KR20190067724A - 물리적 파라미터를 측정하기 위한 전자 디바이스 - Google Patents

물리적 파라미터를 측정하기 위한 전자 디바이스 Download PDF

Info

Publication number
KR20190067724A
KR20190067724A KR1020180156350A KR20180156350A KR20190067724A KR 20190067724 A KR20190067724 A KR 20190067724A KR 1020180156350 A KR1020180156350 A KR 1020180156350A KR 20180156350 A KR20180156350 A KR 20180156350A KR 20190067724 A KR20190067724 A KR 20190067724A
Authority
KR
South Korea
Prior art keywords
electrical
capacitance
excitation signal
circuit
passive
Prior art date
Application number
KR1020180156350A
Other languages
English (en)
Other versions
KR102117168B1 (ko
Inventor
실뱅 그로장
용홍 타오
알렉상드르 드쉴드르
위그 블랑지
Original Assignee
이엠. 마이크로일레크트로닉-마린 쏘시에떼 아노님
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이엠. 마이크로일레크트로닉-마린 쏘시에떼 아노님 filed Critical 이엠. 마이크로일레크트로닉-마린 쏘시에떼 아노님
Publication of KR20190067724A publication Critical patent/KR20190067724A/ko
Application granted granted Critical
Publication of KR102117168B1 publication Critical patent/KR102117168B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/006Details of instruments used for thermal compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0897Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by thermal pick-up

Abstract

물리적 파라미터를 측정하기 위한 전자 측정 디바이스 (32) 는: - 2 개의 커패시턴스들 (C1, C2) 로 형성된 차동 아날로그 센서 (4), - 센서에, 인버팅되는 2 개의 전기 여기 신호들을 제공하는 차동 아날로그 센서의 여기 회로 (36), - 센서의 값으로부터 결정되는 함수인 아날로그 전압 (Vout) 을 생성하는 측정 회로 (8), 및 - 그 자신의 전기 여기 신호 (18) 에 의해 여기되는 보상 커패시턴스 (COS2) 로 형성되는 센서의 가능한 오프셋의 보상 회로 (10) 를 포함한다. 여기 회로는 적어도 보상 커패시턴스를 포함하는 측정 디바이스의 전기 어셈블리의 온도의 드리프트를 보상하기 위하여 결정된 비례 인자로 절대 온도에 대한 선형 의존성을 갖는 그 자신의 전기 여기 신호 (38) 를 보상 회로의 추가적인 커패시턴스 (Ccomp) 에 제공 가능하게 하기 위하여 배열된다.

Description

물리적 파라미터를 측정하기 위한 전자 디바이스{Electronic device for measuring a physical parameter}
본 발명은 물리적 파라미터를 측정하기 위한 전자 디바이스들의 분야, 특히 커패시티브 타입의 가속도계에 관한 것이다.
첨부된 도 1 을 참조하여, 시장에서 발견되는 것과 같은, 물리적 파라미터를 측정하기 위한 전자 디바이스가 설명될 것이다. 이 측정 디바이스 (2) 는:
- 실질적으로 동일한 값의 2 개의 커패시턴스들 (C1 및 C2) 로 형성된 패시브 차동 전기 컴포넌트를 포함하는 아날로그 센서 (4) 로서, 전기 컴포넌트의 출력에서, 2 개의 커패시턴스들의 공통 단자 (BC) 에 제공된 전기 값은, 검출된 물리적 파라미터, 특히 가속도에 따라 가변하는, 상기 아날로그 센서 (4),
- 물리적 파라미터의 연속적인 측정들을 행하기 위하여 주기적으로 2 개의 커패시턴스들에 각각 인가되는 2 개의 인버팅된 전기 여기 신호들 (16 및 17) 을 패시브 차동 전기 컴포넌트에 제공하는 아날로그 센서의 여기 회로 (6),
- 증폭기 (12) 를 포함하는 측정 회로 (8) 로서, 증폭기 (12) 는, 이 측정 회로를 형성하는 피드백 루프 (14) 에 연결되어, 출력에서, 패시브 차동 전기 컴포넌트의 값으로부터, 특히 바람직하게는 비례하여, 결정되는 함수인 전압 (Vout) 을 생성하는, 상기 측정 회로 (8), 및
- 아날로그 센서 (4) 의 가능한 오프셋의 보상 회로 (10) 로서, 이 보상 회로는 여기 회로 (6) 에 의해 여기되는 보상 커패시턴스 (COS) 로 형성되고, 후자는, 보상 커패시턴스 (COS) 에서, 전기 여기 신호 (18) 를 제공하는, 상기 보상 회로 (10) 를 포함한다.
전기 여기 신호들 (16, 17 및 18) 은 전기 공급의 하위/저 (lower/low) 전압 (VSS) 과 이 전기 공급의 상위/고 (higher/high) 전압 (VDD) (VDD 는 공급 전압을 정의한다) 간의 트랜지션 (transition) 들로 이루어지며, 이들 트랜지션들은 입력들 (E1, E2 및 E3) 에 각각 적용된다. 더 정확히 말하면, 신호 (16) 는, 신호 (17) 가 VDD 에서 VSS 로의 트랜지션들을 동시에 생성할 때 VSS 에서 VDD 로의 트랜지션들을 생성한다. 이런 이유로, 2 개의 커패시턴스들 (C1 및 C2) 의 공통 단자 (BC) 에서 발생하는 전기 신호는 이들 2 개의 커패시턴스들의 개별의 값들의 차이에 비례, 즉 - CMEMS (여기서 CMEMS = C2 - C1) 에 비례하는 가변 성분 (variable component) 을 갖는다.
MEMS 타입의 센서들, 특히 차동 커패시턴스 센서들은, 표준 제조 기법들로, 그들 개별의 오프셋들의 상당히 넓은 분산을 초래하는 것으로 알려져 있다. 이런 이유로, 프로그래밍가능한 오프셋을 보상하기 위한 커패시턴스 (COS) 가 제공되어 있다. 그의 프로그래밍은 일반적으로 전자 측정 디바이스의 테스트 동안 행해진다. 오프셋이 음 (negative) 이면, 즉 CMEMS 가 검출된 물리적 파라미터의 제로 값 (예를 들어, 가속도계에 대한 제로 가속도) 에 대해 음의 값을 가지면, 전기 여기 신호 (18) 는 하강 트랜지션으로 선택된다. 반대로, 오프셋이 양 (positive) 이면, 신호 (18) 는 도 1 에 제공한 바와 같이 VSS 에 대한 VDD 의 상승 트랜지션으로 선택된다.
커패시턴스 (COS) 는, 동시에 센서 (4) 에서, VSS 와 VDD 간의 트랜지션으로 이루어지는 전기 여기 신호 (18) 를 수신한다. 피드백 루프 (14) 상의 노드들 (N1 및 N2) 이 증폭기 (12) 및 이 피드백 루프에 의해 레퍼런스 전압 (VGnd) 에 유지됨에 따라, 피드백 루프 상에 제공된 레퍼런스 커패시턴스 (CRef) 는, 값이 한편으로는 센서 (4) 에 의해, 그리고 다른 한편으로는 보상 회로에 의해 생성된 전압들의 합에 비례하는, 가변 전압을 갖는다. 이런 이유로, 커패시턴스 (CRef) 는 CMEMS - COS 에 비례하는 전압을 갖는다. 레퍼런스 커패시턴스 (CRef) 의 전압은 아날로그 출력 전압 (Vout) 을 정의하며, 이는 따라서 CMEMS - COS 에 비례하고 마찬가지로 센서의 오프셋이 보상 회로에 의해 전부 보정될 정도까지 측정된 물리적 파라미터에 비례한다. 측정 회로 (8) 는, 출력에서, 아날로그-디지털 컨버터 (ADC) 에 의하여 디지털 측정 신호 (Sdig) 를 제공하고, 이 디지털 신호는 이론상 측정된 물리적 파라미터에 비례한다.
본 발명의 목적은, 상대적으로 작은 제조 비용을 유지하면서, 온도에 대한 그의 의존성을 감소시킴으로써, 상기 설명된, 종래 기술의 측정 디바이스의 정밀성을 증가시키는 것이다.
상기 설명된 차동 센서는 온도에 대한 소정의 의존성을 가질 수 있지만, 특히 이 커패시턴스를 생성하기 위하여 보통의 공통 기법이 준수되면, 온도의 의존성으로 인해 측정 신호에서의 온도의 드리프트가 가장 큰, 엘리먼트는, 오프셋을 보상하기 위한 커패시턴스 (COS) 라는 것을 알게 되었다. 온도에 따른 커패시턴스 (COS) 의 값의 변화는, 측정 회로의 제조 기술에 의존하고 특히 일반적으로 여기 회로와 함께 동일한 하나의 집적 회로를 형성하는 보상 회로에 의존한다는 것이 주목될 것이다. 따라서, 본 발명의 범위 내에서, 맨 처음에 커패시턴스 (COS) 의 온도의 드리프트를 보상하려고 시도되지만, 본 발명은 또한 센서의 온도의 가능한 드리프트를 고려하는 것을 가능하게 하며, 이는 매우 유리하다.
이것을 위하여, 본 발명은 물리적 파라미터를 측정하기 위한 전자 디바이스에 관한 것으로:
- 값이 물리적 파라미터에 따라 가변하는, 패시브 차동 전기 컴포넌트로 형성된 아날로그 센서,
- 패시브 차동 전기 컴포넌트에, 적어도 하나의 제 1 전기 여기 신호를 제공하기 위하여 배열된 아날로그 센서의 여기 회로,
- 증폭기를 포함하는 측정 회로로서, 증폭기는 이 측정 회로를 형성하는 피드백 루프에 연결되어, 출력에서, 상기 패시브 차동 전기 컴포넌트의 상기 값의 소정의 함수인 전압을 생성하기 위하여 제공되는, 상기 측정 회로, 및
- 상기 패시브 차동 전기 컴포넌트의 오프셋의 보상 회로로서, 이 보상 회로는 제 1 패시브 전기 컴포넌트로 형성되고, 상기 여기 회로는 이 제 1 패시브 전기 컴포넌트에, 제 2 전기 여기 신호를 제공하기 위하여 배열되는, 상기 보상 회로를 포함하고;
이 전자 디바이스는, 상기 여기 회로가 보상 회로의 전기 컴포넌트에, 결정된 비례 인자 (proportionality factor) 로 절대 온도에 대한 아핀 (affine) 의존성 또는 선형 의존성을 갖는 전기 여기 신호를 제공 가능하게 하기 위하여 배열되고, 비례 인자는 적어도 제 1 패시브 전기 컴포넌트를 포함하는 측정 디바이스의 전기 어셈블리의 온도의 드리프트를 보상하기 위하여 선택되는 것을 특징으로 한다.
유리한 실시형태에서, 전기 어셈블리는 더욱이 센서를 형성하는 패시브 차동 전기 컴포넌트를 포함한다.
제 1 실시형태에서, 온도의 드리프트가 보상되는, 보상 회로의 전기 컴포넌트는 상기 제 1 패시브 전기 컴포넌트이고 전기 여기 신호는 따라서 상기 제 2 전기 여기 신호이다. 본 발명에 따르면, 제 2 전기 여기 신호는 절대 온도의 아핀 함수인 값/진폭을 갖는다.
제 2 실시형태에서, 온도의 드리프트가 보상되는, 보상 회로의 전기 컴포넌트는 보상 회로에 통합되는 제 2 패시브 전기 컴포넌트이다. 이 제 2 전기 컴포넌트에 적용되는 전기 여기 신호는, 진폭이 실질적으로 절대 온도의 선형 함수인 제 3 전기 여기 신호이고, 제 1 패시브 전기 컴포넌트에 제공된 제 2 전기 여기 신호는 일정한 진폭 신호이다.
본 발명에 따른 전자 측정 디바이스는 여러 이점들을 갖는다. 특히, 본 발명은 용이하게 생산가능한 전기 엘리먼트들에 의한 아날로그 타입의 보상을 제안하고, 특히 보상 회로가 전적으로 측정 회로와 동일한 기술로 제조될 수 있다는 점에서 유리하다. 사실상, 당업자는, 특히 오프셋 보상 커패시턴스를 생성하기 위하여 MiM 기술을 사용하는 것에 의해, 측정 회로의 제조 기술의 수준에서 온도의 드리프트를 보정하는 것을 먼저 생각할 것이다. 그러나, 이러한 솔루션은 비용이 많이 든다. 당업자가 생각할 수도 있는 다른 솔루션은 신호 (Sdig) 를 수신하는 로직 회로에서 구현되는 보정이지만, 이러한 솔루션은, 무엇보다도, 아날로그 측정 회로가 받는 온도를 결정하는 문제를 제기한다.
다른 한편으로, 본 발명에 따른 솔루션은 비용이 덜 들고 온도 신호를 로직 회로에 제공하는 온도 센서를 요구하지 않는다. 온도의 드리프트의 보상은, 이것을 위하여, 예를 들어, 당업자에게 알려진, 절대 온도에 비례하는 전류 소스를 포함하는 여기 회로에 의해 생성된 가변 전압에 의하여 행해지며, 이 전류 소스는 오프셋 보상 컴포넌트 (제 1 실시형태), 또는 오프셋 보상 컴포넌트의 온도의 드리프트를 보상하도록 전용된 추가적인 컴포넌트 (제 2 실시형태) 중 어느 하나에 적용되는 절대 온도에 마찬가지로 비례하는 소정의 전압을 생성하는 것을 가능하게 한다.
본 발명은 비제한적 예들로 주어진, 첨부된 도면들의 도움으로 이하에 더 상세히 설명될 것이며, 여기서:
- 도 1 (이미 설명됨) 은 종래 기술의 차동 커패시턴스 타입의 물리적 파라미터를 측정하기 위한 디바이스의 전자 다이어그램 (electronic diagram) 을 나타내며, 이 디바이스는 특히 가속도계로서 사용된다,
- 도 2 는 본 발명에 따른 제 1 실시형태의 전자 다이어그램을 나타낸다,
- 도 3 은 온도의 드리프트를 보정하기 위하여 보상 회로의 커패시턴스에 인가된 전압 (VPTAT) 의 그래프를 도시한다,
- 도 4 는 전압 (VPTAT) 을 생성하고 이 전압과 온도 간의 비례 계수를 가변시키는 것을 가능하게 하기 위한 회로의 전기 다이어그램 (electrical diagram) 을 도시한다, 그리고
- 도 5 는 본 발명에 따른 제 2 실시형태의 전자 다이어그램을 나타낸다.
도 2 내지 도 4 의 도움으로, 물리적 파라미터를 측정하기 위한 전자 디바이스, 특히 가속도계의 제 1 실시형태가 이하에 설명될 것이다.
종래 기술의 이전에 설명된 측정 디바이스처럼, 측정 디바이스 (22) 는:
- 차동 커패시턴스, 즉 병렬로 배열되고 동일한 값들이 제공되는 한 쌍의 커패시턴스들 (C1, C2) 로 형성된 아날로그 센서 (4) 로서, 이들 2 개의 커패시턴스들은, 값이 고려 중인 물리적 파라미터에 따라 가변하고 2 개의 커패시턴스들에 의해 생성된 2 개의 개별의 전기 신호들 간의 차이에 대응하는 전기 신호를 공통 출력 단자 (BC) 에 제공하기 위하여, 2 개의 입력들 (E1 및 E2) 에 각각 인가되는 인버팅된 신호들 (16, 17) 에 의해 여기되는, 상기 아날로그 센서 (4),
- 차동 커패시턴스 C2 - C1 의 2 개의 입력들 (E1 및 E2) 에, 2 개의 전기 여기 신호들 (16, 17) 을 제공하는 아날로그 센서의 여기 회로 (26),
- 증폭기 (12) 를 포함하는 측정 회로 (8) 로서, 증폭기는 이 측정 회로를 형성하는 피드백 루프 (14) 에 연결되어, 출력에서, 아날로그 센서 (4) 에 의해 공급된 전기 신호의 값으로부터 결정되는 함수인 전압 (Vout) 을 생성하는, 상기 측정 회로 (8), 및
- 아날로그 센서의 오프셋의 보상 회로 (10) 로서, 이 보상 회로는 여기 회로 (26) 에 의해 여기되는 보상 커패시턴스 (COS1) 로 형성되는, 상기 보상 회로 (10) 를 포함한다.
2 개의 커패시턴스들 (C1 및 C2) 은 피드백 루프 (14) 에 그리고 그 피드백 루프를 통하여 증폭기 (12) 의 제 1 입력에 연결되는 그들의 공통 단자 (BC) 를 갖고, 이 증폭기는 레퍼런스 전압 (VGnd) (어스 전압 (earth voltage)) 을 수신하는 제 2 입력을 갖는다. 증폭기는 공통 단자 (BC) 에서 레퍼런스 전압을 유지한다. 이전에 설명한 바와 같이, 피드백 루프 (14) 는 증폭기의 전기 출력 전압 (Vout) 의 값을 결정하는 레퍼런스 커패시턴스 (CRef) 를 포함하고, 이 전압 (Vout) 은 센서 (4) 로부터의 제 1 전기 신호 및 보상 회로 (10) 로부터의 제 2 전기 신호를 수신하는 측정 회로 (8) 에 의해 생성된 아날로그 측정 신호를 정의한다. 아날로그 측정 신호는 그 후 그 신호를 디지털 신호 (Sdig) 로 컨버팅하는 ADC 컨버터에 제공된다. 프로그래밍가능 커패시턴스 (COS1) 는, 상기 증폭기 (12) 의 상기 제 1 입력에 그리고 따라서 마찬가지로 피드백 루프 (14) 에 연결되는, 보상 회로의 출력 단자를 정의하는, 단자를 갖는다. 더 정확히 말하면, 보상 회로의 출력 단자는 피드백 루프의 노드 (N1) 에 직접 연결되는 한편, 센서 (4) 의 공통 단자 (BC) 는 이 피드백 루프의 노드 (N2) 에 직접 연결되고, 노드들 (N1 및 N2) 은 바람직하게는 도 2 에 나타낸 바와 같이, 서로 직접 연결되고, 전기적으로 동일한 하나의 노드를 형성한다.
본 발명에 따르면, 여기 회로 (26) 는, 아날로그 센서 (4) 에, 최대 진폭 (VSS 와 VDD 사이에 제공된 전압 트랜지션 및 그 반대) 을 갖는 2 개의 전기 신호들 (16 및 17) 을, 그리고 보상 커패시턴스 (COS1) 의 입력 단자 (E3) 에, 하위 공급 전압 (VSS) 과 가변 전압 (VIN) 사이의 전압 트랜지션을 갖는 전기 여기 신호 (28) 를 제공 가능하게 하기 위하여 배열되며, 후자는 절대 온도에 대한 아핀 의존성을 갖는다. 다시 말해서, 전기 여기 신호 (28) 는 절대 온도의 아핀 함수인 값/진폭을 갖는다.
온도에 따라 가변하는 전압 (VIN) 의 성분은 적어도 보상 커패시턴스 (COS1) 를 포함하는 측정 디바이스 (22) 의 전기 어셈블리의 온도의 드리프트를 보상하기 위하여 선택되는 결정된 비례 인자를 갖는다. 유리한 변형에서, 온도에 있어서 보상되는 전기 어셈블리는 더욱이 차동 센서 (4) 를 포함한다.
신호 (VIN) 의 불변 성분 (constant component) 은, 아날로그 센서 (4) 의 오프셋이 소정의 온도, 예를 들어, 25 ℃ 에서 보상되도록 제공된다. 오프셋을 정확히 보상하기 위한 2 개의 가능한 변형들이 존재한다. 고정된 값의 보상 커패시턴스 (COS1) 가 제공되고 이 커패시턴스의 전기 여기 신호의 불변 성분이 조정되거나, 또는 고정된 값, 예를 들어, 90 % 의 VDD 를 가진 커패시턴스 (COS1) 의 전기 여기 신호의 불변 성분이 제공되고, 커패시턴스 (COS1) 가 프로그래밍가능한 것으로 제공되거나 한다.
전압 (VIN) 의 가변 성분 (VPTAT) 은 절대 온도에 비례하여 제공된다. 섭씨 온도 [℃] 로 표현된 온도 눈금 상의 아핀 함수 (30) 가 도 3 에 통상의 경우에 대해 나타내진다. 전압 (VPTAT) 은 25 ℃ 에서 대략 38 mV 의 값을 갖고, 그것은, 125 ℃ (-40 ℃ 에서 85 ℃ 까지) 의 온도의 변화에 대해 양의 기울기로, 대략 16 mV 만큼, 가변한다. 여기에 제공된 양의 기울기는 온도에 따른 그 전기 값의 의존성을 위해 보상 커패시턴스의 음의 계수를 보상하도록 기능한다. 이 예에서, 전압 (VPTAT) 은, 최고 이용가능한 전압인 공급 전압 (VDD) 보다 낮은 전압이 제공되는 이유로, 불변 성분의 증가를 초래한다. 일 예로, VDD 는 1 Volt 와 같고 VIN = 0.9 Volt + VPTAT 이다. 그에 반해서, 커패시턴스 (COS1) 의 온도에 대한 의존성이 양이면, 음의 기울기로 VPTAT 음의 값들이 제공되어 있다. 이 후자의 경우에, 전압 (VIN) 의 불변 성분을 위해 공급 전압 (VDD) 이 선택될 수 있으며, 그러면 가변 성분은 음이고 따라서 불변 성분을 감소시킨다. 주어진 센서에 대해, 커패시턴스 (COS1) 의 값은 도 1 의 종래 기술에서 제공된 커패시턴스 (COS) 의 값과 동일하지 않은데, 그 이유는, 커패시턴스 (COS) 의 값이 예를 들어 25 ℃ 에서, VSS 와 VDD 간의 전압 트랜지션에 대해, 센서의 오프셋을 보상하기 위하여 제공되면, 신호 (28) 의 전압 트랜지션 동안 커패시턴스 (COS1) 에 인가된 전압이 VDD 보다 더 낮기 때문이라는 것이 주목될 것이다. 따라서, 커패시턴스 (COS1) 는, 이 경우에, 25 ℃ 에서 동일한 보상을 초래하기 위하여 커패시턴스 (COS) 의 값보다 더 큰 값을 갖는다.
도 4 는 도 3 의 가변 전압 (VPTAT) 을 생성하기 위하여 제공된 여기 회로 (26) 의 부분을 도시한다. 절대 온도에 의해 비례하여 가변하는 전류를 제공하는 전류 소스 (IPTAT) 가 여기 회로에 통합되어 있다. 이러한 전류 소스는 당업자에게 알려져 있다. 그것은 단지, 값이 절대 온도에 비례하는, 전류를 본질적으로 제공하는 전류 소스를 초래하는 특정한 전자 설계에 의해 획득된다. 그것은 따라서, MOS 및/또는 바이폴라 트랜지스터들의 특성들로부터 발생하는 전자 회로의 자연적인 특징이다. 보상 커패시턴스의 온도에 대한 의존성에 따라 정확히 선택될 수도 있는 기울기를 가진 가변 전압 (VPTAT) 을 생성하기 위하여, 제 1 저항 (R1) 과 직렬로 배열되는 복수의 스위칭가능 저항들 (R2 내지 Rn+1) (인터럽터들 (S1 내지 Sn) 에 의해 제어됨) 이 제공된다. 가변 전류 (IPTAT) 는 따라서 저항 (R1) 및 선택되는 다른 저항들을 통과한다.
일반적으로, 제 1 실시형태에서, 센서의 오프셋의 보상 커패시턴스는 마찬가지로, 온도에 따라 가변하는 것으로 제공된, 특정 여기 신호에 관련하여 이 보상 커패시턴스의 온도의 드리프트를 보상하거나 또는 이를 보정하는 함수를 갖는다.
도 5 를 참조하여, 이하에 본 발명의 제 2 실시형태가 설명될 것이다. 제 1 실시형태와 유사하고 동일한 참조부호들을 가지는 엘리먼트들은 여기에 다시 설명되지 않을 것이다. 측정 디바이스 (32) 는 보상 회로 (34) 의 그리고 여기 회로 (36) 의 배열에 의해 상기 설명된 측정 디바이스 (22) 와 상이하다. 측정 디바이스 (32) 는, 커패시턴스 (COS2) 를 통한 센서의 오프셋의 보상 및 이 커패시턴스 (COS2) 의 온도의 드리프트의 보상이 별개라는 사실에 의해 측정 디바이스 (22) 와 구별된다. 더 정확히 말하면, 프로그래밍가능 커패시턴스 (COS2) 는, 도 1 에 나타낸 종래 기술에서와 같이, 전압들 (VSS 및 VDD) 간, 즉 2 개의 고정된 공급 전압들 간의 트랜지션에 의해 형성된 여기 신호를 수신한다. 그러나, 주어진 아날로그 센서 (4) 에 대한, 이 프로그래밍가능 커패시턴스의 값은, 추가적인 커패시턴스 (Ccomp) 가 프로그래밍가능 커패시턴스 (COS2) 의 온도의 드리프트를 보상하기 위하여 제공되기 때문에 종래 기술의 값과 동일하지 않다는 것이 주목될 것이다. 따라서, 종래 기술에서, 커패시턴스 (COS) 의 값은 예를 들어, 25 ℃ 의 온도에서, 오프셋을 보상하기 위하여 선택되는 한편, 커패시턴스 (COS2) 의 값은 사실상 절대 영도 (-273 ℃) 에 실질적으로 대응하는 온도에서 오프셋을 보상하기 위하여 선택된다.
위에 나타낸 바와 같이, 프로그래밍가능 커패시턴스 (COS2) 의 온도의 드리프트를 보상하기 위하여, 추가적인 커패시턴스 (Ccomp) 가 보상 회로 (34) 에서 제공된다. 이 추가적인 커패시턴스 (Ccomp) 는 커패시턴스 (COS2) 와 병렬로 배열된다. 추가적인 커패시턴스 (Ccomp) 의 출력 단자는 커패시턴스 (COS2) 의 출력 단자에 연결된다. 이 공통 출력 단자는 (제 1 실시형태의 범위 내에 설명된) 증폭기 (12) 의 제 1 입력에 연결된다. 추가적인 커패시턴스 (Ccomp) 는, 그 입력 단자 (E4) 에서, 전압 (VSS) 과 전압 (VPTAT) 간의 전압 트랜지션으로 이루어지는 그 자신의 여기 신호 (38) 를 수신하고, 이 신호는 다른 전기 신호들 (16, 17 및 18) 과 동시에 여기 회로에 의해 생성된다. 추가적인 커패시턴스 (Ccomp) 에는 커패시턴스 (COS2) 의 값과 동일한 값이 제공될 수 있지만, 이것은 필수적이지 않다. 중요한 것은, 전하의 값이 여기 신호 (38) 의 인가 동안 생성되는 것이며, 즉 커패시턴스 (Ccomp) 의 값에 전압 (VPTAT) 을 곱한 결과이며, 이 결과는 온도에 따라 커패시턴스 (COS2) 에 의해 제공된 전하의 변화를 보상해야 한다. 추가적인 커패시턴스 (Ccomp) 는 프로그래밍가능한 것 또는 프로그래밍가능하지 않은 것으로 제공될 수 있다. 전압 (VPTAT) 은, 가능하게는 상이한 비례 계수로, 예를 들어, 도 3 의 그래프에 대응하고, 그 생성은 비례 계수의 선택으로, 도 4 에 나타낸 바와 같이 행해질 수 있다. 커패시턴스 (COS2) 의 온도에 대한 의존성이 양이어서, 이 의존성의 보상이 음이어야 한다면, 측정 디바이스 (32) 는, 여기 신호 (38) 가 VDD 와 VDD + VPTAT (여기서 VPTAT 는 음의 값을 가짐) 간의 트랜지션으로 이루어지도록 배열될 것이라는 것이 주목될 것이다. 이들 고려사항들은 VSS 에서 VDD 로의 트랜지션의 경우에 커패시턴스 (COS2) 에 인가된 신호 (18) 에서 적용되며; 그렇지 않으면, 그 정반대가 일어나는 것으로 이해될 것이다.
일반적으로, 제 2 실시형태에서, 온도의 드리프트를 보상하기 위한 커패시턴스에 제공된 전기 여기 신호는, 진폭이 실질적으로 절대 온도의 선형 함수인, 신호인 한편, 센서의 오프셋을 보상하기 위한 커패시턴스에 제공된 전기 여기 신호는 일정한 진폭 신호이다.
본 발명의 다양한 이점들은 다음과 같다:
- 아날로그 센서를 포함하거나 또는 포함하지 않는, 측정 디바이스의 온도에 대한 의존성의 보상/보정;
- 온도의 보상을 위해 제공된 엘리먼트들은 모두 아날로그 센서에 연결된 전자 측정 회로에 통합된다;
- 온도의 보상은 조정가능한 것으로 제공된다;
- 측정 디바이스의 전기 소비에 대한 부정적인 영향이 별도 없다;
- 온도의 보상에 의해 신호에서 생성된 잡음이 별로 없다;
- 온도의 보상을 위해 제공된 다양한 엘리먼트들은 특별한 및 고가의 기술들의 사용을 요구하지 않는다;
- 측정 디바이스를 형성하는 집적 회로의 표면의 증가는 중요하지 않다;
- 전개된 변형에서, 센서의 오프셋의 보상을 위한 커패시턴스의 온도에 대한 의존성 뿐만 아니라 센서 및 이 보상 커패시턴스를 포함하는 어셈블리의 온도에 대한 의존성도 보정될 수 있다.
마지막으로, 본 발명은 차동 저항, 즉 병렬의 2 개의 저항들로 형성된 센서를 가진 레지스티브 타입의 측정 디바이스에 유사하게 적용될 수 있다는 것이 주목될 것이다.

Claims (10)

  1. 물리적 파라미터를 측정하기 위한 전자 측정 디바이스 (22; 32) 로서,
    - 값이 상기 물리적 파라미터에 따라 가변하는, 패시브 차동 전기 컴포넌트 (C1, C2) 로 형성된 아날로그 센서 (4),
    - 상기 패시브 차동 전기 컴포넌트에, 적어도 하나의 제 1 전기 여기 신호 (16, 17) 를 제공하기 위하여 배열된 상기 아날로그 센서의 여기 회로 (26; 36),
    - 증폭기 (12) 를 포함하는 측정 회로 (8) 로서, 상기 증폭기는 이 측정 회로를 형성하는 피드백 루프 (14) 에 연결되어, 출력에서, 상기 패시브 차동 전기 컴포넌트의 상기 값의 소정의 함수인 전압 (Vout) 을 생성하기 위하여 제공되는, 상기 측정 회로 (8), 및
    - 상기 패시브 차동 전기 컴포넌트의 오프셋의 보상 회로 (10) 로서, 이 보상 회로는 제 1 패시브 전기 컴포넌트 (COS1; COS2) 로 형성되고, 상기 여기 회로는, 이 제 1 패시브 전기 컴포넌트에, 제 2 전기 여기 신호 (28; 18) 를 제공하기 위하여 배열되는, 상기 보상 회로 (10) 를 포함하고,
    상기 여기 회로는, 상기 보상 회로의 전기 컴포넌트 (COS1; Ccomp) 에, 결정된 비례 인자로 절대 온도에 대한 아핀 의존성 또는 선형 의존성을 갖는 전기 여기 신호를 제공 가능하게 하기 위하여 배열되고, 상기 비례 인자는 상기 보상 회로의 적어도 상기 제 1 패시브 전기 컴포넌트를 포함하는 상기 측정 디바이스의 전기 어셈블리의 온도의 드리프트를 보상하기 위하여 선택되는 것을 특징으로 하는 전자 측정 디바이스.
  2. 제 1 항에 있어서,
    상기 전기 어셈블리는 더욱이 상기 패시브 차동 전기 컴포넌트 (C1, C2) 를 포함하는 것을 특징으로 하는 전자 측정 디바이스.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 보상 회로의 상기 전기 컴포넌트는 상기 제 1 패시브 전기 컴포넌트 (COS1) 이고, 상기 전기 여기 신호는 상기 제 2 전기 여기 신호이고; 그리고 상기 제 2 전기 여기 신호 (28) 는 상기 절대 온도의 아핀 함수인 진폭을 갖는 것을 특징으로 하는 전자 측정 디바이스.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 보상 회로의 상기 전기 컴포넌트는 제 2 패시브 전기 컴포넌트 (Ccomp) 이고; 그리고 상기 전기 여기 신호는, 진폭이 실질적으로 상기 절대 온도의 선형 함수인, 제 3 전기 여기 신호 (38) 이고, 상기 제 1 패시브 전기 컴포넌트 (COS2) 를 위해 의도되는 상기 제 2 전기 여기 신호 (18) 는 일정한 진폭 신호인 것을 특징으로 하는 전자 측정 디바이스.
  5. 제 3 항에 있어서,
    상기 패시브 차동 전기 컴포넌트는 병렬로 배열되는 제 1 커패시턴스 (C1) 및 제 2 커패시턴스 (C2) 로 형성되고, 상기 제 1 전기 여기 신호 (16) 는 상기 제 1 커패시턴스를 위해 의도되는 한편, 상기 제 1 전기 여기 신호에 대해 인버팅되고 상기 여기 회로에 의해 생성되는 것이 가능한 제 3 전기 여기 신호 (17) 는 상기 제 2 커패시턴스에 공급되는 것을 특징으로 하는 전자 측정 디바이스.
  6. 제 5 항에 있어서,
    상기 제 1 커패시턴스 및 상기 제 2 커패시턴스는 상기 피드백 루프 (14) 에 그리고 상기 증폭기 (12) 의 제 1 입력에 연결되는 공통 단자 (BC) 를 갖고, 이 증폭기는 상기 증폭기 및 상기 피드백 루프에 의해 상기 공통 단자에 인가되는 레퍼런스 전압, 또는 어스 전압 (VGnd) 을 수신하는 제 2 입력을 갖고; 그리고 상기 피드백 루프는 상기 증폭기의 상기 전압 (Vout) 의 값을 결정하는 레퍼런스 커패시턴스 (CRef) 를 포함하고, 이 값은 상기 물리적 파라미터의 값에 실질적으로 비례하는 것을 특징으로 하는 전자 측정 디바이스.
  7. 제 6 항에 있어서,
    상기 제 1 패시브 전기 컴포넌트는 상기 오프셋 및 상기 전기 어셈블리의 온도의 드리프트를 보상하기 위한 프로그래밍가능 커패시턴스 (COS1) 이고, 이 프로그래밍가능 커패시턴스는 상기 증폭기의 상기 제 1 입력에 연결되는 단자를 갖는 것을 특징으로 하는 전자 측정 디바이스.
  8. 제 4 항에 있어서,
    상기 패시브 차동 전기 컴포넌트는 병렬로 배열되는 제 1 커패시턴스 (C1) 및 제 2 커패시턴스 (C2) 로 형성되고, 상기 제 1 전기 여기 신호 (16) 는 상기 제 1 커패시턴스를 위해 의도되는 한편, 상기 제 1 전기 여기 신호에 대하여 인버팅되고 상기 여기 회로에 의해 생성되는 것이 가능한 제 4 전기 여기 신호 (17) 는 상기 제 2 커패시턴스를 위해 의도되는 것을 특징으로 하는 전자 측정 디바이스.
  9. 제 8 항에 있어서,
    상기 제 1 커패시턴스 및 상기 제 2 커패시턴스는 상기 피드백 루프 (14) 에 그리고 상기 증폭기 (12) 의 제 1 입력에 연결되는 공통 단자 (BC) 를 갖고, 이 증폭기는 상기 증폭기 및 상기 피드백 루프에 의해 상기 공통 단자에 인가되는 레퍼런스 전압, 또는 어스 전압 (VGnd) 을 수신하는 제 2 입력을 갖고; 그리고 상기 피드백 루프는 상기 증폭기의 상기 전압 (Vout) 의 값을 결정하는 레퍼런스 커패시턴스 (CRef) 를 포함하고, 이 값은 상기 물리적 파라미터의 값에 실질적으로 비례하는 것을 특징으로 하는 전자 측정 디바이스.
  10. 제 9 항에 있어서,
    상기 제 1 패시브 전기 컴포넌트는 상기 증폭기의 상기 제 1 입력에 연결되는 단자로 상기 오프셋을 보상하기 위한 프로그래밍가능 커패시턴스 (COS2) 이고; 그리고 상기 제 2 패시브 전기 컴포넌트 (Ccomp) 는 상기 전기 어셈블리의 온도의 드리프트를 보상하기 위한 커패시턴스인 것을 특징으로 하는 전자 측정 디바이스.
KR1020180156350A 2017-12-07 2018-12-06 물리적 파라미터를 측정하기 위한 전자 디바이스 KR102117168B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17205858.8 2017-12-07
EP17205858.8A EP3495826B1 (fr) 2017-12-07 2017-12-07 Dispositif électronique de mesure d'un paramètre physique

Publications (2)

Publication Number Publication Date
KR20190067724A true KR20190067724A (ko) 2019-06-17
KR102117168B1 KR102117168B1 (ko) 2020-06-01

Family

ID=60627533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180156350A KR102117168B1 (ko) 2017-12-07 2018-12-06 물리적 파라미터를 측정하기 위한 전자 디바이스

Country Status (4)

Country Link
US (1) US10976340B2 (ko)
EP (1) EP3495826B1 (ko)
JP (1) JP2019101043A (ko)
KR (1) KR102117168B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117825749A (zh) * 2024-03-04 2024-04-05 四川芯音科技有限公司 一种三轴加速度传感器处理电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304262A (ja) * 2007-06-06 2008-12-18 Freescale Semiconductor Inc 温度補償回路、トリミング回路及び加速度検出装置
JP2009020094A (ja) * 2007-07-10 2009-01-29 Freescale Semiconductor Inc センサユニット
JP2010185795A (ja) * 2009-02-12 2010-08-26 Toyota Central R&D Labs Inc 静電容量式センサ装置
US20140331787A1 (en) * 2012-01-12 2014-11-13 Stichting Voor De Technische Wetenschappen Six-axis force-torque sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968472A (ja) * 1995-08-31 1997-03-11 Tokin Corp 圧力センサ
JPH09203744A (ja) * 1996-01-29 1997-08-05 Hitachi Ltd クラッシュセンサ
JP4473516B2 (ja) * 2003-03-25 2010-06-02 株式会社デンソー 力学量センサ
US7287429B2 (en) * 2004-03-25 2007-10-30 Denso Corporation Capacitive acceleration sensor system
FR2894412B1 (fr) * 2005-12-02 2008-02-29 Thales Sa Dispositif d'acquisition numerique d'un signal de modulation d'amplitude
US7368923B2 (en) * 2005-12-22 2008-05-06 Honeywell International Inc. Time interval trimmed differential capacitance sensor
US10006930B2 (en) * 2014-06-03 2018-06-26 Northrop Grumman Systems Corporation Performance optimization of a differential capacitance based motion sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304262A (ja) * 2007-06-06 2008-12-18 Freescale Semiconductor Inc 温度補償回路、トリミング回路及び加速度検出装置
JP2009020094A (ja) * 2007-07-10 2009-01-29 Freescale Semiconductor Inc センサユニット
JP2010185795A (ja) * 2009-02-12 2010-08-26 Toyota Central R&D Labs Inc 静電容量式センサ装置
US20140331787A1 (en) * 2012-01-12 2014-11-13 Stichting Voor De Technische Wetenschappen Six-axis force-torque sensor

Also Published As

Publication number Publication date
US20190178909A1 (en) 2019-06-13
KR102117168B1 (ko) 2020-06-01
US10976340B2 (en) 2021-04-13
JP2019101043A (ja) 2019-06-24
EP3495826A1 (fr) 2019-06-12
EP3495826B1 (fr) 2020-11-25

Similar Documents

Publication Publication Date Title
US11035739B2 (en) Integrated electronic device comprising a temperature sensor and sensing method
KR101157367B1 (ko) 물리적 파라미터 측정 방법 및 이를 구현하기 위한 용량성 센서를 위한 전자 인터페이스 회로
US9097556B2 (en) Method for reducing non-linearity during measurement of a physical parameter and electronic circuit for implementing the same
US9110113B2 (en) Method of measuring a physical parameter and electronic interface circuit for a capacitive sensor for implementing the same
JP2008513766A (ja) デジタル温度センサ及びその較正
US9989927B1 (en) Resistance-to-frequency converter
TWI681197B (zh) 溫度補償電路以及感測裝置
KR101889766B1 (ko) 보정 기능을 가지는 온도 센서 회로
US10438835B2 (en) System reference with compensation of electrical and mechanical stress and life-time drift effects
KR102117168B1 (ko) 물리적 파라미터를 측정하기 위한 전자 디바이스
US8994356B2 (en) Method for adjusting a reference voltage based on a band-gap circuit
US10088861B2 (en) High accuracy voltage references
JP4069158B1 (ja) チャージアンプ、チャージアンプ装置、及び、バイアス電流補償方法
De Marcellis et al. A novel current-based approach for very low variation detection of resistive sensors in wheatstone bridge configuration
JP2014190862A (ja) ホール素子駆動回路及びホール素子駆動方法
JP6357182B2 (ja) センサ装置
Yin et al. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors
Yildiz et al. Design Methodology for an Adjustable-Range CMOS Smart Temperature Sensor
JP2022096640A (ja) 応力センサ及びその操作方法
JP6544541B2 (ja) チャージポンプ装置
JP2021103112A (ja) センサ装置
CN116400766A (zh) 带隙参考补偿电路

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant