-axis direction and the predetermined pitch in the Y-axis direction may not be equal along the X-axis direction or the Y-axis direction, respectively, for example, because the predetermined pitch is close to the center of the LED unit. Therefore, it can also be comprised so that it may become wider. In FIG. 1, the case where M = 3 and N = 3, ie, the case where nine LED elements 114 are arrange | positioned is shown.

각 LED 소자(114)에는, 임의의 형상의 것을 사용할 수 있지만, 본 실시형태에서는 2mm(X축 방향 길이) × 2mm(Y축 방향 길이)의 직사각형 형상의 외형을 가지는 것을 사용하고 있다. 각 LED 소자(114)는, 기판(112) 상에 탑재되어, 기판(112)과 전기적으로 접속되어 있다. 기판(112)은, 유리 에폭시 수지, 세라믹스 등으로 이루어진 전자 회로 기판으로서, 도시하지 않은 LED 구동 회로에 접속되어 있으며, 각 LED 소자(114)에는, 기판(112)을 통해 LED 구동 회로로부터의 구동 전류가 공급되도록 되어 있다. 각 LED 소자(114)에 구동 전류가 공급되면, 각 LED 소자(114)가 구동 전류에 따른 광량으로 발광하고, 소정 광량의 자외광이 출사된다. 한편, 본 실시형태에 있어서는, 각 LED 소자(114)는, LED 구동 회로로부터 구동 전류의 공급을 받아, 파장 395nm의 자외광을 출사하도록 구성되어 있다. Arbitrary shapes can be used for each LED element 114, but in this embodiment, what has a rectangular shape of 2 mm (X-axis length) x 2 mm (Y-axis direction length) is used. Each LED element 114 is mounted on a substrate 112 and electrically connected to the substrate 112. The board | substrate 112 is an electronic circuit board which consists of glass epoxy resin, ceramics, etc., and is connected to the LED drive circuit which is not shown in figure, and each LED element 114 drives from an LED drive circuit through the board | substrate 112. The current is to be supplied. When a driving current is supplied to each LED element 114, each LED element 114 emits light with the amount of light corresponding to the driving current, and ultraviolet light of a predetermined amount of light is emitted. On the other hand, in this embodiment, each LED element 114 is comprised so that it may receive the supply of drive current from an LED drive circuit, and may emit the ultraviolet light of wavelength 395nm.

한편, 본 실시형태의 각 LED 소자(114)는, 대략 동일한 광량의 자외광을 출사하도록 각 LED 소자(114)에 공급되는 구동 전류가 조정되어 있다. 또한, 본 실시형태에 있어서는, LED 유닛(110)의 중심(C)(즉, 기판(112)의 중심)이, 광축(AX)과 대략 일치하도록 배치되어 있다(도 1(a)). On the other hand, the drive current supplied to each LED element 114 is adjusted so that each LED element 114 of this embodiment may emit the ultraviolet light of substantially the same light quantity. In addition, in this embodiment, the center C (namely, the center of the board | substrate 112) of the LED unit 110 is arrange | positioned so that it may substantially correspond to the optical axis AX (FIG. 1 (a)).

본 실시형태의 각 렌즈 유닛(120)은, LED 소자(114)로부터 출사된 자외광을 소정의 확산각의 자외광으로 성형하는 렌즈이다. 본 명세서에 있어서, 「확산각」이란, LED 소자(114)로부터 출사되는 자외광의 일방향의 확산각과, 상기 일방향과 상반되는 방향의 확산각의 합계 각도(즉, 전각(全角))를 말한다. 한편, 성형된 자외광의 확산각은, LED 소자(114)로부터 출사된 자외광이 가지는 확산각보다, 작으면 되고, 예를 들면, 0.5° 이상 50° 이하, 5° 이상 30° 이하 등일 수 있으며, 예를 들면, 9° 또는 25°일 수 있다. 즉, 렌즈 유닛(120)은, 렌즈 유닛으로부터 나온 자외광의 확산각이, 발광 소자로부터 출사되었을 때의 확산각보다 좁아지도록, 자외광을 성형하고 있다. Each lens unit 120 of the present embodiment is a lens for shaping the ultraviolet light emitted from the LED element 114 into ultraviolet light having a predetermined diffusion angle. In this specification, a "diffusion angle" means the sum total angle (that is, full width) of the diffusion angle of the ultraviolet light radiate | emitted from the LED element 114 in the one direction, and the diffusion angle of the direction opposite to the said one direction. On the other hand, the diffusion angle of the formed ultraviolet light may be smaller than the diffusion angle of the ultraviolet light emitted from the LED element 114, and may be, for example, 0.5 ° or more and 50 ° or less, 5 ° or more and 30 ° or less. For example, 9 ° or 25 °. That is, the lens unit 120 shapes the ultraviolet light so that the diffusion angle of the ultraviolet light emitted from the lens unit is narrower than the diffusion angle when it is emitted from the light emitting element.

본 실시형태의 각 렌즈 유닛(120)은, 공통의 광축을 가지는, 제1 렌즈(122), 제2 렌즈(124) 및 제3 렌즈(126)에 의해 구성되어 있다. 도 1(b)에 나타낸 바와 같이, 본 실시형태에 있어서는, 제1 렌즈(122), 제2 렌즈(124) 및 제3 렌즈(126)는, 모두 평볼록 렌즈이다. 제1 렌즈(122), 제2 렌즈(124) 및 제3 렌즈(126)는, 도시하지 않은 경통(鏡筒) 프레임에 의해 지지되고, 그 광축이 LED 소자(114)의 광축과 대략 일치하도록 위치 조정되며, 소정의 간격을 두고 배치된다. 각 렌즈 유닛(120)을 통한 자외광은, 후단의 제1 도광 부재(130)를 향해 출사된다. 한편, 제1 렌즈(122), 제2 렌즈(124) 및 제3 렌즈(126)의 광축은, 반드시 LED 소자(114)의 광축과 일치할 필요는 없으며, 제1 렌즈(122), 제2 렌즈(124) 및 제3 렌즈(126)의 광로 중에 배치되어 있으면 된다. Each lens unit 120 of this embodiment is comprised by the 1st lens 122, the 2nd lens 124, and the 3rd lens 126 which have a common optical axis. As shown in FIG. 1B, in the present embodiment, the first lens 122, the second lens 124, and the third lens 126 are all flat convex lenses. The first lens 122, the second lens 124, and the third lens 126 are supported by a barrel frame (not shown) so that the optical axis thereof substantially coincides with the optical axis of the LED element 114. The position is adjusted and arranged at predetermined intervals. The ultraviolet light through each lens unit 120 is emitted toward the first light guide member 130 at the rear end. The optical axes of the first lens 122, the second lens 124, and the third lens 126 do not necessarily need to coincide with the optical axes of the LED element 114. What is necessary is just to arrange | position in the optical path of the lens 124 and the 3rd lens 126.

제1 도광 부재(130)는, 내면에 4개의 미러면(130a, 130b, 130c, 130d)(제1 미러면)이 형성된 직사각형 통 형상의 부재이다. 도 1(a)에 나타낸 바와 같이, 본 실시형태의 4개의 미러면(130a, 130b, 130c, 130d)은, Z축 방향에서부터 보았을 때, LED 유닛(110) 및 9개의 렌즈 유닛(120)을 직사각형 형상으로 둘러싸도록 배치되고(즉, LED 소자(114) 및 렌즈 유닛(120)의 광축을 직사각형 형상으로 둘러싸도록 배치되고), 렌즈 유닛(120)으로부터 출사된 모든 자외광이 제1 도광 부재(130)를 통과하도록 구성되어 있다. The first light guide member 130 is a rectangular cylindrical member having four mirror surfaces 130a, 130b, 130c, and 130d (first mirror surface) formed on an inner surface thereof. As shown in Fig. 1 (a), the four mirror surfaces 130a, 130b, 130c, and 130d of the present embodiment have the LED unit 110 and the nine lens units 120 as viewed from the Z-axis direction. Disposed so as to surround the rectangular shape (that is, arranged to surround the optical axis of the LED element 114 and the lens unit 120 in the rectangular shape), and all the ultraviolet light emitted from the lens unit 120 receives the first light guide member ( 130).

제2 도광 부재(140)는, Z축 방향에서부터 보았을 때, 기판(112)의 네 모서리에 배치된 LED 소자(114) 및 렌즈 유닛(120)을, X축 방향 및 Y축 방향으로 각각 구획하도록, 제1 도광 부재(130)의 내부에 배치되는 단면 L자 형상의 부재이다(도 1(a)). 각 제2 도광 부재(140)는, 제1 도광 부재(130)의 입사 개구(130e)로부터 제1 도광 부재(130)의 내면에 따라 Z축 방향으로 연장되고, 네 모서리의 LED 소자(114)쪽의 면에는, 네 모서리의 LED 소자(114)로부터의 자외광을 도광하는 미러면(140a)(제2 미러면)이 형성되고, 네 모서리의 LED 소자(114)에 인접하는 LED 소자(114)쪽의 면에는, 상기 인접하는 LED 소자(114)로부터의 자외광을 도광하는 미러면(140b)(제3 미러면)이 형성되어 있다. 제2 도광 부재(140)의 Z축 방향의 길이(L)는, 네 모서리의 LED 소자(114)로부터 출사된 자외광의 적어도 일부가 미러면(140a)에서 1회만 반사하면서도, 또한, 미러면(140a)에서 반사된 반사광이, 조사 영역(P)에 있어서, 네 모서리의 LED 소자(114)의 광축(BX)보다 외측을 조사하도록 설정되어 있다(상세한 것은 후술). When viewed from the Z-axis direction, the second light guide member 140 divides the LED element 114 and the lens unit 120 disposed at the four corners of the substrate 112 in the X-axis direction and the Y-axis direction, respectively. And an L-shaped cross section member disposed inside the first light guide member 130 (FIG. 1A). Each second light guiding member 140 extends in the Z-axis direction along the inner surface of the first light guiding member 130 from the incident opening 130e of the first light guiding member 130, and the LED elements 114 at four corners. On the side, a mirror surface 140a (second mirror surface) for guiding ultraviolet light from the four corner LED elements 114 is formed, and the LED element 114 adjacent to the four corner LED elements 114 is formed. ), A mirror surface 140b (third mirror surface) for guiding ultraviolet light from the adjacent LED element 114 is formed. The length L in the Z-axis direction of the second light guiding member 140 reflects at least a portion of the ultraviolet light emitted from the LED element 114 at the four corners only once in the mirror surface 140a, and also in the mirror surface. The reflected light reflected at 140a is set so as to irradiate the outside of the optical axis BX of the LED element 114 at four corners in the irradiation area P (details will be described later).

상기한 바와 같이, 렌즈 유닛(120)으로부터 출사되는 자외광은, 소정의 확산각(예를 들면, 9°)을 가지고 있기 때문에, 제1 도광 부재(130) 및 제2 도광 부재(140)에 의해 각 각도 성분의 자외광이 각각 반사되면서 도광되며, 제1 도광 부재(130)로부터는 대략 균일한 광량 분포의 자외광이 출사된다. 한편, 상세한 것은 후술하지만, 본 실시형태에 있어서는, 제1 도광 부재(130)의 내부에, 네 모서리의 LED 소자(114)로부터의 자외광을 도광하는 제2 도광 부재(140)가 설치되어 있으며, 이에 의해 조사 영역(P)의 네 모서리를 향하는 광속(光束)이 제어되기 때문에, 조사 영역(P)의 네 모서리의 조사 강도도 대략 균일해지도록 조정되어 있다. As described above, since the ultraviolet light emitted from the lens unit 120 has a predetermined diffusion angle (for example, 9 °), the ultraviolet light emitted from the lens unit 120 is applied to the first light guide member 130 and the second light guide member 140. The light is guided while the ultraviolet light of each angular component is reflected, respectively, and the ultraviolet light having a substantially uniform light quantity distribution is emitted from the first light guiding member 130. In addition, although it mentions later in detail, in this embodiment, the 2nd light guide member 140 which guides the ultraviolet light from the LED element 114 of four corners is provided in the inside of the 1st light guide member 130, Since the light beam toward four corners of the irradiation area P is controlled by this, the irradiation intensity | strength of the four corners of the irradiation area P is also adjusted so that it may become substantially uniform.

제1 도광 부재(130)를 통과한 자외광은, 제1 도광 부재(130)의 출사 개구(130f)로부터 출사되어, 조사 대상물(W) 상의 직사각형 형상의 조사 영역(P)이 조사되도록 구성되어 있다. The ultraviolet light passing through the first light guide member 130 is emitted from the exit opening 130f of the first light guide member 130, and is configured to irradiate the rectangular irradiation area P on the object to be irradiated. have.

다음으로, 본 실시형태의 각 렌즈 유닛(120)으로부터 출사되는 자외광의 광로를 설명한다. 한편, 도 1(a)에 나타낸 바와 같이, 본 실시형태의 각구성은, LED 유닛(110)의 중심(C)(즉, 기판(112)의 중심)을 대상점으로 하여 점대칭으로 배치되어 있기 때문에, 기판(112)의 각 변을 따르도록 위치하는 외측 8개의 LED 소자(114) 및 렌즈 유닛(120)으로부터 출사되는 자외광의 광로에 대해서는, 도 1(b)에 나타낸 3개의 LED 소자(114) 및 렌즈 유닛(120)(즉, 도 1(a)의 A-A선 위의 LED 소자(114) 및 렌즈 유닛(120))으로부터 출사되는 자외광의 광로를 대표적으로 이용하여 설명한다. 또한, 기판(112)의 X축 방향 중앙에 위치하는 3개의 LED 소자(114) 및 렌즈 유닛(120)에 대해서는, Y축 방향으로 제2 도광 부재(140)가 없고, 또한, 기판(112)의 Y축 방향 중앙에 위치하는 3개의 LED 소자(114) 및 렌즈 유닛(120)에 대해서는, X축 방향으로 제2 도광 부재(140)가 없기 때문에, 제2 도광 부재(140)가 없는 경우의 광로의 설명으로서, 기판(112)의 X축 방향 중앙에 위치하는 3개의 LED 소자(114) 및 렌즈 유닛(120)(즉, 도 1(a)의 B-B선 위의 LED 소자(114) 및 렌즈 유닛(120))으로부터 출사되는 자외광의 광로를 대표적으로 이용하여 설명한다. Next, the optical path of the ultraviolet light emitted from each lens unit 120 of the present embodiment will be described. On the other hand, as shown to Fig.1 (a), each structure of this embodiment is arrange | positioned in point symmetry centering on the center C of the LED unit 110 (namely, the center of the board | substrate 112) as a target point. Therefore, for the optical paths of the ultraviolet light emitted from the eight outer LED elements 114 and the lens unit 120 positioned along each side of the substrate 112, the three LED elements shown in FIG. 114 and the optical path of the ultraviolet light emitted from the lens unit 120 (that is, the LED element 114 and the lens unit 120 on the AA line in FIG. 1A) will be described. In addition, the three LED elements 114 and the lens unit 120 positioned in the center of the X-axis direction of the substrate 112 do not have the second light guide member 140 in the Y-axis direction, and the substrate 112. In the case of the three LED elements 114 and the lens unit 120 located at the center of the Y-axis direction in the X-axis direction, there is no second light guide member 140 in the X-axis direction. As an explanation of the optical path, the three LED elements 114 and the lens unit 120 (ie, the LED element 114 and the lens on the BB line in FIG. 1A) positioned in the center of the X-axis direction of the substrate 112 are provided. The optical path of the ultraviolet light emitted from the unit 120 is representatively described.

도 2 및 도 3은, 도 1(b)에 나타낸 각 렌즈 유닛(120)으로부터 출사되는 자외광의 광로도이며, 도 2는, 기판(112)의 네 모서리의 LED 소자(114)로부터의 자외광의 광로를 나타내고, 도 3은, 네 모서리의 LED 소자(114)에 인접하는(즉, 제2 도광 부재(140)에 의해 사이에 위치한) LED 소자(114)로부터의 자외광의 광로를 나타내고 있다. 또한, 도 4 및 도 5는, 기판(112)의 X축 방향의 중앙에 위치하는 3개의 LED 소자(114) 및 렌즈 유닛(120)(즉, 도 1(a)의 B-B선 위의 LED 소자(114) 및 렌즈 유닛(120))으로부터의 자외광의 광로도이며, 도 4는, 기판(112) 양단의 LED 소자(114)로부터의 자외광의 광로를 나타내고, 도 5는, 기판(112) 중앙의 LED 소자(114)로부터의 자외광의 광로를 나타내고 있다. 2 and 3 are optical path diagrams of ultraviolet light emitted from each lens unit 120 shown in FIG. 1 (b), and FIG. 2 is a rule from the LED element 114 at four corners of the substrate 112. 3 shows an optical path of ultraviolet light from the LED element 114 adjacent to the LED element 114 at four corners (i.e., interposed by the second light guiding member 140). have. 4 and 5 show three LED elements 114 and a lens unit 120 located at the center of the substrate 112 in the X-axis direction (that is, the LED elements on the BB line of FIG. 1A). An optical path diagram of the ultraviolet light from the 114 and the lens unit 120, and FIG. 4 illustrates an optical path of the ultraviolet light from the LED element 114 across the substrate 112, and FIG. 5 illustrates the substrate 112. The optical path of the ultraviolet light from the central LED element 114 is shown.

도 2 ∼ 도 5에 있어서, 자외광의 광로는 파선을 이용하여 나타냈으며, a1, a2, a3, a4는, 각 렌즈 유닛(120)으로부터 출사되는 최대 확산각의 광선을 나타내고, a1´, a2´, a3´, a4´는, 각각 a1, a2, a3, a4의 반사광을 나타내고 있다. 도 2 및 도 3에 있어서, b2는, 네 모서리의 렌즈 유닛(120)으로부터 출사되어, 미러면(140a)에서 반사되는 광 중, 가장 확산각이 작은(각도 성분이 작은) 광선을 나타내고, b2´는, b2의 반사광을 나타내고 있다. 또한, b1은, b2와 동일한 확산각의 광선으로서, 제1 도광 부재(130)의 미러면(130a, 130b)에 입사하는 광선을 나타내고, b1´은, b1의 반사광을 나타내고 있다. 도 4 및 도 5에 있어서, b1 및 b2는, 도 2 및 도 3의 b1 및 b2와 동일한 확산각의 광선을 나타내고, b1´, b2´는, 각각, b1, b2의 반사광을 나타내고 있다. In FIGS. 2-5, the optical path of the ultraviolet light was shown using the broken line, and a1, a2, a3, and a4 represent the light rays of the maximum diffusion angle emitted from each lens unit 120, and a1 'and a2. ′, A3 ′, and a4 ′ represent reflected light of a1, a2, a3, and a4, respectively. In FIG. 2 and FIG. 3, b2 represents the light ray emitted from the lens unit 120 at four corners and reflected by the mirror surface 140a with the smallest diffuse angle (small angle component), b2 ´ represents the reflected light of b2. In addition, b1 is a light beam having the same diffusion angle as b2, and represents a light beam incident on the mirror surfaces 130a and 130b of the first light guide member 130, and b1 'represents the reflected light of b1. In FIG.4 and FIG.5, b1 and b2 have shown the light beam of the same diffusion angle as b1 and b2 of FIG.2 and FIG.3, and b1 'and b2' showed the reflected light of b1 and b2, respectively.

