KR20180136210A - 스크롤 압축기 - Google Patents

스크롤 압축기 Download PDF

Info

Publication number
KR20180136210A
KR20180136210A KR1020170074856A KR20170074856A KR20180136210A KR 20180136210 A KR20180136210 A KR 20180136210A KR 1020170074856 A KR1020170074856 A KR 1020170074856A KR 20170074856 A KR20170074856 A KR 20170074856A KR 20180136210 A KR20180136210 A KR 20180136210A
Authority
KR
South Korea
Prior art keywords
bypass
compression
compression chamber
scroll
wrap
Prior art date
Application number
KR1020170074856A
Other languages
English (en)
Other versions
KR102379671B1 (ko
Inventor
최용규
김철환
박상백
김태경
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020170074856A priority Critical patent/KR102379671B1/ko
Priority to CN201880039040.3A priority patent/CN110741163B/zh
Priority to PCT/KR2018/004377 priority patent/WO2018230827A1/ko
Priority to EP18171091.4A priority patent/EP3415765B1/en
Publication of KR20180136210A publication Critical patent/KR20180136210A/ko
Application granted granted Critical
Publication of KR102379671B1 publication Critical patent/KR102379671B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/22Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/46Conditions in the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

본 발명에 의한 스크롤 압축기는, 중심부에 토출구가 형성되며, 상기 토출구를 향해 연속으로 이동하는 두 개 한 쌍의 압축실이 형성되고, 상기 양쪽 압축실에는 각각의 압축실의 이동경로를 따라 복수 개의 바이패스부가 각각의 간격을 두고 형성되며, 상기 양쪽 압축실의 압축 기울기가 서로 다르게 형성되는 스크롤 압축기에서, 상기 각 압축실의 바이패스부 중에서 상기 토출구로부터 가장 인접한 바이패스부와 그 바이패스부로부터 인접한 다른 바이패스부 사이의 간격을 각각 제1 간격이라고 할 때, 상기 양쪽 압축실중에서 상대적으로 압축 기울기가 큰 쪽의 압축실에 속하는 제2 바이패스부의 제1 간격이 다른 쪽의 압축실에 속하는 제1 바이패스부의 제1 간격보다 좁게 형성될 수 있다.

Description

스크롤 압축기{SCROLL COMPRESSOR}
본 발명은 스크롤 압축기에 관한 것으로, 특히 압축되는 냉매의 일부를 토출 전에 바이패스 시키는 바이패스 구멍에 관한 것이다.
스크롤 압축기는 복수 개의 스크롤에 맞물려 상대 선회운동을 하면서 양쪽 스크롤 사이에 흡입실, 중간압실, 토출실로 된 압축실을 형성하는 압축기이다. 이러한, 스크롤 압축기는 다른 종류의 압축기에 비하여 상대적으로 높은 압축비를 얻을 수 있으면서 냉매의 흡입,압축,토출 행정이 부드럽게 이어져 안정적인 토오크를 얻을 수 있다. 따라서, 스크롤 압축기는 공조장치 등에서 냉매압축용으로 널리 사용되고 있다. 최근에는 편심부하를 낮춰 운전 속도가 180Hz 이상인 고효율 스크롤 압축기가 소개되고 있다.
스크롤 압축기의 거동 특성은 고정랩과 선회랩의 형태에 의해 결정된다. 고정랩과 선회랩은 임의의 형상을 가질 수 있지만 통상적으로는 가공이 용이한 인볼류트 곡선의 형태를 갖고 있다. 인볼류트 곡선은 임의의 반경을 갖는 기초원의 주위에 감겨있는 실을 풀어낼 때 실의 단부가 그리는 궤적에 해당되는 곡선을 의미한다. 이러한 인볼류트 곡선을 이용하는 경우 랩의 두께가 일정하여 용적변화율도 일정하게 되므로 높은 압축비를 얻기 위해서는 랩의 권수를 늘려야 하지만, 이 경우 압축기의 크기도 함께 커지게 되는 단점이 있다.
또, 선회스크롤은 통상적으로는 원판 형태로 된 경판부의 일측면에 선회랩이 형성되고, 선회랩이 형성되지 않은 배면에 보스부가 형성되어 선회스크롤을 선회구동시키는 회전축과 연결되게 된다. 이러한 형태는 경판의 거의 전체 면적에 걸쳐서 선회랩을 형성할 수 있고, 이는 동일한 압축비를 얻기 위한 경판부의 직경을 작게 할 수 있다. 반면, 이러한 형태는 압축시에 냉매의 반발력이 적용되는 작용점과 반발력을 상쇄하기 위한 반력이 적용되는 작용점이 수직 방향으로 서로 이격됨에 따라, 작동 과정에서 선회스크롤의 거동이 불안정해지면서 진동이나 소음이 커지는 문제가 있다.
이를 감안하여, 회전축과 선회스크롤이 결합되는 지점이 선회랩과 반경방향으로 중첩되는 소위 축관통 스크롤 압축기가 알려져 있다. 이러한 축관통 스크롤 압축기는 냉매의 반발력의 작용점과 그 반력의 작용점이 동일 지점에 작용하게 되므로 선회스크롤이 기울어지는 문제를 크게 줄일 수 있다.
한편, 상기와 같은 축관통 스크롤 압축기는 통상적인 스크롤 압축기와 마찬가지로 압축실의 중간에 바이패스 구멍을 형성하여, 압축되는 냉매의 일부를 미리 토출시키고 있다. 이를 통해, 액냉매와 오일의 과다 유입으로 인해 발생할 수 있는 과압축을 미연에 방지하여 압축 효율을 높이는 동시에 신뢰성을 확보할 수 있다.
하지만, 상기와 같은 종래의 축관통 스크롤 압축기는, 토출구가 선회스크롤의 중심에서 편심된 위치에 형성됨에 따라, 양쪽 압축실의 압축경로 길이가 상이하게 되고, 이로 인해 양쪽 압축실의 압축 기울기(또는, 체적감소 기울기)가 상이하게 되면서 냉매의 유속에서 차이가 발생하게 된다. 즉, 양쪽 압축실 중에서 압축경로의 길이가 짧은 압축실(이하, 제2 압축실 또는 B포켓)은 그 압축경로의 길이가 긴 압축실(이하, 제1 압축실 또는 A포켓)에 비해 압축 기울기가 상대적으로 급격하게 되면서, 제2 압축실에서의 냉매의 속도가 제1 압축실에서의 냉매의 속도보다 빨라지게 된다. 이에 따라, 제2 압축실에서는 제1 압축실에 비해 과압축이 발생하게 되어 전체적인 압축기의 효율이 저하될 수 있다.
그러나, 종래의 축관통 스크롤 압축기에서는, 양쪽 압축실에 속하는 바이패스 구멍이 동일한 회전각 위치에서 동일한 단면적을 가지도록 형성됨에 따라, 양쪽 압축실에 대한 압축 기울기의 차이가 해소되지 못하게 된다. 이로 인해, 압축 기울기가 큰 쪽의 압축실(즉, 제2 압축실)에서는 앞서 설명한 바와 같이 과압축 손실이 발생되어 전체적인 압축기의 압축 효율이 저하되는 문제점이 있었다.
본 발명의 목적은, 양쪽 압축실의 압축 기울기(또는, 체적감소 기울기)가 서로 다른 경우에 압축 기울기가 큰 압축실에서의 과압축 손실을 최소화할 수 있는 스크롤 압축기를 제공하려는데 있다.
본 발명의 다른 목적은, 양쪽 압축실의 압축 기울기(또는, 체적감소 기울기)가 서로 다른 경우에 양쪽 압축실 사이의 압축 기울기 차이를 감소시킬 수 있는 스크롤 압축기를 제공하려는데 있다.
본 발명의 목적을 달성하기 위하여, 압축 기울기 또는 압축실의 체적감소 기울기가 큰 쪽의 압축실에 형성되는 제2 토출용 바이패스 구멍의 전체 단면적이 압축 기울기 또는 압축실의 체적감소 기울기가 작은 쪽의 압축실에 형성되는 제1 토출용 바이패스 구멍의 전체 단면적보다 크게 형성되는 스크롤 압축기가 제공될 수 있다.
여기서, 상기 압축실들을 형성하는 랩들 중에서 고정된 랩의 안쪽 단부에서 180°까지의 회전각 범위내에서는 상기 제2 토출용 바이패스 구멍의 간격은 상기 제1 토출용 바이패스 구멍의 간격보다 좁게 형성될 수 있다.
그리고, 상기 압축실들을 형성하는 랩들 중에서 고정된 랩의 안쪽 단부에서 180°의 회전각 범위내에서는 상기 제2 토출용 바이패스 구멍의 개수는 상기 제1 토출용 바이패스 구멍의 개수보다 많게 형성될 수 있다.
본 발명의 목적을 달성하기 위하여, 토출구가 형성되며, 상기 토출구를 향해 연속으로 이동하는 두 개 한 쌍의 압축실이 형성되고, 상기 양쪽 압축실에는 각각의 압축실의 이동경로를 따라 복수 개의 바이패스부가 각각의 간격을 두고 형성되며, 상기 양쪽 압축실의 압축 기울기가 서로 다르게 형성되는 스크롤 압축기에서, 상기 양쪽 압축실중에서 상대적으로 압축 기울기가 작은 쪽의 압축실을 제1 압축실, 압축 기울기가 큰 쪽을 제2 압축실이라고 하고, 상기 제1 압축실에 속하는 바이패스부를 제1 바이패스부, 상기 제2 압축실에 속하는 바이패스부를 제2 바이패스부라고 할 때, 상기 제2 바이패스부는 상기 토출구에 인접한 바이패스부 사이의 간격이 가장 작게 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
여기서, 상기 제1 바이패스부의 전체 단면적과 상기 제2 바이패스부의 전체 단면적은 서로 동일하게 형성될 수 있다.
그리고, 상기 제1 바이패스부와 제2 바이패스부는 각각 복수 개의 바이패스 구멍으로 이루어지고, 상기 각 바이패스부는 서로 동일한 개수의 바이패스 구멍으로 이루어질 수 있다.
그리고, 상기 제1 바이패스부의 개수와 상기 제2 바이패스부는 각각 복수 개의 바이패스 구멍으로 이루어지고, 상기 각 바이패스 구멍의 단면적은 모두 동일하게 형성될 수 있다.
그리고, 상기 제2 바이패스부의 전체 단면적은 상기 제1 바이패스부의 전체 단면적보다 크게 형성될 수 있다.
그리고, 상기 제1 바이패스부와 제2 바이패스부는 각각 복수 개의 바이패스 구멍으로 이루어지고, 상기 제2 바이패스부는 상기 제1 바이패스부에 비해 바이패스 구멍의 개수가 더 많게 형성될 수 있다.
그리고, 상기 토출구는 복수 개가 구비되어, 상기 각 압축실에 독립적으로 연통되도록 형성될 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 제1 경판부의 일측면에 제1 랩이 형성되고, 상기 제1 랩의 안쪽 단부 부근에는 상기 제1 경판부를 두께방향으로 관통하는 토출구가 상기 제1 경판부의 중심에 대해 편심지게 형성되며, 상기 제1 랩의 내측면을 따라 복수 개의 위치에 복수 개의 제1 바이패스 구멍이, 상기 제1 랩의 외측면을 따라 복수 개의 위치에 복수 개의 제2 바이패스 구멍이 각각 정해진 간격을 두고 상기 제1 랩의 내측면과 외측면 사이에서 제1 경판부를 두께방향으로 관통하여 형성되는 제1 스크롤; 제2 경판부의 일측면에는 상기 제1 랩과 맞물리는 제2 랩이 형성되고, 상기 제1 스크롤에 대해 선회운동을 하면서 상기 제1 랩의 내측면은 상기 제2 랩의 외측면과의 사이에 제1 압축실을, 상기 제1 랩의 외측면은 상기 제2 랩의 내측면과의 사이에 제2 압축실을 각각 형성하는 제2 스크롤; 및 상기 제2 랩과 반경방향으로 중첩되도록 상기 제2 스크롤의 중심부를 관통하여 결합되도록 편심부를 가지는 회전축;을 포함하고, 상기 제1 압축실에 속하는 바이패스 구멍을 제1 바이패스부, 상기 제2 압축실에 속하는 바이패스 구멍을 제2 바이패스부라고 하며, 상기 제1 바이패스부 중에서 상기 토출구로부터 가장 인접한 바이패스부와 그 바이패스부로부터 인접한 다음 바이패스부 사이의 간격을 제1 내측간격, 상기 제2 바이패스부 중에서 상기 토출구로부터 가장 인접한 바이패스부와 그 바이패스부로부터 인접한 다음 바이패스부 사이의 간격을 제1 외측간격이라고 할 때, 상기 제1 외측간격은 상기 제1 내측간격보다 좁게 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
여기서, 상기 제1 바이패스부와 제2 바이패스부는 각각 적어도 두 개 이상의 바이패스 구멍이 연속으로 형성되어 이루어지며, 상기 한 개의 바이패스부에 속하는 바이패스 구멍의 개수는 각각의 군마다 동일하게 형성될 수 있다.
그리고, 상기 제1 바이패스부와 제2 바이패스부는 각각 적어도 두 개 이상의 바이패스 구멍이 연속으로 형성되어 이루어지며, 상기 한 개의 바이패스부에 속하는 바이패스 구멍의 각 단면적은 동일하게 형성될 수 있다.
그리고, 상기 제2 압축실에 속하는 바이패스 구멍의 개수는 상기 제1 압축실에 속하는 바이패스 구멍보다 더 많이 형성될 수 있다.
그리고, 상기 제2 압축실에 속하는 전체 바이패스 구멍의 단면적은 상기 제1 압축실에 속하는 전체 바이패스 구멍의 단면적에 비해 크게 형성될 수 있다.
여기서, 상기 토출구는, 상기 제1 압축실에 연통되는 제1 토출구; 및 상기 제2 압축실에 연통되는 제2 토출구;로 이루어질 수 있다.
또, 본 발명의 목적을 달성하기 위하여, 내부공간에 오일이 저장되는 케이싱; 상기 케이싱의 내부공간에 구비되는 구동모터; 상기 구동모터에 결합되는 회전축; 상기 구동모터의 하측에 구비되는 프레임; 상기 프레임의 하측에 구비되고, 제1 경판부의 일측면에 제1 랩이 형성되며, 상기 제1 랩의 중심쪽 단부 부근에 토출구가 형성되며, 상기 제1 랩의 내측면 주변에는 제1 바이패스 구멍이, 외측면 주변에는 제2 바이패스 구멍이 각각 적어도 한 개 이상씩 형성되고, 상기 제1 바이패스 구멍과 제2 바이패스 구멍은 상기 제1 랩의 형성방향을 따라 간격을 두고 형성되는 제1 스크롤; 및 상기 프레임과 제1 스크롤 사이에 구비되며, 제2 경판부의 일측면에는 상기 제1 랩과 맞물리는 제2 랩이 형성되고, 상기 회전축이 상기 제2 랩과 반경방향으로 중첩되도록 편심 결합되며, 상기 제1 스크롤에 대해 선회운동을 하면서 그 제1 스크롤과의 사이에 두 개 한 쌍의 압축실을 형성하는 제2 스크롤;을 포함하고, 상기 제1 랩의 안쪽 끝단에서 그 제1 랩을 따라 회전각이 180°이내의 범위내에서는 상기 제2 바이패스 구멍의 전체 단면적이 상기 제1 바이패스 구멍의 전체 단면적보다 크게 형성되는 것을 특징으로 하는 스크롤 압축기가 제공될 수 있다.
여기서, 상기 제1 바이패스 구멍의 전체 단면적과 상기 제2 바이패스구멍의 전체 단면적은 동일하게 형성될 수 있다.
그리고, 상기 제2 바이패스 구멍의 전체 단면적은 상기 제1 바이패스구멍의 전체 단면적보다 크게 형성될 수 있다.
그리고, 상기 제1 바이패스 구멍의 전체 개수와 상기 제2 바이패스 구멍의 전체 개수는 동일하게 형성될 수 있다.
그리고, 상기 범위내에서는 상기 제2 바이패스 구멍의 개수는 상기 제1 바이패스 구멍의 개수에 비해 더 많게 형성될 수 있다.
그리고, 상기 두 개 한 쌍의 압축실 중에서 상기 제1 바이패스 구멍이 포함되는 압축실을 제1 압축실, 상기 제2 바이패스 구멍이 포함되는 압축실을 제2 압축실이라고 할 때, 상기 제2 압축실의 압축 기울기가 상기 제1 압축실의 압축 기울기에 비해 크게 형성될 수 있다.
여기서, 상기 토출구는, 상기 제1 압축실에 연통되는 제1 토출구; 및 상기 제2 압축실에 연통되는 제2 토출구;로 이루어질 수 있다.
본 발명에 의한 스크롤 압축기는, 양쪽 압축실 중에서 압축 기울기가 큰 쪽의 압축실에 형성되는 바이패스 구멍은 다른 쪽 압축실에 형성되는 바이패스 구멍에 비해 토출쪽에 집중되어 형성됨으로써, 압축 기울기가 큰 압축실에서의 압축 기울기를 완화시켜 과압축을 방지하고 이를 통해 압축기의 전체 효율을 향상시킬 수 있다.
또, 양쪽 압축실 중에서 압축 기울기가 큰 쪽의 압축실에 형성되는 바이패스 구멍은 다른 쪽 압축실에 형성되는 바이패스 구멍에 비해 토출쪽에서의 바이패스 구멍들 사이의 간격이 좁게 형성됨으로써, 압축 기울기가 큰 압축실에서의 압축 기울기를 완화시켜 과압축을 방지하고 이를 통해 압축기의 전체 효율을 향상시킬 수 있다.
또, 양쪽 압축실 중에서 압축 기울기가 큰 쪽의 압축실에 형성되는 바이패스 구멍은 다른 쪽 압축실에 형성되는 바이패스 구멍에 비해 토출쪽에서의 전체 바이패스 구멍들의 단면적이 상대적으로 크게 형성됨으로써, 압축 기울기가 큰 압축실에서의 압축 기울기를 완화시켜 과압축을 방지하고 이를 통해 압축기의 전체 효율을 향상시킬 수 있다.
도 1은 본 발명에 의한 하부 압축식 스크롤 압축기를 보인 종단면도,
도 2는 도 1에서 압축부를 보인 횡단면도,
도 3은 도 1에서 습동부를 설명하기 위해 회전축의 일부를 보인 정면도,
도 4는 도 1에서 배압실과 압축실 사이의 급유통로를 설명하기 위해 보인 종단면도,
도 5는 통상적인 축관통 스크롤 압축기에서 제1 압축실과 제2 압축실에 대한 체적선도를 보인 개략도,
도 6은 본 실시예에 따른 바이패스 구멍을 제1 스크롤의 일실시예를 보인 평면도,
도 7a 및 도 7b은 도 6에 따른 바이패스 구멍이 구비된 하부 압축식 스크롤 압축기에서의 제2 압축실에 대한 압력변화를 종래와 비교하여 보인 압축선도로서, 도 7a는 종래, 도 7b는 본 실시예를 보인 도면,
도 8 내지 도 10은 본 발명에 따른 바이패스 구멍에 대한 다른 실시예를 보인 평면도.
이하, 본 발명에 의한 스크롤 압축기를 첨부도면에 도시된 일 실시예에 의거하여 상세하게 설명한다.
통상, 스크롤 압축기는 흡입관이 저압부를 이루는 케이싱의 내부공간에 연통되는 저압식과, 흡입관이 압축실에 직접 연통되는 고압식으로 구분될 수 있다. 이에 따라, 저압식은 구동부가 저압부인 흡입공간에 설치되는 반면, 고압식은 구동부가 고압부인 토출공간에 설치된다. 이러한 스크롤 압축기는 구동부와 압축부의 위치에 따라 상부압축식과 하부압축식으로도 구분될 수 있는데, 압축부가 구동부보다 상측에 위치하면 상부압축식, 반대로 압축부가 구동부보다 하측에 위치하면 하부압축식이라고 한다. 이하에서는 하부 압축식 스크롤 압축기에서 회전축이 선회랩과 동일 평면상에서 중첩되는 유형의 스크롤 압축기를 대표예로 삼아 살펴본다. 이러한 유형의 스크롤 압축기는 고온 고압축비 조건의 냉동사이클에 적용하기에 적합한 것으로 알려져 있다.
도 1은 본 발명에 의한 하부 압축식 스크롤 압축기를 보인 종단면도이고, 도 2는 도 1에서 압축부를 보인 횡단면도이며, 도 3은 도 1에서 습동부를 설명하기 위해 회전축의 일부를 보인 정면도이고, 도 4는 도 1에서 배압실과 압축실 사이의 급유통로를 설명하기 위해 보인 종단면도이다.
도 1을 참조하면, 본 실시예에 의한 하부 압축식 스크롤 압축기는, 케이싱(10)의 내부에 구동모터를 이루며 회전력을 발생하는 전동부(20)가 설치되고, 전동부(20)의 하측에는 소정의 공간(이하, 중간공간)(10a)을 두고 그 전동부(20)의 회전력을 전달받아 냉매를 압축하는 압축부(30)가 설치될 수 있다.
케이싱(10)은 밀폐용기를 이루는 원통 쉘(11)과, 원통 쉘(11)의 상부를 덮어 함께 밀폐용기를 이루는 상부 쉘(12)과, 원통 쉘(11)의 하부를 덮어 함께 밀폐용기를 이루는 동시에 저유공간(10c)을 형성하는 하부 쉘(13)로 이루어질 수 있다.
원통 쉘(11)의 측면으로 냉매 흡입관(15)이 관통하여 압축부(30)의 흡입실에 직접 연통되고, 상부 쉘(12)의 상부에는 케이싱(10)의 상측공간(10b)과 연통되는 냉매 토출관(16)이 설치될 수 있다. 냉매 토출관(16)은 압축부(30)에서 케이싱(10)의 상측공간(10b)으로 토출되는 압축된 냉매가 외부로 배출되는 통로에 해당되며, 상측공간(10b)이 일종의 유분리 공간을 형성할 수 있도록 냉매 토출관(16)이 케이싱(10)의 상측공간(10b) 중간까지 삽입될 수 있다. 그리고 경우에 따라서는 냉매에 혼입된 오일을 분리하는 오일 세퍼레이터(미도시)가 상측공간(10b)을 포함한 케이싱(10)의 내부 또는 상측공간(10b) 내에서 냉매 흡입관(16)에 연결하여 설치될 수 있다.
전동부(20)는 고정자(21)와 그 고정자(21)의 안쪽에서 회전하는 회전자(22)로 이루어진다. 고정자(21)는 그 내주면에 원주방향을 따라 다수 개의 코일권선부(미부호)를 이루는 티스와 슬롯이 형성되어 코일(25)이 권선되며, 고정자(21)의 내주면과 회전자(22)의 외주면 사이의 간격과 코일권선부를 합쳐 제2 냉매유로(PG2)가 형성된다. 이로써, 후술할 제1 냉매유로(PG1)를 통해 전동부(20)와 압축부(30) 사이의 중간공간(10c)으로 토출되는 냉매는 전동부(20)에 형성되는 제2 냉매유로(PG2)를 통해 그 전동부(20)의 상측에 형성되는 상측공간(10b)으로 이동하게 된다.
그리고 고정자(21)의 외주면에는 원주방향을 따라 다수 개의 디컷(D-cut)면(21a)이 형성되며, 디컷면(21a)은 원통 쉘(11)의 내주면과의 사이에 오일이 통과하도록 제1 오일유로(PO1)가 형성될 수 있다. 이로써, 상측공간(10b)에서 냉매로부터 분리된 오일은 제1 오일유로(PO1)와 후술할 제2 오일유로(PO2)를 통해 하측공간(10c)으로 이동하게 된다.
고정자(21)의 하측에는 소정의 간격을 두고 압축부(30)를 이루는 프레임(31)이 케이싱(10)의 내주면에 고정 결합될 수 있다. 프레임(31)은 그 외주면이 원통 쉘(11)의 내주면에 열박음되거나 용접되어 고정 결합될 수 있다.
그리고 프레임(31)의 가장자리에는 환형으로 된 프레임 측벽부(제1 측벽부)(311)가 형성되고, 제1 측벽부(311)의 외주면에는 원주방향을 따라 복수 개의 연통홈(311b)이 형성될 수 있다. 이 연통홈(311b)은 후술할 제1 스크롤(32)의 연통홈(322b)과 함께 제2 오일유로(PO2)를 형성하게 된다.
또, 프레임(31)의 중심에는 후술할 회전축(50)의 메인 베어링부(51)를 지지하기 위한 제1 축수부(312)가 형성되고, 제1 축수부에는 회전축(50)의 메인 베어링부(51)가 회전 가능하게 삽입되어 반경방향으로 지지되도록 제1 축수구멍(312a)이 축방향으로 관통 형성될 수 있다.
그리고 프레임(31)의 하면에는 회전축(50)에 편심 결합된 선회스크롤(이하, 제2 스크롤)(33)을 사이에 두고 고정스크롤(이하, 제1 스크롤)(32)이 설치될 수 있다. 제1 스크롤(32)은 프레임(31)에 고정 결합될 수도 있지만, 축방향으로 이동 가능하게 결합될 수도 있다.
한편, 제1 스크롤(32)은 고정 경판부(이하, 제1 경판부)(321)가 대략 원판모양으로 형성되고, 제1 경판부(321)의 가장자리에는 프레임(31)의 하면 가장자리에 결합되는 스크롤 측벽부(이하, 제2 측벽부)(322)가 형성될 수 있다.
제2 측벽부(322)의 일측에는 냉매 흡입관(15)과 흡입실이 연통되는 흡입구(324)가 관통 형성되고, 제1 경판부(321)의 중앙부에는 토출실과 연통되어 압축된 냉매가 토출되는 토출구(325a)(325b)가 형성될 수 있다. 토출구(325a)(325b)는 후술할 제1 압축실(V1)과 제2 압축실(V2)에 모두 연통될 수 있도록 한 개만 형성될 수도 있지만, 각각의 압축실(V1)(V2)과 독립적으로 연통될 수 있도록 복수 개가 형성될 수도 있다.
그리고 제2 측벽부(322)의 외주면에는 앞서 설명한 연통홈(322b)이 형성되고, 이 연통홈(322b)은 제1 측벽부(311)의 연통홈(311b)과 함께 회수되는 오일을 하측공간(10c)으로 안내하기 위한 제2 오일유로(PO2)를 형성하게 된다.
또, 제1 스크롤(32)의 하측에는 압축실(V)에서 토출되는 냉매를 후술할 냉매유로로 안내하기 위한 토출커버(34)가 결합될 수 있다. 토출커버(34)는 그 내부공간이 토출구(325a)(325b)를 수용하는 동시에, 그 토출구(325a)(325b)를 통해 압축실(V)에서 토출된 냉매를 케이싱(10)의 상측공간(10b), 더 정확하게는 전동부(20)와 압축부(30) 사이의 공간으로 안내하는 제1 냉매유로(PG1)의 입구를 수용하도록 형성될 수 있다.
여기서, 제1 냉매유로(PG1)는 유로 분리유닛(40)의 안쪽, 즉 유로 분리유닛(40)을 기준으로 안쪽인 회전축(50)쪽에서 고정스크롤(32)의 제2 측벽부(322)와 프레임(31)의 제1 측벽부(311)를 차례로 관통하여 형성될 수 있다. 이로써, 유로 분리유닛(40)의 바깥쪽에는 앞서 설명한 제2 오일유로(PO2)가 제1 오일유로(PO1)와 연통되도록 형성된다.
그리고 제1 경판부(321)의 상면에는 후술할 선회랩(이하, 제2 랩)(33)과 맞물려 압축실(V)을 이루는 고정랩(이하, 제1 랩)(323)이 형성될 수 있다. 제1 랩(323)에 대해서는 나중에 제2 랩(332)과 함께 설명한다.
또, 제1 경판부(321)의 중심에는 후술할 회전축(50)의 서브 베어링부(52)를 지지하는 제2 축수부(326)가 형성되고, 제2 축수부(326)에는 축방향으로 관통되어 서브 베어링부(52)를 반경방향으로 지지하는 제2 축수구멍(326a)이 형성될 수 있다.
한편, 제2 스크롤(33)은 선회 경판부(이하, 제2 경판부)(331)가 대략 원판모양으로 형성될 수 있다. 제2 경판부(331)의 하면에는 제1 랩(322)과 맞물려 압축실을 이루는 제2 랩(332)이 형성될 수 있다.
제2 랩(332)은 제1 랩(323)과 함께 인볼류트 형상으로 형성될 수 있지만 그 외의 다양한 형상으로 형성될 수 있다. 예를 들어, 도 2와 같이, 제2 랩(332)은 직경과 원점이 서로 다른 다수의 원호를 연결한 형태를 가지며, 최외곽의 곡선은 장축과 단축을 갖는 대략 타원형 형태로 형성될 수 있다. 이는 제1 랩(323)도 마찬가지로 형성될 수 있다.
