KR20190032319A - Semiconductor die singulation method - Google Patents

Semiconductor die singulation method Download PDF

Info

Publication number
KR20190032319A
KR20190032319A KR1020190029712A KR20190029712A KR20190032319A KR 20190032319 A KR20190032319 A KR 20190032319A KR 1020190029712 A KR1020190029712 A KR 1020190029712A KR 20190029712 A KR20190029712 A KR 20190029712A KR 20190032319 A KR20190032319 A KR 20190032319A
Authority
KR
South Korea
Prior art keywords
wafer
semiconductor
singulation
substrate
die
Prior art date
Application number
KR1020190029712A
Other languages
Korean (ko)
Inventor
고든 엠. 그리브나
마이클 제이. 세던
Original Assignee
세미컨덕터 콤포넨츠 인더스트리즈 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/689,098 external-priority patent/US7989319B2/en
Application filed by 세미컨덕터 콤포넨츠 인더스트리즈 엘엘씨 filed Critical 세미컨덕터 콤포넨츠 인더스트리즈 엘엘씨
Publication of KR20190032319A publication Critical patent/KR20190032319A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4842Mechanical treatment, e.g. punching, cutting, deforming, cold welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67121Apparatus for making assemblies not otherwise provided for, e.g. package constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Abstract

The present invention relates to a semiconductor die singulation method, comprising: a step of providing a semiconductor wafer having a plurality of semiconductor dies; a step of positioning a first carrier tape adjacent to a metal layer; a step of generating a space between the plurality of semiconductor dies; and a step of leaving a part of the metal layer on the first carrier tape. According to the present invention, more uniform singulation can be provided.

Description

반도체 다이 싱귤레이션 방법{SEMICONDUCTOR DIE SINGULATION METHOD}[0001] DESCRIPTION [0002] SEMICONDUCTOR DIE SINGULATION METHOD [

본 발명은 일반적으로 전자장치들에 관한 것이며, 특히 반도체들을 형성하는 방법들에 관한 것이다.The present invention relates generally to electronic devices, and more particularly to methods of forming semiconductors.

과거에, 반도체 산업은 다이(die)가 제조되었던 반도체 웨이퍼(semiconductor wafer)로부터 개별적인 반도체 다이를 싱귤레이팅(singulating)하기 위하여 다양한 방법들 및 장비를 사용하였다. 전형적으로, 스크라이빙(scribing) 또는 다이싱(dicing)이라고 칭하는 기술이 개별적인 다이 사이에서 웨이퍼 상에 형성되었던 스크라이브 그리드(scribe grid)들을 따라 다이아몬드 커팅 휠(diamond cutting wheel) 또는 웨이퍼 소우(wafer saw)로 웨이퍼를 부분적으로 또는 전체적으로 절단하는데 사용되었다. 커팅 도구의 폭 및 정렬을 허용하기 위하여, 각각의 스크라이브 그리드는 통상적으로 큰 폭, 일반적으로 약 백오십(150) 미크론을 가졌는데, 이는 반도체 웨이퍼의 큰 부분을 소모하였다. 추가적으로, 전체 반도체 웨이퍼 상에서 스크라이브 그리드들 모두를 스크라이빙하는데 필요한 시간이 한 시간 이상 걸릴 수 있다. 이 시간은 제조 에어리어의 처리량(throughput) 및 제조 용량을 감소시켰다.BACKGROUND OF THE INVENTION In the past, the semiconductor industry used a variety of methods and equipment to singulate individual semiconductor die from a semiconductor wafer from which the die was fabricated. Typically, techniques referred to as scribing or dicing are performed along scribe grids that were formed on the wafer between individual dies using diamond cutting wheels or wafer saws ) To partially or totally cut the wafer. To allow for the width and alignment of the cutting tool, each scribe grid typically had a large width, typically about one hundred and fifty (150) microns, which consumed a large portion of the semiconductor wafer. Additionally, the time required to scribe all of the scribe grids on the entire semiconductor wafer may take more than an hour. This time reduced the throughput and manufacturing capacity of the manufacturing area.

개별적인 반도체 다이를 싱귤레이팅하는 또 다른 방법은 스크라이브 그리드들을 따라 웨이퍼들을 절단하기 위하여 레이저(laser)들을 사용하였다. 그러나, 레이저 스크라이빙은 제어하기가 어려웠고, 또한 불-균일한 분리를 초래하였다. 레이저 스크라이빙은 또한 고가의 레이저 장비 뿐만 아니라, 조작자들을 위한 보호 장비를 필요로 하였다. 또한, 레이저 스크라이빙은 레이저가 싱귤레이션 동안 다이의 에지(edge)를 따라 결정질 구조를 용융시키기 때문에 다이의 강도를 감소시키는 것으로 보고된다.Another method of singulating individual semiconductor die uses lasers to cut wafers along scribe grids. However, laser scribing was difficult to control and also resulted in non-uniform separation. Laser scribing also required protective equipment for operators as well as expensive laser equipment. Laser scribing is also reported to reduce die strength because the laser melts the crystalline structure along the edge of the die during singulation.

따라서, 웨이퍼 상에 반도체 다이의 수를 증가시키고, 더 균일한 싱귤레이션(singulation)을 제공하고, 싱귤레이션을 수행하는 시간을 감소시키고, 더 좁은 스크라이브 라인을 가지는, 반도체 웨이퍼로부터 다이를 싱귤레이션하는 방법을 갖는 것이 바람직하다.Accordingly, there is a need for a method of increasing the number of semiconductor dies on a wafer, providing a more uniform singulation, reducing the time to perform singulation, and having a narrower scribe line, Method.

본 발명의 목적은 웨이퍼 상에 반도체 다이의 수를 증가시키고, 더 균일한 싱귤레이션을 제공하고, 싱귤레이션을 수행하는 시간을 감소시키고, 더 좁은 스크라이브 라인을 가지는 다이 싱귤레이션 방법을 제공하는 것이다.It is an object of the present invention to provide a method of dicing singulation which increases the number of semiconductor dies on a wafer, provides more uniform singulation, reduces the time to perform singulation, and has a narrower scribe line.

본 발명에 따르면, 반도체 기판을 가지며 상기 반도체 기판 상에 형성된 복수의 반도체 다이를 또한 가지는 반도체 웨이퍼를 제공하는 단계로서, 상기 반도체 다이가 상기 반도체 웨이퍼의 부분들에 의해 서로로부터 분리되고, 상기 반도체 웨이퍼의 상기 부분들이 싱귤레이션 라인들이 형성되어야 하는 위치들에 존재하고, 상기 반도체 웨이퍼가 상부면 및 하부면을 가지는, 반도체 웨이퍼 제공 단계; 상기 반도체 웨이퍼의 상기 부분들 내에 상기 복수의 반도체 다이 각각의 페리미터(perimeter)를 둘러싸는 트렌치를 형성하는 단계로서, 상기 트렌치의 측벽들 상에 유전체 층을 형성하고, 상기 트렌치 내에 있고 상기 측벽들 상에 있는 유전체 층에 접하는 필러 재료(filler material)를 형성하는 단계를 포함하는, 트렌치 형성 단계; 상기 복수의 반도체 다이의 부분들 위에 놓이는 유전체 층을 형성하는 단계; 제 1 개구를 상기 복수의 반도체 다이의 부분들 위에 놓이는 상기 유전체 층을 관통하여 에칭하고, 임의의 아래에 놓인 층들을 에칭하여 적어도 상기 트렌치의 상기 필러 재료를 노출시키는 단계; 및 제 2 개구를 상기 필러 재료 및 상기 필러 재료 아래에 놓이는 상기 반도체 기판의 임의의 부분을 관통하여 에칭하여, 상기 제 2 개구가 상기 반도체 웨이퍼의 상기 상부면으로부터 상기 반도체 기판을 완전히 관통하여 확장되도록 하는 단계를 포함하고, 상기 제 2 개구의 에칭이 상기 제 1 개구를 통하여 수행되는, 반도체 웨이퍼로부터 반도체 다이를 싱귤레이팅하는 방법이 제공된다.According to the present invention there is provided a method of manufacturing a semiconductor device comprising the steps of: providing a semiconductor wafer having a semiconductor substrate and also having a plurality of semiconductor dies formed on the semiconductor substrate, the semiconductor die being separated from each other by portions of the semiconductor wafer, Wherein said portions of said semiconductor wafer are at locations where singulation lines are to be formed and said semiconductor wafer has an upper surface and a lower surface; Forming a trench enclosing a perimeter of each of the plurality of semiconductor dies in the portions of the semiconductor wafer, wherein forming a dielectric layer on the sidewalls of the trench, Forming a filler material in contact with the dielectric layer on the trench; Forming a dielectric layer overlying portions of the plurality of semiconductor dies; Etching a first opening through the dielectric layer over portions of the plurality of semiconductor dies and etching any underlying layers to expose at least the filler material of the trench; And a second opening through the filler material and any portion of the semiconductor substrate underlying the filler material so that the second opening extends completely through the semiconductor substrate from the upper surface of the semiconductor wafer Wherein etching of the second opening is performed through the first opening. ≪ RTI ID = 0.0 > A < / RTI >

본 발명에 의하면, 웨이퍼 상에 반도체 다이의 수를 증가시키고, 더 균일한 싱귤레이션을 제공하고, 싱귤레이션을 수행하는 시간을 감소시키고, 더 좁은 스크라이브 라인을 가지는 다이 싱귤레이션 방법이 제공된다.The present invention provides a die singulation method that increases the number of semiconductor dies on a wafer, provides more uniform singulation, reduces the time to perform singulation, and has a narrower scribe line.

도 1은 본 발명에 따른 반도체 웨이퍼의 실시예의 축소된 평면도.
도 2는 본 발명에 따른 웨이퍼로부터 다이를 싱귤레이팅하는 프로세스(process)의 단계에서의 도 1의 반도체 웨이퍼의 부분의 실시예의 확대된 단면도.
도 3은 본 발명에 따른 도 1의 웨이퍼로부터 다이를 싱귤레이팅하는 프로세스의 후속 단계를 도시한 도면.
도 4는 본 발명에 따른 도 1의 웨이퍼로부터 다이를 싱귤레이팅하는 프로세스의 또 다른 후속 단계를 도시한 도면.
도 5는 도 1 내지 도 4의 설명에서 기술되는 다이들의 대안 실시예들이며 도 1 내지 도 4의 웨이퍼 상에 형성되는 반도체 다이들의 확대된 단면 부분을 도시한 도면.
도 6은 본 발명에 따른 도 5의 다이를 싱귤레이팅하는 프로세스의 후속 단계를 도시한 도면.
도 7은 본 발명에 따른 도 6의 다이를 싱귤레이팅하는 프로세스의 또 다른 후속 단계를 도시한 도면.
도 8 내지 도 10은 본 발명에 따른 도 1의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 또 다른 방법의 예시적 실시예에서의 단계들을 도시한 도면.
도 11 내지 도 14는 본 발명에 따른 도 1의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 또 다른 방법의 예시적 실시예에서의 단계들을 도시한 도면.
도 15는 본 발명에 따른 도 14의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 또 다른 방법의 예시적 실시예를 도시한 도면.
도 16 내지 도 20은 본 발명에 따른 도 1의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 또 다른 방법의 예시적 실시예에서의 단계들을 도시한 도면.
도 21은 본 발명에 따른 도 1의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 또 다른 방법의 예시적 실시예에서의 또 다른 단계를 도시한 도면.
도 22는 또 다른 싱귤레이션 방법을 도시한 도면.
도 23은 본 발명에 따른 도 16 내지 도 20의 방법의 대안 실시예인 도 1의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 또 다른 방법의 예시적 실시예에서의 단계를 도시한 도면.
도 24 내지 도 28은 본 발명에 따른 도 1의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 또 다른 방법의 예시적 실시예에서의 다양한 단계들의 단면도들.
도 29 내지 도 31은 본 발명에 따른 도 1의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 방법의 예의 또 다른 대안 실시예에서의 다양한 단계들의 단면도들.
도 32 및 도 33은 본 발명에 따른 도 1의 반도체 웨이퍼로부터 다이를 싱귤레이팅하는 또 다른 대안 방법의 예시적 실시예에서의 다양한 단계들의 단면도들.
설명의 간소화 및 명확화를 위하여, 도면들에서의 소자들은 반드시 일정한 비율로 도시되어 있지는 않고, 상이한 도면들에서 동일한 참조 번호들은 동일한 소자들을 표시한다. 추가적으로, 널리-공지된 단계들 및 소자들의 설명들 및 세부사항들이 설명의 간소화를 위해 생략된다. 도면들의 명확화를 위해, 장치 구조들의 도핑(doping)된 영역들은 일반적으로 직선 에지들 및 정확한 각도의 코너(corner)들을 갖는 것으로 도시된다. 그러나, 당업자들은 도펀트(dopant)들의 확산 및 활성화로 인하여, 도핑된 영역들의 에지들이 일반적으로 직선들이 아닐 수 있고, 코너들이 정확한 각도들이 아닐 수 있다는 점을 이해한다. 단어 "대략적으로" 또는 "실질적으로"의 사용은 소자의 값이 진술된 값 또는 위치에 매우 가까운 것으로 예측되는 파라미터를 갖는다는 것을 의미한다는 점이 당업자들에 의해 인식될 것이다. 그러나, 당업계에 널리 공지된 바와 같이, 상기 값들 또는 위치들이 정확하게 진술된 바와 같이 되는 것을 방지하는 작은 편차들이 항상 존재한다. 적어도 십 퍼센트(10%)까지(및 반도체 도핑 농도들에 대하여 이십 퍼센트(20%)까지)의 편차들이 정확하게 설명된 바와 같은 이상적인 목표로부터 합리적인 편차들이라는 것이 당업계에 확립되어 있다.
1 is a reduced plan view of an embodiment of a semiconductor wafer according to the present invention;
2 is an enlarged cross-sectional view of an embodiment of a portion of the semiconductor wafer of FIG. 1 at a stage of a process for singulating a die from a wafer according to the present invention.
Figure 3 illustrates the subsequent steps of a process for singulating die from the wafer of Figure 1 according to the present invention.
Figure 4 illustrates yet another subsequent step of a process for singulating die from the wafer of Figure 1 in accordance with the present invention;
FIG. 5 is an alternative embodiment of the dies described in the discussion of FIGS. 1-4 and showing enlarged cross-sectional portions of semiconductor dies formed on the wafer of FIGS. 1-4; FIG.
Figure 6 shows the subsequent steps of the process for singulating die of Figure 5 according to the present invention;
Figure 7 illustrates yet another subsequent step in the process of singulating the die of Figure 6 in accordance with the present invention;
Figures 8-10 illustrate steps in an exemplary embodiment of another method for singulating die from the semiconductor wafer of Figure 1 in accordance with the present invention.
Figures 11-14 illustrate steps in an exemplary embodiment of another method for singulating die from the semiconductor wafer of Figure 1 in accordance with the present invention.
15 illustrates an exemplary embodiment of another method for singulating die from the semiconductor wafer of Fig. 14 according to the present invention. Fig.
Figures 16-20 illustrate steps in an exemplary embodiment of another method for singulating die from the semiconductor wafer of Figure 1 in accordance with the present invention.
Figure 21 illustrates yet another step in an exemplary embodiment of another method for singulating die from the semiconductor wafer of Figure 1 according to the present invention.
22 illustrates another singulation method;
Figure 23 illustrates the steps in an exemplary embodiment of another method for singulating die from the semiconductor wafer of Figure 1, an alternative embodiment of the method of Figures 16-20 in accordance with the present invention.
Figures 24-28 are cross-sectional views of various steps in an exemplary embodiment of another method for singulating die from the semiconductor wafer of Figure 1 according to the present invention.
29-31 are cross-sectional views of various steps in yet another alternative embodiment of an example of a method for singulating die from the semiconductor wafer of FIG. 1 according to the present invention.
32 and 33 are cross-sectional views of various steps in an exemplary embodiment of another alternative method for singulating die from the semiconductor wafer of FIG. 1 in accordance with the present invention;
In order to simplify and clarify the description, the elements in the figures are not necessarily drawn to scale, and in different drawings the same reference numerals denote the same elements. In addition, the descriptions and details of widely-known steps and elements are omitted for simplicity of illustration. For clarity of illustration, the doped regions of the device structures are generally shown with straight edges and corners of the correct angle. However, those skilled in the art understand that due to the diffusion and activation of the dopants, the edges of the doped regions may not be generally straight lines, and that the corners may not be exact angles. It will be appreciated by those skilled in the art that the use of the word " approximately " or " substantially " means that the value of the element has a parameter that is predicted to be very close to the stated value or position. However, as is well known in the art, there are always small deviations that prevent the values or positions from being accurately stated. It has been established in the art that deviations of up to at least ten percent (10%) (and up to twenty percent (20%) of the semiconductor doping concentrations) are reasonable deviations from the ideal goal as described precisely.

도 1은 반도체 웨이퍼(10) 상에 형성된 다이(12, 14 및 16)와 같은 복수의 반도체 다이들을 가지는 반도체 웨이퍼(10)를 도식적으로 도시한 축소된 평면도이다. 다이(12, 14 및 16)는 싱귤레이션 라인들(13 및 15)과 같은 싱귤레이션 라인들이 형성되어야 하는 공간들에 의해 웨이퍼(10) 상에서 서로로부터 이격되어 떨어진다. 당업계에 널리 공지된 바와 같이, 복수의 반도체 다이 모두는 일반적으로 라인들(13 및 15)과 같은 싱귤레이션 라인들이 형성되어야 하는 에어리어(area)들에 의해 모든 측면들에서 서로로부터 분리된다.Figure 1 is a reduced plan view diagrammatically illustrating a semiconductor wafer 10 having a plurality of semiconductor dies, such as dies 12, 14, and 16 formed on a semiconductor wafer 10. Dies 12, 14, and 16 are spaced apart from one another on the wafer 10 by spaces in which singulation lines, such as the singulation lines 13 and 15, must be formed. As is well known in the art, all of the plurality of semiconductor dies are generally separated from each other at all sides by areas where singulation lines, such as lines 13 and 15, are to be formed.

도 2는 절단 라인(section line)(2-2)을 따라 취해진 도 1의 웨이퍼(10)의 확대된 단면 부분을 도시한다. 도면들 및 설명의 명확화를 위하여, 이 절단 라인(2-2)은 다이(12)와, 다이(14 및 16)의 부분들만을 절단하는 것으로 도시되어 있다. 다이(12, 14, 및 16)는 다이오드(diode), 수직 트랜지스터(vertical transistor), 횡형 트랜지스터(lateral transistor), 또는 다양한 유형들의 반도체 소자들을 포함하는 집적 회로를 포함하는 임의의 유형의 반도체 다이일 수 있다. 반도체 다이들(12, 14, 및 16)은 일반적으로 반도체 다이의 능동 및 수동 부분들을 형성하기 위하여 기판(18) 내에 형성되는 도핑된 영역들을 가질 수 있는 반도체 기판(18)을 포함한다. 도 2에 도시된 단면 부분은 다이들(12, 14, 및 16) 각각의 콘택 패드(contact pad)(24)를 따라 취해진다. 콘택 패드(24)는 일반적으로 반도체 다이 및 상기 반도체 다이 외부의 소자들 사이의 전기적 콘택을 제공하기 위하여 반도체 다이 상에 형성되는 금속이다. 예를 들어, 콘택 패드(24)는 나중에 패드(24)로 부착될 수 있는 본딩 와이어(bonding wire)를 수용하도록 형성될 수 있거나, 또는 나중에 패드(24)로 부착될 수 있는 솔더 볼(solder ball) 도는 다른 유형의 상호접속 구조를 수용하도록 형성될 수 있다. 기판(18)은 벌크 기판(19)을 포함하고, 상기 벌크 기판(19)의 표면 상에는 에피택셜 층(epitaxial layer)(20)이 형성된다. 에피택셜 층(20)의 부분은 반도체 다이(12, 14, 또는 16)의 능동 및 수동 부분들을 형성하는데 사용되는 도핑된 영역(21)을 형성하도록 도핑될 수 있다. 층(20) 및/또는 영역(21)은 일부 실시예들에서 생략될 수 있거나, 다이들(12, 14, 또는 16)의 다른 영역들 내에 존재할 수 있다. 전형적으로, 유전체(23)는 패드(24)를 개별적인 반도체 다이의 다른 부분들로부터 절연시키고 각각의 패드(24)를 인접한 반도체 다이로부터 절연시키기 위하여 기판(18)의 상부면 상에 형성된다. 유전체(23)는 통상적으로 기판(18)의 표면 상에 형성되는 이산화 실리콘(silicon dioxide)의 얇은 층이다. 콘택 패드(24)는 일반적으로 콘택 패드(24)의 한 부분이 기판(18)과 전기적으로 콘택하고 또 다른 부분이 유전체(23)의 한 부분 상에 형성되는 금속이다. 금속 콘택들 및 임의의 관련된 층간 유전체(inter-layer dielectric)들(도시되지 않음)을 포함하는 다이들(12, 14, 및 16)이 형성된 이후에, 유전체(26)는 전형적으로 웨이퍼(10) 및 각각의 개별적인 반도체 다이(12, 14, 및 16)에 대한 패시베이션 층(passivation layer)의 기능을 하도록 복수의 반도체 다이 모두에 걸쳐 형성된다. 유전체(26)는 통상적으로 블랭킷 유전체 증착(blanket dielectric deposition) 등에 의해 웨이퍼(10)의 전체 표면 상에 형성되고, 일부 실시예들에서, 콘택 패드(24) 아래에 형성될 수 있다. 유전체(26)의 두께는 일반적으로 유전체(23)의 두께보다 더 크다.Fig. 2 shows an enlarged cross-sectional view of the wafer 10 of Fig. 1 taken along a section line 2-2. For the sake of clarity of the drawings and description, this cutting line 2-2 is shown cutting the die 12 and only the parts of the die 14 and 16. Dies 12,14 and 16 may be any type of semiconductor die including integrated circuits including diodes, vertical transistors, lateral transistors, or various types of semiconductor elements. . Semiconductor dies 12, 14, and 16 generally comprise a semiconductor substrate 18 that may have doped regions formed in a substrate 18 to form active and passive portions of the semiconductor die. The cross-sectional portion shown in FIG. 2 is taken along the contact pads 24 of each of the dies 12, 14, and 16. The contact pad 24 is typically a metal formed on a semiconductor die to provide electrical contact between the semiconductor die and elements outside the semiconductor die. For example, the contact pad 24 may be formed to receive a bonding wire that may later be attached to the pad 24, or may be formed of a solder ball May also be configured to accommodate other types of interconnect structures. The substrate 18 includes a bulk substrate 19 and an epitaxial layer 20 is formed on the surface of the bulk substrate 19. Portions of epitaxial layer 20 may be doped to form doped regions 21 that are used to form active and passive portions of semiconductor die 12, 14, or 16. Layer 20 and / or region 21 may be omitted in some embodiments, or may be in different regions of dies 12, 14, or 16. Typically, the dielectric 23 is formed on the top surface of the substrate 18 to isolate the pads 24 from other portions of the respective semiconductor die and to isolate the respective pads 24 from adjacent semiconductor dies. The dielectric 23 is typically a thin layer of silicon dioxide formed on the surface of the substrate 18. [ The contact pad 24 is typically a metal in which a portion of the contact pad 24 is in electrical contact with the substrate 18 and another portion is formed on a portion of the dielectric 23. After the dies 12, 14, and 16 are formed that include metal contacts and any associated inter-layer dielectric (not shown), the dielectric 26 is typically deposited on the wafer 10, And a plurality of semiconductor dies to function as a passivation layer for each respective semiconductor die 12, 14, and 16. The dielectric 26 is typically formed on the entire surface of the wafer 10, such as by blanket dielectric deposition, and may, in some embodiments, be formed below the contact pad 24. The thickness of the dielectric 26 is generally greater than the thickness of the dielectric 23.

도 3은 웨이퍼(10)로부터 다이들(12, 14, 및 16)을 싱귤레이팅하는 프로세스의 후속 단계에서 도 2의 웨이퍼(10)의 단면 부분을 도시한다. 유전체(26)의 패시베이션 층이 형성된 이후에, 파선들로 도시된 마스크(mask)(32)가 기판(18)의 표면에 도포될 수 있고, 각각의 패드(24) 위에 놓이며 또한 싱귤레이션 라인들(13 및 15)과 같은 싱귤레이션 라인들이 형성되어야 하는 웨이퍼(10)의 부분들 위에 놓이는 유전체(26)의 부분들을 노출시키는 개구(opening)들을 형성하도록 패터닝될 수 있다. 그 후, 유전체들(26 및 23)은 마스크(32) 내의 개구들을 통하여 에칭되어, 패드들(24) 및 기판(18)의 아래에 놓인 표면을 노출시킨다. 라인들(13 및 15)과 같은 싱귤레이션 라인들이 형성되어야 하는 영역에서 유전체들(26 및 23)을 관통하여 형성되는 개구들은 싱귤레이션 개구들(28 및 29)의 기능을 한다. 패드들(24) 위에 놓이는 유전체(26)를 관통하여 형성되는 개구들은 콘택 개구들의 기능을 한다. 에칭 프로세스는 바람직하게는, 금속들을 에칭하는 것보다 더 빨리 유전체들을 선택적으로 에칭하는 프로세스로 수행된다. 에칭 프로세스는 일반적으로 금속들을 에칭하는 것보다 적어도 십(10) 배 더 빨리 유전체들을 에칭한다. 기판(18)에 사용된 재료는 바람직하게는, 실리콘이며, 유전체(26)에 사용된 재료는 바람직하게는, 이산화 실리콘 또는 질화 실리콘(silicon nitride)이다. 유전체(26)의 재료는 또한 폴리이미드(polyimide)와 같이, 패드들(24)의 재료를 에칭하지 않고 에칭될 수 있는 다른 유전체 재료들일 수 있다. 패드들(24)의 금속은 에칭이 패드들(24)의 노출된 부분들을 제거하는 것을 방지하는 에치 스톱(etch stop)의 기능을 한다. 바람직한 실시예에서, 불소계 이방성 반응성 이온 에치 프로세스(fluorine based anisotropic reactive ion etch process)가 사용된다.Figure 3 shows a cross-sectional view of the wafer 10 of Figure 2 in a subsequent stage of the process of singulating dies 12, 14, and 16 from the wafer 10. [ After the passivation layer of dielectric 26 is formed, a mask 32, shown with dashed lines, may be applied to the surface of substrate 18, overlying each pad 24, May be patterned to form openings that expose portions of the dielectric 26 overlying portions of the wafer 10 where the singulation lines, such as lines 13 and 15, should be formed. Dielectrics 26 and 23 are then etched through the openings in mask 32 to expose the underlying surfaces of pads 24 and substrate 18. The openings formed through the dielectrics 26 and 23 in the region where the singulation lines, such as lines 13 and 15, are to be formed serve as the singulation openings 28 and 29. The openings formed through the dielectric 26 overlying the pads 24 serve as contact openings. The etching process is preferably performed with a process that selectively etches the dielectrics faster than etching the metals. The etch process generally etches dielectrics at least ten to ten times faster than etching the metals. The material used for the substrate 18 is preferably silicon and the material used for the dielectric 26 is preferably silicon dioxide or silicon nitride. The material of the dielectric 26 may also be other dielectric materials that can be etched without etching the material of the pads 24, such as polyimide. The metal of the pads 24 serves as an etch stop to prevent the etching from removing the exposed portions of the pads 24. In a preferred embodiment, a fluorine based anisotropic reactive ion etch process is used.

유전체(26)를 관통하여 개구들을 형성한 이후에, 마스크(32)가 제거되고, 기판(18)의 하부면(17)으로부터 재료를 제거하고 기판(18)의 두께를 감소시키기 위하여 기판(18)이 박형화(thinning)된다. 일반적으로, 기판(18)은 약 백 내지 이백(100 내지 200) 미크론보다 더 크지 않은 두께로 박형화된다. 이와 같은 박형화 절차들은 당업자들에게 널리 공지되어 있다. 웨이퍼(10)가 박형화된 이후에, 기판(18)의 하부면(17)을 포함하는 웨이퍼(10)의 하부면은 금속 층(27)으로 금속화될 수 있다. 이 금속화 단계는 일부 실시예들에서 생략될 수 있다. 그 후, 웨이퍼(10)는 통상적으로 복수의 다이가 싱귤레이팅된 이후에 복수의 다이를 지지하는 것을 용이하게 하는 수송 테이프(transport tape) 또는 캐리어 테이프(carrier tape)(30)에 부착된다. 이와 같은 캐리어 테이프들은 당업자들에게 널리 공지되어 있다.After forming the openings through the dielectric 26 the mask 32 is removed and the substrate 18 is removed to remove material from the lower surface 17 of the substrate 18 and reduce the thickness of the substrate 18. [ ) Is thinned. In general, the substrate 18 is thinned to a thickness no greater than about one hundred to two hundred (200 to 200) microns. Such thinning procedures are well known to those skilled in the art. The lower surface of the wafer 10 including the lower surface 17 of the substrate 18 may be metallized with a metal layer 27 after the wafer 10 is thinned. This metallization step may be omitted in some embodiments. The wafer 10 is then attached to a carrier tape or carrier tape 30 that facilitates supporting a plurality of die typically after a plurality of dies have been singulated. Such carrier tapes are well known to those skilled in the art.

도 4는 웨이퍼(10)로부터 반도체 다이(12, 14, 및 16)를 싱귤레이팅하는 프로세스의 후속 단계에서의 웨이퍼(10)를 도시한다. 기판(18)은 유전체(26) 내에 형성되었던 싱귤레이션 개구들(28 및 29)를 통하여 에칭된다. 에칭 프로세스는 싱귤레이션 개구(28 및 29)를 기판(18)의 상부면으로부터 기판(18)을 완전히 관통하여 확장시킨다. 에칭 프로세스는 통상적으로 유전체들 또는 금속들보다 훨씬 더 높은 레이트(rate)로 실리콘을 선택적으로 에칭하는 화학제(chemistry)를 사용하여 수행된다. 에칭 프로세스는 일반적으로 유전체들 또는 금속들을 에칭하는 것보다 적어도 오십(50) 배, 바람직하게는 백(100) 배 더 빨리 실리콘을 에칭한다. 전형적으로, 등방성 및 이방성 에칭 조건들의 조합을 사용하는 딥 반응성 이온 에처(Deep Reactive Ion Etcher: DRIE) 시스템이 개구들(28 및 29)을 기판(18)의 상부면으로부터 기판(18)의 하부면을 완전히 관통하여 에칭하는데 사용된다. 바람직한 실시예에서, 보쉬 프로세스(Bosch process)라고 통칭되는 프로세스가 싱귤레이션 개구들(28 및 29)을 기판을 관통하여 이방성으로 에칭하는데 사용된다. 하나의 예에서, 웨이퍼(10)는 알카텔 딥 반응성 이온 에치 시스템(Alcatel deep reactive ion etch system)에서 보쉬 프로세스로 에칭된다.4 shows the wafer 10 at a subsequent stage of the process of singulating the semiconductor dies 12, 14, and 16 from the wafer 10. The substrate 18 is etched through the singulation openings 28 and 29 that were formed in the dielectric 26. The etching process extends the singulation openings 28 and 29 completely through the substrate 18 from the top surface of the substrate 18. [ The etching process is typically performed using a chemistry that selectively etches silicon at a much higher rate than the dielectrics or metals. The etching process generally etches the silicon at least fifty (50) times, preferably one hundred (100) times faster than etching the dielectrics or metals. Typically, a Deep Reactive Ion Etcher (DRIE) system using a combination of isotropic and anisotropic etch conditions is used to remove openings 28 and 29 from the top surface of substrate 18, Lt; RTI ID = 0.0 > through < / RTI > In the preferred embodiment, a process, referred to as the Bosch process, is used to anisotropically etch the singulation openings 28 and 29 through the substrate. In one example, the wafer 10 is etched into a Bosch process in an Alcatel deep reactive ion etch system.

싱귤레이션 개구들(28 및 29)의 폭은 일반적으로 오 내지 십(5 내지 10) 미크론이다. 이와 같은 폭은 개구들(28 및 29)이 기판(18)을 완전히 관통하여 형성될 수 있고 짧은 시간 간격에서 개구들을 형성할 만큼 충분히 좁은 것을 보증하는데 충분하다. 전형적으로, 개구들(28 및 29)은 대략적으로 십오 내지 삽십(15 내지 30) 분(minute)의 시간 간격 내에서 기판(18)을 관통하여 형성될 수 있다. 웨이퍼(10)의 싱귤레이션 라인들 모두가 동시에 형성되기 때문에, 상기 싱귤레이션 라인들 모두는 대략적으로 십오 내지 삼십(15 내지 30) 분의 동일한 시간 간격 내에서 웨이퍼(10)에 걸쳐 형성될 수 있다. 그 후, 웨이퍼(10)가 웨이퍼(10)로부터 각각의 개별적인 다이를 제거하는데 사용되는 픽-앤-플레이스 장비(pick-and place equipment)(35)로 이동될 때, 웨이퍼(10)는 캐리어 테이프(30)에 의해 지지된다. 전형적으로, 장비(35)는 다이(12)와 같은 각각의 싱귤레이팅된 다이를 상부로 푸시(push)하여, 각각의 싱귤레이팅된 다이를 캐리어 테이프(30)로부터, 그리고 상기 싱귤레이팅된 다이를 제거하는 진공 픽업(vacuum pickup)(도시되지 않음)까지 릴리스(release)하는 페데스털(pedestal) 또는 다른 도구를 갖는다. 픽-앤-플레이스 프로세스 동안, 개구들(28 및 29) 아래에 놓이는 얇은 배면 금속 층의 부분이 분리되고, 테이프(30) 상에 남게 된다.The widths of the singulation openings 28 and 29 are generally between zero and ten (5 to 10) microns. This width is sufficient to ensure that the openings 28 and 29 can be formed completely through the substrate 18 and are sufficiently narrow to form openings at short time intervals. Typically, the openings 28 and 29 can be formed through the substrate 18 within a time interval of approximately fifteen to thirty-five (15 to 30) minutes. Because all of the singulation lines of the wafer 10 are formed simultaneously, all of the singulation lines can be formed across the wafer 10 within approximately the same time interval of 15 to 30 (15 to 30) . Thereafter, as the wafer 10 is moved from the wafer 10 to the pick-and-place equipment 35 used to remove each individual die, the wafer 10 is transferred to the carrier tape < RTI ID = (30). Typically the equipment 35 pushes each singulated die such as die 12 upwardly so that each singulated die is pulled from the carrier tape 30 and from the singulated die (Not shown) that removes the vacuum pump (not shown). During the pick-and-place process, a portion of the thin backing metal layer underlying the openings 28 and 29 is separated and remains on the tape 30.

도 5는 도 1 내지 도 4의 설명에서 기술되는 다이들(12, 14, 및 16)의 대안 실시예들이며 웨이퍼(10) 상에 형성되는 반도체 다이들(42, 44, 및 46)의 확대된 단면 부분을 도시한다. 다이들(42, 44, 및 46)은 기판(18)의 상부면 상에 유전체(23)를 형성한 이후 및 패드들(24)을 형성하기 이전(도 1)의 제조 상태에서 도시되어 있다. 다이들(42, 44, 및 46)은 상기 다이들(42, 44, 및 46)이 각각 다이를 둘러싸고 인접한 다이로부터 다이들을 절연시키는 각각의 절연 트렌치(isolation trench)(50, 54, 및 58)를 갖는다는 점을 제외하고는, 다이들(12, 14, 및 16)과 유사하다. 트렌치들(50, 54, 및 58)은 일반적으로 각각의 다이의 외부 에지 부근에 형성된다. 트렌치들(50, 54, 및 58)은 기판(18)의 상부면으로부터 벌크 기판(19)으로 제 1 거리를 확장하도록 형성된다. 각각의 트렌치(50, 54, 및 58)는 일반적으로 개구의 측벽 상에 형성된 유전체를 갖는 기판(19) 내로 개구로서 형성되고, 일반적으로 유전체, 또는 실리콘이나 폴리실리콘과 같은 다른 재료로 충전된다. 예를 들어, 트렌치(50)는 트렌치 개구의 측벽들 상에 이산화 실리콘 유전체(51)를 포함할 수 있고, 폴리실리콘(52)으로 충전될 수 있다. 유사하게, 트렌치들(54 및 58)은 트렌치 개구의 측벽들 상에 각각의 이산화 실리콘 유전체들(55 및 59)을 포함하고, 폴리실리콘(56 및 60)으로 충전될 수 있다. 싱귤레이션 라인(43)은 트렌치들(50 및 54) 사이에 형성되어야 하고, 싱귤레이션 라인(45)은 트렌치들(50 및 58) 사이에 형성되어야 한다. 트렌치들(50 및 54)은 싱귤레이션 라인(43)에 인접하여 형성되고, 트렌치들(50 및 58)은 싱귤레이션 라인(45)에 인접하여 형성된다. 트렌치들(50, 54, 및 58)을 형성하는 방법들은 당업자들에게 널리 공지되어 있다. 트렌치들(50 및 54)이 오직 예시로서 사용되며, 임의의 수의 형상들, 크기들, 또는 절연 터브(isolation tub)들이나 트렌치들의 조합들일 수 있다는 점에 주목해야 한다.5 is an alternative embodiment of the dies 12, 14, and 16 described in the description of Figs. 1-4 and includes an enlarged view of the semiconductor dies 42, 44, and 46 formed on the wafer 10 Fig. The dies 42,44 and 46 are shown in the manufacturing state after forming the dielectric 23 on the top surface of the substrate 18 and before forming the pads 24 (Figure 1). The dies 42,44 and 46 comprise respective insulating trenches 50,54 and 58 which surround the dies 42,44 and 46 respectively and insulate the dies from adjacent dies. 14, and 16, except that the die 12, 14, Trenches 50, 54, and 58 are typically formed adjacent the outer edge of each die. The trenches 50, 54, and 58 are formed to extend a first distance from the top surface of the substrate 18 to the bulk substrate 19. Each trench 50, 54, and 58 is generally formed as an opening into a substrate 19 having a dielectric formed on the sidewalls of the opening, and is typically filled with a dielectric, or other material such as silicon or polysilicon. For example, the trench 50 may include a silicon dioxide dielectric 51 on the sidewalls of the trench opening, and may be filled with polysilicon 52. Similarly, trenches 54 and 58 include respective silicon dioxide dielectrics 55 and 59 on the sidewalls of the trench opening, and may be filled with polysilicon 56 and 60. The singulation line 43 should be formed between the trenches 50 and 54 and the singulation line 45 should be formed between the trenches 50 and 58. Trenches 50 and 54 are formed adjacent to the singulation line 43 and trenches 50 and 58 are formed adjacent to the singulation line 45. [ Methods of forming the trenches 50, 54, and 58 are well known to those skilled in the art. It should be noted that the trenches 50 and 54 are used by way of example only and may be any number of shapes, sizes, or combinations of isolation tubs or trenches.

도 6은 웨이퍼(10)로부터 반도체 다이들(42, 44, 및 46)을 싱귤레이팅하는 프로세스의 후속 단계에서의 웨이퍼(10)를 도시한다. 트렌치들(50, 54, 및 58)이 형성된 이후에, 다이들(42, 44, 및 46)의 다른 부분들이 형성되며, 이는 콘택 패드들(24)을 형성하는 것 및 다이들(42, 44, 및 46)을 커버(cover)하는 유전체(26)를 형성하는 것을 포함한다. 유전체(26)는 일반적으로 또한 싱귤레이션 라인들(43 및 45)이 형성되어야 하는 기판(18)의 부분을 포함하는 웨이퍼(10)의 다른 부분들을 커버한다. 그 후, 마스크(32)가 도포되고, 싱귤레이션 라인들 및 콘택 개구들이 형성되어야 하는 아래에 놓인 유전체(26)를 노출시키도록 패터닝된다. 유전체(26)는 마스크(32) 내의 개구들을 통하여 에칭되어, 패드들(24) 및 기판(18)의 아래에 놓인 표면을 노출시킨다. 라인들(43 및 45)과 같은 싱귤레이션 라인들이 형성되어야 하는 영역에서 유전체(26)를 관통하여 형성되는 개구들은 싱귤레이션 개구들(47 및 48)의 기능을 한다. 유전체들(23 및 26)을 관통하여 개구들(47 및 48)을 형성하는데 사용되는 에칭 프로세스는 유전체(23 및 26) 내에 개구들(28 및 29)(도 3)을 형성하는 프로세스와 실질적으로 동일하다. 개구들(47 및 48)은 바람직하게는, 각각의 트렌치들(50, 54, 및 58)의 측벽들 상의 유전체들(51, 55, 및 59)이 개구들(47 및 48) 아래에 놓이지 않도록 형성되어, 상기 유전체들이 싱귤레이션 라인들(43 및 45)을 형성하는 후속 동작들에서 영향을 받지 않게 될 것이다.Figure 6 shows the wafer 10 at a later stage of the process of singulating the semiconductor dies 42, 44, and 46 from the wafer 10. After trenches 50,54 and 58 are formed, other portions of dies 42,44 and 46 are formed which form the contact pads 24 and form dice 42,44 , And 46). ≪ / RTI > The dielectric 26 generally covers other portions of the wafer 10, including portions of the substrate 18 on which the singulation lines 43 and 45 should be formed. A mask 32 is then applied and patterned to expose the underlying dielectric 26 where the singulation lines and contact openings should be formed. The dielectric 26 is etched through the openings in the mask 32 to expose the pads 24 and the underlying surface of the substrate 18. The openings formed through the dielectric 26 in the region where the singulation lines, such as lines 43 and 45, are to be formed serve as the singulation openings 47 and 48. The etch process used to form the openings 47 and 48 through the dielectrics 23 and 26 is similar to the process of forming the openings 28 and 29 (FIG. 3) in the dielectrics 23 and 26, same. The openings 47 and 48 are preferably such that the dielectrics 51,55 and 59 on the sidewalls of each of the trenches 50,54 and 58 are not located below the openings 47 and 48 So that the dielectrics will not be affected in subsequent operations to form the singulation lines 43 and 45.

유전체(26)를 관통하여 개구들(47 및 48)을 형성한 이후에, 도 3의 설명에서 상술된 바와 같이, 마스크(32)가 제거되고, 기판(18)이 박형화되고 금속 층(27)으로 금속화된다. 이 금속화 단계는 일부 실시예들에서 생략될 수 있다. 금속화 이후에, 웨이퍼(10)는 통상적으로 캐리어 테이프(30)에 부착된다.After the openings 47 and 48 are formed through the dielectric 26, the mask 32 is removed, the substrate 18 is thinned and the metal layer 27 is removed, as described above in the description of FIG. . This metallization step may be omitted in some embodiments. After metallization, the wafer 10 is typically adhered to the carrier tape 30.

도 7은 웨이퍼(10)로부터 반도체 다이(42, 44, 및 46)를 싱귤레이팅하는 프로세스의 후속 단계에서의 웨이퍼(10)를 도시한다. 기판(18)은 유전체(26) 내에 형성되었던 싱귤레이션 개구들(47 및 48)을 통하여 에칭된다. 에칭 프로세스는 싱귤레이션 개구(47 및 48)를 기판(18)의 상부면으로부터 기판(18)을 완전히 관통하여 확장시킨다. 개구들(47 및 48)은 통상적으로 유전체들(51, 55, 및 59)로부터 적어도 0.5 미크론 떨어져 있다. 에칭 프로세스는 통상적으로 유전체들 또는 금속들보다 훨씬 더 높은 레이트로, 일반적으로 적어도 오십(50) 배, 그리고 바람직하게는, 적어도 백(100) 배 더 빨리 실리콘을 선택적으로 에칭하는 등방성 에치이다. 트렌치들의 측벽들 상의 유전체가 기판(18)의 실리콘을 보호하기 때문에, 등방성 에치가 사용될 수 있다. 등방성 에치는 보쉬 프로세스의 사용 또는 보쉬 프로세스의 제한된 사용으로 획득될 수 있는 훨씬 더 높은 에칭 처리량을 갖는다. 그러나, 등방성 에칭은 전형적으로 트렌치들(50, 54, 및 58) 아래에 놓인 기판(19)의 부분들을 언더커팅(undercutting)한다. 전형적으로, 불소 화학제에 의한 다운-스트림 에처(down-stream etcher)가 개구들(28 및 29)을 기판(18)의 상부면으로부터 기판(18)의 하부면을 완전히 관통하여 에칭하여, 개구들(28 및 29) 아래에 놓인 층(27)의 일부를 노출시키는데 사용된다. 하나의 예에서, 웨이퍼(10)는 Plasma Therm, LLC(10050 16th Street North St. Petersburg, FL 33716)로부터 입수 가능한 것을 포함하는 다양한 제품들로부터 입수 가능한 완전 등방성 에칭을 사용한 딥 반응성 이온 에치 시스템에서 에칭된다. 다른 실시예들에서, 등방성 에칭은 에칭의 대부분에 사용될 수 있고, 이방성 에칭은 상기 에칭의 또 다른 부분에 사용될 수 있다(보쉬 프로세스). 예를 들어, 등방성 에칭은 개구들(28 및 29)이 트렌치들(50, 54, 및 58)과 실질적으로 동일한 깊이인 깊이까지 확장될 때까지 사용될 수 있고, 그 후에, 트렌치들(50, 54, 및 58)의 언더커팅을 방지하기 위하여 이방성 에칭이 사용될 수 있다.Figure 7 shows the wafer 10 at a subsequent stage of the process of singulating the semiconductor dies 42,44 and 46 from the wafer 10. [ The substrate 18 is etched through the singulation openings 47 and 48 that were formed in the dielectric 26. The etching process extends the singulation openings 47 and 48 completely through the substrate 18 from the top surface of the substrate 18. [ The openings 47 and 48 are typically at least 0.5 microns away from the dielectrics 51,55 and 59. The etch process is typically an isotropic etch that selectively etches silicon at a rate much higher than the dielectrics or metals, generally at least fifty (50) times, and preferably at least hundreds of times faster. Isotropic etch can be used because the dielectric on the sidewalls of the trenches protects the silicon of the substrate 18. [ The isotropic etch has a much higher etch throughput that can be achieved with the use of a Bosch process or with limited use of the Bosch process. However, isotropic etching typically undercuts portions of the substrate 19 underlying the trenches 50, 54, and 58. Typically, a down-stream etcher by a fluorochemical etches the openings 28 and 29 completely through the lower surface of the substrate 18 from the upper surface of the substrate 18, Lt; RTI ID = 0.0 > 28 < / RTI > In one example, the wafer 10 is etched in a deep reactive ion etch system using fully isotropic etching available from various products, including those available from Plasma Therm, LLC (10050 16th Street North St. Petersburg, FL 33716) do. In other embodiments, isotropic etching can be used for most of the etching and anisotropic etching can be used for another part of the etching (Bosch process). For example, an isotropic etch may be used until the openings 28 and 29 extend to a depth that is substantially the same as the depth of the trenches 50, 54, and 58, and then the trenches 50 and 54 , And 58 may be used to prevent undercutting.

싱귤레이션 개구들(47 및 48)의 폭은 일반적으로 개구들(28 및 29)의 폭과 거의 동일하다. 다이들(42, 44, 및 46)은 다이들(12, 14, 및 16)을 제거하는 방식과 유사하게 테이프(30)로부터 제거될 수 있다.The width of the singulation openings 47 and 48 is generally approximately equal to the width of the openings 28 and 29. The dies 42,44 and 46 may be removed from the tape 30 similar to the manner in which the dies 12,14 and 16 are removed.

또 다른 실시예에서, 트렌치들(50 및 58)은 표준 스크라이빙 도구 또는 웨이퍼 소우가 개구(48)를 통하여 확장되도록 하기에 충분한 거리로 이격되어 떨어질 수 있다. 따라서, 개구(48) 아래에 놓이는 층(27)의 부분은 개구들(47 및 48) 아래의 웨이퍼(10)를 균열시키고 개구들(47 및 48)을 따라 분리하기 위하여 스크라이브 도구 또는 웨이퍼 소우에 의해 절단되거나 롤러들을 통하여 구부러질 수 있거나, 또는 레이저 스크라이빙 등과 같은 다른 기술들로 제거될 수 있다. 트렌치들(50 및 54)은 유사한 방식으로 아래에 놓인 층(27)의 부분을 절단하는 것을 용이하게 하는 유사한 간격들을 가질 수 있다. 층(27)을 스크라이빙하기 위하여 스크라이브 도구를 사용하는 방법에 대하여, 층(27)은 분리를 완료하기 위하여 스크라이브 도구의 경로를 따라 파괴될 수 있다. 그 후, 다이들(42, 44, 및 46)이 표준 픽 앤 플레이스 기술들에 의해 테이프(30)로부터 제거될 수 있다. 이러한 방법들은 다이들(42, 44, 및 46)을 분리 및 싱귤레이팅하는 것을 용이하게 한다.In another embodiment, the trenches 50 and 58 may be spaced apart a sufficient distance to allow the standard scribing tool or wafer saw to extend through the opening 48. A portion of the layer 27 underlying the opening 48 can be used as a scribe tool or wafer saw to crack the wafer 10 below the openings 47 and 48 and separate along the openings 47 and 48. [ Or may be bent through the rollers, or may be removed by other techniques such as laser scribing or the like. Trenches 50 and 54 may have similar spacings to facilitate cutting a portion of underlying layer 27 in a similar manner. For a method of using a scribe tool to scribe layer 27, layer 27 may be broken along the path of the scribe tool to complete the separation. The dies 42, 44, and 46 may then be removed from the tape 30 by standard pick and place techniques. These methods facilitate separating and singulating the dies 42, 44, and 46.

대안적으로, 등방성 에칭은 개구들(47 및 48)의 깊이가 트렌치들(50, 54, 및 58)의 하부에 도달하거나 트렌치들의 하부를 막 넘어설 때 종료될 수 있다. 그 후, 기판(19)의 노출된 부분이 다이의 분리를 완료하기 위하여 스크라이브 도구로 스크라이빙되거나 웨이퍼 소우로 소잉(sawing)되거나, 또는 레이저 커팅(cutting) 등과 같은 다른 기술들로 제거될 수 있다. 소잉 기술은 금속 층(27)을 통하여 소잉하도록 확장될 수 있다. 스크라이빙 기술은 기판(19)의 재료가 스크라이브 도구에 의해 형성된 경로를 따라 파괴될 때 층(27)을 파괴시킬 것이다.Alternatively, the isotropic etch may be terminated when the depth of the openings 47 and 48 reaches the bottom of the trenches 50, 54, and 58, or when the bottoms of the trenches just overtake. The exposed portions of the substrate 19 may then be scribed or scoured with a scribe tool to complete the separation of the die or may be removed with other techniques such as laser cutting, have. The sawing technique can be extended to slack through the metal layer 27. The scribing technique will destroy the layer 27 when the material of the substrate 19 is broken along the path formed by the scribing tool.

당업자들은 다이를 싱귤레이팅하기 위하여 트렌치들(50, 54, 및 58)을 사용하는 것이 다이(42, 44, 및 46)가 트렌치들의 유전체 측벽들에 의해 다이 외부의 소자들로부터 다이까지 절연되는 평활한 측벽들을 가지도록 한다는 점을 인식할 것이다. 이 유전체는 다이의 측벽들 상에 유전체 재료를 형성한다. 트렌치들의 유전체에 의해 제공되는 절연은 다이 및 외부 소자 사이의 누설 전류를 감소시킬 수 있다. 상기 구조는 또한 다이의 항복 전압(breakdown voltage)을 개선시킬 수 있다. 트렌치들(50, 54, 및 58)을 사용하는 것은 또한 레이저 다이 싱귤레이션 방법들을 통하여 다이 강도를 증가시킬 수 있다.Those skilled in the art will appreciate that the use of trenches 50, 54, and 58 to singulate a die is advantageous in that the die 42, 44, and 46 are insulated from the elements outside the die by dielectric sidewalls of the trenches, Lt; RTI ID = 0.0 > sidewalls. ≪ / RTI > The dielectric forms a dielectric material on the sidewalls of the die. The insulation provided by the dielectric of the trenches can reduce the leakage current between the die and the external device. The structure can also improve the breakdown voltage of the die. The use of trenches 50, 54, and 58 can also increase die strength through laser die singulation methods.

개구들(47 및 48)을 기판(19)으로 확장시키는데 사용되는 에치 기술을 다시 참조하면, 당업자들은 등방성 에치가 이방성 에치보다 더 빨리 에칭하므로, 개구들(47 및 48)이 트렌치들(50, 54, 및 58) 만큼 깊은 깊이로 확장될 때까지 등방성 에치를 사용하는 것이 개구들의 재료를 빨리 제거한다는 점을 인식할 것이다. 그 후, 이방성 에치를 사용하는 것은 트렌치들(50, 54, 및 58)을 언더커팅하는 것을 방지한다. 따라서, 이방성 에치 이전에 등방성 에치를 사용하는 것은 트렌치들(50, 54, 및 58)보다 더 깊은 개구들(47 및 48)의 부분에 대해서도 높은 처리량 및 양호한 측방향 제어를 제공한다.Referring again to the etch technique used to extend the openings 47 and 48 to the substrate 19, those skilled in the art will appreciate that the openings 47 and 48 are not etched faster than the trenches 50, 54, and 58), it is faster to remove the material of the openings. Then, using an anisotropic etch prevents undercutting trenches 50, 54, and 58. Thus, using an isotropic etch prior to the anisotropic etch also provides high throughput and good lateral control for portions of openings 47 and 48 that are deeper than trenches 50, 54, and 58.

도 8은 반도체 웨이퍼(10) 상에 형성되는 반도체 다이들(71, 72, 및 73)을 싱귤레이팅하는 또 다른 대안 방법의 예시적 실시예에서의 단계를 도시한다. 도 8은 기판(18)의 상부면 상에 유전체(23)를 형성한 이후 및 패드들(24)을 형성하기 이전(도 2)의 제조 상태에서의 다이들(71 내지 73)의 확대된 단면 부분을 도시한다. 다이들(71 내지 73)은 상기 다이들(71 내지 73)이 웨이퍼(10) 상에서 각각의 다이를 둘러싸는 단일 절연 트렌치(79)를 갖는다는 점을 제외하고는, 다이들(42, 44, 및 46)과 유사하다.Figure 8 shows the steps in an exemplary embodiment of another alternative method of singulating semiconductor dies 71, 72, and 73 formed on a semiconductor wafer 10. Figure 8 shows an enlarged section of dies 71 to 73 after forming dielectric 23 on the top surface of substrate 18 and in the manufacturing state prior to forming pads 24 (Figure 2) . ≪ / RTI > The dies 71 to 73 are formed by dies 42, 44, and 73, except that the dies 71 to 73 have a single insulating trench 79 surrounding each die on the wafer 10. [ And 46).

이하에서 부가적으로 인식되는 바와 같이, 웨이퍼(10)로부터 반도체 다이를 싱귤레이팅하는 방법의 하나의 예는: 반도체 기판, 예를 들어, 기판(18)을 가지며 상기 반도체 기판 상에 형성된 복수의 반도체 다이를 또한 가지는 웨이퍼(10)와 같은 반도체 웨이퍼를 제공하는 단계로서, 상기 반도체 다이가 상기 반도체 웨이퍼의 부분들에 의해 서로로부터 분리되고, 상기 반도체 웨이퍼의 상기 부분들이 라인들(13 및 15)과 같은 싱귤레이션 라인들이 형성되어야 하는 위치들에 존재하는, 반도체 웨이퍼 제공 단계; 상기 반도체 웨이퍼의 상기 부분들 내에 상기 복수의 반도체 다이 각각의 페리미터(perimeter)를 둘러싸는 트렌치(79)와 같은 트렌치를 형성하는 단계로서, 상기 트렌치의 측벽들 상에 유전체 층을 형성하고, 상기 트렌치 내에 있고 상기 측벽들 상에 있는 유전체 층에 접하는 필러 재료(filler material)를 형성하는 단계를 포함하는, 트렌치 형성 단계; 상기 복수의 반도체 다이의 부분들 위에 놓이는 층(26)과 같은 패시베이션 층을 형성하는 단계; 상기 패시베이션 층 및 임의의 아래에 놓인 층들을 관통하여 제 1 개구, 예를 들어, 개구(82)를 에칭하여, 적어도 상기 트렌치의 상기 필러 재료를 노출시키는 단계; 및 상기 필러 재료 및 상기 필러 재료 아래에 놓이는 상기 반도체 기판의 임의의 부분을 관통하여 개구(81)와 같은 제 2 개구를 에칭하여, 상기 제 2 개구가 상기 반도체 웨이퍼의 표면으로부터 상기 반도체 기판을 완전히 관통하여 확장되도록 하는 단계를 포함하며, 상기 제 2 개구의 에칭이 상기 제 1 개구를 통하여 수행된다.One example of a method for singulating a semiconductor die from a wafer 10, as will be additionally recognized below, is to: < RTI ID = 0.0 > Providing a semiconductor wafer, such as a wafer 10 also having a die, wherein the semiconductor die is separated from each other by portions of the semiconductor wafer, and wherein the portions of the semiconductor wafer are separated from the lines 13 and 15, Present in locations where the same singulation lines are to be formed; Forming a trench in the portions of the semiconductor wafer such as a trench (79) surrounding a perimeter of each of the plurality of semiconductor dies, forming a dielectric layer on the sidewalls of the trench, Forming a filler material in the trench and in contact with the dielectric layer on the sidewalls; Forming a passivation layer, such as a layer (26) overlying portions of the plurality of semiconductor die; Etching the first opening, e.g., opening 82, through the passivation layer and any underlying layers to expose at least the filler material of the trench; And etching a second opening, such as opening (81), through the filler material and any portion of the semiconductor substrate underlying the filler material, such that the second opening completely fills the semiconductor substrate from the surface of the semiconductor wafer Wherein the second opening is etched through the first opening.

상기 방법의 또 다른 실시예는 또한 상기 반도체 기판의 상기 표면으로부터 상기 반도체 기판으로 제 1 거리로 확장되는 트렌치 개구를 형성하는 단계로서, 상기 반도체 기판의 제 1 부분이 상기 트렌치 개구 아래에 놓이고, 상기 트렌치 개구가 측벽들 및 하부를 가지는, 트렌치 개구 형성 단계; 상기 트렌치 개구의 상기 측벽들 및 상기 트렌치 개구의 상기 하부 상에 상기 유전체 층을 형성하고 상기 측벽들 사이에 있는 상기 트렌치 개구의 부분을 빈 공간으로서 남겨두는 단계; 상기 트렌치 개구의 하부 상에서 상기 유전체를 제거하는 단계; 및 상기 트렌치의 상기 측벽들 상에 있는 상기 유전체 층에 접하는 상기 필러 재료로 상기 트렌치 개구의 상기 빈 공간을 충전하는 단계를 포함한다.Yet another embodiment of the method further comprises forming a trench opening extending from the surface of the semiconductor substrate to a first distance from the semiconductor substrate, wherein a first portion of the semiconductor substrate lies below the trench opening, The trench opening having sidewalls and a bottom; Forming the dielectric layer on the sidewalls of the trench opening and the lower portion of the trench opening and leaving a portion of the trench opening between the sidewalls as an empty space; Removing the dielectric on the bottom of the trench opening; And filling the void space of the trench opening with the filler material abutting the dielectric layer on the sidewalls of the trench.

트렌치(79)는 상기 트렌치(79)가 다이들(71 내지 73) 각각 및 웨이퍼(10) 상에 형성된 임의의 다른 다이의 페리미터를 둘러싸도록 확장된다는 점을 제외하고는, 도 5 내지 도 7의 설명에서 서술되었던 트렌치들(50, 54, 또는 58) 중 어느 하나와 유사하게 형성된다. 트렌치(79)는 자신(79)의 측벽들 및 하부 상에 있는 이산화 실리콘과 같은 유전체 라이너(dielectric liner)(80)를 포함하도록 형성된다. 바람직한 실시예에서, 유전체 라이너(80)의 하부가 제거되어, 트렌치(79)의 하부가 파선(84)으로 도시된 바와 같이 개방된다. 라이너(80)의 하부를 제거하는 하나의 예시적 방법은 트렌치(79)를 노출시키는 개구들을 갖는 마스크(85)를 도포하는 단계 및 라이너(80)의 하부를 관통하여 에칭하는 스페이서 에치(spacer etch)와 같은 이방성 에치를 수행하는 단계를 포함한다. 상기 에치는 트렌치(79) 아래에 놓인 기판(180)의 부분을 손상시키는 것을 방지하기 위하여 실리콘 위의 유전체들에 선택적일 수 있다. 마스크(85)는 일반적으로 라이너(80)의 하부가 제거된 이후에 제거된다. 트렌치(79)의 하부를 제거한 이후에, 트렌치(79)의 남아있는 개구가 필러 재료(81)로 충전된다. 필러 재료(81)는 일반적으로 이하에 부가적으로 인식되는 바와 같이, 후속 프로세스 단계를 용이하게 하기 위하여 폴리실리콘과 같은 실리콘계 재료이다.The trenches 79 extend beyond the edges of the trenches 79 except that the trenches 79 extend to surround each of the dies 71 to 73 and the perimeter of any other die formed on the wafer 10. [ 54, or 58 that has been described in the description of FIG. The trench 79 is formed to include a dielectric liner 80, such as silicon dioxide, on the sidewalls and bottom of the self 79. In the preferred embodiment, the bottom of the dielectric liner 80 is removed and the bottom of the trench 79 is opened as shown by the dashed line 84. One exemplary method of removing the bottom of the liner 80 includes applying a mask 85 having openings that expose the trenches 79 and removing the spacer etch through the bottom of the liner 80 ). ≪ / RTI > The etch may be selective to dielectrics on the silicon to prevent damage to portions of the substrate 180 underlying the trenches 79. The mask 85 is generally removed after the bottom of the liner 80 has been removed. After removing the bottom of the trench 79, the remaining openings of the trench 79 are filled with the filler material 81. The filler material 81 is typically a silicon based material such as polysilicon to facilitate subsequent process steps, as will be additionally recognized below.

당업자들은 다이들(71 내지 73) 중 어느 하나가 또한 다이의 내부에 트렌치(78)와 같은 다른 트렌치들을 가질 수 있고, 이러한 트렌치들이 트렌치(79)를 형성하는데 사용되는 프로세스 동작들과 유사한 프로세스 동작들을 사용하여 형성될 수 있다는 점을 인식할 것이다. 트렌치(78)는 자신이 행하는 기능에 따라 하부 산화물을 유지하거나 하부 산화물을 제거하도록 할 수 있다. 예를 들어, 트렌치(78)는 도핑된 폴리실리콘으로 충전될 수 있고, 금속 층(27)(도 8에 도시되지 않음) 또는 기판(18)의 하부 또는 배면 상의 또 다른 콘택에 저 저항 기판 콘택 또는 배면 콘택을 제공할 수 있다. 그러나, 트렌치(78)의 바람직한 실시예에서는, 하부가 제거되지 않으며, 트렌치(78)는 바람직하게는, 다이 내부에 있고, 다이의 외주(outside perimeter)를 둘러싸지 않는다. 따라서, 트렌치(79)는 트렌치(78) 또는 다른 유사한 트렌치와 동시에 형성됨으로써, 제조 비용들을 감소시킬 수 있다. 당업자들에 의해 이해되는 바와 같이, 다이(71 내지 73)는 기판(18) 상 또는 내에 형성되는 다양한 능동 및/또는 수동 소자들을 가질 수 있다.Those skilled in the art will appreciate that any one of the dies 71-73 may also have other trenches such as trench 78 in the interior of the die and that these trenches may be subjected to a process operation similar to the process operations used to form the trench 79 As will be appreciated by those skilled in the art. The trenches 78 may allow the lower oxide to be retained or the lower oxide to be removed, depending on the function it performs. For example, the trench 78 may be filled with doped polysilicon and may be deposited on the bottom or backside of the substrate 18 (not shown in FIG. 8) or the metal layer 27 Or a backside contact. However, in the preferred embodiment of the trench 78, the bottom is not removed, and the trench 78 is preferably inside the die and does not surround the outside perimeter of the die. Thus, the trenches 79 can be formed simultaneously with the trenches 78 or other similar trenches, thereby reducing manufacturing costs. As will be understood by those skilled in the art, the dies 71-73 may have a variety of active and / or passive elements formed on or in the substrate 18. [

트렌치(79)는 싱귤레이션 라인들(76 및 77) 내에, 그리고 바람직하게는 싱귤레이션 라인들 중간에 형성되어, 트렌치(79)의 중간이 대략적으로 싱귤레이션 라인의 중간이 된다. 이하에 부가적으로 인식되는 바와 같이, 싱귤레이션은 대략적으로 트렌치(79)의 중간을 통하여 발생할 것이다.Trench 79 is formed in the singulation lines 76 and 77, and preferably in the middle of the singulation lines, so that the middle of the trench 79 is roughly the middle of the singulation line. As will be additionally recognized below, the singulation will occur approximately through the middle of the trench 79.

도 9는 웨이퍼(10)로부터 반도체 다이(71 내지 73)를 싱귤레이팅하는 예시적 방법의 후속 단계에서의 웨이퍼(10)를 도시한다. 트렌치(79)가 형성된 이후에, 다이들(71 내지 73)의 다른 부분들이 형성되며, 이는 콘택 패드들(24)을 형성하는 것 및 다이들(71 내지 73)을 커버하는 유전체(26)를 형성하는 것을 포함한다. 유전체(26)는 일반적으로 또한 싱귤레이션 라인들(77 및 76)이 형성되어야 하는 기판(18)의 부분을 포함하는 웨이퍼(10)의 다른 부분들을 커버한다. 그 후, 마스크(87)가 도포되고, 싱귤레이션 라인들(76 및 77) 및 콘택 개구들이 형성되어야 하는 아래에 놓인 유전체(26)를 노출시키도록 패터닝된다. 마스크(87)는 도 3에 도시되어 있는 마스크(32)와 유사하지만, 마스크(87)는 통상적으로 약간 상이한 위치를 갖는다. 싱귤레이션 라인들(76 및 77)이 형성되어야 하는 마스크(87) 내의 개구들이 또한 트렌치(79) 위에 놓인다. 유전체(26)는 마스크(87) 내의 개구들을 통하여 에칭되어, 트렌치(79) 내에 있는 아래에 놓인 필러 재료(81)를 노출시킨다. 에칭은 또한 전형적으로 아래에 놓인 패드들(24)을 노출시킨다. 라인들(76 및 77)과 같은 싱귤레이션 라인들이 형성되어야 하는 영역에서 유전체(26)를 관통하여 형성되는 개구들은 싱귤레이션 개구들(82 및 83)의 기능을 한다. 유전체(26)를 관통하여 개구들(82 및 83)을 형성하는데 사용되는 에칭 프로세스는 유전체(23 및 26) 내에 개구들(28 및 29)(도 3)을 형성하는 프로세스와 실질적으로 동일하다. 재료(81)가 노출되는 한 유전체 라이너(dielectric liner)(80)가 노출될 필요가 없을지라도, 개구들(82 및 83)은 전형적으로 대응하는 트렌치(79)의 측벽들 상의 유전체 라이너(80)가 개구들(82 및 83) 아래에 놓이도록 형성된다. 개구들(82 및 83)은 전형적으로 다이(71 내지 73)를 둘러싸는 단일 개구의 2개의 부분들이지만, 단면도로 인해 2개의 개구들로서 도시되어 있다.Figure 9 shows the wafer 10 in a subsequent step of an exemplary method of singulating semiconductor dies 71-73 from the wafer 10. After the trenches 79 are formed, other parts of the dies 71 to 73 are formed which form the contact pads 24 and the dielectric 26 covering the dies 71 to 73 . The dielectric 26 generally covers other portions of the wafer 10, including portions of the substrate 18 on which the singulation lines 77 and 76 are to be formed. A mask 87 is then applied and patterned to expose underlying dielectric lines 26 where the singulation lines 76 and 77 and contact openings are to be formed. The mask 87 is similar to the mask 32 shown in Fig. 3, but the mask 87 typically has slightly different positions. The openings in the mask 87, in which the singulation lines 76 and 77 are to be formed, also lie on the trench 79. The dielectric 26 is etched through the openings in the mask 87 to expose the underlying filler material 81 in the trench 79. Etching also exposes pads 24 that are typically underneath. The openings formed through the dielectric 26 in the region where the singulation lines, such as lines 76 and 77, are to be formed serve as the singulation openings 82 and 83. The etch process used to form the openings 82 and 83 through the dielectric 26 is substantially the same as the process of forming the openings 28 and 29 (FIG. 3) in the dielectrics 23 and 26. The openings 82 and 83 are typically formed in the dielectric liner 80 on the sidewalls of the corresponding trench 79, although the dielectric liner 80 need not be exposed as long as the material 81 is exposed. Lt; RTI ID = 0.0 > 82 < / RTI > The openings 82 and 83 are typically two portions of a single opening surrounding the die 71-73, but are shown as two openings due to the cross-sectional view.

유전체(26)를 관통하여 개구들(82 및 83)을 형성한 이후에, 파선들로 도시된 바와 같이, 마스크(87)가 제거되고, 파선(86)으로 도시된 바와 같이, 기판(18)이 박형화된다. 박형화는 트렌치(79) 아래에 놓이는 기판(18)의 대부분을 제거한다. 유전체 라이너(80)의 유전체 재료가 웨이퍼(10)를 박형화하는데 사용되는 도구를 손상시킬 수 있고 웨이퍼(10)를 스크래칭(scratching)하도록 할 수 있기 때문에, 기판(18)은 일반적으로 완전히 트렌치(79)의 하부까지 박형화되지는 않는다. 바람직하게는, 트렌치(79)가 하부로부터 기판(18)까지 약 이 내지 오(2 내지 5) 미크론일 때까지 기판(18)이 박형화된다. 일부 실시예들에서, 기판(18)은 트렌치(19)의 하부가 노출될 때까지 박형화될 수 있다. 그 후, 도 3의 설명에서 상술된 바와 같이, 기판(18)의 하부면이 금속 층(27)으로 금속화된다. 이 금속화 단계는 일부 실시예들에서 생략될 수 있다. 그 후, 웨이퍼(10)는 통상적으로 캐리어 테이프(30)와 같은 통상적인 캐리어 기판 또는 통상적인 캐리어에 부착된다.After forming the openings 82 and 83 through the dielectric 26, the mask 87 is removed, as shown by the dashed lines, and the substrate 18, as shown by the dashed line 86, Is thinned. Thinning removes most of the substrate 18 underlying the trenches 79. Because the dielectric material of the dielectric liner 80 can damage the tool used to thin the wafer 10 and allow it to scratch the wafer 10, ) Is not thinned down to the bottom. Preferably, the substrate 18 is thinned until the trenches 79 are about two to five microns from the bottom to the substrate 18. [ In some embodiments, the substrate 18 may be thinned until the bottom of the trench 19 is exposed. Thereafter, the lower surface of the substrate 18 is metallized with the metal layer 27, as described above in the description of Fig. This metallization step may be omitted in some embodiments. The wafer 10 is then typically affixed to a conventional carrier substrate, such as a carrier tape 30, or a conventional carrier.

도 10은 웨이퍼(10)로부터 다이(71 내지 73)를 싱귤레이팅하는 방법의 실시예의 일례의 후속 단계에서의 웨이퍼(10)를 도시한다. 기판(18)을 관통하여 싱귤레이션 라인들(76 및 77)을 형성하기 위하여 제 2 개구가 필러 재료(81)를 관통하여 형성된다. 기판(18)은 바람직하게는, 도 4의 설명에서 서술된 에칭과 유사하게 유전체(26)를 마스크로서 사용하여 싱귤레이션 개구들(82 및 83)을 통하여 에칭된다. 에칭 프로세스는 재료(81)를 관통하여 개구를 형성한다. 전형적으로, 에칭은 실질적으로 재료(81) 모두를 제거하여, 싱귤레이션 라인들(76 및 77)을 기판(18)의 상부면으로부터 트렌치(79)의 필러 재료(81)를 완전히 관통하여 확장시킨다. 에칭 프로세스는 통상적으로 유전체들 또는 금속들보다 훨씬 더 높은 레이트로, 일반적으로 적어도 오십(50) 배, 그리고 바람직하게는, 적어도 백(100) 배 더 빨리 실리콘을 선택적으로 에칭하는 등방성 에치이다. 에칭 단계가 유전체들 위의 실리콘에 선택적이기 때문에, 필러 재료(81)는 트렌치(79)의 측벽들 상의 유전체 라이너(80)를 에칭하지 않고 제거된다. 따라서, 트렌치(79)의 측벽들 상의 유전체 라이너(80)는 등방성 에치로부터 기판(18)의 실리콘을 보호한다. 등방성 에치는 보쉬 프로세스의 사용 또는 보쉬 프로세스의 제한된 사용으로 획득될 수 있는 훨씬 더 높은 에칭 처리량을 갖는다. 등방성 에칭 프로세스는 필러 재료(81)와, 트렌치(79) 아래에 놓이는 기판(18)의 임의의 부분을 관통하여 에칭한다. 따라서, 등방성 에치는 트렌치(79) 및 기판(18)의 임의의 아래에 놓인 부분을 관통하여 에칭함으로써, 다이(71 내지 73)를 싱귤레이팅한다. 고속 에칭은 처리량을 개선시키고, 제조 비용들을 감소시킨다. 당업자들은 필러 재료(81)의 실리콘계 재료가 또한 기판(19) 및 유전체 라이너(80)의 재료에 대한 응력(stress)을 감소시킨다는 점을 인식할 것이다.Figure 10 shows the wafer 10 in a subsequent step of an example of an embodiment of a method for singulating die 71-73 from a wafer 10. A second opening is formed through the filler material 81 to penetrate the substrate 18 to form singulation lines 76 and 77. The substrate 18 is preferably etched through the singulation openings 82 and 83 using the dielectric 26 as a mask, similar to the etch described in the description of FIG. The etching process penetrates the material 81 to form an opening. Typically, the etch substantially removes all of the material 81 to extend the singulation lines 76 and 77 completely through the filler material 81 of the trench 79 from the top surface of the substrate 18 . The etch process is typically an isotropic etch that selectively etches silicon at a rate much higher than the dielectrics or metals, generally at least fifty (50) times, and preferably at least hundreds of times faster. The filler material 81 is removed without etching the dielectric liner 80 on the sidewalls of the trench 79, since the etching step is selective to silicon on the dielectrics. Thus, the dielectric liner 80 on the sidewalls of the trenches 79 protects the silicon of the substrate 18 from isotropic etches. The isotropic etch has a much higher etch throughput that can be achieved with the use of a Bosch process or with limited use of the Bosch process. The isotropic etch process etches through the filler material 81 and any portion of the substrate 18 underlying the trench 79. Thus, the die 71 to 73 are singulated by etching through the isotropic trench 79 and any underlying portion of the substrate 18. [ High-speed etching improves throughput and reduces manufacturing costs. Those skilled in the art will appreciate that the silicon-based material of the filler material 81 also reduces the stress on the material of the substrate 19 and the dielectric liner 80.

트렌치(79)를 통하여 싱귤레이션 라인들(76 및 77)을 따라 다이들(71 내지 73)을 싱귤레이팅하면, 싱귤레이션 라인이 반도체 웨이퍼의 매우 작은 공간을 점유하게 된다. 예를 들어, 필러 재료(81)를 포함하는 트렌치(79)의 폭은 전형적으로 단지 약 삼(3) 미크론이다. 따라서, 싱귤레이션 라인들(76 및 77)은 스크라이빙 또는 웨이퍼 소잉과 같은 다이를 싱귤레이팅하는 다른 방법들에서의 백 미크론 폭 대신에, 단지 약 삼 미크론 폭일 수 있다. 웨이퍼(10)를 박형화하는 단계가 생략될 수 있고, 재료(81)의 에칭이 개구들(82 및 83)이 웨이퍼(10)를 관통하여 확장될 때까지 지속될 수 있다는 점이 당업자들에게 명백할 것이다.Singling the dies 71 to 73 along the singulation lines 76 and 77 through the trenches 79 occupies a very small space of the semiconductor wafer. For example, the width of the trench 79 including the filler material 81 is typically only about three (3) microns. Thus, the singulation lines 76 and 77 may be only about three microns wide instead of a hundred microns in other methods of singulating die such as scribing or wafer sawing. It will be apparent to those skilled in the art that the step of thinning the wafer 10 may be omitted and etching of the material 81 may continue until the openings 82 and 83 extend through the wafer 10 .

도 4의 설명에서 서술된 바와 같이, 픽-앤-플레이스 도구가 다이들(71 내지 73)의 싱귤레이션을 완료하기 위하여 개구들(82 및 83) 아래에 놓인 금속 층(27)의 임의의 부분을 파괴하는데 사용될 수 있다. 당업자들은 다른 방법들이 또한 싱귤레이션 라인들(76 및 77) 내에서 금속 층(27)을 절단하는데 사용될 수 있다는 점을 인식할 것이다. 예를 들어, 금속 층(27)은 테이프(30)를 도포하기 이전에 층(27)의 하부면을 따라 스크라이빙될 수 있으므로, 층(27)은 픽-앤-플레이스가 수행될때 이 라인을 따라 절단될 것이다. 대안적으로, 싱귤레이션 라인들(76 및 77) 아래에 놓인 층(27)의 부분이 테이프(30)를 도포하기 이전에 층(27)의 배면으로부터 에칭될 수 있다. 층(27)의 에칭은 층(27)을 싱귤레이팅한다. 층(27)을 절단하는 또 다른 방법은 웨이퍼(10) 아래에 놓인 테이프(30)의 부분 상으로 에어 제트(jet of air)를 불어넣는 것이다. 에어는 테이프(30)가 상부로 스트레칭(stretching)되도록 하여, 싱귤레이션 라인들(76 및 77) 아래에 놓인 층(27)의 부분에서 층(27)을 절단시킬 것이다. 추가적으로, 도시되지 않은 제 2 캐리어 테이프가 웨이퍼(10)의 전면 상에 배치될 수 있다. 그 후, 테이프(30)가 제거될 수 있다. 테이프(30)를 제거하는 단계는 싱귤레이션 라인들(76 및 77) 아래에 놓인 층(27)의 부분에서 층(27)을 절단할 것이다. 층(27)을 절단하는 이러한 대안 방법들 중 어느 하나가 본원에 설명된 싱귤레이션 방법들 중 어느 하나에 사용될 수 있다.As described in the description of FIG. 4, the pick-and-place tool may include any portion of the metal layer 27 underlying the openings 82 and 83 to complete the singulation of the dies 71 to 73 Lt; / RTI > Those skilled in the art will appreciate that other methods may also be used to cut the metal layer 27 within the singulation lines 76 and 77. For example, the metal layer 27 may be scribed along the bottom surface of the layer 27 prior to applying the tape 30, so that the layer 27 may be scribed on the line 27 when the pick- Lt; / RTI > Alternatively, portions of the layer 27 underlying the singulation lines 76 and 77 may be etched from the backside of the layer 27 prior to application of the tape 30. Etching of the layer 27 singulates the layer 27. Another method of cutting the layer 27 is to blow a jet of air onto a portion of the tape 30 that lies beneath the wafer 10. The air will cause the tape 30 to be stretched upward and cut the layer 27 at a portion of the layer 27 lying below the singulation lines 76 and 77. In addition, a second carrier tape, not shown, may be placed on the front side of the wafer 10. Thereafter, the tape 30 can be removed. The step of removing the tape 30 will cut the layer 27 in a portion of the layer 27 underlying the singulation lines 76 and 77. Any of these alternative methods of cutting the layer 27 may be used in any of the singulation methods described herein.

도 11은 도 1 내지 도 4의 설명에서 서술되었던 반도체 다이들(12, 14, 및 16)을 싱귤레이팅하는 또 다른 대안 방법의 예시적 실시예에서의 단계를 도시한다.FIG. 11 illustrates steps in an exemplary embodiment of another alternative method of singulating semiconductor dies 12, 14, and 16 as described in the discussion of FIGS. 1-4.

이하에서 부가적으로 인식되는 바와 같이, 반도체 웨이퍼로부터 반도체 다이를 싱귤레이팅하는 하나의 방법의 예는: 제 1 두께, 상부면, 하부면을 가지는 반도체 기판, 및 상기 반도체 기판 상에 형성되고 싱귤레이션 라인들이 형성되어야 하는 반도체 웨이퍼의 부분들에 의해 서로로부터 분리되는 복수의 반도체 다이를 가지는 반도체 웨이퍼를 제공하는 단계; 상기 복수의 반도체 다이 위에 놓이는 AlN(93)과 같은 싱귤레이션 마스크 층을 형성하는 단계; 상기 싱귤레이션 마스크 층을 관통하여 개구를 형성하는 단계; 아래에 놓인 층들을 관통하여 개구를 형성하고 상기 반도체 기판의 표면의 부분을 노출시키는 단계; 및 제 1 개구를 상기 반도체 기판의 상기 표면의 상기 노출된 부분으로부터 상기 반도체 웨이퍼를 완전히 관통하여 확장시키도록 에칭하면서, 싱귤레이션 마스크 층 내의 상기 개구를 마스크로서 사용하는 단계를 포함한다.As will be additionally recognized below, an example of one method of singulating a semiconductor die from a semiconductor wafer includes: a semiconductor substrate having a first thickness, a top surface, a bottom surface, and a semiconductor substrate formed on the semiconductor substrate, Providing a semiconductor wafer having a plurality of semiconductor dies separated from one another by portions of the semiconductor wafer on which the lines should be formed; Forming a singulation mask layer, such as AlN (93), overlying the plurality of semiconductor die; Forming an opening through the singulation mask layer; Forming an opening through the underlying layers and exposing portions of the surface of the semiconductor substrate; And using the opening in the singulation mask layer as a mask while etching the first opening to extend completely through the semiconductor wafer from the exposed portion of the surface of the semiconductor substrate.

상기 방법의 또 다른 실시예는: 상기 싱귤레이션 마스크 층 내의 상기 개구를 마스크로서 사용하는 단계 이전에 상기 반도체 웨이퍼를 캐리어 테이프에 부착하는 단계; 및 상기 캐리어 테이프를 분리하고 상기 복수의 반도체 다이 중 다른 다이로부터 상기 복수의 반도체 다이 중 하나의 반도체 다이를 분리하기 위하여 픽-액-플레이스 장비를 사용하는 단계를 더 포함한다.Yet another embodiment of the method comprises: attaching the semiconductor wafer to a carrier tape prior to using the opening in the singulation mask layer as a mask; And using the pick-and-place equipment to separate the carrier tape and separate one of the plurality of semiconductor dies from another of the plurality of semiconductor dies.

상기 방법의 또 다른 실시예는 상기 싱귤레이션 마스크 층을 금속 화합물, 질화 알루미늄(AlN), 질화 티타늄(titanium nitride), 금속-실리콘 화합물, 규화 티타늄(titanium silicide), 규화 알루미늄(aluminum silicide), 폴리머(polymer), 또는 폴리이미드(polyimide) 중 하나인 층으로서 형성하는 단계를 포함한다.In another embodiment of the method, the singulation mask layer is formed of a metal compound, an aluminum nitride (AlN), a titanium nitride, a metal-silicon compound, a titanium silicide, an aluminum silicide, a polymer, or a layer that is one of polyimide.

다이들(12, 14, 및 16)은 도 2의 설명에서 서술된 바와 같이 기판(18)의 상부면 상에 유전체(23)를 형성한 이후 및 패드들(24) 및 유전체(26)를 형성한 이후의 제조 상태에서 도시되어 있다. 유전체(26)를 형성한 이후에, 유전체(26)의 부분들과 같은 아래에 놓인 층들을 에칭하지 않고 기판(18)을 관통하여 개구들을 형성하는 것을 용이하게 하기 위하여 싱귤레이션 마스크가 형성된다. 바람직한 실시예에서, 싱귤레이션 마스크는 질화 알루미늄(AlN)으로부터 형성된다. 이 바람직한 실시예에서, AlN 층(91)이 적어도 유전체(26) 상에 형성된다. 층(91)은 일반적으로 웨이퍼(10) 모두를 커버하도록 도포된다.The dies 12,14 and 16 may be formed after forming the dielectric 23 on the top surface of the substrate 18 as described in the description of Figure 2 and forming the pads 24 and dielectric 26 Lt; / RTI > is shown in the state of manufacture after the first. After forming the dielectric 26, a singulation mask is formed to facilitate forming the openings through the substrate 18 without etching underlying layers such as portions of the dielectric 26. In a preferred embodiment, the singulation mask is formed from aluminum nitride (AlN). In this preferred embodiment, an AlN layer 91 is formed at least on the dielectric 26. The layer 91 is generally applied to cover all of the wafers 10.

도 12는 웨이퍼(10)로부터 다이들(12, 14, 및 16)을 싱귤레이팅하는 방법의 바람직한 실시예의 일례의 후속 단계에서의 도 11의 웨이퍼(10)의 단면 부분을 도시한다. AlN 층(91)이 형성된 이후에, 마스크(32)가 기판(18)의 표면에 도포되고, 각각의 패드(24) 위에 놓이고 또한 싱귤레이션 라인들(13 및 15)과 같은 싱귤레이션 라인들이 형성되어야 하는 웨이퍼(10)의 부분들 위에 놓이는 유전체(26)의 부분들을 노출시키는 개구들을 형성하도록 패터닝된다.Figure 12 shows a cross-sectional portion of the wafer 10 of Figure 11 in a subsequent step of an example of a preferred embodiment of a method for singulating dies 12, 14, and 16 from a wafer 10. [ After the AlN layer 91 is formed, a mask 32 is applied to the surface of the substrate 18, and the alignment lines, such as the singulation lines 13 and 15, Are patterned to form openings that expose portions of the dielectric 26 overlying portions of the wafer 10 that are to be formed.

마스크(32)를 형성하기 위하여, 포토그래픽 마스크 재료(photographic mask material)가 웨이퍼(10)에 도포되고 나서, 자외선 광과 같은 광에 노출되어, 상기 마스크 재료의 노출된 부분의 화학적 조성을 변화시켜서, 싱귤레이션 라인들이 형성되어야 하고 또한 패드들이 형성되어야 하는 위치 위에 놓이는 개구들을 가지는 마스크(32)를 형성한다. 그 후, 마스크 재료의 노출되지 않은 부분들을 제거하기 위하여 현상액(developer solution)이 사용됨으로써, 각각의 싱귤레이션 라인들(13 및 15)이 형성되어야 하는 위치 위에 놓이는 개구들(28 및 29)을 갖는 마스크(32)를 남긴다. 수산화 암모늄계 현상액(ammonium hydroxide based developer solution)을 사용하는 것이 또한 상기 현상액이 마스크 재료의 노출되지 않은 부분들 아래에 놓이는 AlN 층(91)의 부분을 제거하도록 한다는 점이 발견되었다. 층(91)의 제거된 부분은 파선들(92)로 도시되어 있고, 층(91)의 나머지 부분들은 AlN(93)으로서 식별된다. AlN(93)은 이하에서 부가적으로 인식되는 바와 같이, 싱귤레이션 마스크의 기능을 한다.To form the mask 32, a photographic mask material is applied to the wafer 10 and then exposed to light, such as ultraviolet light, to change the chemical composition of the exposed portions of the mask material, Singulation lines should be formed and also form a mask 32 having openings that lie over the locations where the pads should be formed. Thereafter, a developer solution is used to remove unexposed portions of the mask material, thereby having openings 28 and 29 overlying the locations where the respective singulation lines 13 and 15 should be formed The mask 32 is left. It has also been found that the use of an ammonium hydroxide based developer solution also allows the developer to remove portions of the AlN layer 91 that lie beneath the unexposed portions of the mask material. The removed portion of layer 91 is shown as dashed lines 92 and the remaining portions of layer 91 are identified as AlN 93. The AlN 93 functions as a singulation mask, as will be additionally recognized below.

도 13은 웨이퍼(10)로부터 다이들(12, 14, 및 16)을 싱귤레이팅하는 방법의 대안 실시예의 일례의 또 다른 후속 단계에서의 도 12의 웨이퍼(10)의 단면 부분을 도시한다. 유전체들(26 및 23)은 마스크(32) 내의 개구 및 AlN(93)을 통하여 에칭되어, 패드들(24) 및 기판(18)의 아래에 놓인 표면을 노출시킨다. 라인들(13 및 15)과 같은 싱귤레이션 라인들이 형성되어야 하는 영역에서 AlN(93) 및 유전체들(26 및 23)를 관통하여 형성되는 개구들은 싱귤레이션 개구들(28 및 29)의 기능을 한다. 패드들(24) 위에 놓이는 유전체(26)를 관통하여 형성되는 개구들은 콘택 개구들의 기능을 한다. 에칭 프로세스는 바람직하게는, 금속들을 에칭하는 것보다 더 빨리 이산화 실리콘 또는 질화 실리콘과 같은 실리콘계 유전체들을 선택적으로 에칭하는 프로세스로 수행된다. 에칭 프로세스는 일반적으로 금속들을 에칭하는 것보다 적어도 십(10) 배 더 빨리 실리콘계 유전체들을 에칭한다. 패드들(24)의 금속은 에칭이 패드들(24)의 노출된 부분들을 제거하는 것을 방지하는 에치 스톱의 기능을 한다. 바람직한 실시예에서, 상술된 바와 같이, 불소계 이방성 반응성 이온 에치 프로세스가 사용된다.13 shows a cross-sectional portion of the wafer 10 of Fig. 12 in yet another subsequent stage of an example of an alternative embodiment of a method for singulating dies 12,14, and 16 from a wafer 10. Fig. The dielectrics 26 and 23 are etched through the openings in the mask 32 and the AlN 93 to expose the pads 24 and the underlying surface of the substrate 18. The openings formed through the AlN 93 and dielectrics 26 and 23 in the region where the singulation lines, such as lines 13 and 15, are to be formed, serve as the singulation openings 28 and 29 . The openings formed through the dielectric 26 overlying the pads 24 serve as contact openings. The etching process is preferably performed in a process that selectively etches silicon-based dielectrics such as silicon dioxide or silicon nitride faster than etching the metals. The etch process generally etches silicon-based dielectrics at least ten to ten times faster than etching the metals. The metal of the pads 24 serves as an etch stop to prevent etching from removing exposed portions of the pads 24. [ In a preferred embodiment, as described above, a fluorine-based anisotropic reactive ion etch process is used.

유전체들(26 및 23)을 관통하여 개구들을 형성한 이후에, 파선들로 도시된 바와 같이, 마스크(32)가 통상적으로 제거된다. 파선들(86)로 도시된 바와 같이, 기판(18)의 하부면으로부터 재료를 제거하고 기판(18)의 두께를 감소시키기 위하여 기판(18)이 일반적으로 박형화된다. 일반적으로, 기판(18)은 약 이십오 내지 사백(25 내지 400) 미크론보다 더 크지 않고, 바람직하게는 약 오십 내지 이백 오십(50 내지 250) 사이인 두께로 박형화된다. 이와 같은 박형화 절차들은 당업자들에게 널리 공지되어 있다. 웨이퍼(10)가 박형화된 이후에, 웨이퍼(10)의 배면이 금속 층(27)으로 금속화될 수 있다. 이 금속화 단계는 일부 실시예들에서 생략될 수 있다. 그 후, 웨이퍼(10)는 통상적으로 복수의 다이가 싱귤레이팅된 이후에 복수의 다이를 지지하는 것을 용이하게 하는 수송 테이프 또는 캐리어 테이프에 부착된다.After forming the openings through the dielectrics 26 and 23, the mask 32 is typically removed, as shown by the dashed lines. The substrate 18 is generally thinned to remove material from the bottom surface of the substrate 18 and reduce the thickness of the substrate 18, In general, the substrate 18 is thinned to a thickness no greater than about twenty-five to four hundred (25 to 400) microns, and preferably between about fifty and twenty-five (50 to 250). Such thinning procedures are well known to those skilled in the art. After the wafer 10 is thinned, the backside of the wafer 10 can be metallized with the metal layer 27. [ This metallization step may be omitted in some embodiments. The wafer 10 is then typically affixed to a carrier tape or carrier tape that facilitates supporting a plurality of dies after the plurality of dies have been singulated.

도 14는 웨이퍼(10)로부터 반도체 다이(12, 14, 및 16)를 싱귤레이팅하는 대안 방법의 예시적 실시예의 후속 단계에서의 웨이퍼(10)를 도시한다. AlN(93)이 싱귤레이션 개구들(28 및 29)를 통하여 기판(18)을 에칭하는데 있어서 마스크로서 사용된다. AlN(93)은 에칭에 의해 영향을 받는 것으로부터 유전체(26)를 보호한다. AlN(93)은 약 오십 내지 삼백(50 내지 300) 옹스트롬의 두께를 가질 수 있고, 여전히 유전체(26)를 보호할 수 있다. 바람직하게는, AlN(93)은 약 이백(200) 옹스트롬의 두께이다. 에칭 프로세스는 싱귤레이션 개구(28 및 29)를 기판(18)의 상부면으로부터 기판(18)을 완전히 관통하여 확장시킨다. 에칭 프로세스는 통상적으로 도 4의 설명에서 서술된 바와 같은 보쉬 프로세스와 같이, 유전체들 또는 금속들보다 훨씬 더 높은 레이트로 실리콘을 선택적으로 에칭하는 화학제를 사용하여 수행된다. 그 후, 다이들(12, 14, 및 16)이 도 4의 설명에서 서술된 바와 같이, 테이프(30)로부터 제거될 수 있다.Figure 14 shows a wafer 10 in a subsequent step of an exemplary embodiment of an alternative method of singulating semiconductor dies 12, 14, and 16 from a wafer 10. An AlN 93 is used as a mask in etching the substrate 18 through the singulation openings 28 and 29. The AlN 93 protects the dielectric 26 from being affected by etching. The AlN 93 may have a thickness of about fifty to three hundred (50 to 300) angstroms and still protect the dielectric 26. Preferably, the AlN 93 is about 200 angstroms thick. The etching process extends the singulation openings 28 and 29 completely through the substrate 18 from the top surface of the substrate 18. [ The etching process is typically performed using a chemical that selectively etches the silicon at a much higher rate than the dielectrics or metals, such as the Bosch process as described in the description of FIG. The dies 12, 14, and 16 may then be removed from the tape 30, as described in the description of FIG.

AlN(93)이 유전체이기 때문에, 상기 AlN은 다이들(12, 14, 및 16) 상에 남겨질 수 있다. 다른 실시예들에서, AlN(93)은 현상액을 사용하는 것에 의한 것과 같은 기판(18)을 통한 에칭 이후에 제거될 수 있지만, 이것은 추가적인 프로세싱 단계들을 필요로 한다. 층(91)의 노출된 부분들을 제거하기 위하여 포토 마스크 현상기(photo mask developer)를 사용하는 것은 프로세싱 단계들을 절약함으로써, 제조 비용들을 감소시킨다. AlN(93)을 마스크로서 사용하는 것은 에칭 동작들에 의해 영향을 받는 것으로부터 유전체(26)를 보호한다.Because AlN 93 is a dielectric, the AlN can be left on dies 12, 14, and 16. In other embodiments, the AlN 93 may be removed after etching through the substrate 18, such as by using a developer, but this requires additional processing steps. The use of a photo mask developer to remove exposed portions of layer 91 saves processing steps, thereby reducing manufacturing costs. Using the AlN 93 as a mask protects the dielectric 26 from being affected by etching operations.

당업자들은 AlN(93)이 도 15에 도시된 것과 같이, 도 5 내지 도 7의 설명에서 서술된 방법들을 포함하는 본원에 설명된 싱귤레이션 방법들 중 어느 하나에서 유전체(26)를 보호하기 위하여 싱귤레이션 마스크로서 사용될 수 있고, 도 8 내지 도 10의 설명에서 서술된 방법들에 또한 사용될 수 있다는 점을 인식할 것이다.Those skilled in the art will appreciate that AlN 93 may be used to protect the dielectric 26 in any of the singulation methods described herein, including those described in the description of FIGS. 5 through 7, It will be appreciated that it can be used as a mask and can also be used in the methods described in the description of Figures 8-10.

다른 실시예들에서, 싱귤레이션 마스크는 AlN 대신에 다른 재료들로부터 형성될 수 있다. 싱귤레이션 마스크에 대한 그러한 다른 재료들은 기판(18)의 실리콘을 에칭하는데 사용되는 프로세스에 의해 실질적으로 에칭되지 않는 재료들이다. 기판(18)을 에칭하는데 사용되는 에칭 절차가 금속들보다 더 빨리 실리콘을 에칭하기 때문에, 금속 화합물이 싱귤레이션 마스크를 형성하기 위한 재료로서 사용될 수 있다. 이와 같은 금속 화합물들의 예들은 AlN, 질화 티타늄, 산화 티타늄, 산질화 티타늄, 및 다른 금속 화합물들을 포함한다. AlN 이외의 금속 화합물을 사용하는 예에서, 금속 화합물의 층이 층(91)과 유사하게 도포될 수 있다. 그 후, 마스크(32)가 금속 화합물 내에 개구들을 형성하기 위하여 금속 화합물 층을 패터닝하는데 사용될 수 있다. 그 후, 마스크(32)가 제거될 수 있고, 기판(18)의 에칭 동안, 금속 화합물의 남아 있는 부분들이 유전체(26)와 같은 아래에 놓인 층들을 보호할 수 있다. 금속 화합물들은 싱귤레이션 이후에 다이 상에 남겨질 수 있거나 또는 테이프(30)로부터 다이를 분리하기 이전과 같이, 싱귤레이션을 완료하기 이전에 제거될 수 있다.In other embodiments, the singulation mask may be formed from other materials instead of AlN. Those other materials for the singulation mask are materials that are not substantially etched by the process used to etch the silicon of the substrate 18. [ Because the etch process used to etch the substrate 18 etches the silicon faster than the metals, a metal compound can be used as the material for forming the singulation mask. Examples of such metal compounds include AlN, titanium nitride, titanium oxide, titanium oxynitride, and other metal compounds. In the case of using a metal compound other than AlN, a layer of a metal compound can be applied similar to the layer 91. [ A mask 32 may then be used to pattern the metal compound layer to form openings in the metal compound. The mask 32 may then be removed and during etching of the substrate 18 the remaining portions of the metal compound may protect the underlying layers such as the dielectric 26. The metal compounds may be left on the die after singulation, or may be removed prior to completing the singulation, such as before separating the die from the tape 30.

금속-실리콘 화합물 내의 금속이 에치가 금속-실리콘 재료 내로 진행하는 것을 방지하기 때문에, 실리콘-금속 화합물이 또한 싱귤레이션 마스크를 형성하는데 사용될 수 있다. 실리콘-금속 화합물들의 일부 예들은 규화 티타늄 및 규화 코발트와 같은 규화 금속들을 포함한다. 실리콘-금속 화합물의 실시예에 대하여, 실리콘-금속 화합물의 층이 금속 화합물의 예와 유사하게 형성 및 패터닝될 수 있다. 그러나, 금속-실리콘 화합물은 일반적으로 컨덕터(conductor)여서, 테이프(30)로부터의 다이의 싱귤레이션을 완료하기 이전에 금속-실리콘 화합물을 제거하는 것과 같이, 다이로부터 제거되어야 할 것이다.Silicon-metal compounds can also be used to form the singulation masks because metals in the metal-silicon compound prevent the etch from migrating into the metal-silicon material. Some examples of silicon-metal compounds include silicide metals such as titanium silicide and cobalt silicide. For an embodiment of a silicon-metal compound, a layer of a silicon-metal compound may be formed and patterned similarly to the example of a metal compound. However, the metal-silicon compound is typically a conductor and will have to be removed from the die, such as removing the metal-silicon compound prior to completing the singulation of the die from the tape 30. [

또한, 폴리머가 싱귤레이션 마스크에 사용될 수 있다. 적절한 폴리머의 하나의 예는 폴리이미드이다. 다른 널리-공지되어 있는 폴리머들이 또한 사용될 수 있다. 폴리머는 금속 화합물과 유사하게 패터닝되고 나서, 다이 상에서 제거되거나 또는 남겨질 수 있다.Polymers may also be used in the singulation mask. One example of a suitable polymer is polyimide. Other widely known polymers may also be used. The polymer may be patterned, similar to a metal compound, and then removed or left on the die.

도 16은 도 1 및 도 2 내지 도 4의 설명에서 서술되었던 반도체 다이들(12, 14, 및 16)을 싱귤레이팅하는 또 다른 대안 방법의 예시적 실시예에서의 단계를 도시한다.Figure 16 illustrates the steps in an exemplary embodiment of another alternative method for singulating semiconductor dies 12, 14, and 16 that was described in the discussion of Figures 1 and 2-4.

이하에서 부가적으로 인식되는 바와 같이, 반도체 웨이퍼로부터 반도체 다이를 싱귤레이팅하는 방법의 하나의 예는: 반도체 기판을 가지며, 상기 반도체 기판 상에 형성되고 싱귤레이션 라인들이 형성되어야 하는 상기 반도체 기판의 부분들에 의해 서로로부터 분리되는 복수의 반도체 다이를 가지는 반도체 웨이퍼를 제공하는 단계; 및 상기 반도체 기판의 상기 부분들을 관통하여 싱귤레이션 라인 개구를 에칭하는 단계를 포함하며, 상기 싱귤레이션 라인 개구가 상기 반도체 기판의 제 1 면으로부터 형성됨으로써, 상기 복수의 반도체 다이 사이에 공간을 생성하고, 상기 에칭 단계가 상기 반도체 다이의 측벽들을 형성하며, 상기 반도체 다이의 상부면이 상기 반도체 다이의 하부면보다 더 큰 폭을 갖는다.One example of a method of singulating a semiconductor die from a semiconductor wafer, as will be additionally recognized below, is to: < RTI ID = 0.0 > a < / RTI > semiconductor substrate having a semiconductor substrate, Providing a semiconductor wafer having a plurality of semiconductor dies separated from each other by a plurality of semiconductor dies; And etching the singulation line openings through the portions of the semiconductor substrate, wherein the singulation line openings are formed from a first side of the semiconductor substrate, thereby creating a space between the plurality of semiconductor dice , The etching step forms the sidewalls of the semiconductor die, and the top surface of the semiconductor die has a greater width than the bottom surface of the semiconductor die.

또 다른 실시예에서, 상기 방법은 상기 싱귤레이션 개구를 에칭하는 단계를 포함하고, 상기 싱귤레이션 개구를 에칭하는 단계는 상기 다이의 상기 상부면의 폭을 상기 하부면의 폭보다 약 이 내지 십(2 내지 10) 미크론 더 크도록 형성하는 단계를 포함한다.In yet another embodiment, the method includes etching the singulation aperture, wherein etching the singulation aperture comprises: providing a width of the upper surface of the die in a range of about a few tens of 2 to 10) microns larger.

또 다른 대안 방법은 상기 싱귤레이션 라인 개구를 상기 반도체 기판 내로 제 1 거리로 에칭하기 위하여 이방성 에치를 사용하는 단계; 및 상기 싱귤레이션 라인 개구의 폭을 또한 증가시키면서, 상기 싱귤레이션 라인 개구를 제 2 거리로 확장시키기 위하여 등방성 에치를 사용하여 상기 싱귤레이션 라인 개구를 에칭하는 단계를 포함한다.Another alternative method includes using an anisotropic etch to etch the singulation line openings into a first distance into the semiconductor substrate; And etching the singulation line opening using an isotropic etch to extend the singulation line opening to a second distance while also increasing the width of the singulation line opening.

이하에 부가적으로 인식되는 바와 같이, 상기 싱귤레이션 방법은 다이들(12, 14, 및 16)에 대한 각을 이룬 측벽들을 형성하여, 다이의 측방향 폭이 다이의 하부에서보다 다이의 상부에서 더 크다. 웨이퍼(10) 및 다이들(12, 14, 및 16)은 도 3의 설명에서 서술된 바와 같이 기판(18) 및 패드들(24)을 노출시키기 위해 유전체들(26 및 23)을 관통하여 에칭한 이후의 제조 상태에서 도시되어 있다. 선택적으로, AlN(93)이 도 11 내지 도 14의 설명에서 서술된 바와 같이 후속 동작들에 대한 마스크로서 사용될 수 있다.As is additionally recognized below, the singulation method forms angled sidewalls for the dies 12, 14, and 16 such that the lateral width of the die is greater at the top of the die than at the bottom of the die It is bigger. The wafer 10 and the dies 12,14 and 16 are etched through the dielectrics 26 and 23 to expose the substrate 18 and pads 24 as described in the description of FIG. Lt; / RTI > is shown in the state of manufacture after the first. Alternatively, the AlN 93 may be used as a mask for subsequent operations as described in the description of Figures 11-14.

기판(8)의 표면을 노출시킨 이후에, 기판(18) 및 임의의 노출된 패드들(24)이 도 7의 설명에서 서술된 바와 같이, 유전체들 또는 금속들보다 훨씬 더 높은 레이트로, 일반적으로 적어도 오십(50) 및 바람직하게는 적어도 백(100) 배 더 빨리 실리콘을 선택적으로 에칭하는 등방성 에칭 프로세스로 에칭된다. 에치 프로세스는 기판(18) 내에 개구(100)를 형성하도록 깊이를 또한 확장시키면서, 개구들(28 및 28)을 상기 개구들의 폭을 측방향으로 확장시키는 깊이로 기판(18) 내로 확장시키도록 수행된다. 상기 프로세스가 다이들(12, 14, 및 16)에 대한 각을 이룬 측벽들을 형성하는데 사용되기 때문에, 개구들의 깊이가 기판(18) 내로 확장됨에 따라 개구들(28 및 29)의 폭을 연속적으로 증가시키기 위하여 다수의 등방성 에치들이 사용될 것이다. 등방성 에치는 개구들(100)의 폭이 유전체들(23 및 26) 내의 개구들(28 및 29)의 폭보다 더 커진 이후에 종료된다. 그 후, 탄소계 폴리머(101)가 개구(100) 내에서 노출되는 기판(18)의 부분에 도포된다.After exposing the surface of the substrate 8, the substrate 18 and any exposed pads 24 are exposed at a much higher rate than the dielectrics or metals, as described in the description of FIG. 7, With an isotropic etch process that selectively etches silicon at least fifty (50) and preferably at least one hundred (100) times as fast. The etch process is performed to extend the openings 28 and 28 into the substrate 18 to a depth that laterally extends the width of the openings while also extending the depth to form the openings 100 in the substrate 18. [ do. Because the process is used to form the angled sidewalls for the dies 12,14 and 16 the width of the openings 28 and 29 can be changed continuously as the depth of the openings expands into the substrate 18. [ A number of isotropic teeth will be used. The width of the isotropic apertures 100 is greater than the width of the openings 28 and 29 in the dielectrics 23 and 26. [ Thereafter, a carbon-based polymer 101 is applied to a portion of the substrate 18 exposed in the opening 100.

도 17은 도 16의 설명에서 서술된 단계의 후속 단계를 도시한다. 개구(100)의 측벽들 상의 폴리머(101)의 부분을 남기면서, 개구(100)의 하부 상에 있는 폴리머(101)의 부분을 제거하기 위하여 이방성 에치가 사용된다.FIG. 17 shows the subsequent steps of the steps described in the description of FIG. Anisotropic etch is used to remove portions of the polymer 101 on the lower portion of the opening 100 while leaving a portion of the polymer 101 on the sidewalls of the opening 100.

도 18은 도 17의 설명에서 서술된 단계의 후속 단계를 도시한다. 개구들(100) 내의 기판(18)의 노출된 표면, 및 임의의 노출된 패드들(24)이 도 16의 설명에서 서술된 것과 유사한 등방성 에칭 프로세스로 에칭된다. 등방성 에칭은 다시, 기판(18) 내에 개구들(104)을 형성하도록 깊이를 또한 확장시키면서, 싱귤레이션 개구들(28 및 29)의 폭을 측방향으로 확장시킨다. 등방성 에치는 통상적으로 깊이가 증가함에 따라 개구들의 폭을 더 넓게 하기 위하여 개구들(104)의 폭이 개구들(100)의 폭보다 더 커진 이후에 종료된다. 개구(100)의 측벽들 상에 남겨진 폴리머(101)의 부분은 개구들(104)의 에칭이 개구들(100)의 폭에 영향을 주는 것을 방지하기 위하여 개구(100)의 측벽들을 보호한다. 그 후, 폴리머(101) 모두가 개구들(104)의 에칭 동안 개구(100)의 측벽들로부터 제거된다.Fig. 18 shows the subsequent steps of the steps described in the description of Fig. The exposed surface of the substrate 18 in the openings 100 and any exposed pads 24 are etched in an isotropic etch process similar to that described in the description of FIG. The isotropic etch again laterally expands the width of the singulation openings 28 and 29, while also extending the depth to form the openings 104 in the substrate 18. The isotropic etch typically ends after the width of the openings 104 is greater than the width of the openings 100 to widen the width of the openings as the depth increases. The portion of the polymer 101 left on the sidewalls of the opening 100 protects the sidewalls of the opening 100 to prevent the etching of the openings 104 from affecting the width of the openings 100. Thereafter, all of the polymer 101 is removed from the sidewalls of the opening 100 during etching of the openings 104.

그 후, 폴리머(101)와 유사한 탄소계 폴리머(105)가 개구(104) 내에서 노출되는 기판(18)의 부분으로 도포된다. 폴리머(105)의 형성 동안, 동작은 통상적으로 개구(100)의 측벽들 상에 다시 폴리머(101)를 형성한다.Thereafter, a carbon-based polymer 105 similar to the polymer 101 is applied to the portion of the substrate 18 exposed in the opening 104. During formation of the polymer 105, operation typically forms the polymer 101 on the sidewalls of the opening 100 again.

도 19는 도 18의 설명에서 서술된 단계의 또 다른 후속 단계를 도시한다. 개구(104)의 측벽들 상에 폴리머(105)의 부분을 남기면서, 개구(104)의 하부 상에 있는 폴리머(105)의 부분을 제거하기 위하여 또 다른 이방성 에치가 사용된다. 이 에치 단계는 도 17의 설명에서 서술된 단계와 유사하다.FIG. 19 shows another subsequent step of the steps described in the description of FIG. Another anisotropic etch is used to remove the portion of the polymer 105 on the lower portion of the opening 104 while leaving a portion of the polymer 105 on the sidewalls of the opening 104. This etch step is similar to the step described in the description of Fig.

도 20은 상기 시퀀스가 싱귤레이션 라인들(13 및 15)이 기판(18)을 완전히 관통할 때까지 반복될 수 있다는 것을 도시한다. (개구들(108 및 112)과 같은) 개구을 형성하고, 상기 개구의 측벽들 상에 폴리머를 형성하고, (폴리머들(109 및 113)과 같은) 폴리머의 부분을 측벽들 상에 남기면서, 개구들의 하부로부터 폴리머를 제거하는 이방성 에칭의 시퀀스는 개구들(28 및 29)이 기판(18)을 관통하여 확장되어, 기판(18)을 완전히 관통하여 싱귤레이션 라인들(13 및 15)을 형성할 때까지 반복될 수 있다. 개구들(112)을 형성하기 위한 에치와 같은 최종적인 등방성 에치 이후에, 일반적으로 후속 동작들 동안 기판(18)을 보호하는 것이 필요하지 않을 것이기 때문에, 폴리머는 통상적으로 증착되지 않는다. 폴리머들(101, 105, 및 109)이 각각의 개구들(100, 104, 및 108)의 측벽들 상에 도시되어 있을지라도, 당업자들은 모든 동작들의 완료 이후에, 개구(112)를 형성하는데 사용되는 최종적인 등방성 에치 단계가 대응하는 개구들의 측벽들로부터 이러한 폴리머들을 실질적으로 제거한다는 점을 인식할 것이다. 따라서, 이러한 폴리머들은 설명의 명확화를 위하여 도시되어 있다.Figure 20 shows that the sequence can be repeated until the singulation lines 13 and 15 have completely penetrated the substrate 18. [ (Such as openings 108 and 112), forming a polymer on the sidewalls of the opening, leaving a portion of the polymer (such as polymers 109 and 113) on the sidewalls, The sequence of anisotropic etching to remove the polymer from the bottom of the openings 28 and 29 extends through the substrate 18 and completely penetrates the substrate 18 to form the singulation lines 13 and 15 Can be repeated until. After the final isotropic etch, such as an etch to form the openings 112, the polymer is typically not deposited, since it would typically not be necessary to protect the substrate 18 during subsequent operations. Although polymers 101, 105, and 109 are shown on the sidewalls of each of the openings 100, 104, and 108, those skilled in the art, after completion of all operations, Lt; RTI ID = 0.0 > etch < / RTI > step substantially removes these polymers from the sidewalls of the corresponding openings. Thus, these polymers are shown for clarity of illustration.

도 20으로부터 인식될 수 있는 바와 같이, 다이들(12, 14, 및 16)의 측벽들은 상부로부터 하부로 내부로 경사져서, 각각의 다이의 하부에서의 다이의 폭이 다이의 상부에서의 다이의 폭보다 더 적다. 따라서, 기판(18)의 상부에서의 다이의 외부 에지는 기판(18)의 상부에서의 다이의 외부 에지를 지나서 거리(116)만큼 확장되므로, 다이(13)의 상부면이 거리(116)만큼 하부면(17) 위에 걸린다. 하나의 실시예에서, 각을 이룬 측벽들은 다이의 픽-앤-플레이스 동작 동안 다이 손상을 최소화하는 것을 용이하게 한다. 이와 같은 실시예에 대하여, 거리(116)가 다이(12, 14, 및 16)의 두께의 대략적으로 오 내지 십 퍼센트(5 내지 10%)이어야 한다고 여겨진다. 하나의 예시적 실시예에서, 거리(116)는 대략적으로 일 내지 이십(1 내지 20) 미크론이므로, 기판(18)의 하부에서의 다이(12)의 하부의 폭은 표면(11)에서의 다이(12)의 상부에서의 폭보다 대략적으로 이 내지 사십(2 내지 40) 미크론 더 적을 수 있다. 또 다른 실시예에서, 측벽이 상기 측벽 및 기판(18)의 상부면에 수직인 라인과 같은 수직 라인 사이에서 대략적으로 십오도 내지 사십도(15°내지 40°)의 각도(118)를 형성해야 한다고 여겨진다. 그러므로, 각각의 에치가 개구(29)의 폭을 확장시키는 양은 각도(118)를 형성하는데 충분해야 한다. 일반적으로, 싱귤레이션 라인들(15-16)의 상부는 싱귤레이션 라인들의 하부보다 약 이 내지 사십(2 내지 40) 미크론 더 좁다. 당업자들은 다수의 등방성 에치 동작들이 각각의 다이(12, 14, 및 16)의 거친 측벽을 형성하여, 측벽이 자신을 따라 들쭉날쭉한 에지(jagged edge)들을 갖는다는 점을 인식할 것이다. 그러나, 들쭉날쭉한 에지들의 정도는 설명의 명확화를 위하여 도 16 내지 도 21의 도면들에서 과장된다. 이러한 측벽들은 일반적으로 실질적으로 평활한 측벽들로 간주된다.As can be appreciated from Figure 20, the sidewalls of the dies 12, 14, and 16 are tapered inwardly from top to bottom such that the width of the die at the bottom of each die is greater than the width of the die at the top of the die Less than width. The outer edge of the die at the top of the substrate 18 is extended by a distance 116 beyond the outer edge of the die at the top of the substrate 18 so that the top surface of the die 13 is spaced apart by the distance 116 Is hooked on the lower surface (17). In one embodiment, the angled sidewalls facilitate minimizing die damage during the pick-and-place operation of the die. For such an embodiment, it is believed that the distance 116 should be approximately five to ten percent (5 to 10%) of the thickness of the die 12, 14, and 16. The width of the lower portion of the die 12 at the bottom of the substrate 18 is less than the width of the die 11 at the surface 11 since the distance 116 is approximately one to twenty (1-20) microns, in one exemplary embodiment. (2 to 40) microns less than the width at the top of the substrate 12. In another embodiment, the sidewalls need to form an angle 118 of approximately 15 to 40 degrees (15 to 40 degrees) between vertical lines, such as the line perpendicular to the sidewall and the top surface of the substrate 18 . Therefore, the amount by which each etch expands the width of the opening 29 should be sufficient to form the angle 118. In general, the top of the singulation lines 15-16 is about two to forty (2 to 40) microns narrower than the bottom of the singulation lines. Those skilled in the art will appreciate that a number of isotropic etch operations form the coarse sidewalls of each die 12, 14, and 16 such that the sidewalls have jagged edges along them. However, the degree of jagged edges is exaggerated in the Figures of FIGS. 16-21 for clarity of illustration. These sidewalls are generally considered to be substantially smooth sidewalls.

도 21은 픽-앤-플레이스 동작 동안의 내부로 경사진 측벽들을 갖는 다이들(12, 14, 및 16)을 도시한다. 인식될 수 있는 바와 같이, 다이들(12, 14, 및 16)의 경사진 측벽들은 플런저(plunger)가 다이(12)가 다이들(14 또는 16)과 같은 다른 다이들과 충돌됨이 없이 다이(12)와 같은 다이들 중 하나를 상부로 이동시키도록 한다. 이것은 픽-앤-플레이스 동작 동안 다이들(12, 14, 및 16)에 대한 칩핑(chipping) 및 다른 손상을 감소시키는 것을 돕는다.Figure 21 shows dies 12,14, and 16 having sloped side walls during pick-and-place operation. As can be appreciated the inclined sidewalls of the dies 12,14 and 16 allow the plunger to be positioned on the die 12 without collision with other dies such as the dies 14 or 16, To move one of the dies, such as die 12, upward. This helps to reduce chipping and other damage to the dies 12, 14, and 16 during the pick-and-place operation.

도 22는 경사진 측벽들을 갖지 않는 다른 다이들 및 이들이 픽 동작 동안 어떻게 서로 충돌할 수 있는지를 도시한다. 이 구성은 픽-앤-플레이스 동작 동안, 다이의 에지와 같은 다이에 대한 가능한 손상을 초래할 수 있다.Figure 22 shows how other dies without sloped sidewalls and how they can collide with each other during a pick operation. This configuration may result in possible damage to the die, such as the edge of the die, during the pick-and-place operation.

도 23은 반도체 다이들(12, 14, 및 16)을 싱귤레이팅하고 도 16 내지 도 22의 설명에서 서술되었던 각을 이루거나 경사진 측벽들을 형성하는 또 다른 대안 방법의 실시예의 예에서의 단계를 도시한다. 당업자들은 도 1 내지 도 15의 설명에서 서술된 것들과 같은 다른 다이 싱귤레이션 기술들이 또한 웨이퍼로부터 다이를 싱귤레이팅하고 다이 상에 각을 이루거나 경사진 측벽들을 형성하는데 사용될 수 있다는 점을 인식할 것이다. 예를 들어, 도 14의 설명에서 서술된 이방성 에치가 기판(18)의 상부면으로부터 기판(18) 내로 제 1 거리(120)로 개구들(28 및 29)을 형성하는데 사용될 수 있다. 따라서, 측벽들의 이 제 1 거리는 실질적으로 직선 측벽들을 갖는다. 그 후, 도 16 내지 도 22의 설명에서 서술된 싱귤레이션 방법이 싱귤레이션을 완료하는데 사용될 수 있다. 제 1 거리(120)의 깊이는 다이의 두께에 따르지만, 전형적으로 다이의 두께의 약 오십 퍼센트(50%)까지일 것이다. 그 후, (개구들(108 및 112)과 같은) 개구을 형성하고, 상기 개구의 측벽들 상에 폴리머를 형성하고, (폴리머들(109 및 113)과 같은) 폴리머의 부분을 측벽들 상에 남기면서, 개구들의 하부로부터 폴리머를 제거하는 이방성 에칭의 복수의 시퀀스들은 개구들(28 및 29)이 기판(18)을 관통하여 확장되어, 기판(18)을 완전히 관통하여 싱귤레이션 라인들(13 및 15)을 형성할 때까지 반복될 수 있다.Figure 23 shows the steps in an example embodiment of another alternative method of singulating semiconductor dies 12,14 and 16 and forming angled or sloping side walls as described in the description of Figures 16-22. Respectively. Those skilled in the art will appreciate that other die singulation techniques, such as those described in the discussion of FIGS. 1-15, may also be used to singulate the die from the wafer and to form angled or inclined sidewalls on the die . For example, the anisotropic etch described in the description of FIG. 14 may be used to form the openings 28 and 29 from the top surface of the substrate 18 into the substrate 18 at a first distance 120. Thus, this first distance of the sidewalls has substantially straight sidewalls. The singulation method described in the description of Figs. 16-22 can then be used to complete the singulation. The depth of the first distance 120 depends on the thickness of the die, but will typically be up to about fifty percent (50%) of the thickness of the die. Thereafter, an opening is formed (such as openings 108 and 112), a polymer is formed on the sidewalls of the opening, and a portion of the polymer (such as polymers 109 and 113) A plurality of sequences of anisotropic etches to remove polymer from the bottoms of the openings are formed by the openings 28 and 29 extending through the substrate 18 to completely penetrate the substrate 18 to form the singulation lines 13 and & 15). ≪ / RTI >

반도체 다이들(12, 14, 및 16)을 싱귤레이팅하는 또 다른 대안 방법의 실시예의 예는 기판(18)의 상부면으로부터 기판(18) 내로 제 1 거리(120)로 개구들(28 및 29)을 형성하기 위하여 도 14의 설명에서 서술된 것과 같은 이방성 에치를 사용하는 단계를 포함한다. 따라서, 측벽들의 이 제 1 거리는 실질적으로 직선 측벽들을 갖는다. 그 후, 도 16 내지 도 22의 설명에서 서술된 바와 같은 등방성 에치가 싱귤레이션 라인들(13 및 15)의 깊이를 거리(120)보다 더 크지만, 기판(18)을 완전히 관통하지 않는 제 2 거리로 확장시키는데 사용될 수 있다. 등방성 에칭은 깊이를 확장시키면서, 라인들(13 및 15)의 폭을 또한 증가시킨다. 상기 폭은 유전체(26)에서의 개구(28 및 29)의 폭보다 더 넓게 확장된다. 상기 방법의 최종적인 부분은 싱귤레이션 라인들의 하부 부근에 실질적으로 직선 측벽들을 제공하기 위하여 이방성 에치를 사용할 수 있다. 그 후, 싱귤레이션 라인들은 중앙에서 더 넓을 것이다. 그 후, 다이가 상부보다 하부에서 더 넓거나 또는 상부보다 중앙에서 더 넓도록 에지 경사 또는 다이(12, 14, 및 16)의 측벽들 상의 다이 몰드 록(die mold lock)과 같이 개선된 기능을 제공하기 위하여 이 조합 또는 다른 조합들이 사용될 수 있다.Another example of an embodiment of an alternative method of singulating semiconductor dies 12,14 and 16 includes opening 28 and 29 from a top surface of substrate 18 into substrate 18 at a first distance 120, Lt; RTI ID = 0.0 > 14 < / RTI > Thus, this first distance of the sidewalls has substantially straight sidewalls. The isotropic etchant as described in the description of Figures 16 to 22 is then used to etch the first and second portions of the second Can be used to extend the distance. The isotropic etch also increases the width of the lines 13 and 15, while also extending the depth. The width is wider than the width of the openings 28 and 29 in the dielectric 26. The final portion of the method may use anisotropic etch to provide substantially straight sidewalls near the bottoms of the singulation lines. Then, the singulation lines will be wider at the center. Thereafter, an improved function, such as an edge tilt or a die mold lock on the sidewalls of the die 12, 14, and 16, may be used such that the die is wider at the bottom than at the top, This combination or other combinations may be used to provide.

도 24 내지 도 28은 웨이퍼(10)로부터 반도체 다이를 싱귤레이팅하는 또 다른 대안 실시예의 일례의 다양한 단계들에서의 웨이퍼(10)의 단면도들을 도시한다. 도 24 내지 도 28에 도시된 웨이퍼(10)의 단면도는 도 1의 단면 라인(24-24)을 따라 취해진다. 도 24 내지 도 28에 도시된 대안 방법의 예시적 실시예는 또한 두께를 감소시키거나 웨이퍼(10)를 박형화하는 대안 방법을 포함한다. 웨이퍼(10)는 도 1 내지 도 4, 도 8 내지 도 20, 및 도 23의 설명에서 서술되었던 반도체 다이들(12, 14, 및 16) 뿐만 아니라, 싱귤레이션 라인들(13 및 15)을 포함한다. 도면들 및 설명의 명확화를 위하여 도 24 내지 도 28에 도시되어 있지 않을지라도, 웨이퍼(10)는 또한 도 5 내지 도 7의 설명에서 상술되었던 싱귤레이션 라인들(43 및 54) 및 싱귤레이션 개구들(47 및 48)과 함께 다이들(42, 44, 및 46)을 포함할 수 있다. 도 24에 도시된 웨이퍼(10)의 단면 부분이 도 2 내지 도 23에 도시된 것보다 웨이퍼의 더 큰 부분이기 때문에, 도 24는 도 2 내지 도 23 중 어느 하나의 설명에서 서술된 싱귤레이션 라인들(13 및 15 또는 43 및 45) 중 어느 하나와 유사한 싱귤레이션 라인들(11, 17, 137, 및 138)을 포함하는 추가적인 싱귤레이션 라인들과 함께 웨이퍼(10)의 상부면 상에 형성되는 추가적인 다이를 도시한다. 추가적으로, 도 24는 기판(18)이 기판(18)의 상부면 및 기판(18)의 하부면 또는 배면 사이에 두께(66)를 갖는다는 것을 도시한다. 다이들(12, 14, 16, 144, 및 145)과 같은 반도체 다이가 기판(18)의 상부면 상에 형성된 이후에, 웨이퍼(10)는 기판(18)의 두께(66)를 감소시키기 위하여 박형화된다. 두께(66)를 감소시키는 하나의 실시예의 예가 도 25 내지 도 28에 도시되어 있다.24-28 illustrate cross-sectional views of the wafer 10 at various stages of an example of another alternative embodiment of singulating a semiconductor die from a wafer 10. A cross-sectional view of the wafer 10 shown in FIGS. 24-28 is taken along section line 24-24 of FIG. The exemplary embodiment of the alternative method shown in Figs. 24-28 also includes an alternative method of reducing the thickness or thinning the wafer 10. The wafer 10 includes the semiconductor dies 12,14 and 16 as well as the singulation lines 13 and 15 which have been described in the description of Figures 1 to 4, 8 to 20 and 23 do. Although not shown in Figures 24-28 for clarity of illustration and description, the wafer 10 also includes the singulation lines 43 and 54 and the singulation apertures < RTI ID = 0.0 > 44, and 46 with the first and second ends 47 and 48, respectively. Since the cross-sectional portion of the wafer 10 shown in Fig. 24 is a larger portion of the wafer than that shown in Figs. 2 to 23, Fig. 24 is a cross- (Not shown) formed on the top surface of the wafer 10 with additional singulation lines including singulation lines 11, 17, 137, and 138 similar to either one of 13 and 15 or 43 and 45 Additional die is shown. 24 illustrates that the substrate 18 has a thickness 66 between the top surface of the substrate 18 and the bottom or back surface of the substrate 18. [ After the semiconductor die, such as the dies 12, 14, 16, 144 and 145, is formed on the upper surface of the substrate 18, the wafer 10 is moved to reduce the thickness 66 of the substrate 18 Thinned. An example of one embodiment for reducing thickness 66 is shown in Figs. 25-28.

도 25를 참조하면, 반도체 다이가 기판(18)의 상부면 상에 형성된 이후에, 웨이퍼(10)는 기판(18)의 상부면이 장치(34)를 향하도록 인버팅(inverting)되어 지지 테이프 또는 지지 장치(34)에 부착될 수 있다. 장치(34)는 백그라인드 테이프(backgrind tape) 또는 다른 장치와 같이, 박형화 동작 동안 웨이퍼에 대한 지지를 제공하는데 사용될 수 있는 임의의 널리 공지된 장치일 수 있다.25, after the semiconductor die is formed on the upper surface of the substrate 18, the wafer 10 is inverted such that the upper surface of the substrate 18 faces the device 34, Or may be attached to the support device 34. Device 34 can be any well known device that can be used to provide support for a wafer during a thinning operation, such as a backgrind tape or other device.

도 26은 웨이퍼(10)로부터 다이를 싱귤레이팅하는 방법의 예시적 실시예의 후속 단게에서의 웨이퍼(10)를 도시한다. 전형적으로, 웨이퍼(10)의 두께를 두께(66)로부터 두께(66)보다 더 적은 두께(67)로 감소시키기 위하여 웨이퍼(10)의 전체 하부면이 박형화된다. 백그라인딩(backgrinding), 화학적 기계적 연마(Chemical Mechanical Poliching: CMP) 또는 당업자들에게 널리-공지되어 있는 다른 기술들과 같은 다양한 널리-공지된 방법들이 웨이퍼(10)의 두께를 두께(67)로 감소시키기 위해 사용될 수 있다. 일부 실시예들에서, 상기 방법에서의 이 단계가 생략될 수 있다.Figure 26 shows a wafer 10 in a subsequent stage of an exemplary embodiment of a method for singulating die from a wafer 10. The entire lower surface of the wafer 10 is thinned to reduce the thickness of the wafer 10 from the thickness 66 to a thickness 67 less than the thickness 66. [ Various widely known methods, such as backgrinding, chemical mechanical polishing (CMP), or other techniques widely known to those skilled in the art reduce the thickness of the wafer 10 to a thickness 67 . In some embodiments, this step in the method may be omitted.

그 후, 웨이퍼(10)의 하부면의 내부 부분(125)이 두께(66 및 67)보다 더 적은 두께(68)로 더 감소된다. 내부 부분(125)의 형성 동안 제거되는 웨이퍼(10)의 하부면의 부분이 파선들로 도시되어 있다. 내부 부분(125)의 두께는 전형적으로 두께를 감소시키기 위하여 내부 부분(125)을 그라인딩 동작 또는 다른 널리 공지된 기술을 겪게 함으로써 감소된다. 부분(125)의 두께를 감소시키는 것은 웨이퍼(10)의 외주에 병치되는 외부 림(outer rim)(127)을 남긴다. 따라서, 외부 림(127)은 전형적으로 두께(67)를 유지한다. 외부 림(127)의 폭은 웨이퍼(10)의 나머지를 핸들링(handling) 또는 수송하기 위한 지원을 제공하는데 충분하다. 내부 부분(125)의 두께를 감소시키는 도구들 및 방법들은 당업자들에게 널리 공지되어 있다. 이와 같은 도구들 및 방법들의 하나의 예가 2006년 11월 2일자로 공개되었고, 발명자가 Kazuma Sekiya인 미국 특허 출원 번호 제2006/0244096호에 포함되어 있다.The inner portion 125 of the lower surface of the wafer 10 is then further reduced to a thickness 68 less than the thicknesses 66 and 67. The portion of the lower surface of the wafer 10 that is removed during formation of the inner portion 125 is shown in dashed lines. The thickness of the inner portion 125 is typically reduced by subjecting the inner portion 125 to grinding operations or other well known techniques to reduce thickness. Reducing the thickness of the portion 125 leaves an outer rim 127 juxtaposed to the outer periphery of the wafer 10. Thus, the outer rim 127 typically maintains a thickness 67. [ The width of the outer rim 127 is sufficient to provide support for handling or transporting the remainder of the wafer 10. Tools and methods for reducing the thickness of the inner portion 125 are well known to those skilled in the art. One example of such a tool and method is disclosed in U.S. Patent Application No. 2006/0244096, Kazuma Sekiya, published November 2, 2006.

도 27은 웨이퍼(10)로부터 다이를 싱귤레이팅하는 또 다른 후속 단계를 도시한다. 지지 장치(34)가 웨이퍼(10)로부터 제거될 수 있고, 보호 층(135)이 웨이퍼(10)의 하부면, 그리고 특히 내부 부분(125)에서의 웨이퍼(10)의 하부면에 도포된다. 장치(34)는 자외선 광에 노출될 때 릴리스하는 것과 같은 자외선 릴리스 메커니즘(ultraviolet release mechanism), 또는 또 다른 널리-공지된 릴리스 메커니즘을 가질 수 있다. 장치(34)는 층(135)을 형성하는 방법들이 통상적으로 장치(34)를 손상시킬 수 있는 높은 온도를 포함하기 때문에 제거된다. 이와 같은 높은 온도들을 포함하지 않는 실시예들에 대하여, 또는 상기 온도들에 견딜 수 있는 지지 장치들에 대하여, 장치(34)가 유지될 수 있다. 그러나, 장치(34)는 통상적으로 후속 동작들 이전에 제거되어야 한다. 층(135)의 부분이 또한 보호 층 부분(133)으로 도시된 바와 같이, 외부 림(127)의 하부면에 도포될 수 있다. 그러나, 일부 실시예들에서, 외부 림(127)은 부분(133)을 형성하는 것을 방지하기 위하여 마스킹될 수 있다. 예를 들어, 부분(133)을 형성하는 것을 방지하기 위하여 층(135)을 형성하는 동작 동안 쉐도우 마스크(shadow mask)가 사용될 수 있거나, 또는 포토 마스크가 림(127)을 커버하도록 도포될 수 있다.FIG. 27 shows another subsequent step of singulating die from the wafer 10. The support device 34 can be removed from the wafer 10 and a protective layer 135 is applied to the lower surface of the wafer 10 and especially to the lower surface of the wafer 10 in the interior portion 125. The device 34 may have an ultraviolet release mechanism, such as that released when exposed to ultraviolet light, or another widely known release mechanism. The device 34 is removed because the methods of forming the layer 135 typically involve high temperatures that can damage the device 34. For embodiments that do not include such high temperatures, or for support devices that can withstand these temperatures, the device 34 may be retained. However, device 34 typically must be removed prior to subsequent operations. A portion of the layer 135 may also be applied to the lower surface of the outer rim 127, as shown by the protective layer portion 133. [ However, in some embodiments, the outer rim 127 may be masked to prevent forming the portion 133. For example, a shadow mask may be used during operation to form the layer 135 to prevent forming the portion 133, or a photomask may be applied to cover the rim 127 .

도 28은 또 다른 후속 제조 단계에서의 웨이퍼(10)를 도시한다. 층(135)을 형성한 이후에, 웨이퍼(10)는 통상적으로 다시 업라이트 상태(upright state)로 인버팅된다. 캐리어 테이프(30)가 웨이퍼(10)의 하부면에 도포된다. 일부 실시예들에서, 테이프(30)에 대해 지지를 제공하기 위하여 테이프(30)가 필름 프레임(film frame)(62)에 부착된다. 이와 같은 필름 프레임들 및 캐리어 테이프들은 당업자들에게 널리 공지되어 있다. 테이프(30)는 웨이퍼(10)를 핸들링 및 수송하기 위한 비히클(vehicle)로서 도포된다. 웨이퍼(10)를 핸들링하기 위한 상이한 캐리어를 사용하는 실시예들에 대하여, 상이한 캐리어가 사용될 수 있고, 테이프(30)가 생략될 수 있다. 전형적으로, 웨이퍼(10)를 유지하고 테이프(30)가 웨이퍼(10)의 하부면의 형상을 따르도록 하여, 테이프(30)가 웨이퍼(10)에 대한 어떤 지지를 제공하도록 하기 위하여 진공 척(vacuum chuck)이 사용된다. 그 후, 도 2 내지 도 23의 설명에서 상술된 바와 같이, 층(27) 상에서 종료하는 개구들(28 및 29) 또는 개구들(47 및 48)과 유사한 방식으로 층(135) 상에서 종료하도록 싱귤레이션 개구들(28, 29, 140, 및 141)이 웨이퍼(10)의 상부면으로부터 기판(18) 내로 형성된다. 당업자들은 다른 싱귤레이션 개구들이 통상적으로 웨이퍼(10)의 다른 다이를 싱귤레이팅하기 위하여 개구들(28 및 29)과 동시에 형성된다는 점을 인식할 것이다. 층(135)은 싱귤레이션 개구들(28, 29, 140, 및 141)을 형성하는데 사용되는 건식 에치 방법(dry etch method)들에 의해 에칭되지 않는 재료로부터 형성된다. 하나의 실시예에서, 보호 층(135)은 금속 또는 금속 화합물이고, 건식 에치 프로세스는 금속들보다 훨씬 더 높은 레이트로 실리콘을 에칭하는 프로세스이도록 선택된다. 이와 같은 프로세스들은 상술되었다. 다른 실시예들에서, 보호 층(135)은 상술된 바와 같은 질화 알루미늄 또는 상술된 바와 같은 실리콘-금속 화합물일 수 있다. 층(135)은 또한 상술된 금속 층(27)의 재료와 동일한 재료일 수 있다. 싱귤레이션 개구들(140 및 141)은 또한 싱귤레이션 개구들(28 및 29)과 함께 형성될 수 있다. 싱귤레이션 개구들(140 및 141)은 싱귤레이션 라인들(137 및 138)을 형성하기 위하여 개구들(28 및 29)(또는 개구들(47 및 48))과 동일한 방식으로 기판(18)을 관통하여 형성된다. 싱귤레이션 라인들(137 및 138)은 웨이퍼(10)의 나머지로부터 외부 림(127)을 분리하기 위하여 형성된다. 결과적으로, 싱귤레이션 라인들(137 및 138)은 통상적으로 내부 부분(125) 위에 놓이고 외부 림(127) 및 반도체 다이(144 및 145)와 같이, 림(127)에 인접하게 위치되는 임의의 반도체 다이 사이에 위치되도록 형성된다. 예를 들어, 싱귤레이션 라인들(137 및 138)은 외부 림(127)의 내주가 형성되는 웨이퍼(10)의 부분 바로 안쪽과 같은 내부 부분(125)의 외부 에지 주위에 확장되는 하나의(1) 연속적인 싱귤레이션 라인일 수 있다.Figure 28 shows the wafer 10 in yet another subsequent manufacturing step. After forming the layer 135, the wafer 10 is typically inverted into the upright state again. The carrier tape 30 is applied to the lower surface of the wafer 10. [ In some embodiments, a tape 30 is attached to a film frame 62 to provide support for the tape 30. Such film frames and carrier tapes are well known to those skilled in the art. The tape 30 is applied as a vehicle for handling and transporting the wafer 10. For embodiments that use different carriers to handle the wafer 10, different carriers may be used and the tape 30 may be omitted. Typically, a vacuum chuck (not shown) is provided to hold the wafer 10 and allow the tape 30 to conform to the shape of the lower surface of the wafer 10 so that the tape 30 provides some support for the wafer 10. [ vacuum chuck is used. It is then possible to terminate on layer 135 in a manner similar to openings 28 and 29 or openings 47 and 48 terminating on layer 27 as described in the description of Figures 2 to 23, The formation openings 28, 29, 140, and 141 are formed into the substrate 18 from the top surface of the wafer 10. Those skilled in the art will appreciate that other singulation apertures are typically formed simultaneously with the openings 28 and 29 to singulate the other die of the wafer 10. Layer 135 is formed from a material that is not etched by dry etch methods used to form singulation openings 28, 29, 140, and 141. In one embodiment, the protective layer 135 is a metal or metal compound, and the dry etch process is selected to be a process that etches silicon at a much higher rate than metals. Such processes have been described above. In other embodiments, the protective layer 135 may be aluminum nitride as described above or a silicon-metal compound as described above. The layer 135 may also be the same material as the material of the metal layer 27 described above. The singulation openings 140 and 141 may also be formed with the singulation openings 28 and 29. The singulation openings 140 and 141 are formed to penetrate the substrate 18 in the same manner as the openings 28 and 29 (or openings 47 and 48) to form the singulation lines 137 and 138 . Singulation lines 137 and 138 are formed to separate the outer rim 127 from the remainder of the wafer 10. As a result, the singulation lines 137 and 138 typically lie on the inner portion 125 and are spaced apart from the outer rim 127 and any of the semiconductor die 144 and 145, Are formed to be positioned between the semiconductor dies. For example, the singulation lines 137 and 138 may have one (1) extension extending around the outer edge of the inner portion 125, such as just inside the portion of the wafer 10 where the inner circumference of the outer rim 127 is formed. ) May be a continuous singulation line.

당업자들은 이와 같은 내부 부분(125) 및 림(127)을 갖는 웨이퍼로부터 다이를 싱귤레이팅하기 위하여 웨이퍼 소우 또는 다른 유형의 커팅 도구를 사용하는 것이 내부 부분(125)이 많은 기계적 응력을 겪게 할 것이며, 아마도 내부 부분(125) 내에서 웨이퍼(10)를 파괴할 것이라는 점을 인식할 것이다. 추가적으로, 림(127)을 제거하기 위한 레이저 스크라이빙은 림(127)에 인접한 다이의 재-결정화를 초래할 수 있다. 림(127)을 제거하기 위해 본원에 설명된 건식 에치 방법들을 사용하는 것이 림(127)을 제거하는 동안 또는 웨이퍼(10)로부터 다이를 싱귤레이팅하는 동안 내부 부분(125) 상에서 기계적 응력을 최소화하고, 웨이퍼 파괴를 감소시킨다.Those skilled in the art will appreciate that the use of a wafer saw or other type of cutting tool to singulate a die from a wafer having such inner portion 125 and rim 127 will cause the inner portion 125 to undergo many mechanical stresses, And will probably destroy the wafer 10 within the interior portion 125. In addition, laser scribing to remove rim 127 may result in re-crystallization of the die adjacent rim 127. [ Using the dry etch methods described herein to remove the rim 127 minimizes mechanical stresses on the inner portion 125 during removal of the rim 127 or while singulating the die from the wafer 10 , Thereby reducing wafer breakage.

웨이퍼(10) 상에 형성되는 다이를 싱귤레이팅하지 않고 웨이퍼(10)로부터 림(127)을 제거하는 것이 바람직한 경우들이 존재할 수 있다. 이와 같은 대안 실시예에 대하여, 싱귤레이션 라인들(11, 13, 15, 및 17)과 같은, 웨이퍼(10)의 다이를 싱귤레이팅하기 위한 싱귤레이션 라인들을 형성하지 않고, 싱귤레이션 라인들(137 및 138)이 웨이퍼(10)로부터 림(127)을 제거하기 위하여 형성될 수 있다. 림(127)을 제거한 이후에, 테이프(30)와 유사한 또 다른 테이프가 층(135)에 직접적으로와 같이, 부분(125)의 하부면에 도포될 수 있고, 그 후에, 다이가 본원에 설명된 바와 같이 싱귤레이팅될 수 있다. 다른 실시예들에서, 테이프(30)는 웨이퍼(10)의 나머지를 지지하기 위하여 유지될 수 있다. 다이를 싱귤레이팅하기 이전에 림(127)을 제거하는 것은 스크래치들 및 기계적 응력들을 감소시킴으로써 수율 및 처리량을 개선시키는 빠르고 깨끗한 방법을 허용한다.There may be cases where it is desirable to remove the rim 127 from the wafer 10 without singulating the die formed on the wafer 10. For such an alternative embodiment, instead of forming the singulation lines for singulating the die of the wafer 10, such as the singulation lines 11, 13, 15, and 17, the singulation lines 137 And 138 may be formed to remove the rim 127 from the wafer 10. After removing the rim 127 another tape similar to the tape 30 may be applied to the lower surface of the portion 125, such as directly to the layer 135, after which the die is described herein Can be singulated as described above. In other embodiments, the tape 30 may be retained to support the remainder of the wafer 10. Removing the rim 127 prior to singulating the die allows for a fast and clean way to improve yield and throughput by reducing scratches and mechanical stresses.

도 29 내지 도 31은 웨이퍼(10)로부터 다이를 싱귤레이팅하는 방법의 예의 또 다른 대안 실시예의 다양한 단계들을 도시한다. 도 29는 도 26의 설명에서 서술된 단계 직후의 단계에서의 웨이퍼(10)를 도시한다. 웨이퍼(10)가 지지 장치(34)로부터 제거되고, 보호 층(135)이 내부 부분(125)의 하부면 상에 형성된다.29-31 illustrate various steps of yet another alternative embodiment of an example of a method for singulating die from a wafer 10. Fig. 29 shows the wafer 10 at the stage immediately after the step described in the description of Fig. The wafer 10 is removed from the support device 34 and a protective layer 135 is formed on the lower surface of the inner portion 125. [

도 30을 참조하면, 캐리어 테이프(63)가 웨이퍼(10)에 대한 지지를 제공하기 위하여 웨이퍼(10)에 도포될 수 있다. 캐리어 테이프(63)는 웨이퍼(10)의 상부에 도포되어, 기판(18)의 상부면이 테이프(63)를 향하게 된다. 테이프(63)는 전형적으로 상술되었던 테이프(30)와 유사하다. 일부 실시예들에서, 테이프(63)는 프레임(62)과 유사한 필름 프레임(64)에 부착된다. 테이프(63)는 웨이퍼(10)를 핸들링 및 지지하는 비히클로서 도포된다. 웨이퍼(10)를 핸들링하기 위하여 상이한 캐리어를 사용하는 실시예들에 대하여, 상이한 캐리어가 사용될 수 있고, 테이프(63)가 생략될 수 있다. 외부 림(127)의 하부면 상에 형성되는 보호 층(135)의 임의의 부분이 부분(133)에 대해 파선들로 도시된 바와 같이 제거된다. 예를 들어, 외부 림(127)의 하부면이 파선들로 도시된 바와 같은 보호 층 부분들(133)을 제거하는데 충분한 시간 동안 그라인딩 프로세스를 겪을 수 있거나, 또는 층(135)이 마스킹될 수 있고 부분들(133)이 림(127)으로부터 에칭될 수 있다. 상술된 바와 같이, 일부 실시예들에서, 보호 층 부분들(133)이 외부 림(127) 상에 형성되지 않는다.Referring to Figure 30, a carrier tape 63 may be applied to the wafer 10 to provide support for the wafer 10. The carrier tape 63 is applied to the top of the wafer 10 so that the upper surface of the substrate 18 faces the tape 63. [ The tape 63 is typically similar to the tape 30 described above. In some embodiments, the tape 63 is attached to a film frame 64 similar to the frame 62. The tape 63 is applied as a vehicle that handles and supports the wafer 10. For embodiments that use different carriers to handle the wafer 10, different carriers may be used, and the tape 63 may be omitted. Any portion of the protective layer 135 formed on the bottom surface of the outer rim 127 is removed, as shown by dashed lines, For example, the bottom surface of the outer rim 127 may undergo a grinding process for a sufficient time to remove the protective layer portions 133 as shown by dashed lines, or the layer 135 may be masked Portions 133 may be etched away from rim 127. As discussed above, in some embodiments, the protective layer portions 133 are not formed on the outer rim 127.

외부 림(127)의 두께를 두께(69)로 감소시키기 위하여 건식 에치 프로세스가 사용될 수 있다. 외부 림(127)의 두께를 감소시키는데 사용되는 건식 에치 프로세스는 싱귤레이션 개구들(28 및 29)과 같은 싱귤레이션 개구들을 형성하는데 사용되는 건식 에치 프로세스들과 같이 본원에 설명된 건식 에치 프로세스들 중 어느 하나일 수 있다. 두께(69)는 외부 림(127)의 이전 두께(67)보다 더 적다. 두께(69)의 값은 통상적으로 외부 림(127)의 하부면이 두께(68)에 가깝도록 선택되어, 캐리어 테이프(30)(도 31 참조)가 웨이퍼(10)에 대한 더 양호한 지지를 제공할 수 있도록 한다. 바람직한 실시예에서, 두께(69)는 림(127)의 하부면을 보호 층(135)의 외부면에 실질적으로 평행하도록 형성한다. 부분들(133)은 건식 에치가 림(127)의 두께를 감소시키도록 하기 위하여 제거된다. 부분들(133)이 림(127)의 두께를 감소시키기 이전에 제거되는 한, 부분들(133)은 상기 방법의 상이한 단계에서 제거될 수 있다. 일부 실시예들에서, 두께(68)는 더 이상 약 오십(50) 미크론이 아니며, 이십-오(25) 미크론 이하일 수 있다. 당업자들을 이와 같은 두께들에서, 웨이퍼(10)가 취성(fragile)이 될 수 있다는 점을 인식할 것이다. 림(127)의 두께를 감소시키기 위하여 건식 에치 프로세스를 사용하는 것은 백그라인딩 또는 CMP와 같은 다른 두께 감소 방법들에 비하여, 웨이퍼(10) 상에서 기계적 응력을 최소화한다.A dry etch process may be used to reduce the thickness of the outer rim 127 to thickness 69. [ The dry etch process used to reduce the thickness of the outer rim 127 is similar to that of the dry etch processes described herein, such as the dry etch processes used to form singulation openings such as the singulation openings 28 and 29 It can be either. The thickness 69 is less than the previous thickness 67 of the outer rim 127. The value of thickness 69 is typically chosen such that the lower surface of the outer rim 127 is close to thickness 68 so that the carrier tape 30 (see FIG. 31) provides better support for the wafer 10 . In a preferred embodiment, the thickness 69 forms the lower surface of the rim 127 substantially parallel to the outer surface of the protective layer 135. Portions 133 are removed to reduce the thickness of the dry rim 127. As long as portions 133 are removed prior to reducing the thickness of rim 127, portions 133 can be removed at different stages of the method. In some embodiments, thickness 68 is no more than about fifty (50) microns, and may be less than twenty-five (25) microns. Those skilled in the art will recognize that at such thicknesses, the wafer 10 can be fragile. Using a dry etch process to reduce the thickness of the rim 127 minimizes mechanical stresses on the wafer 10, as compared to other thickness reduction methods such as back grinding or CMP.

도 31은 후속 단계에서의 웨이퍼(10)를 도시한다. 외부 림(127)의 두께를 감소시킨 이후에, 웨이퍼(10)는 통상적으로 상술된 바와 같이 인버팅되어 캐리어 테이프(30) 상에 배치된다. 싱귤레이션 개구들(28 및 29)이 기판(18)의 상부면으로부터 기판(18)을 관통하여 형성되어, 보호 층(135) 상에서 중단된다. 싱귤레이션 개구들(140 및 141)이 또한 웨이퍼(10)의 반도체 다이로부터 외부 림(127)을 분리하기 위하여 전형적으로 개구들(28 및 29)과 함께 형성된다. 당업자들은 다른 싱귤레이션 개구들이 통상적으로 웨이퍼(10)의 다른 다이를 싱귤레이팅하기 위하여 개구들(28 및 29)과 동시에 형성된다는 점을 인식할 것이다. 웨이퍼(10)의 적은 두께 때문에, 다이를 싱귤레이팅하기 위하여 건식 에치를 사용하는 것이 웨이퍼(10) 상에서 기계적 응력을 최소화하고, 파괴 및 다른 손상을 감소시킨다.Figure 31 shows the wafer 10 in a subsequent step. After reducing the thickness of the outer rim 127, the wafer 10 is typically inverted and placed on the carrier tape 30 as described above. The singulation openings 28 and 29 are formed through the substrate 18 from the top surface of the substrate 18 and are suspended on the protective layer 135. Singulation openings 140 and 141 are also typically formed with openings 28 and 29 to separate the outer rim 127 from the semiconductor die of the wafer 10. Those skilled in the art will appreciate that other singulation apertures are typically formed simultaneously with the openings 28 and 29 to singulate the other die of the wafer 10. Because of the small thickness of the wafer 10, using a dry etch to singulate the die minimizes mechanical stresses on the wafer 10 and reduces fracture and other damage.

도 32 및 33은 웨이퍼(10)로부터 다이를 싱귤레이팅하는 또 다른 대안 방법의 예시적 실시예의 다양한 단계들을 도시한다. 도 32는 도 26에서 설명된 단계 직후의 단계에서의 웨이퍼(10)를 도시한다. 상술된 바와 같이, 장치(34)가 일반적으로 웨이퍼(10)로부터 제거되고, 보호 층(135)이 내부 부분(125)의 하부면 상에 형성된다. 보호 층(135)은 싱귤레이션 라인들(11, 13, 15, 17, 137, 및 138)과 같은, 웨이퍼(10)의 싱귤레이션 라인들이 형성되어야 하는 웨이퍼(10)의 부분과 실질적으로 정렬되는 보호 층(135)을 관통하는 개구들을 가지도록 패터닝될 수 있다. 당업자들은 층(135) 내에 형성된 개구들이 싱귤레이션 라인들(13, 15, 137, 및 138)과 같은 싱귤레이션 라인들이 형성되어야 하는 기판(18)의 부분과 정렬되도록 위치되는 것을 보증하기 위하여 다양한 배면 정렬 기술들이 사용될 수 있다는 점을 인식할 것이다.32 and 33 illustrate various steps of an exemplary embodiment of another alternative method of singulating die from wafer 10. [ Fig. 32 shows the wafer 10 at the stage immediately after the step described in Fig. The device 34 is generally removed from the wafer 10 and a protective layer 135 is formed on the lower surface of the inner portion 125, as described above. The protective layer 135 is substantially aligned with the portion of the wafer 10 on which the singulation lines of the wafer 10 should be formed, such as the singulation lines 11, 13, 15, 17, 137, May be patterned to have openings through protective layer 135. Those skilled in the art will appreciate that the openings formed in the layer 135 may be formed on a variety of backplanes to ensure that alignment lines, such as the singulation lines 13, 15, 137, and 138, It will be appreciated that alignment techniques may be used.

도 33을 참조하면, 건식 에치 프로세스가 기판(18)의 하부면으로부터 기판(18)을 완전히 관통하여 확장되고 기판(18)의 상부면을 빠져나오도록 싱귤레이션 개구들(28, 29, 140, 및 141)을 형성하는데 사용되는 동안, 보호 층(135)이 기판(18)을 보호하기 위한 마스크로서 사용될 수 있다. 싱귤레이션 개구들(28 및 29 또는 47 및 48)을 형성하기 위한 설명된 건식 에치 방법들 중 어느 하나가 또한 싱귤레이션 개구들(140 및 141) 및 기판(18)을 관통하는 임의의 다른 싱귤레이션 개구들을 형성하는데 사용될 수 있다. 싱귤레이션 개구들을 형성하는 동안, 상기 프로세스는 또한 외부 림(127)을 에칭함으로써, 외부 림(127)의 두께를 두께(69)로 감소시킨다. 도 30의 설명에서 상술된 바와 같이, 보호 층 부분(133)의 임의의 부분이 림(127)의 두께를 감소시키고 싱귤레이션 개구들을 에칭하기 이전에 제거된다. 싱귤레이션 개구들을 형성하는 것과 함께 부분(127)의 두께를 감소시키는 것이 프로세싱 단계들을 감소시킴으로써 제조 비용들을 감소시키고, 상기 두께를 감소시키는 것이 또한 웨이퍼(10) 상에서 기계적 응력을 최소화함으로써 수율을 개선시키고 비용들을 감소시킨다. 림(127)의 감소된 두께는 웨이퍼(10)를 핸들링하는 것 및 다이들이 싱귤레이팅된 이후에 다이를 제거하는 것을 더 용이하게 한다. 다른 실시예들에서, 림(127)은 마스킹되어 개구들(28, 29, 140, 및 141)을 형성하는 동안 에칭되지 않을 수 있다. 싱귤레이션 개구들을 형성한 이후에, 캐리어 테이프(30)와 같은 또 다른 캐리어 테이프(도시되지 않음)가 내부 부분(125)의 하부면과 같은, 웨이퍼(10)의 하부면에 도포될 수 있고, 웨이퍼(10) 또는 내부 부분(125)이 인버팅될 수 있다. 그 후, 반도체 다이는 상술된 바와 같이 픽-앤-플레이스 또는 다른 기술들에 의해 제거될 수 있다.Referring to Figure 33, a dry etch process is performed to expose the substrate 18 from the lower surface of the substrate 18 and extend through the singulation openings 28, 29, 140, And 141, a protective layer 135 may be used as a mask to protect the substrate 18. [ Any of the described dry etch methods for forming the singulation openings 28 and 29 or 47 and 48 may also be used to etch through the singulation openings 140 and 141 and any other singulation < RTI ID = 0.0 > Can be used to form openings. While forming the singulation openings, the process also reduces the thickness of the outer rim 127 to a thickness 69 by etching the outer rim 127. Any portion of the protective layer portion 133 is removed prior to reducing the thickness of the rim 127 and etching the singulation openings, as described above in the description of FIG. Reducing the thickness of the portion 127 along with forming the singulation openings reduces manufacturing costs by reducing processing steps and reducing the thickness also improves yield by minimizing mechanical stress on the wafer 10 Thereby reducing costs. The reduced thickness of the rim 127 makes it easier to handle the wafer 10 and to remove the die after the dies are singulated. In other embodiments, the rim 127 may be masked and not etched while forming the openings 28, 29, 140, and 141. Another carrier tape (not shown), such as a carrier tape 30, may be applied to the lower surface of the wafer 10, such as the lower surface of the inner portion 125, after forming the singulation apertures, The wafer 10 or the inner portion 125 can be inverted. The semiconductor die may then be removed by pick-and-place or other techniques as described above.

당업자는 반도체 다이를 형성하는 방법의 하나의 예가: 제 1 두께, 상부면, 하부면을 갖는 반도체 기판, 및 상기 반도체 기판의 상기 상부면 상에 형성되고 라인들(13 및 15)과 같은 싱귤레이션 라인들이 형성되어야 하는 반도체 웨이퍼의 부분들에 의해 서로로부터 분리되는 다이(12, 14, 또는 16)와 같은 복수의 반도체 다이를 가지는 반도체 웨이퍼를 제공하는 단계; 상기 반도체 웨이퍼를 인버팅하는 단계; 상기 반도체 웨이퍼의 상기 하부면의 부분(125)과 같은 내부 부분의 두께를 제 1 두께보다 더 적은 제 2 두께로 감소시키고, 상기 반도체 웨이퍼의 외부 림, 예를 들어, 림(127)을 상기 제 1 두께로 남겨두는 단계로서, 상기 외부 림이 상기 반도체 웨이퍼의 테두리(periphery)에 병치되고, 상기 내부 부분이 상기 복수의 반도체 다이 아래에 놓이는, 내부 부분의 두께를 제 1 두께보다 더 적은 제 2 두께로 감소시키고, 외부 림을 제 1 두께로 남겨두는 단계; 상기 반도체 웨이퍼의 상기 하부면의 상기 내부 부분 상에 금속 또는 금속 화합물 또는 금속-실리콘 화합물 중 하나인 보호 층을 형성하는 단계; 및 상기 외부 림의 상기 제 1 두께를 상기 제 1 두께보다 더 적은 제 3 두께로 감소시키기 위하여 건식 에치를 사용하는 단계를 포함하고, 상기 보호 층이 상기 건식 에치로부터 상기 내부 부분을 보호하여, 상기 제 2 두께가 실질적으로 일정하게 유지된다는 점을 이해할 수 있다.One skilled in the art will appreciate that one example of a method of forming a semiconductor die is a semiconductor substrate having a first thickness, an upper surface, a lower surface, and a second semiconductor layer formed on the upper surface of the semiconductor substrate, Providing a semiconductor wafer having a plurality of semiconductor dies, such as dies 12, 14, or 16, which are separated from each other by portions of the semiconductor wafer on which the lines should be formed; Inverting the semiconductor wafer; Such as a portion 125 of the lower surface of the semiconductor wafer, to a second thickness that is less than the first thickness, and the outer rim of the semiconductor wafer, e.g., rim 127, 1 thickness, wherein the outer rim is juxtaposed to a periphery of the semiconductor wafer, and wherein the inner portion lies below the plurality of semiconductor die, wherein the thickness of the inner portion is less than a second thickness Reducing the outer rim to a first thickness; Forming a protective layer that is one of a metal or a metal compound or a metal-silicon compound on the inner portion of the lower surface of the semiconductor wafer; And using a dry etch to reduce the first thickness of the outer rim to a third thickness less than the first thickness, wherein the protective layer protects the inner portion from the dry etch, It will be appreciated that the second thickness remains substantially constant.

당업자는 상기 방법이 또한 상기 싱귤레이션 라인들이 형성되어야 하는 상기 반도체 기판의 부분들을 노출시키기 위하여 상기 보호 층을 패터닝하는 단계; 및 상기 싱귤레이션 라인들을 상기 반도체 기판의 상기 하부면으로부터 상기 반도체 기판을 관통하여 상기 반도체 기판의 상기 상부면까지 에칭하기 위하여 건식 에치를 사용하는 단계를 포함할 수 있다는 점을 이해할 것이다.One skilled in the art will recognize that the method may also include patterning the protective layer to expose portions of the semiconductor substrate over which the singulation lines are to be formed; And using the dry etch to etch the singulation lines from the lower surface of the semiconductor substrate to the upper surface of the semiconductor substrate through the semiconductor substrate.

반도체 다이를 형성하는 또 다른 방법의 예는: 제 1 두께, 상부면, 하부면을 갖는 반도체 기판, 및 상기 반도체 기판의 상기 상부면 상에 형성되고 싱귤레이션 라인들이 형성되어야 하는 반도체 웨이퍼의 부분들(13/15)과 같은 부분들에 의해 서로로부터 분리되는 다이(12/14/16)와 같은 복수의 반도체 다이를 가지는 반도체 웨이퍼를 제공하는 단계; 상기 반도체 웨이퍼의 상기 하부면의 부분(125)과 같은 내부 부분의 두께를 제 1 두께보다 더 적은 제 2 두께로 감소시키고, 상기 반도체 웨이퍼의 림(127)과 같은 외부 림을 상기 제 1 두께로 남겨두는 단계로서, 상기 외부 림이 상기 반도체 웨이퍼의 테두리에 병치되고, 상기 내부 부분이 상기 복수의 반도체 다이 아래에 놓이는, 내부 부분의 두께를 제 1 두께보다 더 적은 제 2 두께로 감소시키고, 외부 림을 제 1 두께로 남겨두는 단계; 상기 웨이퍼의 상기 하부면의 상기 내부 부분 상에 금속 또는 금속 화합물 또는 금속-실리콘 화합물 중 하나인 보호 층을 형성하는 단계; 및 싱귤레이션 라인들이 형성되어야 하는 싱귤레이션 개구들을 형성하기 위하여 건식 에치를 사용하는 단계로서, 상기 반도체 기판을 관통하여 상기 싱귤레이션 개구들을 형성하는 단계를 포함하는, 건식 에치 사용 단계를 포함하며, 적어도 하나의 싱귤레이션 개구가 상기 외부 림 및 상기 외부 림에 인접한 어느 하나의 반도체 다이 사이에 형성된다.An example of yet another method of forming a semiconductor die is as follows: a semiconductor substrate having a first thickness, an upper surface, a lower surface, and portions of a semiconductor wafer formed on the upper surface of the semiconductor substrate and on which the singulation lines are to be formed Providing a semiconductor wafer having a plurality of semiconductor dies, such as a die 12/14/16, separated from each other by portions such as a semiconductor chip 13/15; Reducing the thickness of an interior portion, such as portion (125) of the lower surface of the semiconductor wafer, to a second thickness that is less than a first thickness, and forming an outer rim, such as rim (127) Wherein the outer rim is juxtaposed to the rim of the semiconductor wafer and the inner portion lies below the plurality of semiconductor dies, the thickness of the inner portion being reduced to a second thickness less than the first thickness, Leaving the rim at a first thickness; Forming a protective layer that is one of a metal or a metal compound or a metal-silicon compound on the inner portion of the lower surface of the wafer; And using a dry etch to form singulation openings in which singulation lines are to be formed, said method comprising the step of using said dry etch through said semiconductor substrate to form said singulation openings, One singulation opening is formed between the outer rim and one of the semiconductor dies adjacent to the outer rim.

당업자는 상기 방법이 또한 싱귤레이션 개구를 상기 반도체 웨이퍼의 상기 상부면으로부터 상기 반도체 기판을 관통하여 형성하기 위하여 건식 에치를 사용하는 단계를 포함할 수 있다는 점을 또한 인식할 것이다.Those skilled in the art will also appreciate that the method may also include using a dry etch to form a singulation aperture through the semiconductor substrate from the upper surface of the semiconductor wafer.

상기 방법은 또한 상기 싱귤레이션 라인들이 형성되어야 하는 상기 반도체 웨이퍼의 상기 하부면의 부분들을 노출시키기 위하여 상기 보호 층을 패터닝하는 단계; 및 상기 싱귤레이션 개구들을 형성하기 위하여 건식 에치를 사용하는 단계를 포함할 수 있고, 상기 건식 에치 사용 단계가 상기 싱귤레이션 개구들을 상기 반도체 웨이퍼의 상기 하부면으로부터 상기 반도체 기판을 관통하여 상기 반도체 기판의 상기 상부면까지 에칭하기 위하여 건식 에치를 사용하면서, 상기 보호 층을 마스크로서 사용하는 단계, 및 상기 외부 림을 에칭하고 상기 외부 림의 상기 제 1 두께를 상기 제 1 두께보다 더 적은 제 3 두께로 감소시키기 위하여 상기 건식 에치를 사용하는 단계를 포함할 수 있다.The method also includes patterning the protective layer to expose portions of the lower surface of the semiconductor wafer on which the singulation lines are to be formed; And using a dry etch to form the singulation openings, wherein the dry etch using step includes passing the singulation openings through the semiconductor substrate from the lower surface of the semiconductor wafer to the semiconductor substrate Using the dry etch to etch to the top surface, using the protective layer as a mask, and etching the outer rim and etching the first thickness of the outer rim to a third thickness less than the first thickness And using the dry etch to reduce the etch rate.

상기 모두를 고려하여, 신규한 장치 및 방법이 개시되어 있다는 점이 명백하다. 다른 특징들 중에서, 건식 에치 절차를 사용하여 반도체 웨이퍼를 완전히 관통하여 싱귤레이션 개구들을 에칭하는 것이 포함된다. 이와 같은 건식 에치 절차들은 일반적으로 플라즈마 에칭 또는 반응성 이온 에칭(Reactive Ion Etching: RIE)이라고 칭해진다. 하나의 측면으로부터 개구들을 에칭하는 것은 싱귤레이션 개구들이 거의 직선의 측벽들을 가짐으로써, 각각의 반도체 다이의 각각의 측벽을 따라 균일한 싱귤레이션 라인을 제공하는 것을 보증하는 것을 원조한다. 반도체 웨이퍼를 완전히 관통하여 싱귤레이션 개구들을 에칭하는 것은 좁은 싱귤레이션 라인들을 형성하는 것을 용이하게 함으로써, 소정의 웨이퍼 크기 상에 반도체 다이를 형성하는데 사용할 여지를 허용한다. 싱귤레이션 라인들 모두는 동시에 형성된다. 에칭 프로세스는 스크라이빙 또는 웨이퍼 소잉 프로세스보다 더 빨라서, 제조 에어리어의 처리량을 증가시킨다.In view of all of the above, it is clear that a novel apparatus and method are disclosed. Among other features, etching the singulation openings completely through the semiconductor wafer using a dry etch process is included. Such dry etch procedures are generally referred to as plasma etching or reactive ion etching (RIE). Etching openings from one side helps to ensure that the singulation openings have nearly straight sidewalls thereby providing a uniform singulation line along each side wall of each semiconductor die. Fully penetrating the semiconductor wafer to etch the singulation openings facilitates forming narrow singulation lines, thereby allowing room for use in forming a semiconductor die on a given wafer size. Both singulation lines are formed simultaneously. The etching process is faster than the scribing or wafer sawing process, thereby increasing the throughput of the manufacturing area.

트렌치의 필러 재료를 관통하여 싱귤레이션 라인들을 형성하는 것은 좁은 싱귤레이션 라인들을 형성하는 것을 용이하게 함으로써, 웨이퍼 이용도를 증가시키고 비용들을 감소시킨다. 싱귤레이션 마스크를 사용하는 것은 기판을 관통하여 싱귤레이션 라인들을 형성하는 동안, 다이의 내부 부분들을 보호하는 것을 원조한다. 각을 이룬 측벽들을 형성하는 것은 어셈블리 동작(assembly operation)들 동안 손상을 감소시킴으로써, 비용들을 감소시킨다. 일부 실시예들에서, 경사진 측벽들은 일반적으로 동시에 다이 모두 상에 형성된다.Formation of the singulation lines through the filler material of the trench facilitates forming narrow singulation lines, thereby increasing wafer availability and reducing costs. The use of a singulation mask helps protect the interior portions of the die while forming the singulation lines through the substrate. Formation of angled sidewalls reduces damage during assembly operations, thereby reducing costs. In some embodiments, sloped sidewalls are generally formed on both die at the same time.

본 발명의 주제가 특정한 바람직한 실시예와 함께 설명되었지만, 많은 대안들 및 변화들이 반도체 업계의 당업자들에게 명백할 것이다. 예를 들어, 층들(20 및/또는 21)은 기판(18)으로부터 생략될 수 있다. 싱귤레이션 개구들은 대안적으로 패드들(24) 위에 놓이는 콘택 개구들을 형성하기 이전 또는 이후에 형성될 수 있다. 또한, 싱귤레이션 개구들은 웨이퍼(10)를 박형화하기 이전에 형성될 수 있는데, 예를 들어, 싱귤레이션 개구들은 기판(18)을 부분적으로 관통하여 형성될 수 있고, 박형화 프로세스가 싱귤레이션 개구들의 하부를 노출시키기 위하여 사용될 수 있다.While the subject matter of the present invention has been described in conjunction with specific preferred embodiments, many alternatives and variations will be apparent to those skilled in the semiconductor arts. For example, the layers 20 and / or 21 may be omitted from the substrate 18. The singulation apertures may alternatively be formed before or after forming the contact openings overlying the pads 24. Also, the singulation openings may be formed prior to thinning the wafer 10, e.g., the singulation openings may be formed partially through the substrate 18, and a thinning process may be applied to the bottom of the singulation openings Lt; / RTI >

10: 반도체 웨이퍼
12, 14, 16, 42, 44, 46, 71, 72, 73: 다이
13, 15, 43, 45, 137, 138: 싱귤레이션 라인 19: 벌크 기판
20: 에피택셜 층 23, 26: 유전체
24: 콘택 패드 32: 마스크
50, 54, 58: 절연 트렌치 105: 폴리머
135: 보호 층
144, 145: 반도체 다이
10: Semiconductor wafer
12, 14, 16, 42, 44, 46, 71, 72, 73:
13, 15, 43, 45, 137, 138: singulation line 19: bulk substrate
20: epitaxial layer 23, 26: dielectric
24: contact pad 32: mask
50, 54, 58: Insulation trench 105: Polymer
135: Protective layer
144, 145: semiconductor die

Claims (5)

반도체 웨이퍼로부터 복수의 반도체 다이들을 싱귤레이팅(singulating)하는 방법에 있어서:
상기 복수의 반도체 다이들을 갖는 상기 반도체 웨이퍼를 제공하는 단계로서, 상기 반도체 웨이퍼는 제 1 주 표면 및 상기 제 1 주 표면과 대향하는 제 2 주 표면을 포함하고, 상기 제 2 주 표면을 따라 금속층이 형성되는, 상기 반도체 웨이퍼를 제공하는 단계;
상기 금속층에 인접한 제 1 캐리어 테이프를 위치시키는 단계;
상기 반도체 웨이퍼의 부분들을 관통하지만 상기 금속층을 관통하지 않게 플라즈마 에칭하여 싱귤레이션 라인 개구를 형성함으로써, 상기 복수의 반도체 다이들 사이에 공간을 생성하는 단계; 및
반도체 다이의 상기 제 2 주 표면에 실질적으로 수직으로 에어 제트를 불어 넣는 것을 포함하여 상기 복수의 반도체 다이들 중의 상기 반도체 다이의 아래에 놓인 상기 제 1 캐리어 테이프의 부분 상으로 에어 제트를 불어 넣음으로써, 상기 제 1 캐리어 테이프를 상기 공간을 향하여 위로 향하게 그리고 상기 공간 내로 이동시켜 상기 공간 아래에 놓인 상기 금속층을 절단하고, 상기 공간 아래에 있는 상기 금속층의 부분을 상기 제 1 캐리어 테이프 상에 남겨 놓는 단계를 포함하는, 복수의 반도체 다이들을 싱귤레이팅하는 방법.
A method for singulating a plurality of semiconductor dies from a semiconductor wafer, comprising:
Providing a semiconductor wafer having the plurality of semiconductor dies, the semiconductor wafer comprising a first major surface and a second major surface opposite the first major surface, wherein a metal layer Providing the semiconductor wafer;
Positioning a first carrier tape adjacent the metal layer;
Creating a space between the plurality of semiconductor dies by penetrating portions of the semiconductor wafer but without plasma penetrating the metal layer to form a singulation line opening; And
Blowing an air jet onto a portion of the first carrier tape underlying the semiconductor die of the plurality of semiconductor dies, including blowing an air jet substantially perpendicular to the second major surface of the semiconductor die , Moving the first carrier tape upward and into the space to cut the metal layer lying below the space and leaving a portion of the metal layer below the space on the first carrier tape Wherein the plurality of semiconductor dies are electrically coupled to the plurality of semiconductor dice.
제 1 항에 있어서,
상기 반도체 웨이퍼의 상기 제 1 주 표면 상에 제 2 캐리어 테이프를 위치시키는 단계와, 그 후에 상기 제 1 캐리어 테이프를 제거하는 단계를 더 포함하는, 복수의 반도체 다이들을 싱귤레이팅하는 방법.
The method according to claim 1,
Further comprising positioning a second carrier tape on the first major surface of the semiconductor wafer and thereafter removing the first carrier tape.
반도체 웨이퍼로부터 복수의 반도체 다이들을 싱귤레이팅하는 방법에 있어서:
상기 반도체 웨이퍼를 제공하는 단계로서, 금속층이 주 표면 및 상기 금속층에 인접한 제 1 캐리어 테이프를 따라 형성되고, 상기 반도체 웨이퍼는 상기 반도체 웨이퍼의 부분들을 관통하는 싱귤레이션 라인 개구들을 가짐으로써 상기 복수의 반도체 다이들 사이에 공간을 생성하는, 상기 반도체 웨이퍼를 제공하는 단계; 및
상기 반도체 다이의 아래에 놓인 상기 제 1 캐리어 테이프의 부분 상으로 에어 제트를 직접 불어 넣는 단계로서, 상기 에어 제트는 상기 반도체 다이의 상기 주 표면에 실질적으로 수직으로 불어 넣어짐으로써 상기 공간 아래에 놓인 상기 금속층이 절단되는, 상기 에어 제트를 직접 불어 넣는 단계를 포함하는, 복수의 반도체 다이들을 싱귤레이팅 방법.
A method for singulating a plurality of semiconductor dies from a semiconductor wafer, the method comprising:
Providing a semiconductor wafer, wherein a metal layer is formed along a primary surface and a first carrier tape adjacent the metal layer, the semiconductor wafer having singulation line openings through portions of the semiconductor wafer, Creating a space between the dies; providing the semiconductor wafer; And
Directly blowing an air jet onto a portion of the first carrier tape underlying the semiconductor die such that the air jet is blown substantially perpendicular to the major surface of the semiconductor die, And blowing the air jet directly where the metal layer is cut.
제 1 항에 있어서,
상기 제 1 캐리어 테이프를 상기 싱귤레이션 라인 개구 내로 위로 향하게 스트레칭하여 상기 싱귤레이션 라인 개구 아래에 놓인 상기 금속층을 절단하는 단계를 더 포함하는, 복수의 반도체 다이들을 싱귤레이팅 방법.
The method according to claim 1,
Further comprising stretching said first carrier tape upwardly into said singulation line opening to cut said metal layer underlying said singulation line opening. ≪ Desc / Clms Page number 21 >
기판을 싱귤레이팅하는 방법에 있어서:
상기 기판 상에 형성되고 싱귤레이션 라인들에 의해 서로 분리된 복수의 다이를 갖는 기판을 제공하는 단계로서, 상기 기판은 제 1 주 표면 및 상기 제 1 주표면과 대향하는 제 2 주 표면을 갖고, 금속층이 상기 제 2 주 표면 위에 형성되고, 상기 싱귤레이션 라인들은 상기 금속층에 근접하여 끝나는, 상기 기판을 제공하는 단계;
캐리어 테이프의 제 1 측면에 부착된 상기 기판을 제공하는 단계; 및
상기 캐리어 테이프 상에 에어 제트를 직접 불어 넣어 상기 싱귤레이션 라인들로부터 상기 금속층의 부분들을 싱귤레이팅함으로써 상기 싱귤레이션 라인들 아래에 놓인 상기 금속층을 절단하는 단계를 포함하는, 기판을 싱귤레이팅하는 방법.

A method of singulating a substrate comprising:
Providing a substrate having a plurality of dies formed on the substrate and separated from one another by singulation lines, the substrate having a first major surface and a second major surface opposite the first major surface, Providing a substrate having a metal layer formed on the second major surface and the singulation lines terminating proximate to the metal layer;
Providing the substrate affixed to the first side of the carrier tape; And
And directing an air jet onto the carrier tape to cut the metal layer underlying the singulation lines by singulating portions of the metal layer from the singulation lines. ≪ Desc / Clms Page number 21 >

KR1020190029712A 2010-01-18 2019-03-15 Semiconductor die singulation method KR20190032319A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/689,098 US7989319B2 (en) 2007-08-07 2010-01-18 Semiconductor die singulation method
US12/689,098 2010-01-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170078569A Division KR20170075702A (en) 2010-01-18 2017-06-21 Semiconductor die singulation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200008235A Division KR20200011519A (en) 2010-01-18 2020-01-22 Semiconductor die singulation method

Publications (1)

Publication Number Publication Date
KR20190032319A true KR20190032319A (en) 2019-03-27

Family

ID=44268067

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020110003406A KR101751709B1 (en) 2010-01-18 2011-01-13 Semiconductor die singulation method
KR1020170078569A KR20170075702A (en) 2010-01-18 2017-06-21 Semiconductor die singulation method
KR1020190029712A KR20190032319A (en) 2010-01-18 2019-03-15 Semiconductor die singulation method
KR1020200008235A KR20200011519A (en) 2010-01-18 2020-01-22 Semiconductor die singulation method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020110003406A KR101751709B1 (en) 2010-01-18 2011-01-13 Semiconductor die singulation method
KR1020170078569A KR20170075702A (en) 2010-01-18 2017-06-21 Semiconductor die singulation method

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020200008235A KR20200011519A (en) 2010-01-18 2020-01-22 Semiconductor die singulation method

Country Status (4)

Country Link
KR (4) KR101751709B1 (en)
CN (1) CN102130047B (en)
HK (1) HK1158823A1 (en)
TW (2) TWI512897B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664089B1 (en) * 2012-08-20 2014-03-04 Semiconductor Components Industries, Llc Semiconductor die singulation method
US9136173B2 (en) * 2012-11-07 2015-09-15 Semiconductor Components Industries, Llc Singulation method for semiconductor die having a layer of material along one major surface
US9214423B2 (en) * 2013-03-15 2015-12-15 Semiconductor Components Industries, Llc Method of forming a HEMT semiconductor device and structure therefor
TWI671813B (en) * 2013-11-13 2019-09-11 東芝股份有限公司 Semiconductor wafer manufacturing method
JP6441025B2 (en) 2013-11-13 2018-12-19 株式会社東芝 Manufacturing method of semiconductor chip
US20150255349A1 (en) * 2014-03-07 2015-09-10 JAMES Matthew HOLDEN Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes
JP6738591B2 (en) * 2015-03-13 2020-08-12 古河電気工業株式会社 Semiconductor wafer processing method, semiconductor chip, and surface protection tape
JP6637831B2 (en) * 2016-04-28 2020-01-29 株式会社ディスコ Device manufacturing method and grinding device
US11322464B2 (en) * 2019-10-01 2022-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. Film structure for bond pad

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300461A (en) * 1993-01-25 1994-04-05 Intel Corporation Process for fabricating sealed semiconductor chip using silicon nitride passivation film
US5851928A (en) * 1995-11-27 1998-12-22 Motorola, Inc. Method of etching a semiconductor substrate
US7553700B2 (en) * 2004-05-11 2009-06-30 Gem Services, Inc. Chemical-enhanced package singulation process
DE102005039479B3 (en) * 2005-08-18 2007-03-29 Infineon Technologies Ag Semiconductor device with thinned semiconductor chip and method for producing the thinned semiconductor device
JP2007294612A (en) * 2006-04-24 2007-11-08 Oki Data Corp Semiconductor device, manufacturing method thereof, semiconductor manufacturing apparatus, led head, and image forming apparatus
US7482251B1 (en) * 2006-08-10 2009-01-27 Impinj, Inc. Etch before grind for semiconductor die singulation
TWI330868B (en) * 2007-04-13 2010-09-21 Siliconware Precision Industries Co Ltd Semiconductor device and manufacturing method thereof
US7585750B2 (en) * 2007-05-04 2009-09-08 Stats Chippac, Ltd. Semiconductor package having through-hole via on saw streets formed with partial saw
US7781310B2 (en) * 2007-08-07 2010-08-24 Semiconductor Components Industries, Llc Semiconductor die singulation method
US7989319B2 (en) 2007-08-07 2011-08-02 Semiconductor Components Industries, Llc Semiconductor die singulation method

Also Published As

Publication number Publication date
CN102130047B (en) 2014-12-17
KR101751709B1 (en) 2017-06-28
TWI601242B (en) 2017-10-01
KR20200011519A (en) 2020-02-03
TWI512897B (en) 2015-12-11
TW201126648A (en) 2011-08-01
KR20110084828A (en) 2011-07-26
HK1158823A1 (en) 2012-07-20
TW201603194A (en) 2016-01-16
CN102130047A (en) 2011-07-20
KR20170075702A (en) 2017-07-03

Similar Documents

Publication Publication Date Title
US8012857B2 (en) Semiconductor die singulation method
US7989319B2 (en) Semiconductor die singulation method
KR101751709B1 (en) Semiconductor die singulation method
US7781310B2 (en) Semiconductor die singulation method
US7507638B2 (en) Ultra-thin die and method of fabricating same
US8859396B2 (en) Semiconductor die singulation method
US11302579B2 (en) Composite wafer, semiconductor device and electronic component
US9847270B2 (en) Method for insulating singulated electronic die
KR101731805B1 (en) Semiconductor die singulation method
US20170084468A1 (en) Method for processing a wafer and method for dicing a wafer
US20200321236A1 (en) Edge ring removal methods
CN115206879A (en) Chip detachment supported by backside trenches and adhesive in backside trenches

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application