도 2 및 도 3에 있어서, b3, b4는, 중앙의 렌즈 유닛(120)으로부터 출사되어, 미러면(140b)에서 반사되는 광 중, 가장 확산각이 작은(각도 성분이 작은) 광선을 나타내고, b3´, b4´는, 각각, b3, b4의 반사광을 나타내고 있다. 도 4 및 도 5에 있어서, b3 및 b4는, 도 2 및 도 3의 b3 및 b4와 동일한 확산각의 광선을 나타내고, b3´, b4´는, 각각, b3, b4의 반사광을 나타내고 있다. 2 and 3, b3 and b4 represent light rays emitted from the central lens unit 120 and reflected by the mirror surface 140b having the smallest diffusing angle (smallest angular component), b3 'and b4' represent the reflected light of b3 and b4, respectively. In FIG.4 and FIG.5, b3 and b4 have shown the light beam of the same diffusion angle as b3 and b4 of FIG.2 and FIG.3, and b3 'and b4' showed the reflected light of b3 and b4, respectively.

우선, 도 4 및 도 5를 이용하여, 인접하는 LED 소자(114) 사이에 제2 도광 부재(140)가 없는 경우에 관하여 설명한다. 도 4에 나타낸 바와 같이, 기판(112)의 X축 방향의 중앙, Y축 방향 양단에 위치하는 LED 소자(114)로부터의 자외광은, 각 렌즈 유닛(120)을 통과하여, 소정의 확산각으로 넓어지고, 그 일부(광선(a1, b1))는, 미러면(130a, 130b)에 의해 1회만 반사되어(광선(a1´, b1´)), 조사 대상물(W) 상의 직사각형 형상의 조사 영역(P)의 중앙부(Pc)를 향해 조사된다. 또한, 기판(112)의 X축 방향의 중앙, Y축 방향 양단에 위치하는 LED 소자(114)로부터의 자외광의 다른 일부(광선(a2, b2))는, 미러면(130a, 130b)에 닿지 않고 조사 대상물(W) 상의 직사각형 형상의 조사 영역(P)의 중앙부(Pc)를 향해 조사된다. 이처럼, 기판(112)의 X축 방향의 중앙, Y축 방향 양단에 위치하는 LED 소자(114)로부터의 광선(a1)과 광선(b1)의 범위의 자외광(즉, 광선(b1)의 확산각 이상 광선(a1)의 확산각 이하의 범위의 확산각을 가지는 자외광), 및 광선(a2)과 광선(b2)의 범위의 자외광(즉, 광선(b2)의 확산각 이상 광선(a2)의 확산각 이하의 범위의 확산각을 가지는 자외광)은, 조사 영역(P)의 중앙부(Pc)를 조사하도록 구성되어 있다. 한편, 렌즈 유닛(120)으로부터 출사되는 광 중, 광선(b1, b2)보다 확산각이 작은(각도 성분이 작은) 광에 대해서는, 미러면(130a, 130b)에 의해 1회만 반사되거나, 또는 반사되지 않고 조사 영역(P)을 조사한다. First, the case where there is no second light guide member 140 between adjacent LED elements 114 will be described with reference to FIGS. 4 and 5. As shown in FIG. 4, ultraviolet light from the LED element 114 located at the center of the X-axis direction of the substrate 112 and at both ends of the Y-axis direction passes through each lens unit 120 and has a predetermined diffusion angle. Part of the beams (rays a1 and b1) are reflected only once by the mirror surfaces 130a and 130b (beams a1 'and b1'), and the rectangular irradiation on the object to be irradiated W is irradiated. Irradiation toward the center part Pc of the area | region P is carried out. Moreover, the other part of the ultraviolet light (light rays a2 and b2) from the LED element 114 located in the center of the X-axis direction and the Y-axis direction both ends of the board | substrate 112 is provided in the mirror surface 130a, 130b. It irradiates toward the center part Pc of the rectangular irradiation area P on the irradiation object W without touching. In this way, the ultraviolet ray (ie, the light ray b1) in the range of the light ray a1 and the light ray b1 from the LED element 114 located at the center of the X-axis direction and both ends of the Y-axis direction of the substrate 112. Ultraviolet light having a diffusion angle in the range below the diffusion angle of each abnormal light beam a1, and ultraviolet light in the range of the light beam a2 and the light beam b2 (that is, the light beam of the diffusion angle abnormal light beam a2) (Ultraviolet light) having a diffusion angle in the range below the diffusion angle) is configured to irradiate the central portion Pc of the irradiation area P. On the other hand, among the light emitted from the lens unit 120, the light having a smaller diffusion angle (smaller angle component) than the light rays b1 and b2 is reflected only once by the mirror surfaces 130a and 130b or is reflected The irradiation area P is irradiated.

도 5에 나타낸 바와 같이, 기판(112)의 중앙(X축 방향 및 Y축 방향의 중앙)에 위치하는 LED 소자(114)로부터의 자외광은, 렌즈 유닛(120)을 통과하여, 소정의 확산각으로 넓어지고(광선(a3, a4, b3, b4)), 미러면(130a, 130b)에 닿지 않고 조사 대상물(W) 상의 직사각형 형상의 조사 영역(P)을 향해 조사된다. 그리고, 광선(a3)과 광선(b3)의 범위의 자외광(즉, 광선(b3)의 확산각 이상 광선(a3)의 확산각 이하의 범위의 확산각을 가지는 자외광), 및 광선(a4)과 광선(b4)의 범위의 자외광(즉, 광선(b4)의 확산각 이상 광선(a4)의 확산각 이하의 범위의 확산각을 가지는 자외광)은, 조사 영역(P)의 주변부(Pe)를 조사하고, 광선(b3, b4)보다 확산각이 작은(각도 성분이 작은) 광은, 조사 영역(P)의 중앙부(Pc)를 조사하도록 구성되어 있다. As shown in FIG. 5, the ultraviolet light from the LED element 114 positioned at the center (center in the X-axis direction and the Y-axis direction) of the substrate 112 passes through the lens unit 120 and is diffused to a predetermined level. It is widened at an angle (light rays a3, a4, b3, b4), and is irradiated toward the rectangular irradiation area P on the irradiated object W without touching the mirror surfaces 130a, 130b. Ultraviolet light in the range between the light beam a3 and the light beam b3 (that is, the ultraviolet light having a diffusion angle in the range not less than the diffusion angle of the light beam b3 or less than the diffusion angle of the light beam a3), and the light beam a4 ) And ultraviolet light in the range of the light ray b4 (that is, ultraviolet light having a diffusion angle in the range of the diffusion angle of the light ray b4 or more and the diffusion angle of the light ray a4 or less) is the peripheral portion of the irradiation area P. Pe is irradiated, and the light whose diffusion angle is smaller than the light rays b3 and b4 (the angle component is small) is comprised so that the center part Pc of the irradiation area P may be irradiated.

이처럼, 인접하는 LED 소자(114) 사이에 제2 도광 부재(140)가 없으면, 조사 영역(P)의 주변부(Pe)에는, 기판(112)의 Y축 방향 중앙에 위치하는 LED 소자(114)로부터의 자외광(도 5의 광선(a3, a4, b3, b4))이 직접 입사한다. As described above, when there is no second light guiding member 140 between the adjacent LED elements 114, the LED element 114 positioned at the center of the Y-axis direction of the substrate 112 at the peripheral portion Pe of the irradiation area P. Ultraviolet light (light rays a3, a4, b3, b4 in FIG. 5) directly enters.

다음으로, 도 2 및 도 3을 이용하여, 인접하는 LED 소자(114) 사이에 제2 도광 부재(140)가 있는 경우에 관하여 설명한다. 도 2에 나타낸 바와 같이, 기판(112)의 네 모서리의 LED 소자(114)로부터의 자외광은, 각 렌즈 유닛(120)을 통과하여, 소정의 확산각으로 넓어지고, 그 일부는, 미러면(130a, 130b)에 의해 1회만 반사되고(광선(a1), b1), 또 다른 일부는, 미러면(140a)에 의해 1회만 반사된다(광선(a2, b2)). 그리고, 미러면(130a, 130b)에 의해 반사된 광(광선(a1´, b1´))은, 조사 대상물(W) 상의 직사각형 형상의 조사 영역(P)의 중앙부(Pc)(네 모서리의 LED 소자(114)의 광축(BX)보다 내측의 영역)를 향해 조사되고, 미러면(140a)에 의해 반사된 광(광선(a2´, b2´))은, 조사 대상물(W) 상의 직사각형 형상의 조사 영역(P)의 주변부(Pe)(네 모서리의 LED 소자(114)의 광축(BX)보다 외측의 영역)를 향해 조사된다. 이처럼, 본 실시형태에 있어서는, 미러면(140a)에 의해 반사된 광(즉, 광선(a2´)과 광선(b2´)의 범위의 광)에 의해 조사 영역(P)의 주변부(Pe)를 조사함으로써, 조사 영역(P)의 네 모서리의 조사 강도를 대략 균일해지도록 조정하고 있다. 한편, 렌즈 유닛(120)으로부터 출사되는 광 중, 광선(b1, b2)보다 확산각이 작은(각도 성분이 작은) 광에 대해서는, 도 4와 마찬가지로(즉, 인접하는 LED 소자(114) 사이에 제2 도광 부재(140)가 없는 경우와 마찬가지로), 미러면(130a, 130b)에 의해 1회만 반사되거나, 또는 반사되지 않고 조사 영역(P)을 조사한다. Next, the case where the 2nd light guide member 140 exists between the adjacent LED elements 114 is demonstrated using FIG. 2 and FIG. As shown in FIG. 2, the ultraviolet light from the LED elements 114 at the four corners of the substrate 112 passes through each lens unit 120 and widens at a predetermined diffusion angle, and a part thereof is a mirror surface. It is reflected only once by 130a and 130b (light rays a1 and b1), and another part is reflected only once by the mirror surface 140a (light rays a2 and b2). The light reflected by the mirror surfaces 130a and 130b (lights a1 'and b1') is the central portion Pc of the rectangular irradiation area P on the irradiated object W (four corner LEDs). The light (rays a2 'and b2') irradiated toward the optical axis BX of the element 114 and reflected by the mirror surface 140a is of a rectangular shape on the irradiation object W. Irradiation toward the peripheral part Pe (the area | region outside the optical axis BX of the LED element 114 of four corners) of the irradiation area P is carried out. As described above, in the present embodiment, the peripheral portion Pe of the irradiation area P is formed by the light reflected by the mirror surface 140a (that is, light in the range of the light rays a2 'and b2'). By irradiating, the irradiation intensity of the four corners of the irradiation area P is adjusted to become substantially uniform. On the other hand, among the light emitted from the lens unit 120, light having a smaller diffusion angle (smaller angle component) than the light rays b1 and b2 is similar to that of FIG. 4 (that is, between the adjacent LED elements 114). As in the case where there is no second light guiding member 140), the irradiation area P is irradiated by the mirror surfaces 130a and 130b only once or without being reflected.

도 3에 나타낸 바와 같이, 네 모서리의 LED 소자(114)에 인접하는(즉, 제2 도광 부재(140)에 의해 사이에 낀) LED 소자(114)로부터의 자외광은, 렌즈 유닛(120)을 통과하여, 소정의 확산각으로 넓어지고, 그 일부는, 네 모서리의 LED 소자(114)와의 사이에 설치된 제2 도광 부재(140)의 미러면(140b)에 의해 1회만 반사된다(광선(a3, a4, b3, b4)). 그리고, 미러면(140b)에 의해 반사된 광(광선(a3´, a4´, b3´, b4´))은, 조사 대상물(W) 상의 직사각형 형상의 조사 영역(P)의 중앙부(Pc)를 향해 조사된다. 이처럼, 본 실시형태에 있어서는, 미러면(140b)에 의해 반사된 광(광선(a3´)과 광선(b3´)의 범위의 자외광, 및 광선(a4´)과 광선(b4´)의 범위의 자외광)이 조사 영역(P)의 주변부(Pe)를 조사하지 않도록 구성하고 있다. 한편, 광선(b3, b4)보다 확산각이 작은(각도 성분이 작은) 광은, 도 5와 마찬가지로(즉, 인접하는 LED 소자(114) 사이에 제2 도광 부재(140)가 없는 경우와 마찬가지로), 조사 영역(P)의 중앙부(Pc)를 조사하고, 주변부(Pe)를 조사하지 않도록 구성되어 있다. As shown in FIG. 3, ultraviolet light from the LED element 114 adjacent to the four corner LED elements 114 (that is, sandwiched by the second light guiding member 140) is the lens unit 120. It passes through and widens at a predetermined diffusion angle, a part of which is reflected only once by the mirror surface 140b of the second light guide member 140 provided between the LED elements 114 at four corners (rays ( a3, a4, b3, b4)). And the light (rays a3 ', a4', b3 ', b4') reflected by the mirror surface 140b has the center part Pc of the rectangular irradiation area P on the irradiation object W. Is surveyed toward. As described above, in the present embodiment, the light reflected by the mirror surface 140b (ultraviolet light in the range of the light beam a3 'and the light beam b3', and the light beam a4 'and the light beam b4'). UV light) is configured to not irradiate the peripheral portion Pe of the irradiation area P. On the other hand, light having a diffusion angle smaller than the light rays b3 and b4 (the angular component) is the same as in FIG. 5 (that is, when there is no second light guiding member 140 between the adjacent LED elements 114). ), The center portion Pc of the irradiation area P is irradiated, and the peripheral portion Pe is not irradiated.

전술한 바와 같이, 본 실시형태에 있어서는, 인접하는 LED 소자(114) 사이에 제2 도광 부재(140)가 없으면, 조사 영역(P)의 주변부(Pe)에는, 기판(112)의 Y축 방향 중앙에 위치하는 LED 소자(114)로부터의 자외광(도 5의 광선(a3)과 광선(b3)의 범위의 자외광, 및 광선(a4)과 광선(b4)의 범위의 자외광)이 직접 입사한다. 한편, 인접하는 LED 소자(114) 사이에 제2 도광 부재(140)가 있으면, 조사 영역(P)의 주변부(Pe)에는, Y축 방향 양단(즉, 네 모서리의 LED 소자(114))에 위치하는 LED 소자(114)로부터의 자외광(도 2의 광선(a2)과 광선(b2)의 범위의 자외광)의 반사광(도 2의 광선(a2´)과 광선(b2´)의 범위의 자외광)이 입사한다. 즉, 조사 영역(P)의 네 모서리의 주변부(Pe)는, 미러면(140b)에 의한 반사광에 의해 조사되기 때문에, LED 소자(114)로부터의 자외광이 직접 입사하는 경우(즉, 제2 도광 부재(140)가 없는 경우)와 비교하여, 미러면(140b)의 반사율만큼 조사 강도가 작아지게 된다. As described above, in the present embodiment, if there is no second light guide member 140 between the adjacent LED elements 114, the Y-axis direction of the substrate 112 is in the peripheral portion Pe of the irradiation area P. As shown in FIG. Ultraviolet light from the centrally located LED element 114 (ultraviolet light in the range of light rays a3 and b3 in FIG. 5, and ultraviolet light in the range of light rays a4 and light rays b4) is directly Enter. On the other hand, if there is a second light guiding member 140 between the adjacent LED elements 114, the peripheral portion Pe of the irradiation area P is provided at both ends of the Y-axis direction (that is, the LED elements 114 at four corners). Of the reflected light (ultraviolet light in the range of light rays a2 and b2 of FIG. 2) from the LED element 114 located (in the range of light rays a2 'and b2') Ultraviolet light) is incident. That is, since the peripheral part Pe of the four corners of the irradiation area P is irradiated by the reflected light by the mirror surface 140b, when the ultraviolet light from the LED element 114 directly injects (that is, 2nd Compared with the case where there is no light guide member 140), the irradiation intensity is reduced by the reflectance of the mirror surface 140b.

이처럼, 본 실시형태에 있어서는, 네 모서리의 LED 소자(114)로부터의 자외광을 도광하는 제2 도광 부재(140)를 설치함으로써, 조사 영역(P)의 네 모서리를 향하는 자외광의 조사 강도를 저하시키고, 이에 의해 조사 영역(P)의 네 모서리의 조사 강도도 대략 균일해지도록 조정하고 있다. Thus, in this embodiment, by providing the 2nd light guide member 140 which guides the ultraviolet light from the LED element 114 of four corners, the irradiation intensity of the ultraviolet light toward four corners of the irradiation area P is adjusted. It adjusts so that irradiation intensity of the four corners of irradiation area P may also become substantially uniform by this.

도 6은, 본 실시형태의 광 조사장치(100)로부터 출사되는 자외광의 시뮬레이션 결과이며, 도 1(a)의 A-A선 위의 3개의 LED 소자(114)로부터 출사되는 자외광의 조사 영역(P) 상에 있어서의 Y축 방향의 조사 강도 분포이다. 도 6의 세로축은, 조사 강도(mW)이고, 가로축은, 기판(112)의 Y축 방향의 중심을 0으로 하는 Y축 방향의 거리(mm)이다. 또한, 도 6 중, 실선(α)은, 본 실시형태의 광 조사장치(100)의 조사 강도 분포를 나타내고, 파선(β)은, 본 실시형태의 광 조사장치(100)에서 제2 도광 부재(140)를 떼어냈을 경우(즉, 비교예)의 조사 강도 분포를 나타내고 있다. 한편, 도 6의 시뮬레이션에 있어서는, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율을 90%로 하고, 제2 도광 부재(140)의 미러면(140a) 및 미러면(140b)의 반사율도 90%로 하고 있다. FIG. 6 is a simulation result of ultraviolet light emitted from the light irradiation apparatus 100 of the present embodiment, and the irradiation region of ultraviolet light emitted from the three LED elements 114 on the AA line of FIG. It is irradiation intensity distribution of the Y-axis direction on P). 6 is irradiation intensity (mW), and a horizontal axis is the distance (mm) of the Y-axis direction which makes the center of the Y-axis direction of the board | substrate 112 zero. 6, the solid line (alpha) shows the irradiation intensity distribution of the light irradiation apparatus 100 of this embodiment, and the broken line (beta) shows the 2nd light guide member in the light irradiation apparatus 100 of this embodiment. The irradiation intensity distribution in the case of removing (140) (that is, a comparative example) is shown. On the other hand, in the simulation of FIG. 6, the reflectances of the mirror surfaces 130a, 130b, 130c, and 130d of the first light guide member 130 are set to 90%, and the mirror surface 140a of the second light guide member 140 and The reflectance of the mirror surface 140b is also 90%.

도 6에 나타낸 바와 같이, 제2 도광 부재(140)를 설치함으로써, Y축 방향 ± 35mm의 위치에서 급격히 상승하는 특성을 유지하면서도, 조사 영역(P) 중앙의 강도를 유지하면서 조사 영역(P)의 네 모서리(도 6 중, -20 ∼ -35mm의 위치, +20 ∼ +35mm의 위치)의 조사 강도를 저하시켜, 조사 영역(P) 전체에서 대략 균일한 조사 강도 분포가 얻어지는 것을 알 수 있다. As shown in FIG. 6, by providing the second light guiding member 140, the irradiation area P is maintained while maintaining the intensity of the center of the irradiation area P while maintaining the characteristic of rapidly rising at a position in the Y axis direction of ± 35 mm. It can be seen that the irradiation intensity of the four corners (the position of -20 to -35mm and the position of +20 to + 35mm in Fig. 6) of the lowering is lowered, and a substantially uniform irradiation intensity distribution is obtained in the entire irradiation area P. .

이상이 본 실시형태에 대한 설명이지만, 본 발명은, 상기한 구성에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 여러 가지 변형이 가능하다. Although the above is description of this embodiment, this invention is not limited to said structure, A various deformation | transformation is possible within the scope of the technical idea of this invention.

예를 들면, 본 실시형태에 있어서는, LED 소자(114)가 X축 방향을 따라 3개 나열되고, Y축 방향으로 3개 나열되는 구성에 대하여 설명했지만, 기판(112)의 네 모서리의 LED 소자(114)에 대해 제2 도광 부재(140)를 설치하면 되고, LED 소자(114)가, X축 방향을 따라 M개(M은, 2 이상의 정수) 나열되고, Y축 방향으로 N개(N은, 2 이상의 정수) 나열되는 구성으로 적용하는 것도 가능하다. For example, in this embodiment, although the structure which three LED elements 114 are arranged along the X-axis direction and three are arranged in the Y-axis direction was demonstrated, LED element of the four corners of the board | substrate 112 was demonstrated. What is necessary is just to provide the 2nd light guide member 140 with respect to 114, and M LEDs (M is an integer of 2 or more) are arranged along the X-axis direction, and N pieces (N is (N) in the Y-axis direction. Is an integer of 2 or more).

(변형예) (Variation)

도 7 ∼ 9는, 본 실시형태의 광 조사장치(100)의 제1 ∼ 제3 변형예에 따른 광 조사장치(101 ∼ 103)를 설명하는 도면이다. 도 7(a), 도 8(a), 도 9(a)는, 광 조사장치(101 ∼ 103)를 출사구(出射口) 쪽에서부터 보았을 때의 정면도이며, 도 7(b), 도 8(b), 도 9(b)는, 도 7(a), 도 8(a), 도 9(a)의 C-C선 위의 LED 소자(114)로부터 출사되는 자외광의 조사 영역(P) 상에 있어서의 Y축 방향의 조사 강도 분포(시뮬레이션)이다. 한편, 도 7(b), 도 8(b), 도 9(b)의 세로축은, 조사 강도(mW)이고, 가로축은, 기판(112)의 Y축 방향 의 중심을 0으로 하는 Y축 방향의 거리(mm)이다. 또한, 도 7(b), 도 8(b), 도 9(b) 중, 실선(α)은, 각 변형예의 조사 강도 분포를 나타내고, 파선(β)은, 각 변형예에서 제2 도광 부재(140)를 떼어냈을 경우(즉, 비교예)의 조사 강도 분포를 나타내고 있다. 한편, 도 7(b), 도 8(b), 도 9(b)의 시뮬레이션에 있어서는, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율을 90%로 하고, 제2 도광 부재(140)의 미러면(140a) 및 미러면(140b)의 반사율도 90%로 하고 있다. 7-9 is a figure explaining the light irradiation apparatus 101-103 which concerns on the 1st-3rd modification of the light irradiation apparatus 100 of this embodiment. 7 (a), 8 (a) and 9 (a) are front views when the light irradiation apparatuses 101 to 103 are viewed from the exit port side, and FIGS. 7 (b) and 8 are shown. (b) and FIG. 9 (b) show the ultraviolet ray irradiation region P emitted from the LED element 114 on the CC lines of FIGS. 7 (a), 8 (a) and 9 (a). Irradiation intensity distribution (simulation) in the Y-axis direction in. In addition, the vertical axis | shaft of FIG.7 (b), FIG.8 (b), FIG.9 (b) is irradiation intensity (mW), and the horizontal axis is the Y-axis direction which makes the center of the Y-axis direction of the board | substrate 112 zero. Is the distance in mm. In addition, in FIG.7 (b), FIG.8 (b), and FIG.9 (b), the solid line (alpha) shows irradiation intensity distribution of each modification, and the broken line (beta) shows a 2nd light guide member in each modification. The irradiation intensity distribution in the case of removing (140) (that is, a comparative example) is shown. In addition, in the simulation of FIG.7 (b), FIG.8 (b), FIG.9 (b), the reflectance of the mirror surface 130a, 130b, 130c, 130d of the 1st light guide member 130 shall be 90%. The reflectances of the mirror surface 140a and the mirror surface 140b of the second light guide member 140 are also 90%.

(제1 변형예) (First modification)

도 7(a)에 나타낸 바와 같이, 제1 변형예에 따른 광 조사장치(101)는, LED 소자(114)가 2개(X축 방향) × 2개(Y축 방향)의 형태로 배치되어 있으며, 제2 도광 부재(140)가 십자 형상으로 일체적으로 형성되어 있다는 점에서, 제1 실시형태에 따른 광 조사장치(100)의 구성과 상이하고, LED 유닛(110), 렌즈 유닛(120), 제1 도광 부재(130) 등, 그 밖의 구성은 제1 실시형태에 따른 광 조사장치(100)의 구성과 동일하다. 본 변형예에 있어서는, 4개의 LED 소자(114)가 모두 기판(112)의 각 네 모서리에 위치하고, 제2 도광 부재(140)에 의해 구획되어 있기 때문에, 제2 도광 부재(140)에는, 네 모서리의 LED 소자(114)로부터의 자외광을 도광하는 미러면(140a)(제2 미러면)만이 형성되어 있다. As shown in Fig. 7A, in the light irradiation apparatus 101 according to the first modification, the LED elements 114 are arranged in the form of two (X-axis direction) x two (Y-axis direction). The second light guiding member 140 is integrally formed in a cross shape, and is different from the configuration of the light irradiation apparatus 100 according to the first embodiment. The LED unit 110 and the lens unit 120 are different from each other. ), The 1st light guide member 130, etc. are the same as the structure of the light irradiation apparatus 100 which concerns on 1st Embodiment. In the present modification, since all four LED elements 114 are located at each four corners of the substrate 112 and are partitioned by the second light guide member 140, the second light guide member 140 has four corners. Only the mirror surface 140a (second mirror surface) for guiding the ultraviolet light from the corner LED element 114 is formed.

도 7(b)에 나타낸 바와 같이, 제1 변형예에 따른 광 조사장치(101)에 있어서도, 제2 도광 부재(140)를 설치함으로써, Y축 방향 ± 20mm의 위치에서 급격히 상승하는 특성을 유지하면서도, 조사 영역(P)의 네 모서리(도 7(b) 중, -5 ∼ -15mm의 위치, +5 ∼ +15mm의 위치)의 조사 강도를 저하시켜, 조사 영역(P) 전체에서 대략 균일한 조사 강도 분포가 얻어지는 것을 알 수 있다. As shown in Fig. 7 (b), also in the light irradiation apparatus 101 according to the first modification, the second light guide member 140 is provided to maintain the characteristic of rapidly rising at a position in the Y axis direction of 20 mm. At the same time, the irradiation intensity of the four corners of the irradiation area P (the position of -5 to -15 mm, the position of +5 to +15 mm in FIG. 7B) is lowered, and is substantially uniform in the entire irradiation area P. It can be seen that one irradiation intensity distribution is obtained.

(제2 변형예) (Second modification)

도 8(a)에 나타낸 바와 같이, 제2 변형예에 따른 광 조사장치(102)는, LED 소자(114)가 4개(X축 방향) × 4개(Y축 방향)의 형태로 배치되어 있다는 점에서, 제1 실시형태에 따른 광 조사장치(100)의 구성과 상이하고, LED 유닛(110), 렌즈 유닛(120), 제1 도광 부재(130), 제2 도광 부재(140) 등, 그 밖의 구성은 제1 실시형태에 따른 광 조사장치(100)의 구성과 동일하다. 본 변형예에 있어서도, 제1 실시형태에 따른 광 조사장치(100)와 마찬가지로, 기판(112) 상의 네 모서리의 LED 소자(114)가 제2 도광 부재(140)에 의해 구획되어 있다. 그리고, 도 8(b)에 나타낸 바와 같이, 제2 변형예에 따른 광 조사장치(102)에 있어서도, 제2 도광 부재(140)를 설치함으로써, Y축 방향 ± 45mm의 위치에서 급격히 상승하는 특성을 유지하면서도, 조사 영역(P)의 네 모서리(도 8(b) 중, -30 ∼ -45mm의 위치, +30 ∼ +45mm의 위치)의 조사 강도를 저하시켜, 조사 영역(P) 전체에서 대략 균일한 조사 강도 분포가 얻어진다는 것을 알 수 있다. As shown in Fig. 8A, in the light irradiation apparatus 102 according to the second modification, the LED elements 114 are arranged in the form of four (X-axis direction) x four (Y-axis direction). Since it exists, it differs from the structure of the light irradiation apparatus 100 which concerns on 1st Embodiment, and is the LED unit 110, the lens unit 120, the 1st light guide member 130, the 2nd light guide member 140, etc. The other configuration is the same as that of the light irradiation apparatus 100 according to the first embodiment. Also in this modification, like the light irradiation apparatus 100 which concerns on 1st Embodiment, the LED element 114 of four corners on the board | substrate 112 is partitioned off by the 2nd light guide member 140. As shown in FIG. And as shown in FIG.8 (b), also in the light irradiation apparatus 102 which concerns on a 2nd modification, the characteristic which rises rapidly in the position of + -45mm of a Y-axis direction by providing the 2nd light guide member 140 is provided. While maintaining the radiation intensity of the four corners of the irradiation area P (the position of -30 to -45 mm and the position of +30 to +45 mm in FIG. 8B), It can be seen that a substantially uniform irradiation intensity distribution is obtained.

(제3 변형예) (Third modification)

도 9(a)에 나타낸 바와 같이, 제3 변형예에 따른 광 조사장치(103)는, LED 소자(114)가 5개(X축 방향) × 5개(Y축 방향)의 형태로 배치되어 있다는 점에서, 제1 실시형태에 따른 광 조사장치(100)의 구성과 상이하고, LED 유닛(110), 렌즈 유닛(120), 제1 도광 부재(130), 제2 도광 부재(140) 등, 그 밖의 구성은 제1 실시형태에 따른 광 조사장치(100)의 구성과 동일하다. 본 변형예에 있어서도, 제1 실시형태에 따른 광 조사장치(100)와 마찬가지로, 기판(112) 상의 네 모서리의 LED 소자(114)가 제2 도광 부재(140)에 의해 구획되어 있다. 그리고, 도 9(b)에 나타낸 바와 같이, 제3 변형예에 따른 광 조사장치(103)에 있어서도, 제2 도광 부재(140)를 설치함으로써, Y축 방향 ± 60mm의 위치에서 급격히 상승하는 특성을 유지하면서도, 조사 영역(P)의 네 모서리(도 9(b) 중, -40 ∼ -55mm의 위치, +40 ∼ +55mm의 위치)의 조사 강도를 저하시켜, 조사 영역(P) 전체에서 대략 균일한 조사 강도 분포가 얻어진다는 것을 알 수 있다. As shown in Fig. 9A, in the light irradiation apparatus 103 according to the third modification, the LED elements 114 are arranged in the form of five (X-axis direction) x five (Y-axis direction). Since it exists, it differs from the structure of the light irradiation apparatus 100 which concerns on 1st Embodiment, and is the LED unit 110, the lens unit 120, the 1st light guide member 130, the 2nd light guide member 140, etc. The other configuration is the same as that of the light irradiation apparatus 100 according to the first embodiment. Also in this modification, like the light irradiation apparatus 100 which concerns on 1st Embodiment, the LED element 114 of four corners on the board | substrate 112 is partitioned off by the 2nd light guide member 140. As shown in FIG. And as shown in FIG.9 (b), also in the light irradiation apparatus 103 which concerns on 3rd modification, the provision of the 2nd light guide member 140 raises | hangs rapidly in the position of +/- 60mm of the Y-axis direction. While maintaining the radiation intensity of the four corners of the irradiation area P (position of -40 to -55 mm, position of +40 to +55 mm in FIG. 9 (b)), It can be seen that a substantially uniform irradiation intensity distribution is obtained.

또한, 제1 실시형태, 제1 ∼ 제3 변형예에 있어서는, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율을 90%로 하고, 제2 도광 부재(140)의 미러면(140a) 및 미러면(140b)의 반사율도 90%로 했지만, 제2 도광 부재(140)의 미러면(140a)의 반사율은, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율 이하이면 되고, 제2 도광 부재(140)의 미러면(140a)의 반사율을 조정함으로써, 조사 영역(P)의 네 모서리의 조사 강도를 보다 균일해지도록 조정할 수 있다. In addition, in 1st Embodiment and 1st-3rd modification, the reflectance of the mirror surface 130a, 130b, 130c, 130d of the 1st light guide member 130 is set to 90%, and the 2nd light guide member 140 is carried out. Although the reflectances of the mirror surface 140a and the mirror surface 140b of the () are 90%, the reflectance of the mirror surface 140a of the second light guide member 140 is the mirror surface 130a of the first light guide member 130. , 130b, 130c, 130d or less, and the reflectance of the mirror surface 140a of the second light guide member 140 can be adjusted to make the irradiation intensity of the four corners of the irradiation area P more uniform. have.

도 10은, 제1 실시형태에 따른 광 조사장치(100)에 있어서, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율과, 제2 도광 부재(140)의 미러면(140a)의 반사율을 변경했을 때의 조사 강도 분포(시뮬레이션)이다. 한편, 도 10은, 도 6과 마찬가지로, 도 1(a)의 A-A선 위의 3개의 LED 소자(114)로부터 출사되는 자외광의 조사 영역(P) 상에 있어서의 Y축 방향의 조사 강도 분포이며, 세로축은, 조사 강도(mW)이고, 가로축은, 기판(112)의 Y축 방향의 중심을 0으로 하는 Y축 방향의 거리(mm)이다. FIG. 10 shows the reflectance of the mirror surfaces 130a, 130b, 130c, and 130d of the first light guide member 130 and the second light guide member 140 in the light irradiation apparatus 100 according to the first embodiment. Irradiation intensity distribution (simulation) when the reflectance of the mirror surface 140a is changed. On the other hand, FIG. 10 is the irradiation intensity distribution of the Y-axis direction on the irradiation area P of the ultraviolet light radiate | emitted from the three LED elements 114 on the AA line of FIG. 1 (a) similarly to FIG. The vertical axis represents irradiation intensity (mW), and the horizontal axis represents distance (mm) in the Y-axis direction in which the center of the Y-axis direction of the substrate 112 is zero.

도 10 중, (가)는, 본 실시형태의 광 조사장치(100)(즉, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율이 90%, 제2 도광 부재(140)의 미러면(140a)의 반사율이 90%일 때)의 조사 강도 분포이다. 이 때, 가로축 -33 ∼ +33mm의 범위를 유효 조사 영역으로 하면, 유효 조사 영역 내의 균일도((최대 강도 - 최소 강도) / (최대 강도 + 최소 강도) × 100(%))는 8.4%가 되었다. In FIG. 10, (a), the reflectance of the light irradiation apparatus 100 (namely, the mirror surface 130a, 130b, 130c, 130d of the 1st light guide member 130 of this embodiment is 90%, 2nd light guide). Irradiation intensity distribution of the mirror surface 140a of the member 140). At this time, if the range of the horizontal axis -33 to +33 mm was set as the effective irradiation area, the uniformity ((maximum intensity-minimum intensity) / (maximum intensity + minimum intensity) x 100 (%)) in the effective irradiation area was 8.4%. .

도 10 중, (나)는, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율을 90%, 제2 도광 부재(140)의 미러면(140a)의 반사율을 75%로 했을 때의 변형예의 조사 강도 분포이다. 이 때, 유효 조사 영역 내의 균일도는 8.7%가 되었다. In FIG. 10, (b) represents 90% of the reflectance of the mirror surfaces 130a, 130b, 130c, and 130d of the first light guide member 130, and the reflectance of the mirror surface 140a of the second light guide member 140. Irradiation intensity distribution of the modification at the time of 75%. At this time, the uniformity in the effective irradiation area was 8.7%.

도 10중, (다)는, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율을 90%로 하고, 본 실시형태의 광 조사장치(100)에서 제2 도광 부재(140)를 떼어냈을 경우의 비교예의 조사 강도 분포이다. 이 때, 유효 조사 영역 내의 균일도는 10.9%가 되었다. In FIG. 10, (c) shows the reflectance of the mirror surface 130a, 130b, 130c, 130d of the 1st light-guide member 130 being 90%, and the 2nd light guide in the light irradiation apparatus 100 of this embodiment. Irradiation intensity distribution of the comparative example when the member 140 is removed. At this time, the uniformity in the effective irradiation area was 10.9%.

도 10중, (라)는, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율을 80%, 제2 도광 부재(140)의 미러면(140a)의 반사율을 90%로 했을 때의 비교예의 조사 강도 분포이다. 이 때, 유효 조사 영역 내의 균일도는 9.6%가 되었다. In FIG. 10, (d) indicates a reflectance of 80% of the mirror surfaces 130a, 130b, 130c, and 130d of the first light guide member 130 and a reflectance of the mirror surface 140a of the second light guide member 140. It is the irradiation intensity distribution of the comparative example at the time of 90%. At this time, the uniformity in the effective irradiation area was 9.6%.

도 10 중, (마)는, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율을 70%, 제2 도광 부재(140)의 미러면(140a)의 반사율을 90%로 했을 때의 비교예의 조사 강도 분포이다. 이 때, 유효 조사 영역 내의 균일도는 11.0%가 되었다. In FIG. 10, (e) indicates 70% of the reflectance of the mirror surfaces 130a, 130b, 130c, and 130d of the first light guide member 130, and the reflectance of the mirror surface 140a of the second light guide member 140. It is the irradiation intensity distribution of the comparative example at the time of 90%. At this time, the uniformity in the effective irradiation area was 11.0%.

이처럼, 제2 도광 부재(140)의 미러면(140a)의 반사율을, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율 이하로 설정하면, 유효 조사 영역 내의 균일도를 9.0% 이하로 할 수 있다. As such, when the reflectance of the mirror surface 140a of the second light guide member 140 is set to be less than or equal to the reflectance of the mirror surfaces 130a, 130b, 130c, and 130d of the first light guide member 130, the uniformity in the effective irradiation area is achieved. It can be made into 9.0% or less.

(제2 실시형태) (2nd embodiment)

도 11은, 본 발명의 제2 실시형태에 따른 광 조사장치(200)의 구성을 나타낸 모식도이다. 도 11(a)는, 광 조사장치(200)의 출사구(出射口) 쪽에서부터 보았을 때의 광 조사장치(200)의 정면도이다. 도 11(b)는, 도 11(a)의 A-A선에 따른 단면도이다. 본 실시형태의 광 조사장치(200)는, 제1 도광 부재(230)의 미러면(230a, 230b)이, 광축(AX)에 대해 소정의 각도(θ)(예를 들면, 1.2°)만큼 Y축 방향으로 기울어져 있으며, 제1 도광 부재(230)의 미러면(230c, 230d)이, 광축(AX)에 대해 소정의 각도(θ)(예를 들면, 1.2°)만큼 X축 방향으로 기울어져 있다는 점에서, 제1 실시형태에 따른 광 조사장치(100)의 구성과 상이하고, LED 유닛(110), 렌즈 유닛(120), 제2 도광 부재(140) 등, 그 밖의 구성은 제1 실시형태에 따른 광 조사장치(100)의 구성과 동일하다. FIG. 11: is a schematic diagram which shows the structure of the light irradiation apparatus 200 which concerns on 2nd Embodiment of this invention. FIG. 11A is a front view of the light irradiation apparatus 200 when viewed from the exit port side of the light irradiation apparatus 200. (B) is sectional drawing along the A-A line | wire of (a). In the light irradiation apparatus 200 of the present embodiment, the mirror surfaces 230a and 230b of the first light guide member 230 have a predetermined angle θ (for example, 1.2 °) with respect to the optical axis AX. It is inclined in the Y-axis direction, and the mirror surfaces 230c and 230d of the first light guide member 230 are moved in the X-axis direction by a predetermined angle θ (for example, 1.2 °) with respect to the optical axis AX. Since it is inclined, it differs from the structure of the light irradiation apparatus 100 which concerns on 1st Embodiment, and other structures, such as the LED unit 110, the lens unit 120, the 2nd light guide member 140, are made It is the same as the structure of the light irradiation apparatus 100 which concerns on 1 embodiment.

도 12는, 본 실시형태의 광 조사장치(200)로부터 출사되는 자외광의 시뮬레이션 결과이며, 도 11(a)의 A-A선 위의 3개의 LED 소자(114)로부터 출사되는 자외광의 조사 영역(P) 상에 있어서의 Y축 방향의 조사 강도 분포이다. 도 12의 세로축은, 조사 강도(mW)이고, 가로축은, 기판(112)의 Y축 방향의 중심을 0으로 하는 Y축 방향의 거리(mm)이다. 또한, 도 12 중, 실선(α)은, 본 실시형태의 광 조사장치(200)의 조사 강도 분포를 나타내고, 파선(β)은, 본 실시형태의 광 조사장치(200)에서 제2 도광 부재(140)를 떼어냈을 경우(즉, 비교예)의 조사 강도 분포를 나타내고 있다. 한편, 도 12의 시뮬레이션에 있어서는, 제1 도광 부재(230)의 미러면(230a, 230b, 230c, 230d)의 반사율을 90%로 하고, 제2 도광 부재(140)의 미러면(140a) 및 미러면(140b)의 반사율도 90%로 하고 있다. 12 is a simulation result of ultraviolet light emitted from the light irradiation apparatus 200 of the present embodiment, and the irradiation region of ultraviolet light emitted from the three LED elements 114 on the AA line of FIG. It is irradiation intensity distribution of the Y-axis direction on P). 12 is irradiation intensity (mW), and a horizontal axis is the distance (mm) of the Y-axis direction which makes the center of the Y-axis direction of the board | substrate 112 zero. In addition, in FIG. 12, the solid line (alpha) shows the irradiation intensity distribution of the light irradiation apparatus 200 of this embodiment, and the broken line (beta) shows the 2nd light guide member in the light irradiation apparatus 200 of this embodiment. The irradiation intensity distribution in the case of removing (140) (that is, a comparative example) is shown. Meanwhile, in the simulation of FIG. 12, the reflectances of the mirror surfaces 230a, 230b, 230c, and 230d of the first light guide member 230 are set to 90%, and the mirror surface 140a of the second light guide member 140 and The reflectance of the mirror surface 140b is also 90%.

도 12에 나타낸 바와 같이, 본 실시형태에 있어서도, 제2 도광 부재(140)를 설치함으로써, Y축 방향 ± 35mm의 위치에서 급격히 상승하는 특성을 유지하면서도, 조사 영역(P)의 네 모서리(도 12 중, -15 ∼ -35mm의 위치, +15 ∼ +35mm의 위치)의 조사 강도를 저하시켜, 조사 영역(P) 전체에서 대략 균일한 조사 강도 분포가 얻어진다는 것을 알 수 있다. 또한, 도 6과 도 12를 비교하면, 본 실시형태의 구성 쪽이 제1 실시형태와 비교해서, 조사 영역(P)의 네 모서리의 조사 강도를 보다 균일하게 할 수 있다는 것을 알 수 있다. As shown in FIG. 12, also in this embodiment, by providing the 2nd light guide member 140, the four corners of the irradiation area | region P are maintained, maintaining the characteristic which rises rapidly in the position of +/- 35mm of a Y-axis direction (FIG. It can be seen that, among 12, irradiation intensity at the position of -15 to -35 mm and the position of +15 to +35 mm) is decreased, and a substantially uniform irradiation intensity distribution is obtained in the entire irradiation area P. In addition, when FIG. 6 is compared with FIG. 12, it turns out that the structure of this embodiment can make irradiation intensity of the four corners of irradiation area P more uniform compared with 1st Embodiment.

한편, 본 실시형태에 있어서는, 제1 도광 부재(230)의 미러면(230a, 230b, 230c, 230d)이, 광축(AX)에 대해 소정의 각도(θ)(예를 들면, 1.2°)만큼 경사져 있는 것으로 했지만, 미러면(230a, 230b, 230c, 230d)의 경사 각도는, 요구되는 광량, 조사 강도 분포의 상승 특성 등을 고려하여, 적절히 설정된다. 한편, 미러면(230a, 230b, 230c, 230d)의 경사 각도는, 렌즈 유닛(120)으로부터 출사되는 자외광의 확산각보다 작은 각도인 것이 바람직하고, 렌즈 유닛(120)으로부터 출사되는 자외광의 확산각이 5 ∼ 20°의 범위이며, 경사 각도가 확산각의 1/2보다 작은 것이 더 바람직하다. In addition, in this embodiment, the mirror surface 230a, 230b, 230c, 230d of the 1st light guide member 230 is made by predetermined angle (theta) (for example, 1.2 degrees) with respect to the optical axis AX. Although it is assumed to be inclined, the inclination angles of the mirror surfaces 230a, 230b, 230c, and 230d are appropriately set in consideration of the required light quantity, the rising characteristic of the irradiation intensity distribution, and the like. On the other hand, the inclination angles of the mirror surfaces 230a, 230b, 230c, and 230d are preferably smaller than the diffusion angle of the ultraviolet light emitted from the lens unit 120, and the inclination angles of the ultraviolet light emitted from the lens unit 120 It is more preferable that the diffusion angle is in the range of 5 to 20 degrees, and the inclination angle is smaller than 1/2 of the diffusion angle.

또한, 제1 실시형태에서 설명한 바와 같이, 본 실시형태에 있어서도, LED 소자(114)의 개수, 배치를 적절히 변경할 수 있다. 또한, 제2 도광 부재(140)의 미러면(140a)의 반사율을, 제1 도광 부재(130)의 미러면(130a, 130b, 130c, 130d)의 반사율 이하로 설정하는 것이 바람직하다. In addition, as described in the first embodiment, also in the present embodiment, the number and arrangement of the LED elements 114 can be appropriately changed. Moreover, it is preferable to set the reflectance of the mirror surface 140a of the 2nd light guide member 140 to below the reflectance of the mirror surface 130a, 130b, 130c, 130d of the 1st light guide member 130. FIG.

또한, 제1 및 제2 실시형태의 LED 소자(114)는, 파장 395nm의 자외광을 출사하는 것으로 했지만, 이러한 구성에 한정되지 않으며, 다른 파장(예를 들면, 파장 365nm, 파장 385nm, 파장 405nm)의 자외광을 출사하는 것일 수도 있고, 또한 파장이 다른 복수 종류의 LED 소자를 조합하여(즉, 복수의 파장을 섞어) 구성할 수도 있다. In addition, although the LED element 114 of the 1st and 2nd embodiment emits the ultraviolet light of wavelength 395nm, it is not limited to such a structure, and it is not limited to another wavelength (for example, wavelength 365nm, wavelength 385nm, wavelength 405nm). Ultraviolet light may be emitted, or a plurality of LED elements having different wavelengths may be combined (that is, mixed with a plurality of wavelengths).

한편, 이번에 개시된 실시형태는, 모든 점에서 예시일 뿐 제한적인 것은 아니다. 본 발명의 범위는, 상기한 설명이 아니라, 특허청구범위에 의해 나타내어지고, 특허청구범위와 균등한 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다. In addition, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description but by the claims, and is intended to include all modifications within the meaning and range equivalent to the claims.

100, 200 : 광 조사장치
110 : LED 유닛
112 : 기판
114 : LED 소자
120 : 렌즈 유닛
122 : 제1 렌즈
124 : 제2 렌즈
126 : 제3 렌즈
130, 230 : 제1 도광 부재
130a, 130b, 130c, 130d, 230a, 230b, 230c, 230d : 미러면
130e : 입사 개구
130f : 출사 개구
140 : 제2 도광 부재
140a, 140b : 미러면
150 : 구경 조리개
100, 200: light irradiation device
110: LED unit
112: substrate
114: LED element
120: lens unit
122: first lens
124: second lens
126: third lens
130 and 230: first light guide member
130a, 130b, 130c, 130d, 230a, 230b, 230c, 230d: mirror surface
130e: incident opening
130f: exit opening
140: second light guiding member
140a, 140b: mirror surface
150: aperture aperture

Claims (7)

조사 대상물 상의 직사각형 형상의 조사 영역에 대해 광을 조사하는 광 조사장치로서,
기판 상에, 제1 방향을 따라 M개(M은, 2 이상의 정수) 나열되고, 상기 제1 방향과 직교하는 제2 방향으로 N개(N은, 2 이상의 정수) 나열된 M × N개의 발광 소자,
상기 각 발광 소자의 광로 중에 각각 배치되고, 상기 발광 소자로부터 출사된 광을 소정의 확산각의 광으로 성형하는 렌즈 유닛,
상기 M × N개의 발광 소자의 광축을 직사각형 형상으로 둘러싸도록 형성된 제1 미러면을 가지고, 상기 렌즈 유닛으로부터 출사되는 광을 도광하는 제1 도광 부재, 및
상기 기판의 네 모서리에 배치된 발광 소자를 상기 제1 방향 및 상기 제2 방향으로 구획하도록 배치되고, 상기 네 모서리에 배치된 발광 소자로부터의 광을 도광하는 제2 미러면과, 상기 네 모서리에 배치된 발광 소자에 인접하는 발광 소자로부터의 광을 도광하는 제3 미러면이 형성된 제2 도광 부재
를 구비하는 것을 특징으로 하는 광 조사장치.
A light irradiation apparatus for irradiating light to a rectangular irradiation area on the object to be irradiated,
M x N light emitting elements arranged on a substrate along the first direction, where M pieces (M is an integer of 2 or more) and N pieces (N is an integer of 2 or more) are arranged in a second direction orthogonal to the first direction. ,
A lens unit disposed in each of the light paths of each of the light emitting elements, and configured to shape the light emitted from the light emitting elements into light having a predetermined diffusion angle;
A first light guide member having a first mirror surface formed to surround the optical axes of the M × N light emitting elements in a rectangular shape, and for guiding light emitted from the lens unit, and
A second mirror surface disposed to partition light emitting elements disposed at four corners of the substrate in the first direction and the second direction, and to guide light from the light emitting elements disposed at the four corners; A second light guiding member having a third mirror surface for guiding light from a light emitting element adjacent to the disposed light emitting element
Light irradiation apparatus comprising a.
제1항에 있어서,
상기 제2 도광 부재의, 상기 제1 방향 및 상기 제2 방향과 직교하는 제3방향의 길이가, 상기 네 모서리에 배치된 발광 소자로부터 출사된 광의 적어도 일부가, 상기 제2 미러면에서 1회만 반사하면서도, 또한 상기 제2 미러면에서 반사된 광이, 상기 조사 영역 내에서, 상기 기판의 네 모서리에 배치된 발광 소자의 광축보다 외측을 조사하도록 설정되어 있는 것을 특징으로 하는 광 조사장치.
The method of claim 1,
At least a part of the light emitted from the light emitting element arranged in the four corners of the second light guide member in the first direction and in the third direction orthogonal to the second direction is only once in the second mirror surface. The light irradiation apparatus is set so that the light reflected while reflected from the second mirror surface is irradiated outside the optical axis of the light emitting element disposed at the four corners of the substrate in the irradiation area.
제1항 또는 제2항에 있어서,
상기 제2 미러면의 반사율이, 상기 제1 미러면의 반사율 이하인 것을 특징으로 하는 광 조사장치.
The method according to claim 1 or 2,
The reflectance of the said 2nd mirror surface is below the reflectance of the said 1st mirror surface, The light irradiation apparatus characterized by the above-mentioned.
제3항에 있어서,
상기 제2 미러면의 반사율이, 90% 이하인 것을 특징으로 하는 광 조사장치.
The method of claim 3,
The reflectance of the said 2nd mirror surface is 90% or less, The light irradiation apparatus characterized by the above-mentioned.
제1항 내지 제4항 중 어느 한 항에 있어서,
상기 제1 미러면은, 상기 조사 대상물을 향해 넓어지도록, 상기 제1 도광 부재의 광축에 대해, 상기 확산각보다 작은 소정의 각도로 경사져 있는 것을 특징으로 하는 광 조사장치.
The method according to any one of claims 1 to 4,
And the first mirror surface is inclined at a predetermined angle smaller than the diffusion angle with respect to the optical axis of the first light guide member so as to widen toward the irradiation object.
제5항에 있어서,
상기 확산각이 0.5° 이상 50° 이하의 범위이며, 상기 소정의 각도가 상기 확산각의 1/2보다 작은 것을 특징으로 하는 광 조사장치.
The method of claim 5,
And the diffusion angle is in a range of 0.5 ° to 50 °, and the predetermined angle is smaller than 1/2 of the diffusion angle.
제1항 내지 제6항 중 어느 한 항에 있어서,
상기 광은, 자외선 파장 영역의 광인 것을 특징으로 하는 광 조사장치.
The method according to any one of claims 1 to 6,
The light is a light irradiation apparatus, characterized in that the light in the ultraviolet wavelength range.
KR1020190022921A 2018-03-16 2019-02-27 Light irradiating apparatus KR102476100B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018050087A JP7007963B2 (en) 2018-03-16 2018-03-16 Light irradiation device
JPJP-P-2018-050087 2018-03-16

Publications (2)

Publication Number Publication Date
KR20190109247A true KR20190109247A (en) 2019-09-25
KR102476100B1 KR102476100B1 (en) 2022-12-08

Family

ID=67959006

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190022921A KR102476100B1 (en) 2018-03-16 2019-02-27 Light irradiating apparatus

Country Status (4)

Country Link
JP (1) JP7007963B2 (en)
KR (1) KR102476100B1 (en)
CN (1) CN110275397B (en)
TW (1) TW201940009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230017651A (en) * 2021-07-28 2023-02-06 유버 주식회사 Pheripheral exposure apparatus and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602261B2 (en) 1976-08-11 1985-01-21 セイコーインスツルメンツ株式会社 cover glass for watches
JP2010145780A (en) * 2008-12-19 2010-07-01 Nikon Corp Integrator, lighting system having the same, and microscope apparatus having the lighting system
JP2016170233A (en) * 2015-03-11 2016-09-23 Hoya Candeo Optronics株式会社 Light radiation device
JP2018025674A (en) * 2016-08-10 2018-02-15 横浜リーディングデザイン合資会社 Exposure illumination apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244362A (en) 2008-03-28 2009-10-22 Brother Ind Ltd Light pipe, illumination optical system, and image projection device
JP6082721B2 (en) * 2014-10-01 2017-02-15 Hoya Candeo Optronics株式会社 Light irradiation device for peripheral exposure equipment
JP6438879B2 (en) 2015-12-17 2018-12-19 株式会社テクノポスト Lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602261B2 (en) 1976-08-11 1985-01-21 セイコーインスツルメンツ株式会社 cover glass for watches
JP2010145780A (en) * 2008-12-19 2010-07-01 Nikon Corp Integrator, lighting system having the same, and microscope apparatus having the lighting system
JP2016170233A (en) * 2015-03-11 2016-09-23 Hoya Candeo Optronics株式会社 Light radiation device
JP2018025674A (en) * 2016-08-10 2018-02-15 横浜リーディングデザイン合資会社 Exposure illumination apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230017651A (en) * 2021-07-28 2023-02-06 유버 주식회사 Pheripheral exposure apparatus and method

Also Published As

Publication number Publication date
CN110275397B (en) 2023-03-28
KR102476100B1 (en) 2022-12-08
CN110275397A (en) 2019-09-24
TW201940009A (en) 2019-10-01
JP7007963B2 (en) 2022-01-25
JP2019159277A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
KR20070118023A (en) Device for generating a homogeneous angular distribution of a laser radiation
KR101848823B1 (en) Light irradiation apparatus
JP6002261B2 (en) Light irradiation device
KR20190109247A (en) Light irradiating apparatus
TW201442059A (en) Light irradiating device
KR20070056376A (en) Light guiding panel using point lights and fabricating method thereof
WO2011039864A1 (en) Method for manufacturing light guide plate, and light guide plate
US20040240813A1 (en) Pattern writing apparatus
KR101985848B1 (en) Light irradiation device for peripheral exposure apparatus
CN101799632B (en) Light irradiation device
KR102435736B1 (en) Reflective diffusing lens and light emitting module comprising the same
CN105242495B (en) Photoetching exposure device
KR102185960B1 (en) Machine vision lighting apparatus with reflective dots
CN103090310A (en) Optical lens
CN107781721B (en) Light flux controlling member, light emitting device, surface light source device, and display device
EP2151711A1 (en) Liquid crystal sealing apparatus
KR102627988B1 (en) Pheripheral exposure apparatus and method
KR20110011469A (en) A device for processing surface selectively, and a nozzle and a coating apparatus for forming patterns having the same
KR101906906B1 (en) Mold frame for light guide plate, manufacturing method for light guide plate comprising the same and method for pattern forming using mold frame
WO2021070332A1 (en) Surface light source device and display device
WO2020116086A1 (en) Light source device for exposure
KR101631821B1 (en) Improved Line Light Source Module, and Light Irradiation Apparatus and Method Having the Same
KR20240056119A (en) Substrate processing device and method for substrate processing
KR20200023058A (en) Exposure system using optical interference

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant