KR20190081906A - 염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지 - Google Patents

염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지 Download PDF

Info

Publication number
KR20190081906A
KR20190081906A KR1020170184765A KR20170184765A KR20190081906A KR 20190081906 A KR20190081906 A KR 20190081906A KR 1020170184765 A KR1020170184765 A KR 1020170184765A KR 20170184765 A KR20170184765 A KR 20170184765A KR 20190081906 A KR20190081906 A KR 20190081906A
Authority
KR
South Korea
Prior art keywords
layer
dye
buffer layer
electrode
conductive carbon
Prior art date
Application number
KR1020170184765A
Other languages
English (en)
Inventor
김영미
김종복
백종규
신규순
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to KR1020170184765A priority Critical patent/KR20190081906A/ko
Priority to PCT/KR2018/016925 priority patent/WO2019132620A1/ko
Publication of KR20190081906A publication Critical patent/KR20190081906A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

충진율의 저하를 방지하고 효율을 향상시킬 수 있는 염료 감응 태양 전지가 제공된다. 염료 감응 태양 전지는 기판 상의 촉매층 상에 전해질은 이동가능하면서 염료의 이동은 차단할 수 있는 버퍼층을 구비함으로써 촉매층의 열화를 방지할 수 있는 상대 전극을 포함한다.

Description

염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지{BUFFER LAYER FOR DYE SENSITIZED PHOTOVOLTAIC CELL AND DYE SENSITIZED PHOTOVOLTAIC CELL HAVING THE SAME}
염료 감응 태양 전지용 상대 전극 및 염료 감응 태양 전지에 관한 것으로, 염료에 의해 제2전극의 촉매층이 열화되는 것을 방지할 수 있는 버퍼층 및 이를 포함하는 염료 감응 태양 전지에 관한 것이다.
염료 감응 태양 전지는 다른 전지에 비해 광전 변환 효율이 높고 제조 비용이 저렴한 장점이 있다. 염료 감응 태양 전지에서는 염료가 반도체 산화물층에 흡착을 하고 빛을 받아 여기된 전자가 반도체 산화물로 주입되어 구동된다. 염료와 반도체 산화물층 간의 흡착은 담지 방법을 사용하여 이루어진다. 흡착의 주된 기작은 염료의 말단기(anchoring group, -COOH)와 반도체 산화물(예., TiO2)의 화학적 결합이기는 하나 염료간의 응집에 의한 물리적 결합 또한 다수 발생한다.
염료 사이의 응집에 의한 물리적 결합은 고온에서 염료 감응 태양 전지 구동시 염료가 전해질로 탈락되는 현상을 유발한다. 탈락된 염료는 대부분 전해질 내에서 부유하기는 하나 일부 염료는 제2전극 상의 촉매층(예., Pt 촉매층)과 반응하여 촉매층의 탈락을 유도한다. 따라서 전해질과 제2전극 상 촉매층과의 산화환원반응에 영향을 끼쳐 충진율(fill factor)이 낮아지게 되고 효율이 저하된다.
본 발명의 구현예들은 탈락된 염료가 제2전극 상의 촉매층과 반응하여 촉매층의 탈락을 유도하는 것을 방지할 수 있는 염료 감응 태양 전지용 버퍼층을 제공한다.
본 발명의 다른 구현예들은 탈락된 염료가 제2전극 상의 촉매층과 반응하여 촉매층의 탈락을 유도하는 것을 방지할 수 있는 염료 감응 태양 전지용 버퍼층을 포함하여 신뢰성 및 효율이 향상된 염료 감응 태양 전지를 제공한다.
본 발명의 구현예들에 따르면 염료 감응 태양 전지는 제1전극, 광전변환층, 촉매층을 포함하는 제2전극, 및 상기 제1전극과 제2전극 사이에 개재된 전해질을 포함하고, 상기 광전변환층과 상기 촉매층 사이에 개재되며, 포어 및 전도성 탄소를 포함하는 1층 이상으로 구성된 버퍼층을 포함한다.
제2전극은 전해질은 이동 가능하면서 염료의 이동은 차단할 수 있는 버퍼층을 구비함으로써 촉매층의 열화를 방지할 수 있다.
따라서, 염료 감응 태양 전지의 충진율의 저하를 방지하고 효율을 향상시킬 수 있다.
도 1은 일 구현예에 따른 염료 감응 태양 전지의 단면도이고,
도 2는 버퍼층을 금속산화물과 전도성 탄소의 혼합층으로 형성한 경우를 나타내는 사시도이고,
도 3a는 버퍼층을 전도성 탄소층 및 금속산화물층을 순차적으로 적층하여 형성한 경우를 나타내는 사시도이고,
도 3b는 버퍼층을 금속산화물층 및 전도성 탄소층을 순차적으로 적층하여 형성한 경우를 나타내는 사시도이고,
도 3c는 버퍼층을 전도성 탄소층, 금속산화물층 및 전도성 탄소층을 순차적으로 적층하여 형성한 경우를 나타내는 사시도이고,
도 4는 버퍼층을 전도성 탄소로 형성한 경우를 나타내는 사시도이고,
도 5는 시간에 따른 충진율(fill factor)를 나타내는 그래프이다.
이하, 본 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 구현예를 상세히 설명한다. 그러나 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
도 1은 일 실시예에 따른 염료 감응 태양전지 셀의 일부 단면도이다.
도 1을 참조하면, 셀은 제1전극(11), 광전변환층(13), 제2전극(31), 제1전극(11)과 제2전극(31)사이의 공간에 개재되는 전해질(20) 및 버퍼층(33)을 포함한다.
제1전극(11)은 제1전극 기판(11a)의 일면에 도전층(11b)이 형성되어 구성된다. 제1전극 기판(11a)은 유리, 플라스틱 등의 다양한 재료를 사용할 수 있다. 플라스틱으로는 시클로올레핀계 폴리머, 아크릴 요소계 폴리머, 폴리에스테르, 폴리에틸렌나프탈레이트 등으로 이루어진 판 형상 또는 필름 형상의 플라스틱을 사용할 수 있다. 제1 전극 기판(11a)로 플라스틱을 사용하면 플렉서블한 염료 감응 태양 전지도 구현할 수 있다. 도전층(11b)은 ITO(인듐-주석 복합 산화물), FTO(불소가 도핑된 산화주석) 등으로 형성할 수 있다.
광전변환층(13)은 반도체 물질(13a)에 흡착된 염료(13b)로 구성될 수 있다. 염료(13b)는 가시광선을 흡수하여 전자-홀 쌍을 생성할 수 있는 물질로 염료(13b)의 말단기는 특별히 제한하지 않으나, 구체적으로 카르복시기(-COOH), 시아노아크릴산기(Cyanoacrylic acid), 알콕시 실릴기(alkoxysilyl), 피리딘(pyridine), 포스폰산기(phosphonic acid,), 테트라시아네이트기(tetracyanate), 페릴렌 디카르복실산 무수물기(perylene dicarboxylic acid anhydride), 2- 히드록시 벤조니트릴기(2-hydroxylbenzonitrile), 8- 히드록시 퀴놀린기(8-hydroxylquinoline), 피리딘 -N-옥사이드기(pyridine-N-oxide), 히드록실 피리디늄기(hydroxylpyridium), 카테콜기(catechol), 하이드록사메이트기(hydroxamate), 술폰산기(sulfonic acid), 아세틸 아세타네이트기(acetylacetanate), 보론산기(boronic acid), 니트로기(nitro), 테트라졸기(tetrazole), 로다민기(rhodamine), 및 살리실산기(salicylic acid)로 이루어진 그룹에서 선택된 어느 하나를 1개 이상 포함하는 물질로 구성될 수 있다. 염료(13b)는 금속착제 염료 또는 유기 염료일 수 있다. 금속착체 염료의 예로는 비피리딘 구조, 터피리딘 구조 등을 배위자에 포함하는 루테늄 착물, 폴리피린, 프탈로시아닌 등의 금속 함유 착물을 예로 들 수 있으며, 아래 화학식의 물질을 예로 들 수 있다.
Figure pat00001
위의 화학식은 염료(13b)의 일 예이며, ACS Appl. Mater. Interfaces 2015, 7, 3427~3455 "Anchoring Groups for Dye-Sensitized Solar Cells"에 다양한 염료들이 개시되어 있으며 이들 개시 내용은 본 명세서에 참조로 포함된다.
물리적 결합에 의한 응집과 탈착의 문제는 유기 염료에서 더 많이 발생할 수 있으며 유기 염료로는 에오신, 로다민, 멜로시아닌 등의 유기 염료를 예로 들 수 있다. 자세하게, 상기 유기 염료는 공개된 MK2, MK14, D102, D149, Y123, JK2, C220, DPP07, DPP13 등이 사용될 수 있다.
반도체 물질(13a)은 생성된 전자를 전달하는 물질로 형성될 수 있다. 반도체 물질(13a)로는 TiO2, SnO2, ZnO, WO3, Nb2O5, In2O3, ZrO2, Ta2O5 , TiSrO3 등의 산화물 반도체; CdS, ZnS, In2S, PbS, Mo2S, WS2, Sb2S3, Bi2S3, ZnCdS2, CuS2 등의 황화물 반도체; CdSe, In2Se2, WSe2, PbSe, CdTe 등의 금속 칼코게나이드; GaAs, Si, Se, InP 등의 원소 반도체 등을 들 수 있고, 예를 들어 SnO2과 ZnO과의 복합체, TiO2와 Nb2O5과의 복합체 등의, 이들 2종 이상으로 이루어지는 복합체를 사용할 수도 있다. 또한, 반도체의 종류는 이들에 한정되는 것이 아니라, 2종류 이상 혼합하여 사용할 수도 있다. 그 중에서도, Ti, Zn, Sn, Nb의 산화물이 바람직하고, 특히 TiO2가 바람직하다.
반도체 물질(13a)의 평균 입자 직경은 10㎚ 이상 1㎛ 이하의 재료를 적절하게 이용할 수 있다. 또한 평균 입자 직경이 서로 다른 재료를 혼합하여도 되고 단일의 입자 직경의 입자를 사용하여도 된다.
광전변환층(13)은 제1전극(11)과 함께 작동전극이라고 칭하기도 한다.
전해질(20)은 액체, 고체, 응고체, 상온 용융염 중 어느 것이어도 된다. 전해질(20)이 요오드/요오드화물 이온이나, 브롬/브롬화물 이온 등의 산화 환원쌍을 포함하는 경우 반도체 물질(13a)은 산화 반응에 의한 열화가 일어나지 않는 물질로 형성되는 것이 바람직하다.
제2전극(31)은 제2전극 기판(31a) 상에 촉매층(31b)이 형성되어 이루어진다. 제2전극 기판(31a)은 제1전극 기판(11a)와 같이, 유리, 플라스틱 등의 다양한 재료를 사용할 수 있다. 플라스틱으로는 시클로올레핀계 폴리머, 아크릴 요소계 폴리머, 폴리에스테르, 폴리에틸렌나프탈레이트 등으로 이루어진 판 형상 또는 필름 형상의 플라스틱을 사용할 수 있다. 제2전극 기판(31a)은 제1전극 기판(11a)과 동일, 유사한 재료를 사용하거나, 또는, 다른 재료를 사용하여 구성될 수 있다. 제2전극 기판(31a) 위에 백금(Pt) 등의 금속이나 도전성 고분자, 카본 등으로 촉매층(31b)을 형성하여 제2전극(31)을 준비한다. 촉매층(31b)은 전해질(20)을 환원하는 기능을 한다.
버퍼층(33)은 전해질(20)과 촉매층(31b) 사이에 개재되어 구성된다.
버퍼층(33)은 전해질(20)로 탈락되어 부유하는 염료(13b)가 제2전극(31)의 촉매층(31b)과 접촉하여 반응하는 것을 방지한다.
따라서, 버퍼층(33)은 적정한 다공성(porosity)을 가질 수 있다. 이에 따라, 전해질(20)의 산화환원쌍(예., I3 -/I-)은 버퍼층으로 이동할 수 있지만, 염료(13b)는 버퍼층을 통해 이동할 수 없게 되어 제2 전극(31)의 촉매층(31b)과 염료의 직접적인 접촉을 방지한다.
즉, 버퍼층(33)은 전해질(20)의 산화환원쌍(예., I3 -/I-)은 통과시키되 염료(13b)는 통과할 수 없는 정도의 포어 크기를 가져야 한다. 따라서, 포어 크기는 0.5~500nm일 수 있다. 바람직하기로는 포어 크기는 0.5~5nm 크기일 수 있다. 상기 포어의 크기가 0.5nm 이하인 경우, 산화환원쌍(예., I3 -/I-)의 이동을 방해하여 충진율이 낮아지게 되며, 상기 포어의 크기가 500nm 이상인 경우, 염료(13b)가 통과하여 촉매층(31b)과 염료가 직접 접촉할 가능성이 높아진다.
또한 버퍼층(33)의 두께는 전해질(20) 산화환원쌍(예., I3 -/I-)의 양방향 이동이 가능하도록 하면서 염료(13b)에 대한 충분한 장벽 기능을 부여할 수 있으면 되므로 두께는 10㎚ 내지 10㎛ 이하일 수 있다. 바람직하기로는 두께는 0.5 내지 5 ㎛ 일 수 있다. 버퍼층(33)의 두께가 10㎚ 이하일 때에는 염료(13b)와 제2 전극의 촉매층(31b)이 직접 접촉할 가능성이 높아질 수 있으며, 버퍼층(33)의 두께가 10㎛ 이상일 때는 전해질(20) 중 산화환원쌍(예., I3 -/I-)의 이동을 방해하여 충진율이 낮아지게 된다.
버퍼층(33)의 포어 크기와 두께는 상호 보완의 관계를 가지며, 두께가 얇더라도 포어의 크기를 줄이거나, 또는, 포어의 크기가 크더라도 두께를 두껍게 형성하여 염료(13b)가 촉매층(31b)과 반응하지 않도록 할 수 있다.
위와 같은 포어 크기와 두께를 제공하고 염료(13b)에 대한 충분한 장벽 특성을 부여하기 위해서 버퍼층(33)은 도 2에 도시되어 있는 바와 같이 전도성 탄소와 금속산화물의 혼합층(233, composite), 도 3a에 도시되어 있는 바와 같이 촉매층(31b) 상에 전도성 탄소층(333a)과 금속 산화물층(333b)이 순차적으로 형성된 2층막, 도 3b에 도시되어 있는 바와 같이 촉매층(31b) 상에 금속산화물층(333b)과 전도성 탄소층(333a)이 순차적으로 형성된 2층막, 또는, 도 3c에 도시되어 있는 바와 같이 촉매층(31b) 상에 제1금속산화물층(333b), 전도성 탄소층(333a) 및 제2금속산화물층(333c)이 순차적으로 형성된 3층막과 같은 적층막, 도 4에 도시되어 있는 바와 같이 전도성 탄소층(433)으로 형성될 수 있다.
버퍼층(33)을 구성하는 금속산화물로는 TiO2, SiO2, Al2O3, Nb2O5, ZrO2, WO3, ZnO, MgO, SnO2 등의 단일 금속산화물 또는 Nb-TiO2, Zr-TiO2, Sn-TiO2, Zn-TiO2, Mg-TiO2 등 2종 이상의 복합 금속산화물 등이 사용될 수 있다. 전도성 탄소로는 그래핀, 그래파이트, 그래핀옥사이드, 카본나노튜브, 카본 블랙 등이 사용될 수 있다.
이하에서는 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
염료 감응 태양 전지 모듈 제작Ⅰ
작동 전극의 준비
FTO 글래스 위에 TiO2 페이스트(평균입경 18nm, 동진쎄미켐 제조)를 인쇄한 후, 450°C에서 30분간 소성하여 약 4㎛ 두께의 반도체층을 형성하였다. 이어서 유기 염료(MK2)를 에탄올에 0.5mM로 용해시켜서 염료 용액을 얻었다. 얻어진 염료 용액에 TiO2 층이 형성된 FTO 글래스를 12시간 담지한 후 에탄올로 세정하여 작동 전극을 준비하였다.
제2전극 및 버퍼층의 준비
실시예 1
FTO 글래스 위에 Pt 페이스트(동진 쎄미켐 제조)를 인쇄한 후, 450°C에서 30분간 소성하여 촉매층이 형성된 제2전극을 형성하였다. 이어서, 금속산화물(TiO2)과 그래핀의 혼합 페이스트를 촉매층 상에 5㎛ 두께로 인쇄한 후 소성하여 금속산화물과 전도성 탄소의 혼합층이 단층으로 구성된 버퍼층을 형성하였다.
실시예 2
FTO 글래스 위에 Pt 페이스트(동진 쎄미켐 제조)를 인쇄한 후, 450°C에서 30분간 소성하여 촉매층이 형성된 제2전극을 형성하였다. 이어서 촉매층 상에 탄소 그래핀층을 층을 2.5㎛ 두께로 형성한 후 그 위에 금속산화물(TiO2) 층을 2.5㎛ 두께로 형성하여, 전도성 탄소층 및 금속산화물층을 순차적으로 적층된 2층 구조의 버퍼층을 형성하였다.
실시예 3
FTO 글래스 위에 Pt 페이스트(동진 쎄미켐 제조)를 인쇄한 후, 450°C에서 30분간 소성하여 촉매층이 형성된 제2전극을 형성하였다. 이어서 촉매층 상에 전도성 탄소층으로 그래핀층을 5㎛ 두께로 형성하여 전도성 탄소층이 단층으로 구성된 버퍼층을 형성하였다.
비교예 1
FTO 글래스 위에 Pt 페이스트(동진 쎄미켐 제조)를 인쇄한 후, 450°C에서 30분간 소성하여 촉매층이 형성된제2전극을 형성하였다. 비교예 1에서는 촉매층 상에 버퍼층을 별도로 형성하지 않았다.
비교예 2
FTO 글래스 위에 Pt 페이스트(동진 쎄미켐 제조)를 인쇄한 후, 450°C에서 30분간 소성하여 촉매층이 형성된 제2전극을 형성하였다. 이어서 촉매층 위에 금속산화물(TiO2) 단층을 5㎛ 두께로 형성하여 금속산화물층이 단층으로 구성된 버퍼층을 형성하였다.
충진율 변화 측정
앞에서 준비한 작동 전극과 서로 다른 5종의 제2전극 및 버퍼층을 각각 봉지재를 이용하여 합착하고 전해질을 주입하여 염료 감응 태양 전지 모듈을 준비한 후, 5가지 모듈을 85 ℃ 에 보관하여 시간에 흐름에 따른 충진율(Fill Factor, FF) 변화를 측정하였다.
충진율은 광전류 밀도 및 전압(J-V)를 측정하여 J-V 프로파일로부터 추출하였다. 측정은 η=Jsc×Voc×FF/(100 mWcm- 2)에 따라 측정되었다. 측정은 조립 직후, 85°C 조건하에서 0시간, 24시간, 72시간, 144시간, 504시간 및 1000시간 경과 후에 각각 진행하였다. 그 결과가 도 5에 도시되어 있으며, 1000 시간 경과 후의 FF 감소율을 계산한 결과가 아래 표 1에 개시되어 있다.
Voc(V) Isc(mA) FF(%) Eff(%) FF 감소율(%)
비교예 1 초기
1000 시간
9.45 442.18 52.07 2.58 68.4
9.37 438.1 16.45 0.80
비교예 2
초기
1000 시간
9.43 435.78 53.12 2.59 43.2
9.35 425.45 30.18 1.42
실험예 1
초기
1000 시간
9.45 448.42 51.89 2.61 7.6
9.4 445.21 47.94 2.38
실험예 2
초기
1000 시간
9.48 440.75 52.16 2.58 2.7
9.41 437.35 50.76 2.48
실험예 3
초기
1000 시간
9.52 433.21 52.75 2.58 14.3
9.48 425.2 45.23 2.16
상기 표 1의 결과로부터 본 발명에 따라 금속산화물과 전도성 탄소의 혼합층(실험예 1), 전도성 탄소층과 금속산화물층이 적층된 2층막(실험예2), 전도성 탄소층(실험예 3)으로 버퍼층을 형성한 경우가, 버퍼층이 없거나(비교예 1) 버퍼층을 금속산화물 단층막(비교예 2)으로 형성한 경우 대비 충진율의 감소율이 현저하게 감소하는 것을 알 수 있다.
특히 버퍼층을 금속산화물과 전도성 탄소의 혼합층(실험예 1), 전도성 탄소층과 금속산화물층이 적층된 2층막(실험예2)으로 형성한 경우의 충진율 감소율이 7.6% 이하로 예상한 범위를 훨씬 초과하여 나타남을 알 수 있다. 특히 전도성 탄소층 상에 금속산화물층이 형성되어 금속산화물층이 전해질과 접촉하는 경우에는 충진율의 감소율이 2.7%로 매우 현저함을 알 수 있다.
이는 금속산화물, 전도성 탄소 또는 이들이 혼합된 혼합물로 이루어진 버퍼층이 염료와 촉매층의 접촉을 막아 촉매층의 탈락을 방지하기 때문인 것으로 해석할 수 있다. 특히, 실험예 2에 따라 버퍼층을 금속산화물층과 전도성 탄소층을 포함하는 2층막으로 형성할 경우 버퍼층에 형성되는 포어의 복잡성이 증가하여 효과가 뛰어난 것을 알 수 있다.
염료 감응 태양 전지 모듈 제작Ⅱ
앞서 제작한 염료 감응 태양 전지 모듈의 제작 방법을 동일하게 따르면서 버퍼막의 두께만을 각각 다르게 형성한 뒤, 85°C 조건하에서 1000시간 경과 후의 충진율 감소율을 측정하여 아래 표2에 개시하였다. 아래 표에서 MOx는 금속산화물층을 나타낸다.
9㎚ 10㎚ 500㎚ 1㎛ 5㎛ 10㎛ 11㎛
혼합층 44.7 15.1 12.3 9.2 7.6 10.4 35.8
전도성 탄소층 51.1 21.8 20.9 18.4 14.3 18.9 43.1
전도성 탄소층/MOx 41.5 11.7 9.3 4.9 2.7 6.3 28.2
MOx/전도성 탄소층 42.8 12.1 9.8 7.7 4.4 7.1 29.5
전도성 탄소층/MOx/전도성 탄소층 41.9 12.1 9.9 7.1 3.5 6.7 29.1
상기 표 2의 결과로부터 본 발명에 따라 버퍼층을 10㎚ 내지 10㎛의 두께로 형성하는 경우 충진율 감소율이 현저하게 줄어드는 것을 알 수 있다. 이는 버퍼층이 염료와 촉매층의 접촉을 막아 촉매층의 탈락을 방지하기 때문인 것으로 해석할 수 있으며, 10㎚ 이상 10㎛ 이하의 두께 범위 내에서 버퍼층의 충진율 감소 효과가 큰 것을 알 수 있다.
염료 감응 태양 전지 모듈 제작Ⅲ
앞서 제작한 염료 감응 태양 전지 모듈의 제작 방법을 동일하게 따르면서 버퍼막의 두께를 5㎛ 로 형성하여 포어의 크기만을 각각 다르게 형성한 뒤, 85°C 조건하에서 1000시간 경과 후의 충진율 감소율을 측정하여 아래 표3에 개시하였다. 아래 표에서 포어 사이즈는BET 분석법을 이용하여 측정하였다.
0.4㎚ 0.5㎚ 10㎚ 300㎚ 500㎚ 501㎚
혼합층 45.3 7.6 8.9 9.3 10.7 33.3
전도성 탄소층 49.8 14.3 17.2 18.9 20.3 41.5
전도성 탄소층/MOx 41.1 2.7 3.5 4.6 5.1 20.6
상기 표 3의 결과로부터 본 발명에 따라 버퍼층의 포어 사이즈를 0.5㎚ 내지 500㎚로 형성하는 경우 충진율 감소율이 현저하게 줄어드는 것을 알 수 있다. 이 역시 버퍼층이 염료와 촉매층의 접촉을 막아 촉매층의 탈락을 방지하기 때문인 것으로 해석할 수 있으며, 0.5㎚ 이상 500㎚ 이하의 포어를 갖는 경우, 버퍼층의 충진율 감소 효과가 큰 것을 알 수 있다.
이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
11: 제1전극 11a: 제1전극 기판
11b: 도전층 13: 광전변환층
13a: 반도체 물질 13b: 염료
20: 전해질
31: 제2전극 31a: 제2전극 기판
31b: 촉매층 33: 버퍼층

Claims (10)

  1. 제1전극;
    광전변환층;
    촉매층을 포함하는 제2전극; 및
    상기 제1전극과 제2전극 사이에 개재된 전해질을 포함하고, 상기 광전변환층과 상기 촉매층 사이에 개재되며, 포어 및 전도성 탄소를 포함하는 1층 이상으로 구성된 버퍼층을 포함하는 염료 감응 태양 전지.
  2. 제1 항에 있어서,
    상기 포어 크기는 0.5~500nm인 염료 감응 태양 전지.
  3. 제1 항에 있어서,
    상기 버퍼층의 두께는 10㎚ 내지 10㎛인 염료 감응 태양 전지.
  4. 제1 항에 있어서,
    상기 버퍼층은 1층 이상의 전도성 탄소층으로 구성된 염료 감응 태양 전지.
  5. 제1항에 있어서,
    상기 전도성 탄소는 그래핀, 그래파이트, 그래핀옥사이드, 카본나노튜브, 또는 카본 블랙인 염료 감응 태양 전지.
  6. 제1 항에 있어서,
    상기 버퍼층은 금속산화물을 더 포함하는 염료 감응 태양 전지.
  7. 제1 항 또는 제6항에 있어서,
    상기 버퍼층은 전도성 탄소 및 금속산화물의 혼합층을 1층 이상 포함하는 염료 감응 태양 전지.
  8. 제1 항 또는 제6항에 있어서,
    상기 버퍼층은 전도성 탄소층 및 금속산화물층을 각각 1층 이상 포함하는 염료 감응 태양 전지.
  9. 제1 항 또는 제6항에 있어서,
    상기 버퍼층은 촉매층 상에 제1전도성 탄소층, 금속산화물층 및 제2전도성 탄소층이 차례로 형성된 염료 감응 태양 전지.
  10. 제6항에 있어서,
    상기 금속산화물은 TiO2, SiO2, Al2O3, Nb2O5, ZrO2, WO3, ZnO, MgO, SnO2, Nb-TiO2, Zr-TiO2, Sn-TiO2, Zn-TiO2 또는 Mg-TiO2 인 염료 감응 태양 전지.
KR1020170184765A 2017-12-29 2017-12-29 염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지 KR20190081906A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170184765A KR20190081906A (ko) 2017-12-29 2017-12-29 염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지
PCT/KR2018/016925 WO2019132620A1 (ko) 2017-12-29 2018-12-28 염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170184765A KR20190081906A (ko) 2017-12-29 2017-12-29 염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지

Publications (1)

Publication Number Publication Date
KR20190081906A true KR20190081906A (ko) 2019-07-09

Family

ID=67064033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170184765A KR20190081906A (ko) 2017-12-29 2017-12-29 염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지

Country Status (2)

Country Link
KR (1) KR20190081906A (ko)
WO (1) WO2019132620A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080052082A (ko) * 2006-12-07 2008-06-11 한국전자통신연구원 전자 재결합 차단층을 포함하는 염료감응 태양전지 및 그제조 방법
KR100908243B1 (ko) * 2007-08-22 2009-07-20 한국전자통신연구원 전자 재결합 차단층을 포함하는 염료감응 태양전지 및 그제조 방법
KR101200766B1 (ko) * 2010-10-08 2012-11-13 주식회사 상보 차단층을 포함하는 염료감응태양전지
KR20140047244A (ko) * 2012-10-11 2014-04-22 주식회사 동진쎄미켐 염료감응 태양전지 모듈 및 그 제조 방법
KR101406427B1 (ko) * 2013-05-02 2014-06-17 학교법인 포항공과대학교 우수한 촉매활성도와 전기전도도를 갖는 염료 감응형 태양전지용 전도성 고분자-탄소 복합체 전극과 이를 이용한 염료 감응형 태양전지 및 이들의 제조방법

Also Published As

Publication number Publication date
WO2019132620A1 (ko) 2019-07-04

Similar Documents

Publication Publication Date Title
CN101361218B (zh) 染料敏化太阳能电池和染料敏化太阳能电池模块
US7851699B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
EP1603169B1 (en) Photovoltaic module architecture
KR101341299B1 (ko) 색소 증감 태양 전지
JP6447754B2 (ja) 光電変換素子
US20180374655A1 (en) Monolithic-type module of perovskite solar cell, and manufacturing method therefor
US20110048525A1 (en) Functional device and method for producing the same
JP2005310787A (ja) 染料感応太陽電池のモジュール
KR101246983B1 (ko) 색소 증감 태양 전지
KR101802374B1 (ko) 도핑된 그래핀 함유 투명전극, 그의 제조방법, 및 이를 구비하는 표시소자와 태양전지
US20070119499A1 (en) Solar cell
KR20100075552A (ko) 색소 증감 태양전지 모듈
CN101512828A (zh) 染料敏化型太阳能电池组件及其制备方法
EP2581981B1 (en) Wet-type solar cell and wet-type solar cell module
KR101030014B1 (ko) 광전변환소자
JP4769572B2 (ja) 耐熱性透明電極の製造方法および色素増感太陽電池
JP5586489B2 (ja) 染料感応型太陽電池用電極基板、及びこれを具備する染料感応型太陽電池
KR101140784B1 (ko) 염료감응 태양전지 및 그 제조방법
JP2005285473A (ja) 光電変換装置
KR101054250B1 (ko) 극소수성 화합물이 도입된 금속산화물 반도체 전극. 이를 포함하는 염료감응 태양전지 및 그 제조 방법
JP2005064493A (ja) 光電変換装置およびそれを用いた光発電装置
KR20190081906A (ko) 염료 감응 태양 전지용 버퍼층 및 염료 감응 태양 전지
JP2017212368A (ja) ホール輸送材料及び、光電変換素子並びに太陽電池
JP6740621B2 (ja) 光電変換素子
JP2017222640A (ja) 3級アミン化合物、光電変換素子、及び太陽電池