제2 경판부(331)의 중앙부위에는 제2 랩(332)의 내측 단부를 이루며, 후술할 회전축(50)의 편심부(53)가 회전가능하게 삽입되어 결합되는 회전축 결합부(333)가 축방향으로 관통 형성될 수 있다.
회전축 결합부(333)의 외주부는 제2 랩(332)과 연결되어 압축과정에서 제1 랩(322)과 함께 압축실(V)을 형성하는 역할을 하게 된다.
또, 회전축 결합부(333)는 제2 랩(332)과 동일 평면상에서 중첩되는 높이로 형성되어, 회전축(50)의 편심부(53)가 제2 랩(332)과 동일 평면상에서 중첩되는 높이에 배치될 수 있다. 이를 통해, 냉매의 반발력과 압축력이 제2 경판부를 기준으로 하여 동일 평면에 가해지면서 서로 상쇄되어, 압축력과 반발력의 작용에 의한 제2 스크롤(33)의 기울어짐이 방지될 수 있다.
또, 회전축 결합부(333)는 제1 랩(323)의 내측 단부와 대향되는 외주부에 후술할 제1 랩(323)의 돌기부(328)와 맞물리게 되는 오목부(335)가 형성된다. 이 오목부(335)의 일측은 압축실(V)의 형성방향을 따라 상류측에 회전축 결합부(333)의 내주부에서 외주부까지의 두께가 증가하는 증가부(335a)가 형성된다. 이는 토출 직전의 제1 압축실(V1)의 압축 경로가 길어져, 결과적으로 제1 압축실(V1)의 압축비를 제2 압축실(V2)의 압력비에 근접하게 높일 수 있게 한다. 제1 압축실(V1)은 제1 랩(323)의 내측면과 제2 랩(332)의 외측면 사이에 형성되는 압축실로서, 제2 압축실(V2)과 구분하여 나중에 설명한다.
오목부(335)의 타측은 원호 형태를 갖는 원호압축면(335b)이 형성된다. 원호압축면(335b)의 직경은 제1 랩(323)의 내측 단부 두께(즉, 토출단의 두께) 및 제2 랩(332)의 선회반경에 의해 결정되는데, 제1 랩(323)의 내측 단부 두께를 증가시키면 원호압축면(335b)의 직경이 커지게 된다. 이로 인해, 원호압축면(335b) 주위의 제2 랩 두께도 증가되어 내구성이 확보될 수 있고, 압축 경로가 길어져서 그만큼 제2 압축실(V2)의 압축비도 증가할 수 있다.
또, 회전축 결합부(333)에 대응하는 제1 랩(323)의 내측 단부(흡입단 또는 시작단) 부근에는 회전축 결합부(333)의 외주부측으로 돌출되는 돌기부(328)가 형성되는데, 돌기부(328)에는 그 돌기부로부터 돌출되어 오목부(335)와 맞물리는 접촉부(328a)가 형성될 수 있다. 즉, 제1 랩(323)의 내측 단부는 다른 부분에 비해서 큰 두께를 갖도록 형성될 수 있다. 이로 인해, 제1 랩(323) 중에서 가장 큰 압축력을 받게 되는 내측 단부의 랩 강도가 향상되어 내구성이 향상될 수 있다.
한편, 압축실(V)은 제1 경판부(321)와 제1 랩(323), 그리고 제2 랩(332)과 제2 경판부(331) 사이에 형성되며, 랩의 진행방향을 따라 흡입실, 중간압실, 토출실이 연속으로 형성되어 이루어질 수 있다.
도 2와 같이, 압축실(V)은 제1 랩(323)의 내측면과 제2 랩(332)의 외측면 사이에 형성되는 제1 압축실(V1)과, 제1 랩(323)의 외측면과 제2 랩(332)의 내측면 사이에 형성되는 제2 압축실(V2)로 이루어질 수 있다.
즉, 제1 압축실(V1)은 제1 랩(323)의 내측면과 제2 랩(332)의 외측면이 접촉하여 생기는 두 개의 접촉점(P11, P12) 사이에 형성되는 압축실을 포함하고, 제2 압축실(V2)은 제1 랩(323)의 외측면과 제2 랩(332)의 내측면이 접촉하여 생기는 두 개의 접촉점(P21, P22) 사이에 형성되는 압축실을 포함한다.
여기서, 토출 직전의 제1 압축실(V1)은 편심부의 중심, 즉 회전축 결합부의 중심(O)과 두 개의 접촉점(P11, P12)을 각각 연결한 두 개의 선이 이루는 각도 중 큰 값을 갖는 각도를 α라 할 때, 적어도 토출 개시 직전에 α < 360°이고, 두 개의 접촉점(P11, P12)에서의 법선 벡터 사이의 거리 ℓ도 0보다 큰 값을 갖게 된다.
이로 인해, 토출 직전의 제1 압축실이 인볼류트 곡선으로 이루어진 고정랩과 선회랩을 갖는 경우에 비해서 더 작은 볼륨을 갖게 되므로, 제1 랩(323)과 제2 랩(332)의 크기를 늘리지 않고도 제1 압축실(V1)의 압축비와 제2 압축실(V2)의 압축비가 모두 향상될 수 있다.
한편, 앞서 설명한 바와 같이, 제2 스크롤(33)은 프레임(31)과 고정스크롤(32) 사이에서 선회 가능하게 설치될 수 있다. 그리고 제2 스크롤(33)의 상면과 이에 대응하는 프레임(31)의 하면 사이에는 제2 스크롤(33)의 자전을 방지하는 올담링(35)이 설치되고, 올담링(35)보다 안쪽에는 후술할 배압실(S1)을 형성하는 실링부재(36)가 설치될 수 있다.
그리고 실링부재(36)의 바깥쪽에는 제2 스크롤(32)에 구비되는 급유구멍(321a)에 의해 중간압 공간을 형성하게 된다. 이 중간압 공간은 중간 압축실(V)과 연통되어 중간압의 냉매가 채워짐에 따라 배압실의 역할을 할 수 있다. 따라서, 실링부재(36)를 중심으로 안쪽에 형성되는 배압실을 제1 배압실(S1)이라고 하고, 바깥쪽에 형성되는 중간압 공간을 제2 배압실(S2)이라고 할 수 있다. 결국, 배압실(S1)은 실링부재(36)를 중심으로 프레임(31)의 하면과 제2 스크롤(33)의 상면에 의해 형성되는 공간으로, 이 배압실(S1)에 대해서는 후술할 실링부재와 함께 다시 설명한다.
한편, 유로 분리유닛(40)은 전동부(20)의 하면과 압축부(30)의 상면 사이에 형성되는 경유공간인 중간공간(10a)에 설치되어, 압축부(30)로부터 토출되는 냉매가 유분리 공간인 전동부(20)의 상측공간(10b)에서 저유공간인 압축부(30)의 하측공간(10c)으로 이동하는 오일과 간섭되는 것을 방지하는 역할을 하게 된다.
이를 위해, 본 실시예에 따른 유로 분리유닛(40)은 제1 공간(10a)을 냉매가 유동하는 공간(이하, 냉매 유동공간)과 오일이 유동하는 공간(이하, 오일 유동공간)으로 분리하는 유로 가이드를 포함한다. 유로 가이드는 그 유로 가이드 자체만으로 제1 공간(10a)을 냉매 유동공간과 오일 유동공간으로 분리할 수 있지만, 경우에 따라서는 복수 개의 유로 가이드를 조합하여 유로 가이드의 역할을 하도록 할 수도 있다.
본 실시예에 따른 유로 분리유닛은 프레임(31)에 구비되어 상향 연장되는 제1 유로 가이드(410)와, 고정자(21)에 구비되어 하향 연장되는 제2 유로 가이드(420)로 이루어진다. 제1 유로 가이드(410)와 제2 유로 가이드(420)가 축방향으로 중첩되어 중간공간(10a)이 냉매 유동공간과 오일 유동공간으로 분리될 수 있도록 한다.
여기서, 제1 유로 가이드(410)는 환형으로 제작되어 프레임(31)의 상면에 고정 결합되고, 제2 유로 가이드(420)는 고정자(21)에 삽입되어 권선코일을 절연하는 인슐레이터에서 연장 형성될 수 있다.
제1 유로 가이드(410)는 외측에서 상향 연장되는 제1 환벽부(411)와, 내측에서 상향 연장되는 제2 환벽부(412), 그리고 제1 환벽부(411)와 제2 환벽부(412) 사이를 연결하도록 반경방향으로 연장되는 환면부(413)로 이루어진다. 제1 환벽부(411)는 제2 환벽부(412)보다 높게 형성되고, 환면부(413)에는 압축부(30)에서 중간공간(10a)으로 연통되는 냉매구멍이 연통되도록 냉매통공이 형성될 수 있다.
그리고, 제2 환벽부(412)의 안쪽, 즉 회전축 방향에 밸런스 웨이트(26)가 위치하며, 밸런스 웨이트(26)는 회전자(22) 또는 회전축(50)에 결합되어 회전한다. 이때, 밸런스 웨이트(26)가 회전하면서 냉매를 교반할 수 있지만, 제2 환벽부(412)에 의해 냉매가 밸런스 웨이트(26)쪽으로 이동하는 것을 막아 냉매가 밸런스 웨이트(26)에 의해 교반되는 것을 억제할 수 있다.
제2 유로 가이드(420)는 인슐레이터의 외측에서 하향 연장되는 제1 연장부(421)와, 인슐레이터의 내측에서 하향 연장되는 제2 연장부(422)로 이루어질 수 있다. 제1 연장부(421)는 제1 환벽부(411)와 축방향으로 중첩되도록 형성되어, 냉매 유동공간과 오일 유동공간으로 분리하는 역할을 한다. 제2 연장부(422)는 필요에 따라 형성되지 않을 수도 있지만, 형성되더라도 제2 환벽부(412)와 축방향으로 중첩되지 않거나 중첩되더라도 냉매가 충분히 유동할 수 있도록 반경방향으로 충분한 간격을 두고 형성되는 것이 바람직하다.
한편, 회전축(50)은 그 상부는 회전자(22)의 중심에 압입되어 결합되는 반면 하부는 압축부(30)에 결합되어 반경방향으로 지지될 수 있다. 이로써, 회전축(50)은 전동부(20)의 회전력을 압축부(30)의 선회스크롤(33)에 전달하게 된다. 그러면 회전축(50)에 편심 결합된 제2 스크롤(33)이 제1 스크롤(32)에 대해 선회운동을 하게 된다.
회전축(50)의 하반부에는 프레임(31)의 제1 축수구멍(312a)에 삽입되어 반경방향으로 지지되도록 메인 베어링부(이하, 제1 베어링부)(51)가 형성되고, 제1 베어링부(51)의 하측에는 제1 스크롤(32)의 제2 축수구멍(326a)에 삽입되어 반경방향으로 지지되도록 서브 베어링부(이하, 제2 베어링부)(52)가 형성될 수 있다. 그리고 제1 베어링부(51)와 제2 베어링부(52)의 사이에는 회전축 결합부(333)에 삽입되어 결합되도록 편심부(53)가 형성될 수 있다.
제1 베어링부(51)와 제2 베어링부(52)는 동일 축중심을 가지도록 동축 선상에 형성되고, 편심부(53)는 제1 베어링부(51) 또는 제2 베어링부(52)에 대해 반경방향으로 편심지게 형성될 수 있다. 제2 베어링부(52)는 제1 베어링부(51)에 대해 편심지게 형성될 수도 있다.
편심부(53)는 그 외경이 제1 베어링부(51)의 외경보다는 작게, 제2 베어링부(52)의 외경보다는 크게 형성되어야 회전축(50)을 각각의 축수구멍(312a)(326a)과 회전축 결합부(333)를 통과하여 결합시키는데 유리할 수 있다. 하지만, 편심부(53)가 회전축(50)에 일체로 형성되지 않고 별도의 베어링을 이용하여 형성하는 경우에는 제2 베어링부(52)의 외경이 편심부(53)의 외경보다 작게 형성되지 않고도 회전축(50)을 삽입하여 결합할 수 있다.
그리고 회전축(50)의 내부에는 각 베어링부와 편심부에 오일을 공급하기 위한 오일공급유로(50a)가 축방향을 따라 형성될 수 있다. 오일공급유로(50a)는 압축부(30)가 전동부(20)보다 하측에 위치함에 따라 회전축(50)의 하단에서 대략 고정자(21)의 하단이나 중간 높이, 또는 제1 베어링부(31)의 상단보다는 높은 위치까지 홈파기로 형성될 수 있다. 물론, 경우에 따라서는 회전축(50)을 축방향으로 관통하여 형성될 수도 있다.
그리고 회전축(50)의 하단, 즉 제2 베어링부(52)의 하단에는 하측공간(10c)에 채워진 오일을 펌핑하기 위한 오일피더(60)가 결합될 수 있다. 오일피더(60)는 회전축(50)의 오일공급유로(50a)에 삽입되어 결합되는 오일공급관(61)과, 오일공급관(61)을 수용하여 이물질의 침입을 차단하는 차단부재(62)로 이루어질 수 있다. 오일공급관(61)은 토출커버(34)를 관통하여 하측공간(10c)의 오일에 잠기도록 위치될 수 있다.
한편, 도 3에서와 같이, 회전축(50)의 각 베어링부(51)(52)와 편심부(53)에는 오일공급유로(50a)에 연결되어 각 습동부로 오일을 공급하기 위한 습동부 급유통로(F1)가 형성된다.
습동부 급유통로(F1)는 오일공급유로(50a)에서 회전축(50)의 외주면을 향해 관통되는 복수 개의 급유구멍(511)(521)(531)과, 각 베어링부(51)(52)와 편심부(53)의 외주면에는 급유구멍(511)(521)(531)에 각각 연통되어 각 베어링부(51)(52)와 편심부(53)를 윤활하는 복수 개의 급유홈(512)(522)(532)으로 이루어진다.
예를 들어, 제1 베어링부(51)에는 제1 급유구멍(511)과 제1 급유홈(512)이, 제2 베어링부(52)에는 제2 급유구멍(521)과 제2 급유홈(522)이, 그리고 편심부(53)에는 제3 급유구멍(531)과 제3 급유홈(532)이 각각 형성된다. 제1 급유홈(512)과 제2 급유홈(522), 그리고 제3 급유홈(532)은 각각 축방향 또는 경사방향으로 길게 장홈 형상으로 형성된다.
그리고, 제1 베어링부(51)와 편심부(53)의 사이, 편심부(53)와 제2 베어링부(52)의 사이에는 각각 환형으로 된 제1 연결홈(541)과 제2 연결홈(542)이 각각 형성된다. 이 제1 연결홈(541)은 제1 급유홈(512)의 하단이 연통되고, 제2 연결홈(542)은 제2 급유홈(522)의 상단이 연결된다. 이에 따라, 제1 급유홈(512)을 통해 제1 베어링부(51)를 윤활하는 오일의 일부는 제1 연결홈(541)으로 흘러내려 모이게 되고, 이 오일은 제1 배압실(S1)로 유입되어 토출압의 배압력을 형성하게 된다. 또, 제2 급유홈(522)을 통해 제2 베어링부(52)를 윤활하는 오일과 제3 급유홈(532)을 통해 편심부(53)를 윤활하는 오일은 제2 연결홈(542)으로 모여 회전축 결합부(333)의 선단면과 제1 경판부(321) 사이를 거쳐 압축부(30)로 유입될 수 있다.
그리고 제1 베어링부(51)의 상단방향으로 흡상되는 소량의 오일은 프레임(31)의 제1 축수부(312) 상단에서 베어링면 밖으로 흘러나와 그 제1 축수부(312)를 따라 프레임(31)의 상면(31a)으로 흘러내린 후, 그 프레임(31)의 외주면(또는 상면에서 외주면으로 연통되는 홈)과 제1 스크롤(32)의 외주면에 연속으로 형성되는 오일유로(PO1)(PO2)를 통해 하측공간(10c)으로 회수된다.
아울러, 압축실(V)에서 냉매와 함께 케이싱(10)의 상측공간(10b)으로 토출되는 오일은 케이싱(10)의 상측공간(10b)에서 냉매로부터 분리되어, 전동부(20)의 외주면에 형성되는 제1 오일유로(PO1) 및 압축부(30)의 외주면에 형성되는 제2 오일유로(PO2)를 통해 하측공간(10c)으로 회수된다. 이때, 전동부(20)와 압축부(30)의 사이에는 유로 분리유닛(40)이 구비되어, 상측공간(10b)에서 냉매로부터 분리되어 하츠공간(10c)으로 이동되는 오일이 압축부(20)에서 토출되어 상측공간(10b)으로 이동하는 냉매와 간섭되어 재혼합되지 않고 서로 다른 통로[(PO1)(PO2)][(PG1)(PG2)]를 통해 각각 오일은 하측공간(10c)으로, 냉매는 상측공간(10b)으로 이동할 수 있게 된다.
한편, 제2 스크롤(33)에는 오일공급유로(50a)를 통해 흡상되는 오일을 압축실(V)로 공급하기 위한 압축실 급유통로(F2)가 형성된다. 압축실 급유통로(F2)는 앞서 설명한 습동부 급유통로(F1)에 연결된다.
압축실 급유통로(F2)는 오일공급유로(50a)와 중간압 공간을 이루는 제2 배압실(S2) 사이에 연통되는 제1 급유통로(371)와, 제2 배압실(S2)과 압축실(V)의 중간압실에 연통되는 제2 급유통로(372)로 이루어질 수 있다.
물론, 압축실 급유통로는 제2 배압실(S2)을 경유하지 않고 오일공급유로(50a)에서 중간압실로 직접 연통되도록 형성될 수도 있다. 하지만, 이 경우에는 제2 배압실(S2)과 중간압실(V)을 연통시키는 냉매유로를 별도로 구비하여야 하고, 제2 배압실(S2)에 위치하는 올담링(35)에 오일을 공급하기 위한 오일유로를 별도로 구비해야 한다. 이로 인해 통로의 개수가 많아져 가공이 복잡하게 된다. 따라서, 냉매유로와 오일유로를 단일화하여 통로의 개수를 줄이기 위해서라도 본 실시예와 같이 오일공급유로(50a)와 제2 배압실(S2)을 연통시키고, 제2 배압실(S2)을 중간압실(V)에 연통시키는 것이 바람직할 수 있다.
이를 위해, 제1 급유통로(371)는 제2 경판부(331)의 하면에서 두께방향으로 중간까지 형성되는 제1 선회통로부(371a)가 형성되고, 제1 선회통로부(371a)에서 제2 경판부(331)의 외주면을 향해 제2 선회통로부(371b)가 형성되며, 제2 선회통로부(371b)에서 제2 경판부(331)의 상면을 향해 관통되는 제3 선회통로부(371c)가 형성된다.
그리고, 제1 선회통로부(371a)는 제1 배압실(S1)에 속하는 위치에 형성되고, 제3 선회통로부(371c)는 제2 배압실(S2)에 속하는 위치에 형성된다. 그리고 제2 선회통로부(371b)에는 그 제1 급유통로(371)를 통해 제1 배압실(S1)에서 제2 배압실(S2)로 이동하는 오일의 압력을 낮출 수 있도록 감압봉(375)이 삽입된다. 이로써, 감압봉(375)을 제외한 제2 선회통로부(371b)의 단면적은 제1 선회통로부(371a) 또는 제3 선회통로부(371c)제2 선회통로부(371b)작게 형성된다.
여기서, 제3 선회통로부(371c)의 단부가 올담링(35)의 안쪽, 즉 올담링(35)과 실링부재(36)의 사이에 위치하도록 형성되는 경우에는 그 제1 급유통로(371)를 통해 이동하는 오일이 올담링(35)에 막혀 제2 배압실(S2)로 원활하게 이동하지 못하게 된다. 따라서, 이 경우에는 제3 선회통로부(371c)의 단부에서 제2 경판부(331)의 외주면을 향해 제4 선회통로부(371d)가 형성될 수 있다. 제4 선회통로부(371d)는 도 4와 같이 제2 경판부(331)의 상면에 홈으로 형성될 수도 있고, 제2 경판부(331)의 내부에 구멍으로 형성될 수도 있다.
제2 급유통로(372)는 제2 측벽부(322)의 상면에서 두께방향으로 제1 고정통로부(372a)가 형성되고, 제1 고정통로부(372a)에서 반경방향으로 제2 고정통로부(372b)가 형성되며, 제2 고정통로부(372b)에서 중간압실(V)로 연통되는 제3 고정통로부(372c)가 형성된다.
도면중 미설명 부호인 70은 어큐뮬레이터이다.
상기와 같은 본 실시예에 의한 하부 압축식 스크롤 압축기는 다음과 같이 동작된다.
즉, 전동부(20)에 전원이 인가되면, 회전자(21)와 회전축(50)에 회전력이 발생되어 회전하고, 회전축(50)이 회전함에 따라 그 회전축(50)에 편심 결합된 선회스크롤(33)이 올담링(35)에 의해 선회운동을 하게 된다.
그러면, 케이싱(10)의 외부에서 냉매 흡입관(15)을 통하여 공급되는 냉매는 압축실(V)로 유입되고, 이 냉매는 선회스크롤(33)의 선회운동에 의해 압축실(V)의 체적이 감소함에 따라 압축되어 토출구(325a)(325b)를 통해 토출커버(34)의 내부공간으로 토출된다.
그러면, 토출커버(34)의 내부공간으로 토출된 냉매는 그 토출커버(34)의 내부공간을 순환하며 소음이 감소된 후 프레임(31)과 고정자(21) 사이의 공간으로 이동하고, 이 냉매는 고정자(21)와 회전자(22) 사이의 간격을 통해 전동부(20)의 상측공간으로 이동하게 된다.
그러면, 전동부(20)의 상측공간에서 냉매로부터 오일이 분리된 후 냉매는 냉매 토출관(16)을 통해 케이싱(10)의 외부로 배출되는 반면, 오일은 케이싱(10)의 내주면과 고정자(21) 사이의 유로 및 케이싱(10)의 내주면과 압축부(30)의 외주면 사이의 유로를 통해 케이싱(10)의 저유공간인 하측공간(10c)으로 회수되는 일련의 과정을 반복한다.
이때, 하측공간(10c)의 오일은 회전축(50)의 오일공급유로(50a)를 통해 흡상되고, 이 오일은 각각의 급유구멍(511)(521)(531)과 급유홈(512)(522)(532)을 통해 제1 베어링부(51)와 제2 베어링부(52), 그리고 편심부(53)를 각각 윤활하게 된다.
이 중에서 제1 급유구멍(511)과 제1 급유홈(512)을 통해 제1 베어링부(51)를 윤활한 오일은 제1 베어링부(51)와 편심부(53) 사이의 제1 연결홈(541)으로 모이고, 이 오일은 제1 배압실(S1)로 유입된다. 이 오일은 거의 토출압을 형성하게 되어 제1 배압실(S1)의 압력도 거의 토출압을 형성하게 된다. 따라서, 제2 스크롤(33)의 중심부측은 토출압에 의해 축방향으로 지지할 수 있게 된다.
한편, 제1 배압실(S1)의 오일은 제2 배압실(S2)과의 압력차이에 의해 제1 급유통로(371)를 거쳐 제2 배압실(S2)로 이동을 하게 된다. 이때, 제1 급유통로(371)를 이루는 제2 선회통로부(371b)에는 감압봉(375)이 구비되어, 제2 배압실(S2)로 향하는 오일의 압력이 중간압으로 감압된다.
그리고, 제2 배압실(중간압 공간)(S2)로 이동하는 오일은 제2 스크롤(33)의 가장자리부를 지지하는 동시에 중간압실(V)과의 압력차이에 따라 제2 급유통로(372)를 통해 중간압실(V)로 이동하게 된다. 하지만, 압축기의 운전중에서 중간압실(V)의 압력이 제2 배압실(S2)의 압력보다 높아지게 되면 제2 급유통로(372)를 통해 중간압실(V)에서 냉매가 제2 배압실(S2)쪽으로 이동하게 된다. 다시 말해, 제2 급유통로(372)는 제2 배압실(S2)의 압력과 중간압실(V)의 압력 차이에 따라 냉매와 오일이 교차 이동하는 통로 역할을 한다.
한편, 상기와 같은 축관통 스크롤 압축기를 포함하는 대부분의 스크롤 압축기는, 냉매가 압축실로 흡입되는 과정에서 가스냉매는 물론 액냉매도 함께 흡입되어 압축되면서 과압축 손실이 발생할 수 있다. 따라서, 스크롤 압축기는 각 압축실의 중간에 바이패스 구멍을 형성하여, 액냉매를 미리 바이패스시키거나 압축되는 가스냉매의 일부를 바이패스시켜 과압축이 발생하는 것을 방지하고 있다.
하지만, 앞서 설명한 바와 같이 축관통 스크롤 압축기는, 토출구가 선회스크롤의 중심에서 편심된 위치에 형성됨에 따라, 양쪽 압축실의 압축경로 길이가 상이하게 된다. 즉, 제1 압축실은 제2 압축실에 비해 압축경로가 상대적으로 길게 형성된다. 이에 따라, 상대적으로 압축경로가 짧은 제2 압축실에서는 냉매의 유속이 빨라지면서 제1 압축실에 비해 더 크게 과압축이 발생할 수 있다. 그럼에도 불구하고, 종래에는 제1 압축실과 제2 압축실에 각각 형성되는 바이패스 구멍의 크기와 위치를 대칭되게 형성함에 따라, 과압축 손실을 효과적으로 감소시키는데 한계가 있었다.
이를 감안하여, 본 발명에서는 제1 압축실과 제2 압축실에 각각 형성되는 바이패스 구멍의 크기와 위치를 각 압축실의 압축 기울기에 따라 상이하게 형성함으로써 압축 기울기가 큰 압축실에서의 과압축 손실을 효과적으로 저감시키고 이를 통해 압축기 효율을 높이고자 하는 것이다.
이를 도 5 내지 도 10을 참조하여 상세하게 살펴본다. 먼저, 도 5는 통상적인 축관통 스크롤 압축기에서 제1 압축실과 제2 압축실에 대한 체적선도를 보인 개략도이다.
도 5에서와 같이, 제1 압축실(V1)의 체적이 압축개시각에서 토출완료각까지 완만하게 감소되는 반면, 제2 압축실(V2)의 체적은 압축개시각에서 대략 토출개시각까지는 제1 압축실(V1)과 같은 기울기로 완만하게 감소하다가 대략 토출개시각을 지나면서부터 토출완료각까지는 제1 압축실(V1)에 비해 더 큰 기울기로 급격하게 감소하는 것을 볼 수 있다.
이는, 제2 압축실(V2)의 체적은 제1 압축실(V1)의 체적에 비해 작으면서도 대략 토출개시각 부근에서부터 더 큰 기울기로 감소하게 되는 것을 알 수 있다. 이로 인해 체적에 반비례하는 압력은 제1 압축실(V1)에 비해 제2 압축실(V2)에서 급격하게 증가할 수 있으며, 제2 압축실(V2)에서는 제1 압축실(V1)에 비해 과압축 손실이 더 크게 발생할 수 있다는 것을 알 수 있다.
따라서, 본 실시예서는 제1 압축실(V1)과 제2 압축실(V2)의 각 경로를 따라 적어도 한 개 이상(더 정확하게는 복수 개)의 바이패스 구멍을 형성하되, 앞서 설명한 토출개시각 또는 체적이 급격하게 감소하여 압축 기울기가 급증하는 특정각(Φ)에서 토출완료각까지의 범위에서는 제1 압축실(V1)에 속하는 바이패스 구멍(이하, 제1 바이패스 구멍)보다 제2 압축실(V2)에 속하는 바이패스 구멍(이하, 제2 바이패스 구멍)의 전체 단면적을 더 크게 형성할 수 있다. 이를 위해, 해당 범위에서 제2 압축실(V2)에 속하는 바이패스 구멍의 내경을 제1 압축실(V1)에 속하는 바이패스 구멍의 내경에 비해 더 크게 하거나 또는 개수를 많게 할 수 있다.
물론, 흡입완료각에서 앞서 설명한 특정각(Φ)까지는 제1 압축실(V1)과 제2 압축실(V2)의 각 압축경로를 따라 제1 바이패스 구멍과 제2 바이패스 구멍이 거의 동일한 각도에서 거의 동일한 크기(또는, 개수)로 형성될 수도 있다.
하지만, 제2 압축실(V2)의 압축경로가 제1 압축실(V1)의 압축경로보다 짧아, 제1 랩의 바깥쪽 끝단인 흡입단을 기준으로 할 때 제2 압축실(V2)의 두 번째 바이패스 구멍(이를, "군" 또는 "바이패스부'라고 할 수 있다)이 앞서 설명한 특정각(Φ) 이후에 위치하게 될 수 있다. 이 경우에는 특정각(Φ)에서 토출완료각도까지의 범위에서는 제2 바이패스 구멍이 제1 바이패스 구멍보다 단면적이 크게 형성될 수 있다.
즉, 전체적으로는 제1 바이패스 구멍의 전체 단면적과 제2 바이패스 구멍의 전체 단면적은 동일하게 형성되지만, 앞서 설명한 바와 같이 흡입완료각에서 특정각(Φ)까지의 범위에서는 제1 바이패스 구멍의 전체 단면적이 제2 바이패스 구멍의 전체 단면적보다 크게 형성된다. 이에 따라, 특정각(Φ)에서 토출완료각까지의 범위에서는 앞서 설명한 범위에서는 반대로 제2 바이패스 구멍의 전체 단면적이 제1 바이패스 구멍의 전체 단면적보다 크게 형성될 수 있다.
도 6은 본 실시예에 따른 바이패스 구멍을 제1 스크롤의 일실시예를 보인 평면도이다. 이에 도시된 바와 같이, 예를 들어, 바이패스 구멍이 각 압축실(V1)(V2)의 압축경로를 따라 임의의 회전각만큼의 간격을 두고 각각 3개의 지점에 형성되며, 각 지점마다 바이패스 구멍[(381a)(381b)(381c)][(382a)(382b)(382c)]이 3개씩 형성되어 제1 압축실(V1)과 제2 압축실(V2)에 각각 총 9개씩의 바이패스 구멍이 형성될 수 있다.
여기서, 각 지점에 형성되는 3개의 바이패스 구멍[(381a)(381b)(381c)]을 각각 바이패스 구멍군이라고 하여, 각 토출구(325a)(325b)를 중심으로 그 각 토출구(325a)(325b)에서 가까운 바이패스 구멍군에서 멀어지는 바이패스 구멍군을 각각 제1 압축실의 제1 군(BP11) 및 제2 압축실의 제1 군(BP21), 제1 압축실의 제2 군(BP12) 및 제2 압축실의 제2 군(BP22), 제1 압축실의 제3 군(BP13) 및 제2 압축실의 제3 군(BP23)이라고 하며, 제1 군들(BP11)(BP21)과 제2 군들(BP12)(BP22) 사이의 각 회전각 간격을 제1 내측간격(G11) 및 제1 외측간격(G21), 제2 군들(BP12)(BP22)과 제3 군들(BP13)(BP23) 사이의 회전각 간격을 제2 내측간격(G12) 및 제2 외측간격(G22)이라고 할 때, 제1 압축실(V1)에서 제1 내측간격(G11)보다 제2 압축실(V2)에서의 제1 외측간격(G21)이 현저하게 좁게 형성될 수 있다.
이에 따라, 제1 바이패스 구멍[(381a)(381b)(381c)]의 경우에는 제1 군(BP11)만 토출용 바이패스 구멍에 해당하고, 제2 군(BP12)과 제3 군(BP13)은 액냉매 배출용 바이패스 구멍에 해당할 수 있다. 반면, 제2 바이패스 구멍[(382a)(382b)(382c)]의 경우에는 제1 군(BP21)과 제2 군(BP22)이 토출용 바이패스 구멍에 해당하고, 제3 군(BP23)만 액냉매 배출용 바이패스 구멍에 해당할 수 있다.
이를 통해, 앞서 설명한 특정각(Φ)에서 토출완료각(0°)까지의 범위내에는 제2 바이패스 구멍(또는 제2 바이패스 구멍군)의 전체 단면적이 더 크게 형성되면서, 제2 압축실(V2)에서 상대적으로 크게 발생되는 과압축 손실을 효과적으로 낮출 수 있다.
도 7a 및 도 7b은 도 6에 따른 바이패스 구멍이 구비된 하부 압축식 스크롤 압축기에서의 제2 압축실에 대한 압력변화를 종래와 비교하여 보인 압축선도로서, 도 7a는 종래, 도 7b는 본 실시예를 보인 도면이다.
도 7a에 도시된 바와 같이, 종래의 제2 압축실(V2)에 대한 실제 압축선도를 보면, 이론 압축선도에 비해 토출압력(Pd) 이상으로 압축되는 소위 과압축 손실이 크게 발생하는 것을 볼 수 있다.
하지만, 앞서 도 6에 도시된 본 실시예와 같이 토출측에 위치하는 토출용 바이패스 구멍들 사이를 좁게 형성하는 경우에는 과압축되는 냉매가 짧은 시간에 바이패스되면서 도 7b와 같이 제2 압축실(V2)에서의 과압축 손실이 현저하게 낮아질 수 있다.
이렇게, 제1 압축실(V1)과 제2 압축실(V2) 중에서 압축 기울기가 큰 제2 압축실(V2)에 속하는 제2 바이패스 구멍의 전체 단면적이 압축 기울기가 작은 제1 압축실(V1)에 속하는 제1 바이패스 구멍의 전체 단면적보다 크게 형성됨으로써, 제2 압축실(V2)에서의 과압축을 방지하여 압축기의 전체 효율을 향상시킬 수 있다.
한편, 본 발명에 의한 스크롤 압축기에서 바이패스 구멍에 대한 다른 실시예가 있는 경우는 다음과 같다. 즉, 본 실시예에서는 바이패스 구멍의 위치는 전술한 실시예와 동일하게 형성할 수 있으나, 바이패스 구멍의 크기 또는 개수를 다르게 형성하여 압축 기울기가 큰 제2 압축실에 대한 과압축 손실을 더욱 효과적으로 줄일 수 있다. 도 8 내지 도 10은 이들 실시예를 보인 도면들이다.
예를 들어, 도 8에서와 같이, 제2 바이패스 구멍[(382a)(382b)(382c)] 중에서 제2 압축실측 토출구(이하, 제2 토출구)(325b)에 인접한 제1 군(또는, 제1 바이패스부)(382c) 또는/및 제2 군(또는, 제2 바이패스부)(382b)에 속하는 각 제2 바이패스 구멍의 크기(d2)는 제1 바이패스 구멍[(381a)(381b)(381c)] 중에서 제1 압축실측 토출구(이하, 제1 토출구)(325a)에 인접한 제1 군(또는, 제1 바이패스부)(381c)에 속하는 각 제1 바이패스 구멍의 크기(d1)보다 크게 형성될 수 있다.
이에 따라, 토출측, 즉 앞서 설명한 특정각(Φ)에서 토출완료각까지의 범위내에 위치하는 각 압축실(V1)(V2)의 바이패스 구멍들중에서 제2 압축실(V2)에 속하는 제2 바이패스 구멍들[(382a)(382b)(382c)]의 전체 단면적이 제1 압축실(V1)에 속하는 제1 바이패스 구멍들[(381a)(381b)(381c)]의 전체 단면적보다 크게 되어, 제2 압축실(V2)의 압축 기울기가 제1 압축실(V1)의 압축 기울기보다 상대적으로 커지더라도 제2 압축실(V2)에서의 바이패스되는 냉매량이 제1 압축실(V1)에서 바이패스량보다 많아지게 된다. 이를 통해 상대적으로 과압축 손실이 더 큰 제2 압축실에서의 과압축 손실을 효과적으로 줄여 전체 압축기 효율이 향상될 수 있다.
한편, 도 9와 같이, 앞서 설명한 특정각(Φ)에서 토출완료각까지의 범위내에서 제2 바이패스 구멍 중에서 제1 군 또는/및 제2 군에 속하는 바이패스 구멍[(382b)(382c)]의 개수를 제1 바이패스 구멍 중에서 제1 군에 속하는 바이패스 구멍(381c)의 개수보다 많게 형성될 수 있다.
이 경우, 제1 바이패스 구멍(381c)의 크기와 제2 바이패스 구멍[(382b)(382c)]의 크기는 동일하게 형성할 수도 있지만, 앞선 도 8의 실시예와 같이 제2 바이패스 구멍[(382b)(382c)]의 크기(d2)가 제1 바이패스 구멍(381c)의 크기(d1)보다 크게 형성될 수도 있다. 물론, 이와는 반대로, 제1 바이패스 구멍(381c)의 크기(d1)가 제2 바이패스 구멍[(382b)(382c)]의 크기(d2)보다 크게 형성될 수도 있지만, 이 경우에는 적어도 상기한 범위내에서 제2 바이패스 구멍[(382b)(382c)]의 전체 단면적이 제1 바이패스 구멍(381c)의 전체 단면적보다 크게 형성되어야 제2 압축실(V2)에서의 과압축 손실을 줄일 수 있다.
상기와 같이 상기한 범위내에서의 제2 바이패스 구멍[(382b)(382c)]의 개수가 제1 바이패스 구멍(381c)의 개수보다 많이 형성되는 경우, 제2 바이패스 구멍[(382b)(382c)]의 전체 단면적이 제1 바이패스 구멍(381a)의 전체 단면적보다 크게 형성되면서 제2 압축실(V2)에서의 과압축 손실을 줄이는 효과는 전술한 실시예들과 동일하다. 하지만, 본 실시예의 경우는 바이패스 구멍의 크기를 적정하게, 즉 랩의 두께보다 크지 않게 유지하면서도 제2 바이패스 구멍의 전체 단면적을 확대할 수 있어 앞선 도 8의 실시예보다 가공측면에서 유리할 수 있다.
한편, 도 10과 같이 상기 범위내에서 제1 바이패스 구멍(381c)은 한 개, 제2 바이패스 구멍[(382b)(382c)]은 두 개가 형성되는 것과 같이 제1 압축실(V1)과 제2 압축실(V2)에서의 바이패스 구멍의 개수를 서로 다르게 형성될 수 있다.
즉, 본 실시예는 전술한 실시예들과 달리 3개의 바이패스 구멍을 일정 간격을 두고 연속하여 낱개로 형성하지 않고, 3개 또는 그 이상의 바이패스 구멍을 서로 연결하여 장공 형상으로 형성하는 것이다. 이 경우 동일한 면적에 더 넓은 바이패스 구멍을 형성할 수 있어 과압축 손실을 막고 토출구에서의 유로저항을 줄여 압축 효율을 더욱 높일 수 있다.
10 : 케이싱 20 : 전동부
30 : 압축부 31 : 프레임
32 : 제1 스크롤 323 : 제1 랩
325a,325b : 제1,2 토출구 33 : 제2 스크롤
332 : 제2 랩 371 : 제1 급유통로
372 : 제2 급유통로 40 : 유로 분리유닛
381, 381a,381b,381c : 제1 바이패스 구멍(바이패스부)
382, 382a,382b,382c : 제2 바이패스 구멍(바이패스부)
50 : 회전축 50a : 오일공급유로
51 : 제1 베어링부 52 : 제2 베어링부
53 : 편심부 G11,G12 : 제1,2 내측간격
G21,G22 : 제1,2 외측간격 V : 압축실
Vm : 중간압실 Vs : 흡입실

Claims (20)

  1. 토출구가 형성되며, 상기 토출구를 향해 연속으로 이동하는 두 개 한 쌍의 압축실이 형성되고, 상기 양쪽 압축실에는 각각의 압축실의 이동경로를 따라 복수 개의 바이패스부가 각각의 간격을 두고 형성되며, 상기 양쪽 압축실의 압축 기울기가 서로 다르게 형성되는 스크롤 압축기에서,
    상기 양쪽 압축실중에서 상대적으로 압축 기울기가 작은 쪽의 압축실을 제1 압축실, 압축 기울기가 큰 쪽을 제2 압축실이라고 하고, 상기 제1 압축실에 속하는 바이패스부를 제1 바이패스부, 상기 제2 압축실에 속하는 바이패스부를 제2 바이패스부라고 할 때,
    상기 제2 바이패스부는 상기 토출구에 인접한 바이패스부 사이의 간격이 가장 작게 형성되는 것을 특징으로 하는 스크롤 압축기.
  2. 제1항에 있어서,
    상기 제1 바이패스부의 전체 단면적과 상기 제2 바이패스부의 전체 단면적은 서로 동일하게 형성되는 것을 특징으로 하는 스크롤 압축기.
  3. 제1항에 있어서,
    상기 제1 바이패스부와 제2 바이패스부는 각각 복수 개의 바이패스 구멍으로 이루어지고,
    상기 각 바이패스부는 서로 동일한 개수의 바이패스 구멍으로 이루어지는 것을 특징으로 하는 스크롤 압축기.
  4. 제1항에 있어서,
    상기 제1 바이패스부의 개수와 상기 제2 바이패스부는 각각 복수 개의 바이패스 구멍으로 이루어지고,
    상기 각 바이패스 구멍의 단면적은 모두 동일하게 형성되는 것을 특징으로 하는 스크롤 압축기.
  5. 제1항에 있어서,
    상기 제2 바이패스부의 전체 단면적은 상기 제1 바이패스부의 전체 단면적보다 크게 형성되는 것을 특징으로 하는 스크롤 압축기.
  6. 제1항에 있어서,
    상기 제1 바이패스부와 제2 바이패스부는 각각 복수 개의 바이패스 구멍으로 이루어지고,
    상기 제2 바이패스부는 상기 제1 바이패스부에 비해 바이패스 구멍의 개수가 더 많게 형성되는 것을 특징으로 하는 스크롤 압축기.
  7. 제1항에 있어서,
    상기 토출구는 복수 개가 구비되어, 상기 각 압축실에 독립적으로 연통되도록 형성되는 것을 특징으로 하는 스크롤 압축기.
  8. 제1 경판부의 일측면에 제1 랩이 형성되고, 상기 제1 랩의 안쪽 단부 부근에는 상기 제1 경판부를 두께방향으로 관통하는 토출구가 상기 제1 경판부의 중심에 대해 편심지게 형성되며, 상기 제1 랩의 내측면을 따라 복수 개의 위치에 복수 개의 제1 바이패스 구멍이, 상기 제1 랩의 외측면을 따라 복수 개의 위치에 복수 개의 제2 바이패스 구멍이 각각 정해진 간격을 두고 상기 제1 랩의 내측면과 외측면 사이에서 제1 경판부를 두께방향으로 관통하여 형성되는 제1 스크롤;
    제2 경판부의 일측면에는 상기 제1 랩과 맞물리는 제2 랩이 형성되고, 상기 제1 스크롤에 대해 선회운동을 하면서 상기 제1 랩의 내측면은 상기 제2 랩의 외측면과의 사이에 제1 압축실을, 상기 제1 랩의 외측면은 상기 제2 랩의 내측면과의 사이에 제2 압축실을 각각 형성하는 제2 스크롤; 및
    상기 제2 랩과 반경방향으로 중첩되도록 상기 제2 스크롤의 중심부를 관통하여 결합되도록 편심부를 가지는 회전축;을 포함하고,
    상기 제1 압축실에 속하는 바이패스 구멍을 제1 바이패스부, 상기 제2 압축실에 속하는 바이패스 구멍을 제2 바이패스부라고 하며, 상기 제1 바이패스부 중에서 상기 토출구로부터 가장 인접한 바이패스부와 그 바이패스부로부터 인접한 다음 바이패스부 사이의 간격을 제1 내측간격, 상기 제2 바이패스부 중에서 상기 토출구로부터 가장 인접한 바이패스부와 그 바이패스부로부터 인접한 다음 바이패스부 사이의 간격을 제1 외측간격이라고 할 때,
    상기 제1 외측간격은 상기 제1 내측간격보다 좁게 형성되는 것을 특징으로 하는 스크롤 압축기.
  9. 제8항에 있어서,
    상기 제1 바이패스부와 제2 바이패스부는 각각 적어도 두 개 이상의 바이패스 구멍이 연속으로 형성되어 이루어지며,
    상기 한 개의 바이패스부에 속하는 바이패스 구멍의 개수는 각각의 군마다 동일하게 형성되는 것을 특징으로 하는 스크롤 압축기.
  10. 제8항에 있어서,
    상기 제1 바이패스부와 제2 바이패스부는 각각 적어도 두 개 이상의 바이패스 구멍이 연속으로 형성되어 이루어지며,
    상기 한 개의 바이패스부에 속하는 바이패스 구멍의 각 단면적은 동일하게 형성되는 것을 특징으로 하는 스크롤 압축기.
  11. 제8항에 있어서,
    상기 제2 압축실에 속하는 바이패스 구멍의 개수는 상기 제1 압축실에 속하는 바이패스 구멍보다 더 많은 것을 특징으로 하는 스크롤 압축기.
  12. 제8항에 있어서,
    상기 제2 압축실에 속하는 전체 바이패스 구멍의 단면적은 상기 제1 압축실에 속하는 전체 바이패스 구멍의 단면적에 비해 크게 형성되는 것을 특징으로 하는 스크롤 압축기.
  13. 제8항에 있어서, 상기 토출구는,
    상기 제1 압축실에 연통되는 제1 토출구; 및
    상기 제2 압축실에 연통되는 제2 토출구;로 이루어지는 것을 특징으로 하는 스크롤 압축기.
  14. 내부공간에 오일이 저장되는 케이싱;
    상기 케이싱의 내부공간에 구비되는 구동모터;
    상기 구동모터에 결합되는 회전축;
    상기 구동모터의 하측에 구비되는 프레임;
    상기 프레임의 하측에 구비되고, 제1 경판부의 일측면에 제1 랩이 형성되며, 상기 제1 랩의 중심쪽 단부 부근에 토출구가 형성되며, 상기 제1 랩의 내측면 주변에는 제1 바이패스 구멍이, 외측면 주변에는 제2 바이패스 구멍이 각각 적어도 한 개 이상씩 형성되고, 상기 제1 바이패스 구멍과 제2 바이패스 구멍은 상기 제1 랩의 형성방향을 따라 간격을 두고 형성되는 제1 스크롤; 및
    상기 프레임과 제1 스크롤 사이에 구비되며, 제2 경판부의 일측면에는 상기 제1 랩과 맞물리는 제2 랩이 형성되고, 상기 회전축이 상기 제2 랩과 반경방향으로 중첩되도록 편심 결합되며, 상기 제1 스크롤에 대해 선회운동을 하면서 그 제1 스크롤과의 사이에 두 개 한 쌍의 압축실을 형성하는 제2 스크롤;을 포함하고,
    상기 제1 랩의 안쪽 끝단에서 그 제1 랩을 따라 회전각이 180°이내의 범위내에서는 상기 제2 바이패스 구멍의 전체 단면적이 상기 제1 바이패스 구멍의 전체 단면적보다 크게 형성되는 것을 특징으로 하는 스크롤 압축기.
  15. 제14항에 있어서,
    상기 제1 바이패스 구멍의 전체 단면적과 상기 제2 바이패스구멍의 전체 단면적은 동일하게 형성되는 것을 특징으로 하는 스크롤 압축기.
  16. 제14항에 있어서,
    상기 제2 바이패스 구멍의 전체 단면적은 상기 제1 바이패스구멍의 전체 단면적보다 크게 형성되는 것을 특징으로 하는 스크롤 압축기.
  17. 제14항에 있어서,
    상기 제1 바이패스 구멍의 전체 개수와 상기 제2 바이패스 구멍의 전체 개수는 동일하게 형성되는 것을 특징으로 하는 스크롤 압축기.
  18. 제14항에 있어서,
    상기 범위내에서는 상기 제2 바이패스 구멍의 개수는 상기 제1 바이패스 구멍의 개수에 비해 더 많게 형성되는 것을 특징으로 하는 스크롤 압축기.
  19. 제14항에서 있어서,
    상기 두 개 한 쌍의 압축실 중에서 상기 제1 바이패스 구멍이 포함되는 압축실을 제1 압축실, 상기 제2 바이패스 구멍이 포함되는 압축실을 제2 압축실이라고 할 때,
    상기 제2 압축실의 압축 기울기가 상기 제1 압축실의 압축 기울기에 비해 크게 형성되는 것을 특징으로 하는 스크롤 압축기.
  20. 제19항에서 있어서, 상기 토출구는,
    상기 제1 압축실에 연통되는 제1 토출구; 및
    상기 제2 압축실에 연통되는 제2 토출구;로 이루어지는 것을 특징으로 하는 스크롤 압축기.
KR1020170074856A 2017-06-14 2017-06-14 스크롤 압축기 KR102379671B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020170074856A KR102379671B1 (ko) 2017-06-14 2017-06-14 스크롤 압축기
CN201880039040.3A CN110741163B (zh) 2017-06-14 2018-04-16 涡旋式压缩机
PCT/KR2018/004377 WO2018230827A1 (ko) 2017-06-14 2018-04-16 스크롤 압축기
EP18171091.4A EP3415765B1 (en) 2017-06-14 2018-05-07 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170074856A KR102379671B1 (ko) 2017-06-14 2017-06-14 스크롤 압축기

Publications (2)

Publication Number Publication Date
KR20180136210A true KR20180136210A (ko) 2018-12-24
KR102379671B1 KR102379671B1 (ko) 2022-03-28

Family

ID=62134126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170074856A KR102379671B1 (ko) 2017-06-14 2017-06-14 스크롤 압축기

Country Status (4)

Country Link
EP (1) EP3415765B1 (ko)
KR (1) KR102379671B1 (ko)
CN (1) CN110741163B (ko)
WO (1) WO2018230827A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621461B2 (ja) * 2009-10-14 2014-11-12 パナソニック株式会社 スクロール圧縮機
KR20140136795A (ko) * 2013-05-21 2014-12-01 엘지전자 주식회사 스크롤 압축기
KR20160020190A (ko) * 2014-08-13 2016-02-23 엘지전자 주식회사 스크롤 압축기

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217690A (ja) * 1996-02-14 1997-08-19 Matsushita Electric Ind Co Ltd スクロール気体圧縮機
US5855475A (en) * 1995-12-05 1999-01-05 Matsushita Electric Industrial Co., Ltd. Scroll compressor having bypass valves
JP3591101B2 (ja) * 1995-12-19 2004-11-17 ダイキン工業株式会社 スクロール形流体機械
JP3942784B2 (ja) * 2000-01-17 2007-07-11 松下電器産業株式会社 スクロール圧縮機
US7278832B2 (en) * 2004-01-07 2007-10-09 Carrier Corporation Scroll compressor with enlarged vapor injection port area
US7972125B2 (en) * 2008-05-30 2011-07-05 Emerson Climate Technologies, Inc. Compressor having output adjustment assembly including piston actuation
US7976296B2 (en) * 2008-12-03 2011-07-12 Emerson Climate Technologies, Inc. Scroll compressor having capacity modulation system
KR101056882B1 (ko) * 2009-01-07 2011-08-12 엘지전자 주식회사 스크롤 압축기
JP5396235B2 (ja) * 2009-10-26 2014-01-22 日立アプライアンス株式会社 スクロール圧縮機
GB2503718B (en) * 2012-07-05 2014-06-18 Edwards Ltd Scroll pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5621461B2 (ja) * 2009-10-14 2014-11-12 パナソニック株式会社 スクロール圧縮機
KR20140136795A (ko) * 2013-05-21 2014-12-01 엘지전자 주식회사 스크롤 압축기
KR20160020190A (ko) * 2014-08-13 2016-02-23 엘지전자 주식회사 스크롤 압축기

Also Published As

Publication number Publication date
WO2018230827A1 (ko) 2018-12-20
EP3415765B1 (en) 2021-04-14
CN110741163B (zh) 2022-04-26
KR102379671B1 (ko) 2022-03-28
CN110741163A (zh) 2020-01-31
EP3415765A1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
US10132314B2 (en) Scroll compressor
KR102365394B1 (ko) 스크롤 압축기
US11739752B2 (en) Scroll compressor with bypass portions
KR20180115174A (ko) 스크롤 압축기
KR20180124633A (ko) 스크롤 압축기
EP3553318B1 (en) Scroll compressor
KR20160017539A (ko) 스크롤 압축기
KR20170122011A (ko) 스크롤 압축기
KR20170122020A (ko) 스크롤 압축기
KR102303544B1 (ko) 스크롤 압축기
KR102318124B1 (ko) 스크롤 압축기
JP4512479B2 (ja) スクロール圧縮機
KR20180136210A (ko) 스크롤 압축기
KR102232428B1 (ko) 압축기
KR20130031737A (ko) 스크롤 압축기
KR102338129B1 (ko) 스크롤 압축기
CN219795558U (zh) 涡旋式压缩机
KR102318123B1 (ko) 스크롤 압축기
EP4321756A1 (en) Scroll compressor
KR20220148003A (ko) 스크롤 압축기
US20190309749A1 (en) Motor operated compressor

Legal Events

Date Code Title Description
A201 Request for examination
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant