KR20190073798A - Inorganic adsorbent for removal of hydrogen sulfide - Google Patents
Inorganic adsorbent for removal of hydrogen sulfide Download PDFInfo
- Publication number
- KR20190073798A KR20190073798A KR1020170174959A KR20170174959A KR20190073798A KR 20190073798 A KR20190073798 A KR 20190073798A KR 1020170174959 A KR1020170174959 A KR 1020170174959A KR 20170174959 A KR20170174959 A KR 20170174959A KR 20190073798 A KR20190073798 A KR 20190073798A
- Authority
- KR
- South Korea
- Prior art keywords
- hydrogen sulfide
- copper
- inorganic adsorbent
- iron oxide
- adsorption
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0225—Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
- B01J20/0229—Compounds of Fe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/52—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/0203—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
- B01J20/0233—Compounds of Cu, Ag, Au
- B01J20/0237—Compounds of Cu
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/043—Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
- B01J20/08—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
본 발명은 황화수소 제거용 무기 흡착제에 관한 것으로서, 보다 상세하게는, 공기 중에 존재하는 황화수소뿐만 아니라, 바이오가스를 생산하는 과정 또는 설비와 같은 질소 조건에서 황화수소도 우수한 성능으로 흡착할 수 있는 황화수소 제거용 무기 흡착제에 관한 것이다.The present invention relates to an inorganic adsorbent for removing hydrogen sulfide, and more particularly, to an adsorbent for removing hydrogen sulfide capable of adsorbing hydrogen sulfide at a high performance under nitrogen conditions such as a process or equipment for producing biogas as well as hydrogen sulfide present in the air To an inorganic adsorbent.
악취는 황화수소, 메르캅탄류, 아민류 기타 자극성 있는 기체상 물질이 사람의 후각을 자극하여 불쾌감과 혐오감을 주는 냄새로, 인체에 미치는 위험성보다는 정신적, 심리적 피해를 끼치는 감각공해로서, 악취의 원인이 되는 물질은 그 종류가 대단히 많을 뿐만 아니라 악취물질간의 복합적인 작용이나 후각의 개인적인 차이 등으로 인하여 느끼는 정도나 피해정도를 일률적으로 나타내기가 어려워 대기오염 중에서도 가장 까다롭고 해결하기 어려운 공해문제 중의 하나로 취급하고 있다.Odor is a sensory pollution that causes psychological and psychological damage rather than a danger to human body due to the smell that hydrogen sulfide, mercaptans, amines and other irritating gaseous substances stimulate the smell of people by giving offensive and disgusting odor. In addition to the large number of substances, they are regarded as one of the most difficult and difficult to solve pollution problems among air pollution because it is difficult to uniformly measure the degree of damage or damage due to the complex action of odorous substances or individual differences in smell .
이러한 악취는 다양한 산업시설과 공정, 그리고 생활주변에서 광범위하게 발생함에 따라 대기환경보전법에서는 문제발생 여지가 큰 대기오염물질 배출시설에 대해서는 배출허용기준을 정하여 엄격하게 관리하고 있으며, 대기오염물질 배출시설 이외의 일정 시설들을 생활악취시설로 규정하여 관리하고 있다. Since these odors are generated in a wide range of industrial facilities, processes, and living environments, the Air Pollutant Conservation Act strictly controls air pollutant emission facilities, Other facilities are designated and managed as living odor facilities.
이러한 악취물질은 단독으로 발생하여 피해를 주는 것이 아니라 악취물질 서로간의 상호작용으로 인하여 복합적으로 작용하여 측정과 탈취에 많은 어려움이 따르고 있다. 탈취기술은 제거하고자 하는 물질의 물리적, 화학적 성질에 따라 그 방법이 다양하며, 최근에는 생물공학기술의 급격한 발전에 따라 미생물에 의한 생물학적 탈취가 개발되고 보급되고 있다. 그러나 탈취기술의 국내 개발수준은 연구차원에서만 진행되어 악취공해문제 해결을 위한 적절한 탈취대책을 제공하지 못하고 있으며, 시범적으로 하수처리장에 설치된 약액세정이나 활성탄 등의 탈취방법이 이용되지만 운용여건상의 한계로 인해 탈취성능이 거의 상실되고 있어 탈취기술의 상용화가 절실한 실정이다. These odorous substances are not caused by themselves and they are harmful, but they are complex due to mutual interaction of odorous substances, which makes it difficult to measure and deodorize them. Deodorization techniques vary depending on the physical and chemical properties of the substance to be removed. Recently, biological deodorization by microorganisms has been developed and popularized due to the rapid development of the biotechnology. However, the domestic development level of deodorization technology is only in the research level, and it does not provide proper deodorization measures to solve the odor pollution problem, and the deodorization method such as chemical solution cleaning or activated carbon installed in the sewage treatment plant is used as a pilot, The deodorization performance is almost lost, and commercialization of the deodorization technology is urgently required.
악취물질을 제거하기 위한 탈취방법 중 흡착법이 가장 많이 이용되는데 흡착제로 사용되는 활성탄은 그 광범한 표면의 물리적 힘이나 기공으로의 내부확산, 모세관 응축 등의 작용에 의하여 많은 물질을 상당히 대량으로 흡착 보전할 수 있다. 또한 활성탄은 소수성의 중성물질에 대하여 특히 효과적인 흡착성을 발휘하기 때문에 탈취용 흡착제로 많이 사용되어 왔지만 중성성분 이외의 산성 성분이나 염기성 성분에 대하여 더욱 효과적인 흡착작용을 일으키는 흡착제의 출현이 요구되고 있다. 따라서 활성탄 표면을 개질하거나 화학약품을 첨착시켜 특정 성분에 대한 선택적 흡착성을 가지는 악취가스 제거용 활성탄이 많이 이용되고 있다. 활성탄에 대한 흡착 친화도가 낮은 가스의 경우에는 화학적 첨착물을 첨가한 첨착활성탄을 사용함으로써 탈취효과도 증대시키고, 탈취조작 운전시간의 연장으로 인한 경제적인 탈취조작이 가능하다.Among the deodorization methods for removing odor materials, the most widely used adsorption method is activated carbon, which is used as an adsorbent, because of the physical force of its wide surface, internal diffusion into pores, capillary condensation, etc., can do. In addition, activated carbon has been widely used as an adsorbent for deodorization because it exhibits particularly effective adsorption to hydrophobic neutral substances, but the appearance of an adsorbent that causes a more effective adsorption action on acidic or basic components other than the neutral component is required. Therefore, activated carbon for removing odor gas, which has selective adsorption on specific components by modifying the activated carbon surface or impregnating chemicals, is widely used. In the case of gas with low adsorption affinity for activated carbon, impregnated activated carbon added with chemical impregnation increases the deodorization effect and economical deodorization operation is possible due to extension of operation time of deodorization operation.
한편, 또 다른 흡착제로 사용되는 산화철은 적당한 탈황률을 얻을 수 있고, 탈황평형도 운전압력에 영향을 주지 않기 때문에 적당하며, 활성성분인 산화철은 환원반응(Fe2O3→Fe3O4→FeO→Fe), 황화반응(Fe3O4, FeO, Fe→FeS), 재생반응(FeS→Fe2O3)의 3가지 반응으로 인해 반복사용 가능하다.On the other hand, iron oxide used as another adsorbent is suitable because it can obtain an appropriate desulfurization rate and does not affect the operation pressure of the desulfurization equilibrium. The iron oxide which is the active ingredient is reduced (Fe 2 O 3 → Fe 3 O 4 → (FeO → Fe), sulfation reaction (Fe 3 O 4 , FeO, Fe → FeS) and regeneration reaction (FeS → Fe 2 O 3 ).
그러나 상술한 바와 같은 종래의 황화수소 흡착제에서는 그 성능의 유지시간이 대략 500~2200 min으로 알려져 있으나, 대략 20~30℃의 상온에서는 성능 유지시간이 현저히 감소하여 대략 500 min 내외를 나타내고 있다. 따라서 종래의 황화수소 흡착제에서는 상온에서 장시간 사용할 수 있는 흡착제로는 부적합한 실정이었다. However, in the conventional hydrogen sulfide adsorbent described above, the performance retention time is known to be about 500 to 2,200 min. However, at a room temperature of about 20 to 30 캜, the performance retention time is remarkably reduced to about 500 min. Therefore, the conventional hydrogen sulfide adsorbent is not suitable as an adsorbent which can be used at room temperature for a long time.
한편, 악취물질 중에서 황화수소는 바이오가스의 생산시에도 부수적으로 발생하고 있다. 바이오가스는 유기물질의 분해로 얻어진 가스로서 일반적으로 유기성폐기물의 혐기성소화를 통해 생성된 메탄가스(CH4)를 일컫는다. 이러한 바이오가스에는 sulfide, disulfide, thiol 등의 여러가지 황 화합물이 포함되고 있고, 고농도의 황화수소는 독성을 가지고, 저농도에서는 유기황화합물과 마찬가지로 강한 악취물질로 분류된다. On the other hand, among the odorous substances, hydrogen sulfide also occurs incidentally in the production of biogas. Biogas is a gas obtained by the decomposition of organic matter and generally refers to methane gas (CH 4 ) produced through anaerobic digestion of organic wastes. These biogas contain various sulfur compounds such as sulfide, disulfide, and thiol. High concentrations of hydrogen sulfide are toxic, and at low concentrations they are classified as strong odor substances as organic sulfur compounds.
이러한 황화수소는 대부분이 금속과 반응성이 크며, 응축된 수분에 용해되면 부식성이 있어 장치에 손상을 줄 수 있고, 황화수소와 접촉하는 윤활유는 오염되며 그에 따라 필요 이상으로 오일 교환을 자주 해 주어야 하며, 연소되면 법 규제 대상인 황산염 등 황산화물로 되고 부식성이 큰 특징을 갖는다. Most of these hydrogen sulphides are highly reactive with metals and are corrosive when dissolved in condensed water, which can damage the equipment, and the lubricating oil in contact with the hydrogen sulfide is contaminated, requiring frequent oil changes more than necessary, Sulfuric acid, sulfuric acid, and so on.
따라서 바이오가스를 사용하기 위해서는 생산된 바이오가스에서 황화수소를 제거하여야 하는데, 이러한 황화수소를 제거하기 위한 방법으로는, 소화조 내에서 황화수소를 제거하기 위하여 공기/산소를 주입하거나 철염을 주입하는 방법, 소화 후에는 철산화물 또는 수산화물을 이용하여 흡착하는 방법, 용매를 이용하여 흡수하는 방법, 반투과성막을 통하여 바이오가스로부터 분리하는 방법, 산화할 수 있는 특정 박테리아를 이용하는 생물여과 방법, 활성탄소로 흡착하는 방법들이 사용된다.Therefore, in order to use biogas, it is necessary to remove hydrogen sulfide from the produced biogas. Examples of the method for removing hydrogen sulfide include a method of injecting air / oxygen or iron salt to remove hydrogen sulfide in the digester, Methods of adsorption using iron oxide or hydroxide, adsorption using a solvent, separation from a biogas through a semi-permeable membrane, biofiltration using a specific oxidizable bacteria, and adsorption with activated carbon are used .
이와 같이, 황화수소가 생성되는 조건 중에서 공기가 존재하는 공기 분위기(Air base)와 바이오가스를 생산하는 과정 또는 설비 등에서 황화수소가 생성되는 질소 분위기(N2 base)로 구분하여 각 베이스에서 황화수소를 제거하기 위한 연구가 시행되어 오고 있다. In this way, hydrogen sulfide is removed from each base by separating the hydrogen sulfide into air atmosphere in which air is present and nitrogen atmosphere (N 2 base) in which hydrogen sulfide is produced in a process or facility for producing biogas Research has been carried out.
그런데 바이오가스가 생성되는 조건에서 바이오가스의 회수에 경제성이 없는 경우에는, 소화조 등에 산소나 공기를 공급하여 소화조를 조기에 안정화시키게 되는데, 이 과정에서 공급된 산소나 공기와 섞여 황화수소가 외부로 배출될 수 있다. 이는 바이오가스를 생산하는 과정 또는 설비와 같은 질소 분위기에서는 그 상태에서 황화수소를 흡착할 수 있는 흡착제를 사용하지만, 산소나 공기와 섞인 황화수소에 대한 흡착성능은 현저히 저하되기 때문이다. However, when the biogas is not economically recoverable under the condition that the biogas is produced, oxygen or air is supplied to the digester to stabilize the digester rapidly. In this process, the hydrogen and hydrogen are mixed with the supplied oxygen or air, . This is because an adsorbent capable of adsorbing hydrogen sulfide is used in a nitrogen atmosphere such as a process or a facility for producing biogas, but adsorption performance to hydrogen sulfide mixed with oxygen or air is remarkably deteriorated.
즉, 일반적인 경우에는, 공기 분위기와 질소 분위기가 명확히 구분되고 그 구분된 상태에 따라 악취물질인 황화수소를 흡착할 수 있는 흡착제를 사용하게 되지만, 공기 분위기와 질소 분위기가 의도적으로 교차 발생되거나 공존할 수 있는 환경에서는 각 베이스에서 황화수소 흡착에 특화된 흡착제를 사용하게 되면, 황화수소 흡착성능이 현저히 저하되어 황화수소가 대기중으로 배출되어 환경오염을 발생시키는 문제점이 있었다. That is, in general, the air atmosphere and the nitrogen atmosphere are clearly distinguished and the adsorbent capable of adsorbing the hydrogen sulfide which is the malodor substance is used according to the separated state. However, the air atmosphere and the nitrogen atmosphere may intentionally cross or coexist The use of an adsorbent specialized for adsorbing hydrogen sulfide in each of the bases has a problem in that the adsorption performance of hydrogen sulfide is remarkably lowered and hydrogen sulfide is discharged to the atmosphere to cause environmental pollution.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은, 공기 분위기와 질소 분위기에서 발생되는 황화수소의 흡착성능을 향상시킬 수 있는 공기 분위기와 질소 분위기의 황화수소 제거용 무기 흡착제를 제공하는 데 있다.It is an object of the present invention to provide an inorganic adsorbent for removing hydrogen sulfide in an air atmosphere and a nitrogen atmosphere capable of improving the adsorption performance of hydrogen sulfide generated in an air atmosphere and a nitrogen atmosphere, .
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 황화수소 제거용 무기 흡착제에 관한 것으로, 산화철, 구리화합물, 수산화칼슘, 알루미나, 분말형 활성탄 및 탄산칼륨을 포함하여 구성된다.According to an aspect of the present invention, there is provided an inorganic adsorbent for removing hydrogen sulfide, which comprises iron oxide, a copper compound, calcium hydroxide, alumina, powdered activated carbon, and potassium carbonate.
이때 본 발명에 따른 무기 흡착제에는, 상기 산화철은 15~25중량%, 상기 구리화합물은 15~25중량%, 상기 수산화칼슘(Ca(OH)2)은 15~20중량%, 상기 알루미나는 10~15중량%, 상기 분말형 활성탄은 15~25중량%이고, 상기 탄산칼륨(K2CO3)은 10~25중량%로 사용된다.The inorganic adsorbent according to the present invention may contain 15 to 25% by weight of iron oxide, 15 to 25% by weight of the copper compound, 15 to 20% by weight of calcium hydroxide (Ca (OH) 2 ) , The powdery activated carbon is 15 to 25 wt%, and the potassium carbonate (K 2 CO 3 ) is 10 to 25 wt%.
이때 상기 구리화합물은 산화구리(Ⅰ)(Cu2O), 산화구리(Ⅱ)(CuO), 탄산구리(Cu2CO3), 수산화구리(Cu(OH)2) 중 어느 하나인 것이 바람직하다.In this case, the copper compound is preferably any one of copper oxide (Ⅰ) (Cu 2 O) , copper oxide (Ⅱ) (CuO), copper carbonate (Cu 2 CO 3), copper hydroxide (Cu (OH) 2) one .
또한 상기 탄산칼륨은 분말상으로 가공되어 혼합되는 것이 바람직하다.Further, it is preferable that the above-mentioned potassium carbonate is processed and mixed in a powder form.
아울러, 상기 산화철과 구리화합물은 1 : 1의 중량비로 혼합되는 것이 바람직하다.In addition, the iron oxide and the copper compound are preferably mixed in a weight ratio of 1: 1.
본 발명에 따른 황화수소 제거용 무기 흡착제에 따르면, 서로 간의 조건이 다른 공기 분위기와 질소 분위기에서 발생되는 황화수소를 우수한 성능으로 흡착시킬 수 있어 공기 분위기와 질소 분위기가 의도적으로 교차 발생되거나 공존할 수 있는 환경에서 하나의 흡착제만으로 황화수소를 외부로 배출시키는 양을 최소화할 수 있는 효과가 있다.According to the inorganic adsorbent for removing hydrogen sulfide according to the present invention, hydrogen sulfide generated in an air atmosphere and a nitrogen atmosphere having different conditions from each other can be adsorbed with excellent performance, and an environment in which air atmosphere and nitrogen atmosphere are intentionally crossed or coexist It is possible to minimize the amount of hydrogen sulfide discharged to the outside with only one adsorbent.
도 1은 공기 분위기에서의 황화수소 흡착 성능에 대한 실험결과를 나타내는 그래프,
도 2는 질소 분위기에서의 황화수소 흡착 성능에 대한 실험결과를 나타내는 그래프이다.1 is a graph showing experimental results on hydrogen sulfide adsorption performance in an air atmosphere,
2 is a graph showing experimental results on hydrogen sulfide adsorption performance in a nitrogen atmosphere.
이하, 첨부된 도면을 참조하여 본 발명에 따른 황화수소 제거용 무기 흡착제의 구성을 자세히 설명한다.Hereinafter, the structure of the inorganic adsorbent for removing hydrogen sulfide according to the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 황화수소 제거용 무기 흡착제는 산화철(Fe2CO3) 15~25중량%, 구리화합물 15~25중량%, 수산화칼슘(Ca(OH)2) 15~25중량%, 알루미나 10~30중량%, 분말형 활성탄 15~25중량%, 및 탄산칼륨(K2CO3) 8~30중량%를 포함하여 구성된다. The inorganic adsorbent for removing hydrogen sulfide according to the present invention comprises 15 to 25% by weight of iron oxide (Fe 2 CO 3 ), 15 to 25% by weight of a copper compound, 15 to 25% by weight of calcium hydroxide (Ca (OH) 2 ) 15 to 25% by weight of powdery activated carbon, and 8 to 30% by weight of potassium carbonate (K 2 CO 3 ).
상기 구성요소 중에서 산화철과 활성탄은, 종래기술에서도 언급한 바와 같이, 황화수소의 흡착 성능이 우수한 것으로 알려진 재료로서, 본 발명에서도 이들 재료를 활용하되, 보다 향상된 흡착성능을 발휘 및 유지하기 위해서 다양한 활성물질을 연구하였고, 그 결과로서 상기와 같은 구성요소들의 배합을 얻을 수 있게 되었다. Among the above-mentioned components, iron oxide and activated carbon are materials known to have excellent adsorbing ability of hydrogen sulfide as mentioned in the background art. In order to exhibit and maintain a more improved adsorption performance, various active substances And as a result, a combination of the above-described components can be obtained.
그리고 수산화칼슘과 알루미나에서 황화수소의 제거 효능은 특별히 발견되지 않지만, 흡착제의 강도 향상을 위하여 수산화칼슘이 첨가되고, 또한 알루미나는 활성알루미나 및 수산화알루미나 중에서 사용 가능하지만, 수산화칼슘과 더불어 강도향상에 기여할 뿐만 아니라 원가 절감이 가능한 수산화알루미나를 사용하는 것이 보다 바람직하다.Although the effect of removing hydrogen sulfide from calcium hydroxide and alumina is not particularly found, calcium hydroxide is added to improve the strength of the adsorbent, and alumina can be used in activated alumina and alumina hydroxide. However, in addition to calcium hydroxide, It is more preferable to use alumina hydroxide which can be used.
한편, 탄산칼륨(K2CO3)은 황화수소 제거 효능을 향상시킬 수 있는 활성물질로 확인된 재료로서, 전체 중량비에서 8~30중량% 범위 내에서 우수한 성능을 발휘하는 것으로 나타났다.On the other hand, potassium carbonate (K 2 CO 3 ) is a material identified as an active material capable of improving the hydrogen sulfide removal efficiency, and exhibits excellent performance within a range of 8 to 30 wt% based on the total weight ratio.
이러한 활성탄, 산화철, 수산화칼슘, 알루미나 및 탄산칼슘은 공기 분위기에서의 황화수소 제거를 위한 무기 흡착제를 구성하는 기본 구성요소이지만, 이러한 구성요소만으로 무기 흡착제를 제조하면 질소 분위기에서 황화수소의 흡착율이 좋지 않다. 따라서 본원발명에서는 구리화합물을 상기 구성요소에 첨가하여 무기흡착제를 제조하고, 이 경우 공기중 뿐만 아니라 질소 조건에서 황화수소의 흡착율을 증가시키는데 사용될 수 있는 철화합물을 첨가하는 경우에 비해 2.3배 이상의 흡착성능 향상을 나타낸다.These activated carbon, iron oxide, calcium hydroxide, alumina, and calcium carbonate are basic constituent elements of an inorganic adsorbent for removing hydrogen sulfide in an air atmosphere. However, the adsorption of hydrogen sulfide in a nitrogen atmosphere is poor when an inorganic adsorbent is prepared by only these constituent elements. Therefore, in the present invention, an inorganic adsorbent is prepared by adding a copper compound to the above components, and in this case, an adsorption performance of 2.3 times or more as compared with the case of adding an iron compound which can be used for increasing the adsorption rate of hydrogen sulfide in nitrogen as well as in air Improvement.
이러한 구리화합물로는, 산화구리(Ⅰ)(Cu2O), 산화구리(Ⅱ)(CuO), 탄산구리(Cu2CO3), 수산화구리(Cu(OH)2)가 예시될 수 있다. Examples of such a copper compound include copper (I) (Cu 2 O), copper (II) oxide (CuO), copper carbonate (Cu 2 CO 3 ) and copper hydroxide (Cu (OH) 2 ).
이하에서는 상기와 같은 구성을 갖는 무기 흡착제의 황화수소 흡착성능에 대한 실험결과를 설명한다.Experimental results on the hydrogen sulfide adsorption performance of the inorganic adsorbent having the above-described structure will be described below.
먼저 공기 분위기에서 철화합물을 사용한 경우, 구리화합물을 사용한 경우와 본 발명에서와 같이 철화합물과 구리화합물을 혼용한 경우에 황화수소의 흡착 성능에 차이가 있는지에 대해 실험하였다.First, experiments were conducted to determine whether the adsorption performance of hydrogen sulfide differs when an iron compound is used in an air atmosphere, when a copper compound is used, and when an iron compound and a copper compound are mixed, as in the present invention.
즉, 수산화칼슘, 알루미나, 분말 활성탄 및 벤토나이트의 배합비율은 고정한 상태에서 철화합물로서 Fe2O3 레진을 사용한 경우를 비교예 1, 구리화합물로서 산화구리(Ⅱ)(CuO) 레진을 사용한 경우를 비교예 2로 하고, Fe2O3 레진과 산화구리(Ⅱ)(CuO) 레진을 함께 사용한 경우를 실시예 1로 하여 황화수소의 제거 성능을 실험하였다. 실험은 공기 베이스 및 질소 분위기에서 상대습도 45%, 활성물질인 탄산칼륨을 18중량%로 하였고, 비교예 1은 철화합물 40중량%, 비교예 2는 구리화합물 40중량%, 실시예 1은 철화합물 20중량% 및 구리화합물 20중량%를 첨가하여 실시하였다.That is, Comparative Example 1 in which Fe 2 O 3 resin was used as the iron compound, and Comparative Example 1 in which the mixing ratio of calcium hydroxide, alumina, powdered activated carbon and bentonite was fixed was compared with the case of using copper oxide (II) (CuO) Example 2 In the case of using Fe 2 O 3 resin and copper (II) oxide (CuO) resin together, the removal performance of hydrogen sulfide was tested as Example 1. In the experiment, the relative humidity was 45% and the active material potassium carbonate was 18% by weight in the atmosphere of air and nitrogen. Comparative Example 1 contained 40% by weight of the iron compound, Comparative Example 2 contained 40% by weight of the copper compound, 20% by weight of the compound and 20% by weight of the copper compound.
그 결과, 도 1에 도시된 바와 같이, 공기 분위기에서는 Fe2O3 레진을 첨가한 비교예 1의 경우에는 97.5 흡착당량(Gas L/Resin L)을 나타내고, 산화구리(Ⅱ)(CuO) 레진을 첨가한 비교예 2의 경우는 76.5 흡착당량(Gas L/Resin L)을 나타내었다. 그리고 Fe2O3 레진과 산화구리(Ⅱ)(CuO) 레진을 함께 사용한 실시예 1의 경우에는 92.5 흡착당량(Gas L/Resin L)을 나타내어 비교예 1보다는 적었으나 거의 대등한 수준을 나타내었고, 비교예 2보다는 월등히 많은 황화수소를 흡착함을 알 수 있었다. As a result, as shown in Fig. 1, the adsorption equivalent (Gas L / Resin L) of 97.5 was obtained in the case of Comparative Example 1 in which Fe 2 O 3 resin was added in the air atmosphere and the copper (II) (Gas L / Resin L) was shown in the case of Comparative Example 2 in which the adsorbed amount was added. In the case of Example 1 in which Fe 2 O 3 resin and copper oxide (II) (CuO) resin were used together, 92.5 adsorption equivalent (Gas L / Resin L) was exhibited, which was lower than Comparative Example 1, , It was found that much hydrogen sulfide was adsorbed than Comparative Example 2.
한편, 도 2에 도시된 바와 같이, 질소 분위기에서는 Fe2O3 레진을 첨가한 비교예 1의 경우에는 26.7 흡착당량(Gas L/Resin L)을 나타내고, 산화구리(Ⅱ)(CuO) 레진을 첨가한 비교예 2의 경우는 104.8 흡착당량(Gas L/Resin L)을 나타내었다. 그리고 Fe2O3 레진과 산화구리(Ⅱ)(CuO) 레진을 함께 사용한 실시예 1의 경우에는 62.0 흡착당량(Gas L/Resin L)을 나타내어 비교예 2보다는 적었으나 비교예 1보다는 많은 황화수소를 흡착함을 알 수 있었다.On the other hand, as shown in FIG. 2, in the case of Comparative Example 1 in which Fe 2 O 3 resin was added in a nitrogen atmosphere, the adsorbed equivalent (Gas L / Resin L) was 26.7 and the copper (II) In the case of Comparative Example 2 added, 104.8 adsorption equivalent (Gas L / Resin L) was shown. In the case of Example 1 in which Fe 2 O 3 resin and copper oxide (II) (CuO) resin were used together, 62.0 adsorption equivalents (Gas L / Resin L) were exhibited and fewer hydrogen sulfide than Comparative Example 1 Adsorption was observed.
도 1과 도 2를 통해 알 수 있듯이, 실시예 1은 공기 분위기에서는 Fe2O3 레진을 첨가한 비교예 1에 대해 대등한 수준의 흡착성능을 발휘하고, 질소 분위기에서는 비교예 1에 대해 월등히 향상된 수준의 흡착성능을 발휘하였다. 따라서 공기 분위기에서의 황화수소 흡착성능이 요구되되, 질소 분위기로의 전환이 예상되는 공간, 또는 그 역의 공간에서 본 발명에 따른 황화수소 흡착제가 바람직하게 적용될 수 있다.As can be seen from Figs. 1 and 2, Example 1 exhibited comparable adsorption performance to Comparative Example 1 in which Fe 2 O 3 resin was added in an air atmosphere, and exhibited comparable adsorption performance in Comparative Example 1 in a nitrogen atmosphere And exhibited an enhanced level of adsorption performance. Therefore, a hydrogen sulfide adsorbent according to the present invention can be suitably applied in a space where the hydrogen sulfide adsorption performance is required in an air atmosphere, but is expected to be converted into a nitrogen atmosphere, or vice versa.
그리고 본 발명에서 산화철과 구리화합물의 총 중량비는 일정하게 한 상태에서 산화철의 양을 증가시키면 공기 분위기에서의 황화수소 흡착률은 약간 상승하나 실질적으로 크게 증가하지는 않고 질소 분위기에서의 황화수소 흡착률은 크게 저하될 것이고, 구리화합물의 양을 증가시키면 공기 분위기에서의 황화수소 흡착률은 크게 저하되나 질소 분위기에서의 황화수소 흡착률은 증가할 것이다.In the present invention, when the amount of iron oxide is increased while the total weight ratio of iron oxide and copper compound is kept constant, the adsorption rate of hydrogen sulfide in the air atmosphere is slightly increased but not substantially increased, and the adsorption rate of hydrogen sulfide in the nitrogen atmosphere is greatly decreased If the amount of copper compound is increased, the adsorption rate of hydrogen sulfide in the air atmosphere will be greatly reduced, but the adsorption rate of hydrogen sulfide in the nitrogen atmosphere will be increased.
따라서 공기 분위기와 질소 분위기에서 함께 사용하기 위해서는 실시예에서와 같이, 산화철과 구리화합물은 1 : 1의 중량비로 혼합되는 것이 바람직하다.Therefore, for use together in an air atmosphere and a nitrogen atmosphere, it is preferable that iron oxide and a copper compound are mixed at a weight ratio of 1: 1 as in the examples.
또한 산화철과 구리화합물의 중량비를 1 : 1로 하는 조건에서 산화철과 구리화합물의 총 중량%를 증감시키는 경우에 흡착당량의 변화를 실험해 본 결과, 산화철과 구리화합물을 각각 20중량%로 하여 총 40중량%를 사용하는 경우가 가장 좋은 성능(실시예 1에서와 같이 공기 분위기에서 92.5 흡착당량과 질소 분위기에서 62.0 흡착당량)을 나타내었고, 산화철과 구리화합물을 각각 15중량%로 하여 총 30중량%를 사용하는 경우에는 대략 10%의 성능 감소가 발생하였으며, 각각 25중량%로 하여 총 50중량%를 사용하는 경우에는 대략 2%의 성능 감소가 발생하였다. In addition, when the total weight percentage of iron oxide and copper compound was increased or decreased under the condition that the weight ratio of iron oxide to copper compound was 1: 1, the change of adsorption equivalent weight was experimented. As a result, (The adsorption equivalent of 92.5 in an air atmosphere and the adsorption equivalent of 62.0 in a nitrogen atmosphere as in Example 1), and the total amount of iron oxide and copper compound was 15 wt% %, There was a performance reduction of about 10%. When the total amount was 50% by weight, the performance decreased by about 2%.
더구나 산화철과 구리화합물을 각각 15중량% 미만으로 사용하면, 흡착성능의 저하가 현저하고, 각각 25중량%를 초과하여 사용되면, 수산화칼슘과 알루미나의 사용량이 감소되어 흡착제 강도가 저하되었다. Moreover, when the iron oxide and the copper compound are used in an amount of less than 15% by weight, the adsorption performance is remarkably deteriorated. When the amount of each of the iron oxide and the copper compound is more than 25% by weight, the amount of calcium hydroxide and alumina used decreases and the strength of the adsorbent decreases.
이상에서와 같이 본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as defined by the appended claims. It is obvious that you can do it.
Claims (5)
상기 산화철은 15~25중량%, 상기 구리화합물은 15~25중량%, 상기 수산화칼슘(Ca(OH)2)은 15~20중량%, 상기 알루미나는 10~15중량%, 상기 분말형 활성탄은 15~25중량%이고, 상기 탄산칼륨(K2CO3)은 10~25중량%인 것을 특징으로 하는 황화수소 제거용 무기 흡착제.The method according to claim 1,
Wherein the iron oxide is 15 to 25 wt%, the copper compound is 15 to 25 wt%, the calcium hydroxide (Ca (OH) 2 ) is 15 to 20 wt%, the alumina is 10 to 15 wt% To 25 wt%, and the potassium carbonate (K 2 CO 3 ) is 10 wt% to 25 wt%.
상기 구리화합물은 산화구리(Ⅰ)(Cu2O), 산화구리(Ⅱ)(CuO), 탄산구리(Cu2CO3), 수산화구리(Cu(OH)2) 중 어느 하나인 것을 특징으로 하는 황화수소 제거용 무기 흡착제.3. The method of claim 2,
The copper compounds, characterized in that any one of copper oxide (Ⅰ) (Cu 2 O) , copper oxide (Ⅱ) (CuO), copper carbonate (Cu 2 CO 3), copper hydroxide (Cu (OH) 2) one Inorganic adsorbent for removing hydrogen sulfide.
상기 탄산칼륨은 분말상으로 가공되어 혼합되는 것을 특징으로 하는 공기 및 질소 조건에서의 황화수소 제거용 무기 흡착제.3. The method of claim 2,
Wherein the potassium carbonate is processed and mixed in a powder form to be mixed with the inorganic adsorbent for removing hydrogen sulfide under air and nitrogen conditions.
상기 산화철과 구리화합물은 1 : 1의 중량비로 혼합되는 것을 특징으로 하는 황화수소 제거용 무기 흡착제.3. The method of claim 2,
Wherein the iron oxide and the copper compound are mixed at a weight ratio of 1: 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170174959A KR102051502B1 (en) | 2017-12-19 | 2017-12-19 | Inorganic adsorbent for removal of hydrogen sulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170174959A KR102051502B1 (en) | 2017-12-19 | 2017-12-19 | Inorganic adsorbent for removal of hydrogen sulfide |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190073798A true KR20190073798A (en) | 2019-06-27 |
KR102051502B1 KR102051502B1 (en) | 2019-12-04 |
Family
ID=67056996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170174959A KR102051502B1 (en) | 2017-12-19 | 2017-12-19 | Inorganic adsorbent for removal of hydrogen sulfide |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102051502B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210070744A (en) | 2019-12-05 | 2021-06-15 | 주식회사 신성이엔알 | Adsorbent for hydrogen sulfide using acid drainage sludge from abandoned mine |
CN115634713A (en) * | 2022-10-26 | 2023-01-24 | 浙江誉衡环保科技有限公司 | Desulfurization synergist for flue gas desulfurization and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010100286A (en) * | 2000-04-10 | 2001-11-14 | 김명환 | Harmful Material Removers Used For Removing Sulfur Oxides, Nitrogen Oxides And Aromatic Halogen Compounds Among Flue Gases |
KR101208710B1 (en) | 2011-03-28 | 2012-12-10 | 디에이치엠(주) | apparatus for removing hydrogen sulfide from methane gas |
KR20140005869A (en) * | 2010-08-27 | 2014-01-15 | 클라리언트 에스.에이. | Absorbent composition designed for removing contaminants, mainly sulphur compounds, contained in liquid and gaseous streams, method for obtaining a designed absorbent composition, method for removing impurities, mainly sulphur compounds, including hydrogen sulphide, contained in liquid or gaseous streams, and use of an absorbent composition |
KR101451910B1 (en) * | 2014-03-28 | 2014-10-22 | (주)씨앤지테크 | Agent for removing hydrogen sulfide and recycling method of the same |
KR20150016624A (en) * | 2015-01-12 | 2015-02-12 | 한국건설기술연구원 | Adsorption-decomposer for removal of hydrogen sulfide and manufacturing method thereof |
KR101680610B1 (en) * | 2015-05-28 | 2016-11-30 | 한소 주식회사 | Activated carbon adsorbent for acidic gas removal and manufacturing method the same |
KR101722954B1 (en) * | 2016-09-02 | 2017-04-05 | 김민영 | Hydrogen sulfide removing agent and the preparation thereof |
-
2017
- 2017-12-19 KR KR1020170174959A patent/KR102051502B1/en active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010100286A (en) * | 2000-04-10 | 2001-11-14 | 김명환 | Harmful Material Removers Used For Removing Sulfur Oxides, Nitrogen Oxides And Aromatic Halogen Compounds Among Flue Gases |
KR20140005869A (en) * | 2010-08-27 | 2014-01-15 | 클라리언트 에스.에이. | Absorbent composition designed for removing contaminants, mainly sulphur compounds, contained in liquid and gaseous streams, method for obtaining a designed absorbent composition, method for removing impurities, mainly sulphur compounds, including hydrogen sulphide, contained in liquid or gaseous streams, and use of an absorbent composition |
KR101208710B1 (en) | 2011-03-28 | 2012-12-10 | 디에이치엠(주) | apparatus for removing hydrogen sulfide from methane gas |
KR101451910B1 (en) * | 2014-03-28 | 2014-10-22 | (주)씨앤지테크 | Agent for removing hydrogen sulfide and recycling method of the same |
KR20150016624A (en) * | 2015-01-12 | 2015-02-12 | 한국건설기술연구원 | Adsorption-decomposer for removal of hydrogen sulfide and manufacturing method thereof |
KR101680610B1 (en) * | 2015-05-28 | 2016-11-30 | 한소 주식회사 | Activated carbon adsorbent for acidic gas removal and manufacturing method the same |
KR101722954B1 (en) * | 2016-09-02 | 2017-04-05 | 김민영 | Hydrogen sulfide removing agent and the preparation thereof |
Non-Patent Citations (1)
Title |
---|
장길남 외 4인, Clean Technol., Vol. 23, No. 3, September 2017, pp. 286-293* * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210070744A (en) | 2019-12-05 | 2021-06-15 | 주식회사 신성이엔알 | Adsorbent for hydrogen sulfide using acid drainage sludge from abandoned mine |
CN115634713A (en) * | 2022-10-26 | 2023-01-24 | 浙江誉衡环保科技有限公司 | Desulfurization synergist for flue gas desulfurization and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102051502B1 (en) | 2019-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wysocka et al. | Technologies for deodorization of malodorous gases | |
Gebreegziabher et al. | Adsorption of H2S, NH3 and TMA from indoor air using porous corncob activated carbon: Isotherm and kinetics study | |
Kailasa et al. | Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants | |
Abatzoglou et al. | A review of biogas purification processes | |
Smet et al. | Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry | |
Kwaśny et al. | Sorbents Used for Biogas Desulfurization in the Adsorption Process. | |
Jaber et al. | Removal of hydrogen sulfide in air using cellular concrete waste: Biotic and abiotic filtrations | |
Barbusiński et al. | Use of biological methods for removal of H2S from biogas in wastewater treatment plants–a review | |
KR102051502B1 (en) | Inorganic adsorbent for removal of hydrogen sulfide | |
Rabbani et al. | Recovery of sulphur from contaminated air in wastewater treatment plants by biofiltration: a critical review | |
Kulkarni et al. | A review on hydrogen sulphide removal from waste gases | |
KR102012003B1 (en) | Inorganic adsorbent for removal of hydrogen sulfide in nitrogen base | |
Sattler et al. | Removal of carbonyl sulfide using activated carbon adsorption | |
CN1951541A (en) | Process for purifying sulfur-containing foul waste gas | |
KR101411831B1 (en) | Powdery deodorant | |
Anfruns et al. | Removal of odour-causing compounds using carbonaceous adsorbents/catalysts prepared from sewage sludge | |
CN104645934A (en) | Active carbon industrial wastewater deodorant | |
Roman | Biotechnological removal of H2S and thiols from sour gas streams under haloalkaline conditions | |
KR101914346B1 (en) | Inorganic adsorbent for removal of hydrogen sulfide | |
KR100435508B1 (en) | H2S removal process from paper mill sludge | |
KR101780126B1 (en) | Media for removing odor | |
Malysheva | Microbiological Malodourous Deodoration of Aeration Stations for Wastewater Treatment | |
KR100216985B1 (en) | Process for production of active carbon | |
KR100290579B1 (en) | Thiobacillus thiooxidans TAS and Merhod for Biological Deoderization using the Strain | |
Raghuvanshi et al. | Biofiltration: essentials, research and applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |