KR20190080122A - Reactive sputter apparatus with expanded plasma region - Google Patents

Reactive sputter apparatus with expanded plasma region Download PDF

Info

Publication number
KR20190080122A
KR20190080122A KR1020170182367A KR20170182367A KR20190080122A KR 20190080122 A KR20190080122 A KR 20190080122A KR 1020170182367 A KR1020170182367 A KR 1020170182367A KR 20170182367 A KR20170182367 A KR 20170182367A KR 20190080122 A KR20190080122 A KR 20190080122A
Authority
KR
South Korea
Prior art keywords
magnetic field
plasma region
drum
extended
plasma
Prior art date
Application number
KR1020170182367A
Other languages
Korean (ko)
Inventor
정수성
최정욱
김찬홍
Original Assignee
주식회사 선익시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 선익시스템 filed Critical 주식회사 선익시스템
Priority to KR1020170182367A priority Critical patent/KR20190080122A/en
Publication of KR20190080122A publication Critical patent/KR20190080122A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a reactive sputter apparatus with an extended plasma region. According to the present invention, the reactive sputter apparatus with an extended plasma region comprises: a drum installed in a vacuum chamber and fixing an object to be deposited; a sputter unit disposed corresponding to the circumferential part of the drum and depositing a film on a surface of the object to be deposited; a pair of magnetic field formation bodies using a plasma formed between the object to be deposited to ionize signal inputted from the outside and supply the ionized signal to the object to be deposited; a first permanent magnet fixed on the rear surface of one magnetic field formation body and outputting an N-polarity magnetic force to the front side of the magnetic field formation body; and a second permanent magnet fixed on the rear surface of the other magnetic field formation body and outputting an S-polarity magnetic force to the front side of the magnetic field formation body. Accordingly, the reactive sputter apparatus with an extended plasma region includes two parallel targets and magnets disposed on the rear side of each target have the same polarity, such that a plasma region is largely extended and plasma energy is increased by the extended region, thereby providing a deposition film with good adhesion and excellent mechanical/chemical characteristics. Moreover, the apparatus can be used for reactive substrate processing and surface treatment with oxygen and composite gas.

Description

플라즈마 영역이 확장된 반응형 스퍼터장치{Reactive sputter apparatus with expanded plasma region}[0001] The present invention relates to a reactive sputter apparatus having an expanded plasma region,

본 발명은 플라즈마를 이용하는 스퍼터장치에 관한 것으로서, 보다 상세하게는 스퍼터건 전방의 프라즈마영역이 확장되어 반응효율을 플라즈마 영역이 확장된 반응형 스퍼터장치에 관한 것이다. BACKGROUND OF THE INVENTION Field of the Invention [0001] The present invention relates to a sputtering apparatus using plasma, and more particularly, to a reactive sputtering apparatus in which a plasma region in front of a sputtering gun expands and reaction efficiency is expanded.

기판 등의 대상물 표면에 박막을 적층하기 위한 적층방법으로서, CVD(Chemical Vapor Deposition), 증발법(Evaporation) 및 스퍼터링(Sputtering) 등이 알려져 있다. 상기한 적층방법은 각자의 특징이 있어 필요에 맞추어 적절히 선택된다.CVD (Chemical Vapor Deposition), evaporation and sputtering are known as a lamination method for laminating a thin film on the surface of an object such as a substrate. The above-mentioned lamination method has its own characteristics and is appropriately selected in accordance with needs.

상기 CVD 방법은, 증착막이 균일하지 못하고 특성의 재현에 어려움이 있으며, 증착시 고온의 환경을 요구하므로 에너지 소모가 심하다는 단점이 있다. 또한, 증발법은 증착율이 높다는 장점이 있으나 증착막의 밀도나 밀착력이 떨어지는 불리한 점이 있다. The CVD method is disadvantageous in that it is difficult to reproduce characteristics because the deposition film is not uniform and requires a high temperature environment during deposition. In addition, the evaporation method has an advantage of high deposition rate, but there is a disadvantage that the density or adhesiveness of the evaporation film is low.

이에 비해, 스퍼터링 방식은, 증착 조건을 제어하기 쉽고 대면적의 기판 증착에 적합하며, 특히 박막의 두께나 밀도 등과 같은 박막 특성의 균일화를 용이하게 구현할 수 있다는 장점을 갖는다. 이러한 이유로 반도체 분야나 전기전자분야는 물론 디스플레이 분야에서 박막 형성을 위한 방법으로 스퍼터링 방식이 가장 널리 사용되고 있다. On the other hand, the sputtering method is advantageous in that it is easy to control deposition conditions and is suitable for large-area substrate deposition, and uniformity of thin film characteristics such as thickness and density of a thin film can be easily realized. For this reason, a sputtering method is widely used as a method for forming a thin film in the semiconductor field, the electric and electronic field as well as the display field.

상기 스퍼터링 증착방식은, 진공이 유지되는 진공챔버내에서 진행되는데, 자석을 이용해 타겟의 표면에 자기장을 유지한 상태로 챔버내에 불활성 기체인 아르곤(Ar)을 주입하고, 타겟에 음극 전력을 인가하여 플라즈마를 형성하는 과정을 포함한다. In the sputtering deposition method, argon (Ar), which is an inert gas, is injected into the chamber while keeping a magnetic field on the surface of the target by using a magnet, and negative electric power is applied to the target And forming a plasma.

상기 아르곤은 플라즈마에 의해 이온화 되고, 이온화된 아르곤의 양이온은 타겟에 고속으로 충돌하여 타겟을 이루는 원자에 충돌에너지를 가하여 타겟으로부터 원자들이 방출되게 한다. 타겟의 표면으로부터 방출된 타겟 물질은 전방에 대기하고 있는 증착대상물, 가령, 기판으로 날아가 기판에 증착되게 된다.The argon is ionized by the plasma, and the ionized argon cations collide with the target at a high speed, thereby applying the collision energy to the atoms forming the target, thereby releasing the atoms from the target. The target material ejected from the surface of the target is ejected onto an evaporation object, e.g., a substrate, which is waiting in front of the target, and is deposited on the substrate.

참고로, 충돌하는 입자들이 양이온이라면 음극 스퍼터링이라고 부르는데, 대부분의 스퍼터링은 음극 스퍼티링이다. 음극 스퍼터링이 많이 사용되는 이유는, 양이온이 가속되기 쉽고 또한 타겟에 충돌하기 직전 타겟으로부터 방출되는 전자에 의하여 중성화되어 중성 원자로 타겟에 충돌하기 때문이다. For reference, if the impinging particles are positive ions, they are called cathode sputtering, and most sputtering is cathodic sputtering. Cathode sputtering is often used because the positive ions tend to be accelerated and are neutralized by electrons emitted from the target just before colliding with the target and collide with the neutral atom target.

상기 증착과정에 있어서, 플라즈마 속에 존재하는 음이온에 의해 리스퍼터링(re-sputtering) 현상이 발생하기도 한다. 상기 리스퍼터링은 플라즈마 내부의 음이온이, 타겟이 아닌 증착대상물의 표면을 타격하여, 증착층에 손상을 주고 경우에 따라 증착물질을 증착대상로부터 다시 분리하는 현상이다.During the deposition process, re-sputtering may occur due to anions present in the plasma. The reputtering is a phenomenon in which the anions inside the plasma strike the surface of the object to be deposited, not the target, to damage the deposition layer and separate the deposition material from the object to be deposited as the case may be.

이러한 리스퍼터링은, 타겟의 후방에 배치되어 있는 자석의 배열이나 출력 자기력을 조절함으로써 해결할 수 있다. 발생된 플라즈마에 자기장을 인가하면 플라즈마 내의 음이온에 로렌쯔 힘을 가하여 플라즈마의 밀도 분포를 달리할 수 있기 때문이다.Such reputtering can be solved by adjusting the arrangement of the magnets arranged at the rear of the target and the output magnetic force. When the magnetic field is applied to the generated plasma, Lorentz force is applied to the anions in the plasma, so that the plasma density distribution can be different.

한편, 종래의 스퍼터장치는, 도 2를 통해 후술하는 바와 같이, 스퍼터건의 전방에 형성되는 플라즈마 영역(도 2의 P)이 넓지 않다는 단점을 갖는다. 플라즈마 영역이 넓을수록 스퍼터링이 활발하게 진행되어 증착속도가 빠르고 생산성이 증가하지만, 후술할 각 자계형성바디(도 2의 35)에 설치된 영구자석의 경우, 자석간의 출력 극성이 반대로 배치되어 있어 자기장의 영역 좁을 수밖에 없다. On the other hand, the conventional sputtering apparatus has a disadvantage in that the plasma region (P in Fig. 2) formed in front of the sputter gun is not wide, as will be described later with reference to Fig. As the plasma region is wider, the sputtering proceeds actively to increase the deposition rate and productivity. However, in the case of the permanent magnet installed in each magnetic field forming body (35 in FIG. 2) described below, the output polarity between the magnets is reversed, The area is bound to be narrow.

국내등록특허공보 제10-0848851호 (플라즈마 데미지 프리 스퍼터 건 및 이를 구비한 스퍼터장치와 이를 이용한 플라즈마 처리장치 및 성막 방법)Korean Patent Registration No. 10-0848851 (Plasma Damage Free Sputter Gun, Sputtering Apparatus Including the Same, Plasma Treatment Apparatus Using the Same, and Coating Method) 국내등록특허공보 제10-0497933호 (요동자석방식 마그네트론 스퍼터링장치 및 방법)Korean Patent Registration No. 10-0497933 (Swinging magnet type magnetron sputtering apparatus and method)

본 발명은 상기 문제점을 해소하고자 창출한 것으로서, 플라즈마 영역이 크게 확대 되어 증착막의 부착력이 뛰어나고 기계적 화학적 특성이 양호한 증착막을 제공할 수 있으며, 필요에 따라 산소 및 복합가스를 사용하여 기판의 반응성 처리 및 표면 트리트먼트의 용도로 사용할 수도 있는 플라즈마 영역이 확장된 반응형 스퍼터장치를 제공함에 목적이 있다.The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a vapor deposition film having a large plasma region and excellent adhesion of a vapor deposition film and good mechanical and chemical characteristics, It is an object of the present invention to provide a reactive sputter apparatus in which a plasma region that can be used for a surface treatment is extended.

상기 목적을 달성하기 위한 본 발명의 플라즈마 영역이 확장된 반응형 스퍼터장치는, 진공을 유지할 수 있는 내부공간을 갖는 진공챔버와; 상기 진공챔버의 내부에 회전 가능하도록 설치되며 그 외주면에 증착대상물을 고정하는 드럼과; 상기 드럼의 주연부에 대응 배치되며, 드럼의 회전에 따라 일정경로를 따라 공전하는 증착대상물의 표면에, 막을 증착하는 스퍼터부와; 상기 드럼의 주연부에 설치되며, 상기 증착대상물과의 사이에 형성된 플라즈마를 이용하여, 외부로부터 주입된 산소를 이온화시켜 증착대상물에 가하는 것으로서, 상호 나란하게 이격되며 상기 드럼에 대향하는 한 쌍의 자계형성바디와, 일측 자계형성바디의 배면에 고정되며 자계형성바디의 전방으로 N극의 자기력을 출력하는 다수의 제1영구자석과, 타측 자계형성바디의 배면에 고정된 상태로 자계형성바디의 전방으로 S극의 자기력을 출력하는 다수의 제2영구자석과, 상기 양측 자계형성바디의 사이에 위치하며 자계형성바디를 연결하는 센터홀더를 포함하는 스퍼터건을 갖는다.According to an aspect of the present invention, there is provided a reactive sputtering apparatus including a vacuum chamber having an inner space capable of maintaining a vacuum; A drum rotatably installed in the vacuum chamber and fixing an object to be deposited on an outer circumferential surface thereof; A sputtering unit disposed in correspondence with the periphery of the drum, the sputtering unit depositing a film on a surface of an object to be deposited which revolves along a predetermined path in accordance with rotation of the drum; And a pair of magnetic fields formed on the periphery of the drum and spaced apart from each other and facing the drum, the plasma being formed between the deposition object and the deposition object, A plurality of first permanent magnets fixed to the rear surface of one body of the magnetic field generating body and outputting a magnetic force of the N pole forward of the magnetic field forming body, and a plurality of second permanent magnets fixed to the rear surface of the other body forming body, A plurality of second permanent magnets for outputting a magnetic force of the S-pole, and a center holder which is located between the both-side magnetic-field-forming bodies and connects the magnetic-field forming bodies.

또한, 상기 일측 자계형성바디와 타측 자계형성바디에서 출력되는 자기력은, 상기 센터홀더를 기준으로 상호 대칭을 이룬다.The magnetic force output from the one magnetic field generating body and the other magnetic field generating body are mutually symmetrical with respect to the center holder.

또한, 상기 양측 자계형성바디는, 드럼에 대향하는 대향면이 둔각의 사이각을 가지도록 배치된다.Further, the both magnetic field generating bodies are arranged so that the opposed faces opposed to the drums have an obtuse angle.

아울러, 상기 한 쌍의 자계형성바디의 후방에는 상기 제1,2영구자석을 보호하는 하우징이 더 구비된다.In addition, a housing for protecting the first and second permanent magnets is further provided behind the pair of magnetic field generating bodies.

또한, 상기 스퍼터부는; 그 내부에 실리콘 캐소오드를 갖는 제1스퍼터부와, 티타늄 캐소오드를 구비한 제2스퍼터부가 포함된다.The sputtering unit may further include: A first sputtering portion having a silicon cathode and a second sputtering portion having a titanium cathode.

상기와 같이 이루어지는 본 발명의 플라즈마 영역이 확장된 반응형 스퍼터장치는, 상호 나란한 양측 자계형성바디에 배치된 자석의 극성을 자계형성바디 별로 동일하게 구성하여, 플라즈마 영역이 크게 확대 되어 그만큼 에너지가 증가하므로, 증착막의 부착력이 양호하고 기계적 화학적 특성이 뛰어난 증착막을 제공할 수 있다.In the reactive sputtering apparatus of the present invention having the above-described plasma region expanded, the polarities of the magnets disposed on the mutually parallel magnetic field forming bodies are made the same for each magnetic field forming body, and the plasma region is greatly enlarged, Therefore, it is possible to provide a vapor deposition film having good adhesion of the vapor deposition film and excellent mechanical and chemical characteristics.

또한 타겟을 장착하지 않고 산소 및 복합가스를 사용하여 기판의 반응성 처리 및 표면 트리트먼트의 용도로 사용할 수도 있다.It is also possible to use oxygen and a composite gas for the reactive treatment and surface treatment of the substrate without mounting the target.

도 1은 본 발명의 일 실시예에 따른 플라즈마 영역이 확장된 반응형 스퍼터장치의 전체적인 구성을 나타내 보인 평면도이다.
도 2는 도 1에 도시한 반응형 스퍼터장치의 특징을 대비 설명하기 위해 나타내 보인 종래 산소이온발생부의 구성도이다.
도 3은 도 1에 도시한 반응형 스퍼터장치에 설치되는 산소이온발생부를 별도로 도시한 도면이다.
FIG. 1 is a plan view showing the overall structure of a reactive sputtering apparatus in which a plasma region is extended according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a conventional oxygen ion generating unit shown in FIG. 1 to explain the characteristics of the reactive sputtering apparatus shown in FIG.
FIG. 3 is a view showing the oxygen ion generating portion provided in the reaction type sputtering apparatus shown in FIG. 1 separately.

이하, 본 발명에 따른 하나의 실시예를 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다.Hereinafter, one embodiment according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 플라즈마 영역이 확장된 반응형 스퍼터장치(10)의 전체적인 구성을 나타내 보인 평면도이고, 도 2는 도 1에 도시한 반응형 스퍼터장치의 특징을 대비 설명하기 위해 나타내 보인 종래 산소이온발생부의 구성도이다. 또한 도 3은 도 1에 도시한 반응형 스퍼터장치(10)에 설치되는 산소이온발생부(30)를 별도로 도시한 도면이다.FIG. 1 is a plan view showing the overall structure of a reactive sputtering apparatus 10 having an extended plasma region according to an embodiment of the present invention. FIG. 2 is a cross-sectional view illustrating the reaction sputtering apparatus shown in FIG. Fig. 2 is a configuration diagram of a conventional oxygen ion generating portion shown in Fig. 3 is a view showing the oxygen ion generating portion 30 provided in the reaction type sputtering apparatus 10 shown in FIG.

기본적으로 본 실시예에 따른 플라즈마 영역이 확장된 반응형 스퍼터장치(10)는, 글래스기판(22)의 표면에 SiO2 또는 TiO2 층을 형성하기 위한 최적의 구조를 갖는다. 글래스기판(22)에 대한 Si의 증착은 제1스퍼터부(14)에 의해 이루어지고, Ti의 증착은 제2스퍼터부(16)에 의해 구현된다. 아울러, 상기 제1스퍼터부(14)와 제2스퍼터부(16)는 동시에 작동할 수도 있고, 필요에 따라 하나만 동작할 수도 있다.Basically, the reactive sputter apparatus 10 in which the plasma region according to the present embodiment is extended has an optimum structure for forming a SiO2 or TiO2 layer on the surface of the glass substrate 22. The deposition of Si on the glass substrate 22 is performed by the first sputtering section 14 and the deposition of Ti is realized by the second sputtering section 16. [ In addition, the first sputter part 14 and the second sputter part 16 may operate simultaneously, or may operate only one if necessary.

도시한 바와 같이, 본 실시예에 따른 스퍼터장치(10)는, 진공챔버(12), 드럼(20), 제1,2스퍼터부(14,16), 산소이온발생부(30), 진공펌프(18) 등을 포함하는 구성을 갖는다.As shown in the figure, the sputtering apparatus 10 according to the present embodiment includes a vacuum chamber 12, a drum 20, first and second sputtering units 14 and 16, an oxygen ion generating unit 30, (18), and the like.

상기 진공챔버(12)는, 다수의 진공펌프(18)에 의해 진공을 유지하는 내부공간(12a)을 갖는 챔버로서, 상기 드럼(20)을 회전 가능하게 수용한다. 이를 위해 진공챔버(12)의 하부에는 드럼 구동용 모터가 구비되어 있음은 물론이다. The vacuum chamber 12 is a chamber having an internal space 12a for holding a vacuum by a plurality of vacuum pumps 18 and rotatably accommodates the drum 20. It goes without saying that a drum driving motor is provided at a lower portion of the vacuum chamber 12 for this purpose.

상기 드럼(20)은 가령 60rpm 정도의 속도로 회전하는 부재로서 그 주연부에 글래스기판(22)을 갖는다. 상기 글래스기판(22)은 가령 SiO2나 TiO2를 증착할 증착대상물이다. 글래스기판(22)은 적절한 지그를 통해 드럼(20)의 주연부에 고정되며 드럼의 회전에 따라 일정경로를 공전한다. 말하자면 제1스퍼터부(14)와 스퍼터건(31)과 제2스퍼터부(16)의 앞을 스쳐 지나가는 것이다.The drum 20 is a member that rotates at a speed of, for example, about 60 rpm, and has a glass substrate 22 at its periphery. The glass substrate 22 is an object to be deposited such as SiO 2 or TiO 2. The glass substrate 22 is fixed to the periphery of the drum 20 through an appropriate jig and revolves a certain path in accordance with the rotation of the drum. That is to say, it passes in front of the first sputter part 14, the sputter gun 31 and the second sputter part 16.

상기 제1스퍼터부(14)는, 두 개의 실리콘캐소오드(14a)와, 아르곤가스를 주입하는 가스공급관(14b)을 포함하며, 공지의 방법에 따라 글래스기판(22)에 실리콘층을 증착한다. 이를테면, 내부공간(12a)에 주입된 아르곤가스가 플라즈마에 의해 이온화된 상태로 실리콘캐소오드(14a)를 타격하고, 타격에 의해 실리콘캐소오드(14a)에서 발생하는 실리콘 원자가 글래스기판(22)에 증착되는 것이다.The first sputter part 14 includes two silicon cathodes 14a and a gas supply pipe 14b for injecting argon gas and deposits a silicon layer on the glass substrate 22 according to a known method . For example, the argon gas injected into the inner space 12a strikes the silicon canister 14a in a state of being ionized by the plasma, and the silicon atoms generated in the silicon can 14a due to the impact are injected into the glass substrate 22 Lt; / RTI >

제2스퍼터부(16)는, 두 개의 티타늄캐소오드(16a)와, 아르곤가스를 주입하는 가스공급관(16b)을 구비한다. 가스공급관(16b)을 통해 내부공간(12a)으로 주입된 아르곤가스는 플라즈마 분위기에서 이온화되고, 아르곤가스의 양이온이 티타튬캐소오드(16a)를 타격한다. 상기 타격에 의해 발생한 티타늄 원자가 글래스기판(22)의 표면으로 이동하여 증착됨은 물론이다.The second sputter part 16 has two titanium cathodes 16a and a gas supply pipe 16b for injecting argon gas. The argon gas injected into the inner space 12a through the gas supply pipe 16b is ionized in a plasma atmosphere, and positive ions of the argon gas strike the titanium tetraoxide 16a. It goes without saying that the titanium atoms generated by the impact move to the surface of the glass substrate 22 and are deposited.

한편, 상기 스퍼터건(31)은 외부로부터 주입된 산소를 이온화시키는 산소이온발생부(30)의 역할을 한다. 산소이온발생부(30)의 기본 역할은, 외부로부터 공급된 산소를 플라즈마 환경을 통해 이온화시켜, 실리콘이나 티타늄이 증착되고 있는 글래스기판(22)에 가하는 것이다. The sputter gun 31 serves as an oxygen ion generating unit 30 for ionizing oxygen injected from the outside. The basic role of the oxygen ion generating portion 30 is to ionize the oxygen supplied from the outside through a plasma environment and apply it to the glass substrate 22 on which silicon or titanium is deposited.

경우에 따라, 스퍼터건(31)의 전면, 즉, 드럼(20)을 향하는 면 (가령, 도 3의 커버(33) 자리)에 타겟소스를 장착할 수도 있다. 타겟소스를 장착할 경우, 스퍼터건(31)을 통한 스퍼터링이 가능해짐은 물론이다. 상기 타겟소스를 사용하지 않는 경우에는 산소를 이온화시키거나, 산소나 복합가스를 사용하여 기판의 반응성 처리 및 표면 트리트먼트의 기능을 할 수 있다.The target source may be mounted on the front surface of the sputter gun 31, that is, the surface facing the drum 20 (e.g., the position of the cover 33 in Fig. 3). It goes without saying that, when the target source is mounted, sputtering through the sputter gun 31 becomes possible. When the target source is not used, oxygen may be ionized, or oxygen or a composite gas may be used to perform reactive processing and surface treatment of the substrate.

스퍼터건(31)의 기능이 어떻든, 스퍼터건(31)의 전방에는 플라즈마영역(P1)이 형성된다. 상기 플라즈마영역(P1)은 넓을수록 좋다. 글래스기판(22)과의 사이에 형성된 플라즈마를 이용하여 산소를 이온화시키기 때문이다. 플라즈마영역이 넓으면 그만큼 산소의 반응속도가 당연히 신속해진다.Whatever the function of the sputter gun 31, the plasma region P1 is formed in front of the sputter gun 31. [ The larger the plasma region P1 is, the better. This is because oxygen is ionized by using plasma formed between the glass substrate 22 and the glass substrate 22. If the plasma region is wide, the reaction rate of oxygen is naturally accelerated.

일단 도 3을 통해 상기 스퍼터건(31)의 구조를 설명하기로 한다.The structure of the sputter gun 31 will be described with reference to FIG.

도 3에 도시한 바와 같이, 스퍼터건(31)은, 상기 진공챔버(12)에 고정되며 밀폐공간부(32a)를 갖는 하우징(32)과, 하우징(32)의 내부 중앙에 위치하는 센터홀더(39)와, 상기 센터홀더(39)의 양측에 대칭으로 구비된 자계형성바디(35)와, 상기 자계형성바디(35)의 배면에 구비되는 다수의 제1,2영구자석(37a,37b)을 포함한다.3, the sputter gun 31 includes a housing 32 fixed to the vacuum chamber 12 and having a closed space portion 32a, and a center holder 32 located at the center of the interior of the housing 32. [ A plurality of first and second permanent magnets 37a and 37b provided on the rear surface of the magnetic field generating body 35. The first and second permanent magnets 37a and 37b are disposed on both sides of the center holder 39, ).

본 설명에서, 상기 제1영구자석(37a)은, 말하자면, N극이 드럼(20)을 향하도록 배치된 자석을 의미하고, 제2영구자석(37b)은 S극이 드럼(20)을 향하도록 위치된 자석을 의미한다.In the present description, the first permanent magnet 37a means a magnet arranged so that the N pole faces the drum 20, and the second permanent magnet 37b indicates a magnet having the S pole oriented toward the drum 20 ≪ / RTI >

상기 자계형성바디(35)는, 진공챔버(12)의 높이방향을 따라 수직으로 연장된 부재로서 그 전면에 보호용 커버(33)를 갖는다. 필요에 따라 상기 보호용 커버(33)를 분리하고 그 자리에 소스타겟을 장착할 수도 있음은 위에 언급한 바와 같다. 아울러, 자계형성바디(35)의 배면에는 제1,2영구자석(37a,37b)이 삽입 고정되는 다수의 자석설치홈(35a)이 형성되어 있다.The magnetic field generating body 35 is a member vertically extending along the height direction of the vacuum chamber 12 and has a protective cover 33 on the entire surface thereof. As described above, the protective cover 33 may be separated as necessary and the source target may be mounted in its place. In addition, a plurality of magnet mounting grooves 35a through which the first and second permanent magnets 37a and 37b are inserted and fixed are formed on the rear surface of the magnetic field generating body 35.

한편, 도 2를 참조하면, 종래의 스퍼터건(21)의 전방에는 두 개의 플라즈마영역(P2)이, 도 3의 플라즈마영역(P1)에 비해 작은 크기로 형성되어 있다. Referring to FIG. 2, two plasma regions P2 are formed in front of the conventional sputter gun 21 in a smaller size than the plasma region P1 in FIG.

종래 스퍼터건(21)에서 형성되는 플라즈마영역(P2)의 사이즈가 작은 이유는, 제1,2영구자석(37a,37b)의 배열 위치에 따른 것이다. 즉, 도 2에 도시한 바와 같이, 제1영구자석(37a)과 제2영구자석(37b)이 하나의 자계형성바디(35)에 혼재되어 있기 때문이다. 플라즈마영역은 자기력의 크기 및 범위와 관련되므로, 영구자석간에 작용하는 자기장의 범위가 작다면, 당연히 플라즈마 영역도 작다. The reason why the size of the plasma region P2 formed in the conventional sputter gun 21 is small depends on the arrangement position of the first and second permanent magnets 37a and 37b. That is, as shown in FIG. 2, the first permanent magnet 37a and the second permanent magnet 37b are mixed in one magnetic field generating body 35. Since the plasma region is related to the magnitude and the range of the magnetic force, if the range of the magnetic field acting between the permanent magnets is small, the plasma region is of course also small.

도 2에 도시한 바와 같이, 종래 스퍼터건(21)의 경우, 각 자계형성바디(35)의 중앙부에 제1영구자석(37a)이 배열되어 있고, 제1영구자석(37a)의 양측부에 제2영구자석(37b)이 배치되어 있다. 각 자계형성바디(35)의 중앙부에서 나온 자기력선이 멀리 뻗어나지 못하고, 좌우측 제2영구자석(37b)으로 편향된다.As shown in Fig. 2, in the case of the conventional sputter gun 21, the first permanent magnet 37a is arranged at the center of each magnetic field generating body 35, and on both sides of the first permanent magnet 37a And a second permanent magnet 37b is disposed. The lines of magnetic force from the central portion of each magnetic field forming body 35 do not extend farther and are deflected to the left and right second permanent magnets 37b.

이에 비해, 본 실시예에 따른 스퍼터장치(10)에 사용되는 스퍼터건(31)은, 도 3에 도시한 것처럼, 도면상 좌측 자계형성바디(35)에는 제1영구자석(37a)만, 우측 자계형성바디(35)에는 제2영구자석(37b)만 배치된 구조를 갖는다. 말하자면, 도면상 좌측에 위치한 자계형성바디(35)에는 오로지 제1영구자석(37a)이 고정되어 있고, 우측에 위치한 자계형성바디(35)에는 오로지 제2영구자석(37b)만 배치되어 있는 것이다.3, the sputter gun 31 used in the sputter apparatus 10 according to the present embodiment has the first permanent magnet 37a only on the left magnetic field forming body 35, The body 35 has a structure in which only the second permanent magnet 37b is disposed. That is to say, only the first permanent magnet 37a is fixed to the magnetic field generating body 35 located on the left side in the drawing, and only the second permanent magnet 37b is disposed on the right side magnetic field generating body 35 .

따라서 좌측 자계형성바디(35)에서 발생한 자기력은, 센터홀더(39)를 가로질러 반대편 자계형성장치(35)에 도달한다. 스퍼터건(31)의 전방 대분에 자기력이 미치는 것이다. 상기한 바와 같이, 플라즈마 영역은 자기력의 범위와 관련되므로, 결국, 스퍼터건(31)의 전방에 플라즈마영역(P1)이 넓게 분포하게 된다.Therefore, the magnetic force generated in the left magnetic-field-forming body 35 reaches the magnetic-field-forming device 35 opposite to the center holder 39. Magnetic force is applied to the front portion of the sputter gun 31. As described above, since the plasma region is related to the range of the magnetic force, the plasma region P1 is distributed in a wide area in front of the sputter gun 31.

한편, 상기 양측 자계형성바디(35)는 한 평면상에 위치하지 않고, 내측으로 꺾인 상태를 유지한다. 즉, 양측 자계형성바디(35)의 드럼을 향하는 대향면이 둔각의 사이각을 가지도록 배치된 것이다. 상기 사이각은 135도 내지 170도 일 수 있다.On the other hand, the both-side magnetic-field-forming bodies 35 are not positioned on one plane but are kept bent inward. That is, the opposing faces of the both magnetic field generating bodies 35 facing the drum are arranged so as to have an angle of obtuse angle. The angle may be between 135 degrees and 170 degrees.

다시 도 1을 참조하면, 산소이온발생부(30)와 드럼(20)의 사이에 플라즈마영역(P1)이 넓게 분포함을 알 수 있다. 외부로부터 주입된 산소분자가 플라즈마영역(P1) 내부에 포함되어 에너지를 전달받기 용이하다. Referring again to FIG. 1, it can be seen that the plasma region P1 is spread between the oxygen ion generating portion 30 and the drum 20. The oxygen molecules injected from the outside are contained in the plasma region P1 and thus it is easy to receive energy.

산소는 상기 플라즈마영역(P1) 내부로 유도되어 이온화 된 상태로, (실리콘이나 티타늄이 증착되고 있는) 글래스기판(22) 상에 가해져 글래스기판(22)상에 SiO2(이산화규소) 또는 TiO2(이산화티타늄)층을 형성한다.Oxygen is introduced into the plasma region P1 and is ionized to be applied on a glass substrate 22 (on which silicon or titanium is deposited) to form SiO2 (silicon dioxide) or TiO2 Titanium) layer.

이상, 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정하지 않고, 본 발명의 기술적 사상의 범위내에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

10:스퍼터장치 12:진공챔버
12a:내부공간 14:제1스퍼터부
14a:실리콘캐소오드 14b:가스공급관
16:제2스퍼터부 16a:티타늄캐소오드
16b:가스공급관 18:진공펌프
20:드럼 21:스퍼터건
22:글래스기판 30:산소이온발생부
31:스퍼터건 32:하우징
32a:밀폐공간부 33:커버
35:자계형성바디 35a:자석설치홈
37a:제1영구자석 37b:제2영구자석
39:센터홀더
10: sputtering apparatus 12: vacuum chamber
12a: internal space 14: first sputter part
14a: silicon cathode 14b: gas supply pipe
16: second sputter part 16a: titanium cathode
16b: gas supply pipe 18: vacuum pump
20: Drum 21: Sputter gun
22: glass substrate 30: oxygen ion generator
31: sputter gun 32: housing
32a: sealed space portion 33: cover
35: magnetic field forming body 35a: magnet mounting groove
37a: first permanent magnet 37b: second permanent magnet
39: center holder

Claims (5)

진공을 유지할 수 있는 내부공간을 갖는 진공챔버와;
상기 진공챔버의 내부에 회전 가능하도록 설치되며 그 외주면에 증착대상물을 고정하는 드럼과;
상기 드럼의 주연부에 대응 배치되며, 드럼의 회전에 따라 일정경로를 따라 공전하는 증착대상물의 표면에, 막을 증착하는 스퍼터부와;
상기 드럼의 주연부에 설치되며, 상기 증착대상물과의 사이에 형성된 플라즈마를 이용하여, 외부로부터 주입된 산소를 이온화시켜 증착대상물에 가하는 것으로서, 상호 나란하게 이격되며 상기 드럼에 대향하는 한 쌍의 자계형성바디와, 일측 자계형성바디의 배면에 고정되며 자계형성바디의 전방으로 N극의 자기력을 출력하는 다수의 제1영구자석과, 타측 자계형성바디의 배면에 고정된 상태로 자계형성바디의 전방으로 S극의 자기력을 출력하는 다수의 제2영구자석과, 상기 양측 자계형성바디의 사이에 위치하며 자계형성바디를 연결하는 센터홀더를 포함하는 스퍼터건을 구비하는 플라즈마 영역이 확장된 반응형 스퍼터장치.
A vacuum chamber having an inner space capable of maintaining a vacuum;
A drum rotatably installed in the vacuum chamber and fixing an object to be deposited on an outer circumferential surface thereof;
A sputtering unit disposed in correspondence with the periphery of the drum, the sputtering unit depositing a film on a surface of an object to be deposited which revolves along a predetermined path in accordance with rotation of the drum;
And a pair of magnetic fields formed on the periphery of the drum and spaced apart from each other and facing the drum, the plasma being formed between the deposition object and the deposition object, A plurality of first permanent magnets fixed to the rear surface of one body of the magnetic field generating body and outputting a magnetic force of the N pole forward of the magnetic field forming body, and a plurality of second permanent magnets fixed to the rear surface of the other body forming body, And a sputter gun including a plurality of second permanent magnets for outputting a magnetic force of the S-pole and a center holder which is located between the two magnetic field generating bodies and connects the magnetic field forming body, .
제1항에 있어서,
상기 일측 자계형성바디와 타측 자계형성바디에서 출력되는 자기력은, 상기 센터홀더를 기준으로 상호 대칭을 이루는 플라즈마 영역이 확장된 반응형 스퍼터장치.
The method according to claim 1,
Wherein a plasma region which is mutually symmetric with respect to the center holder is extended in the magnetic force output from the one magnetic field forming body and the other magnetic field forming body.
제2항에 있어서,
상기 양측 자계형성바디는, 드럼에 대향하는 대향면이 둔각의 사이각을 가지도록 배치된 플라즈마 영역이 확장된 반응형 스퍼터장치.
3. The method of claim 2,
Wherein the two-sided magnetic field generating body has a plasma region extended so that opposed faces opposed to the drum have an obtuse angle.
제1항에 있어서,
상기 한 쌍의 자계형성바디의 후방에는 상기 제1,2영구자석을 보호하는 하우징이 더 구비된 플라즈마 영역이 확장된 반응형 스퍼터장치.
The method according to claim 1,
And a plasma region further including a housing for protecting the first and second permanent magnets is extended to the rear of the pair of magnetic field generating bodies.
제1항에 있어서,
상기 스퍼터부는;
그 내부에 실리콘 캐소오드를 갖는 제1스퍼터부와,
티타늄 캐소오드를 구비한 제2스퍼터부가 포함되는 플라즈마 영역이 확장된 반응형 스퍼터장치.
The method according to claim 1,
Wherein the sputtering portion comprises:
A first sputter portion having a silicon cathode in its interior,
A reactive sputter device with a plasma region extended with a second sputter portion having a titanium cathode.
KR1020170182367A 2017-12-28 2017-12-28 Reactive sputter apparatus with expanded plasma region KR20190080122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170182367A KR20190080122A (en) 2017-12-28 2017-12-28 Reactive sputter apparatus with expanded plasma region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170182367A KR20190080122A (en) 2017-12-28 2017-12-28 Reactive sputter apparatus with expanded plasma region

Publications (1)

Publication Number Publication Date
KR20190080122A true KR20190080122A (en) 2019-07-08

Family

ID=67256115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170182367A KR20190080122A (en) 2017-12-28 2017-12-28 Reactive sputter apparatus with expanded plasma region

Country Status (1)

Country Link
KR (1) KR20190080122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774351A (en) * 2021-11-09 2021-12-10 武汉中维创发工业研究院有限公司 Magnetron sputtering coating chamber, coating machine and coating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497933B1 (en) 2003-01-09 2005-06-29 주식회사 선익시스템 apparatus and method for magnetron sputtering of rocking magnet type
KR100848851B1 (en) 2006-11-17 2008-07-30 주식회사 탑 엔지니어링 Plasma damage free sputter gun, sputter, plasma process apparatus and film-forming method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497933B1 (en) 2003-01-09 2005-06-29 주식회사 선익시스템 apparatus and method for magnetron sputtering of rocking magnet type
KR100848851B1 (en) 2006-11-17 2008-07-30 주식회사 탑 엔지니어링 Plasma damage free sputter gun, sputter, plasma process apparatus and film-forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774351A (en) * 2021-11-09 2021-12-10 武汉中维创发工业研究院有限公司 Magnetron sputtering coating chamber, coating machine and coating method

Similar Documents

Publication Publication Date Title
JP2010511788A (en) Vacuum coating apparatus for forming a homogeneous PVD coating
US20020144903A1 (en) Focused magnetron sputtering system
KR101430809B1 (en) Vacuum deposition apparatus
JP5300084B2 (en) Thin film sputtering equipment
JP2014534341A (en) Multi-directional racetrack rotating cathode for PVD arrays
KR101165432B1 (en) Driving method of magnet and sputtering apparatus using thereof
KR20190080122A (en) Reactive sputter apparatus with expanded plasma region
KR20190108812A (en) Sputter gun for sputter apparatus having electromagnets
WO2023116603A1 (en) Semiconductor chamber
KR102664532B1 (en) Reactive sputter apparatus with enhanced thin film uniformity
WO2018068833A1 (en) Magnet arrangement for a sputter deposition source and magnetron sputter deposition source
KR102548201B1 (en) High-efficiency sputtering device
KR102548205B1 (en) Sputter Gun for sputtering device
JP4614936B2 (en) Composite type sputtering apparatus and composite type sputtering method
KR102552647B1 (en) Sputter gun for sputter apparatus having center electromagnets
KR20190080123A (en) Sputter gun for sputter deposition system
KR102552612B1 (en) Reactive sputter apparatus with enhanced thin film uniformity
KR102552536B1 (en) Sputtering apparatus with angle adjustable sputter gun
US20090020415A1 (en) "Iontron" ion beam deposition source and a method for sputter deposition of different layers using this source
KR101005203B1 (en) Facing target type sputtering apparatus
KR102552593B1 (en) Angle adjustable sputter gun
JP2017002404A (en) Multi-directional racetrack rotation cathode for pvd array
KR101005204B1 (en) Facing target type sputtering apparatus
KR100963413B1 (en) Magnetron sputtering apparatus
EP2811508B1 (en) Gas configuration for magnetron deposition systems

Legal Events

Date Code Title Description
E902 Notification of reason for refusal