KR20180116318A - 가속도 및 정밀도 제어된 물질 배출 - Google Patents
가속도 및 정밀도 제어된 물질 배출 Download PDFInfo
- Publication number
- KR20180116318A KR20180116318A KR1020187026508A KR20187026508A KR20180116318A KR 20180116318 A KR20180116318 A KR 20180116318A KR 1020187026508 A KR1020187026508 A KR 1020187026508A KR 20187026508 A KR20187026508 A KR 20187026508A KR 20180116318 A KR20180116318 A KR 20180116318A
- Authority
- KR
- South Korea
- Prior art keywords
- tube
- hollow tube
- rotating
- shaft
- motor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C5/00—Devices or accessories for generating abrasive blasts
- B24C5/06—Impeller wheels; Rotor blades therefor
- B24C5/068—Transferring the abrasive particles from the feeding means onto the propeller blades, e.g. using central impellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41B—WEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
- F41B3/00—Sling weapons
- F41B3/04—Centrifugal sling apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/1004—Structural association with clutches, brakes, gears, pulleys or mechanical starters with pulleys
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Spinning Or Twisting Of Yarns (AREA)
- Winding, Rewinding, Material Storage Devices (AREA)
- Developing Agents For Electrophotography (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Air Transport Of Granular Materials (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
- Cleaning In General (AREA)
Abstract
회전 운동은 물질의 속도를 발생시키고, 타이(tie) 물질이 회전하는 시스템으로부터 방출되어 투사체가 되고, 후속 충돌이 절단, 마모, 화학물질의 혼합, 코팅 및 다른 표면 및 운동량 전달을 포함하는 대용적(bulk volume) 효과를 초래할 수 있다. 구조 및 장치는 물질을 회전하는 장치 내로 삽입하기 위해 사용된다. 회전하는 장치 내부에 있는 동안, 물질은 속도를 얻는다. 회전하는 시스템으로부터 정지 표면으로의 전이는 궤적, 공기 유동 및 표면 마감을 정지 표면 및 고정된 정지 안내 튜브로, 그리고, 궁극적으로 충돌 지점으로의 물질의 전이시 에너지 손실을 감소시키도록 선택함으로써 최소의 속도 손실로 달성된다. 정지되어 있거나 회전하는 단일 및 다수의 도관이 사용되어 복합적 화학 및 물리 효과를 달성한다.
Description
관련 출원에 대한 상호 참조
본 PCT 출원은 2016년 2월 14일자로 출원된 미국 가출원 제62/295,129호에 대한 우선권을 주장한다.
기술 분야
본 발명은 회전 시스템으로부터의 가속도 및 정밀도 제어된 물질 배출에 관련한다.
기계는 원심력에 기인하여 물질을 가속시킬 수 있다. 산업 혁명시 몇몇 디자인이 개발되었다. 물리학 교범은 이들 원리를 교시한다. 무수한 수천의 디자인들이 매일 사용된다. 선회(gyrating) 구조를 포함하여, 다른 가속 운동 또한 물질에 속도를 유도할 수 있다. 압력 하의 유체는 물질을 가속시킬 수 있으며, 종래의 샌드-블래스터가 일 예이다. 유체 부류는 물질 가속의 이러한 넓은 영역에 포함된다.
물질의 회전은 반경방향 가속을 발생시킨다. 회전하는 물질의 임의의 부분이 회전하는 물질의 잔여부로부터 분리되는 경우, 이때, 중심력은 더 이상 분리된 물질에 대한 반경방향 가속요인이 아니다. 분리되고 나면, 물질은 여전히 적용되는 모든 힘에 기초한 궤적을 따르게 되며, 고전적 대기중 투사체에 대해, 이러한 힘의 일 후보는 공기 저항이다. 반경방향 힘으로부터 분리된 순간에, 분리된 물질의 순간적 속도는 반경방향 힘에 관한 탄젠트이다.
기초 물리학 학급의 학생은 '구체가 달린 줄'을 사용하여 이 개념을 배우며, 여기서, 정의되지 않은 메커니즘이 줄(string)을 '절단'한다(교수 개념). 구체가 반경방향 힘으로부터 분리되는 순간에, 구체의 초기 접선방향 운동이 정의된다. 구체가 멈추게 될 때까지, 충돌 및 대기 유도 손실과 중력이 구체의 위치, 속도 및 가속도의 변화를 주도할 것이다. 중심력(회전축)으로부터 가장 먼 줄의 단부에 부착된 구체의 초기 속도는 단순히 경로의 원주와 회전 주파수의 곱이다. 예로서, 스트링 길이가 3 feet(구체의 치수 무시)이고 초당 10 회전이 이루어지는 경우(10 Hz), 이때, 순간 속도는 주파수 '10'의 3π배이다. (3)*(3.14)*(10) = 94.2 feet/sec.
줄이 중공 튜브로 대체될 수 있으며, 물질은 중공 튜브 내부에 끼워진 임의의 오브젝트일 수 있다. 고전적 실험은 중공 관, 래치 및 물질이 원하는 주파수로 회전할 때까지 중공 튜브 내부의 소정의 임의의 위치(초기에, 회전축으로부터 가장 원거리의 위치에) 물질을 보유하는 래칭 메커니즘을 갖는 것이다. 안정적 주파수가 되면, 래치는 물질을 방출하고, 물질은 회전축으로부터의 접선으로 정의된(순간) 궤적으로 이격 방향으로 이동한다. 이러한 실험은 줄 실험의 구체와 거의 동일하다.
래칭된 물질의 위치가 회전축을 향해 내향 이동되는 경우, 물질은 중공 튜브의 내부 표면 상으로 방출된다. 중공 튜브가 반경방향 힘을 받고 있기 때문에, 물질 상에 부여되는 힘이 존재할 것이다.
중공 튜브 내부의 임의의 시작 위치가 주어지면, 가장 간단한 수준의 운동 방정식으로 물질의 출구 속도에 대한 반경방향 힘의 영향의 성능의 충분한 추산치를 제공할 수 있다. 물질이 위치되는 중공 튜브의 내부 표면을 따라서, 순간 속도와 반경방향 가속도 벡터가 정의될 수 있다. 중공 튜브가 무한한 수의 얇은 링으로 이루어지는 것으로 고려하면, 이때, 관의 가장 원거리의 '얇은 링'의 속도 및 가속도는 회전축에 더 근접한 '얇은 링'보다 더 크다.
미끄럼 마찰은 명목상 중공 튜브 내부의 물질에 대한 유효 수직 항력(effective normal force)의 천분율이다. 구름 마찰은 통상적으로 미끄럼 마찰보다 더 작다. 공기 저항 또한 작으며, 그 이유는 회전 구조 내부의 국소 공기 물질이 국소 공기 물질과 중공 튜브의 내부 표면 사이의 충돌로 인해 동일한 방식으로 가속되기 때문이다. 주파수의 미소한 변화도 마찬가지로 발생한다. 주파수 변화의 원인은 가변 물질 분포 및 구동력 동요를 포함한다.
물질이 회전하는 기준 프레임으로부터 비회전 프레임으로 투사될 때, 최초 물리적 접촉과 연관된 에너지 손실이 존재할 것이다. 전이 역학(transition mechanics)(물리학 개념)에 따르면, 물질은 비회전 프레임 상으로 "매끄럽게" 횡단할 수 있거나 최초 접촉시 반동된다. 반동은 명목상 '접선'(회전하는 시스템으로부터의 분리 순간의)으로부터 새로운 궤적으로의 물질 변화 궤적을 초래한다.
하나의 물질이 다른 물질과 상호작용할 때 절단 및 마모가 발생할 수 있다. 양쪽 물질은 이동할 수 있지만, 더 통상적인 개념은 하나의 정지 물질이 제2 이동 물질에 의해 영향을 받는 것으로서 정의된다.
충돌시 오브젝트에 힘을 인가하는 물질을 가속시키는 공압, 유압, 누드랄릭(pneudralic), 화학, 코일링된(저장된) 에너지 및 선회 방법을 사용하는 것을 포함하는 일부 용례를 위한 방법이 존재한다. 예로서, 주조소에서의 주물을 세정하기 위해 또는 구별불가한 패턴으로 샷-블라스트 물질을 투사하기 위해 회전 기계가 사용된다.
샌드-블라스팅은 마모를 수행하기 위해 일련의 복잡한 관계를 사용한다. 정지 물질은 고정되어 마모 물질이 정지 물질을 이동시키는 것을 방지한다 -- 보전 법칙. 모래 및 공기가 혼합된다. 가스 압력은 국소 공기가 더 높은 압력의 구역으로부터 더 낮은 압력의 구역으로 이동하게 하여 작은 모래 입자 물질 위로 공기의 유동을 발생시킨다. 이들 작은 모래 입자는 공기에 동반되고, 이동 공기 물질에 합류하여 조합된 공기/모래 혼합물을 생성한다. 이동하는 공기 및 모래는 정지 물질로 지향되어 충돌(마모)을 야기한다. 공기가 아닌 오브젝트의 물질(모래 대신 돌)이 공기 유동에 포획되기에 너무 큰 경우, 이때, 단지 공기만이 정지 물질에 충돌한다.
극도로 높은 속도의 물은 금속 같은 더 경질의 표면을 절단할 수 있다. 고압 시스템은 물을 작은 출구 개구를 통해 밀어낸다.
절단 도구 또한 가속된 물질을 사용할 수 있다. 체인 톱이 일반적으로 사용되며, 금속 절단 톱니는 회전하는 샤프트에 의해 이동된다. 절단 톱니의 비원형 운동은 절단 톱니에 부착된 체인의 운동을 구속하는 경로에 의해 규정된다. 블레이드가 회전하는 모터에 직접적으로 부착되는 원형 톱도 최신 기술을 반영한다.
다수의 화학적 분사 코팅 장치가 세계 전역에서 판매되고 있다. 일부 장치는 그 전달 시스템의 일부로서 조합된 화학물질을 제공한다. 명목상 가압된 용기가 사용되어 분사된 화학물질을 이동시킨다. 가압된 가스가 팽창되고 나면, 화학물질의 도포가 정지된다. 펌프가 가압된 시스템에 필요한 가압된 가스를 공급하여 화학물질 전달을 거의 연속적으로 유지할 수 있다.
본 발명은 회전 시스템으로부터의 물질의 가속도 및 정밀도 제어된 배출에 관한 것이다. 물질 또는 물질들은 세정, 절단, 에칭, 소거(clearing), 파괴, 절제, 버어제거, 매체 블라스팅, 연마, 보링(boring), 천공, 포기(aerating), 배치(emplacing), 굴착(excavating), 전개, 마모, 화학물질 혼합, 코팅 및 기타 표면 및 대용적(bulk volume) 효과를 수행할 수 있다. 본 발명은 또한 간단한 운동량 전달을 제공할 수 있다.
본 기술 분야의 숙련자는 첨부 도면 및 양호한 실시예에 대한 다음의 상세한 설명의 검토를 통해 본 발명의 다른 목적 및 장점을 명백히 알 수 있을 것이다.
도 1의 스피닝 튜브 및 스피닝 삽입 튜브는 장치(100)를 도시하며, 여기서, 구동 샤프트(104)는 스피닝 튜브(101) 및 스피닝 삽입 튜브(102)의 회전 운동을 야기한다. 스피닝 튜브(101)는 출구 포트(103)를 가지며 여기서 물질이 회전하는 구조를 벗어나고, 정지 표면인 고정된 구조(110) 상에 '포획'된다. 이 도면에서 실린더 형상 구조인 고정된 구조의 더 상세한 부분은 명료성을 위해 이 도면에서 생략되어 있다. 고정된 구조(110)의 세부사항은 도 1c 및 도 1d에 도시되어 있다. 물질은 호퍼(106)에 저장되고, 스피닝 삽입 튜브(102) 내로의 진입 이전에 물질 유동 계량 시스템(105) 내로 유동한다. 이러한 구성에서, 도 1에 도시된 바와 같이, 유동은 스피닝 튜브(101)의 두 단부 중 하나로만 이루어지며, 이는 스피닝 삽입 튜브(102)의 방향에 의해 결정된다. 스피닝 삽입 튜브 내의 임의의 물질은 속도를 가지고, 따라서, 규정된 유동 방향을 갖는다.
구동 샤프트(104)는 샤프트로서 도시되어 있지만, 이 샤프트에 연결된 소정 특성의 모터가 존재한다. 한가지 구성은 직접 구동 전기 모터이며, 따라서, 실제 구동 샤프트는 단지 전기 모터의 인터페이스 구성요소일 뿐이다. 다른 구성은 트럭이나 트랙터 같은 이동 차량의 모터로부터의 동력 취출 장치이다. 이들 양자 모두는 산업계에 알려져 있으며, 회전을 야기하기 위한 자명한 수단으로서 생략되어 있다. 다른 구동 샤프트 파워 트레인이 사용될 수 있다. 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(120)는 조립체의 잔여부 모두를 보유하는 수납체에 부착되거나 그로부터 떨어져 있을 수 있다. 보상되지 않은 각 운동량은 물질을 카운터-스피닝함으로써 또는 전체 장치를 대형 오브젝트(예로서, 콘크리트 패드)에 볼트결합함으로써 또는 양자 모두에 의해 제어될 수 있다.
물질 유동 계량 시스템(105)은 어떠한 전자장치도 없이 순수 기계적일 수 있다. 삽입 튜브 내로 물질을 계량하기 위해 순수 기계적 디자인을 사용하는 구성에서, 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(120)는 실제로 단지 모터 및 모터 전자장치이다.
시계방향(CW) 또는 반시계방향(CCW) 회전은 도 1에 도시된 스피닝 튜브(101)를 위한 수용가능한 회전 방향이다. 회전 방향은 스피닝 튜브(101)의 형상에 의해 제한될 수 있다. 곡률을 갖는 튜브는 CW 또는 CCW 회전에 대한 선호도를 가질 것이다.
동작시, 구동 샤프트(104)는 분당 회전수(RPM)가 상승될 것이며, 이는 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(120)에 의해 제어된다. 원하는 RPM에 도달한 이후, 모터 및 물질 유동 계량 시스템 전자장치(120)는 물질 유동 계량 시스템(105)으로부터 스피닝 삽입 튜브(102)내로, 그리고, 결국, 스피닝 튜브(101) 내로의 물질 유동(일명 매체 게이팅)에 관여하게 될 것이다. 매체 게이팅은 구멍 또는 나선형 활송로를 갖는 회전하는 디스크일 수 있다. 모터와 유사하게, 게이팅 장치에 대한 선택사항은 본 기술 분야에 공지되어 있다. 물질 유동 계량 시스템(105)이 순수 기계적이고, 물질의 유동을 작동시키기 위해 전기 신호가 사용되지 않는 경우, 이때, 게이트는 필요한 RPM이 도달되고 나면 개방된다.
도 1b의 스피닝 튜브 및 이중-포트형 스피닝 삽입 튜브는 도 1의 장치(100)와 매우 유사한 장치(150)를 도시한다. 두 가지 변경사항이 장치(150)를 장치(100)로부터 구별한다; 장치(150)는 이중-포트 스피닝 삽입 튜브(152)를 갖는 반면 장치(100)는 단일 포트 스피닝 삽입 튜브(102)를 갖고, 결과적으로, 장치(150)는 두 개의 출구 포트(151, 157)를 가지며, 이 두 개의 출구 포트는 스피닝 튜브(151)의 각 단부에 하나씩 있다. 이중 포트 스피닝 삽입 튜브(152) 내로의 물질(매체)의 게이팅은 도 1에 도시된 구성의 빈도의 두 배일 것이다. 스피닝 삽입 튜브의 단일 물질 유형의 이중 포트 버전이 구성될 수 있거나, 두 개의 포트는 상이한 물질, 예컨대, 반응성 화학물질이 독립적으로 가속되고 반응이 필요할 때까지 격리되는 것을 가능하게 하도록 규정될 수 있다.
장치(150)는 또한 호퍼(156), 구동 샤프트(154), 고정된 구조(160), 물질 유동 계량 시스템(155) 및 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(170)를 갖는다. 이들 기능 요소는 장치(100)의 동일한 명칭의 요소의 균등물과 동일하거나 유사하다.
도 1c의 고정된 구조에서, 장치(130)는 도 1의 오브젝트(110) 및 도 1b의 오브젝트(160)의 더 상세한 표현이다. 이들 예에 대해, 고정된 구조(130)는 실린더이다. 고정된 구조(130)의 단지 일부만 만곡된 표면을 가질 필요가 있다. 고정된 구조(130)는 물질을 위한 안내부로서 역할을 하고, 이동하는 구조가 기계적 장애를 갖는 경우 격납 체적으로서 작용한다. 두 개의 표면인 실린더의 내부 표면(162)과 외부 표면(161)이 나타나 있다. 내부 표면(162) 상에는 개구인 내부 표면 출구(163)가 존재하고, 이는 안내 튜브(164)에 연결되어 있다. 안내 튜브(164)는 수납체를 초과하여 연장한다.
동작시, 스피닝 튜브는 물질을 가속하고, 물질은 스피닝 튜브를 벗어난다. 이 물질은 내부 표면(162) 상으로 전달된다. 적절한 타이밍으로, 물질이 내부 표면(162)에 전달되고, 그래서, 물질은 단지 잠시만 내부 표면(162) 상에 존재할 것이다. 최악의 경우의 타이밍 시나리오는 내부 표면 출구(163)를 통해 내부 표면(162)을 벗어나기 전에 360도(내부 표면 출구는 범위가 수 도임)보다 미소하게 작도록 내부 표면(162) 상에서 물질이 미끄러지는 것이다. 내부 표면 출구(163)는 안내 튜브(164)의 일 단부이다. 도 1c에서, 안내 튜브(164)는 고정된 구조(130)의 이면측에 부착되며, 점선은 '은닉된 모습' 효과를 반영한다.
도 1d의 고정된 구조 내부 표면 '162'는 롤링되지 않은 내부 표면(162)이다. 내부 표면 출구(163)는 타원 형상으로 도시되어 실린더의 내부로부터의 모습을 반영한다. 안내 튜브(164)는 내부 표면(162) 뒤에 있다는 것을 반영하기 위해 점선이다. 두 개의 새로운 특징부는 안내 레일(165, 166)이다. 안내 레일(165, 166)은 각을 이루지만, 안내 튜브(164)와 동일선상에 있을 수 있다. 안내 레일(165, 166)은 도 1에서 스피닝 튜브(101)의 외경보다 큰 거리만큼 서로 분리되어 있고, 내부 표면(162) 상에서 이격되어 스피닝 튜브와 간섭하지 않는다.
도 2의 스피닝 튜브 및 비-스피닝 삽입 튜브(측면도)(200)는 스피닝 튜브 내로 물질을 삽입하는 다른 수단을 도시한다. 장치(100, 150)와는 달리, 이 장치는 정지 삽입 튜브(202)를 갖는다. 삽입 튜브(202)는 회전하는 구동 샤프트(204)에 연결되지 않는다. 모터 및 제어 전자장치는 도 1 및 도 1b에 이미 도시되어 있다. 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치는 명료성을 위해 생략되어 있지만, 이들 기능은 필요하다. 물질은 정지 튜브(202)를 벗어나 스피닝 튜브(201)에 진입하고, 스피닝 튜브(201)의 단부로 가속되고 위치(203)에서 빠져나온다.
고정된 구조에 대한 더 많은 세부사항은 명료성을 위해 도 2에서 생략되어 있으며, 이들 고정된 구조 세부사항은 도 1c의 고정된 구조 및 도 1d의 고정된 구조 내부 표면 '162'에 포함되어 있다.
물질은 호퍼(206)에 저장되고, 정지 삽입 튜브(202)에 진입하기 이전에 물질 유동 계량 시스템(205) 내로 유동한다. 이러한 구성에서, 유동은 단지 스피닝 튜브(201)의 두 단부 중 하나로만 이루어지며, 샤프트(204)에 의해 규정되는 회전축에 관한 삽입 튜브(202)의 오프셋에 의해 결정된다. 물질 유동 계량 시스템(205)은 정지 삽입 튜브(202) 내로의 물질(매체)의 게이팅을 위해 소정의 기계적 이동 수단을 필요로 하며, 이 물질(매체)은 회전 샤프트(204) 또는 다른 작동기(이들 도면에는 정의되어 있지 않음)에 의해 공급될 수 있다.
동작시, 구동 샤프트(204)는 분당회전수(RPM)가 상승될 것이고, 이는 도시되지 않은 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치에 의해 제어된다. 원하는 RPM에 도달한 이후, 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치는 물질 유동 계량 시스템(205)으로부터 정지 삽입 튜브(202) 내로, 그리고, 결국 스피닝 튜브(201)내로의 물질(일명 매체)의 유동에 관여한다. 게이팅의 정확한 구현은 구멍 또는 나선형 활송로를 갖는 회전하는 디스크를 포함할 수 있다. 모터와 유사하게, 게이팅 장치는 본 기술 분야에 공지되어 있다.
도 2b의 2개의 도면인 스피닝 튜브(201)-인덱싱됨-은 스피닝 튜브(201)의 세그먼트의 두 개의 도면을 도시한다. 스피닝 튜브(201)의 이러한 부분들은 '201X'로 표시되어 있다. 양 도면은 문자 'A'를 갖는 인덱스가 부여되어 두 도면(605, 606) 사이의 90도 회전을 반영하고 있다. 인덱스 'A'를 갖는 도면(605)에서, 물질(매체)이 삽입 튜브(202)(도 2에서 정의된 바와 같음)로부터 스피닝 튜브(201) 내로 떨어지는 개구(607)가 명료히 도시되어 있다. 90도 회전 이후, 인덱스 'A'로 정의된 바와 같은 아래의 도면(606)에서 볼 수 있는 바와 같이, 인덱스 'A'를 갖는 위의 도면(605)에 비해, 개구(608)는 관찰 형태로 인해 덜 명확하다.
도 3의 급송 및 저장부를 갖는 스피닝 튜브(상면도)(300)는 두 개의 대향하는 스피닝 튜브(301A, 301B)의 상면도이고, 이는 중앙 구동 샤프트(304), 호퍼(306) 및 물질 유동 계량 시스템(305)을 갖는다. 스피닝 튜브(301A)의 출구(303)에는 추가적 구조인 핀(315A)이 존재한다. 핀(315A)은 두 가지 목적의 역할을 한다. 핀(315A)은 고정된 구조 내부 표면(310)으로의 물질의 전이를 용이하게 하기 위한 국소 공기(대기)의 유동을 생성한다. 핀(315A)은 또한 물질이 고정된 구조 내부 표면(310) 상으로의 전이에 실패하는 경우에 차폐부로서 작용한다. 동일한 핀(315B)이 스피닝 튜브(301B) 상에 위치된다. 스피닝 튜브(301B)의 출구(307)는 핀(315B)에 인접한다. 고정된 구조 출구(312)는 고정된 구조 출구(312)에서 국소 접선을 나타내는 화살표와 함께 도시되어 있다. 고정된 구조 출구(312)는 수납체를 초과하여 연장한다. 고정된 구조(309)는 음영처리되어 있으며, 정의된 주연 에지, 최내측 에지(311) 및 최외측 에지(310)의 내부 표면을 갖는다. 물질은 스피닝 튜브 출구(307, 303)로부터 고정된 구조(309), 최외측 에지(310)의 내부 표면 상으로 전이된다. 도 3b 및 도 3c는 고정된 구조(309)의 더 많은 세부사항을 제공할 것이다.
도 3b의 고정된 구조 상면도 및 측면도는 고정된 구조의 두 개의 도면이다. 고정된 구조의 구성은 긴 중공 튜브를 취하여 이를 원으로 굴곡시킴으로써 달성될 수 있다. 원 형상을 완성한 이후, '내부' 벽의 일부가 절단 제거되어 문자 'C'와 유사한 단면 형상을 남기게 된다. 도 3에서, 표면(310, 311)은 고정된 구조의 체적의 에지이다.
고정된 구조 내부 표면(310), 핀(315A), 스피닝 튜브(301A), 출구 포트(303), 장치(325)의 측면도인 도 3c는 도 3의 일부의 확대 측면도이다. 도 3c에서, 고정된 구조의 단면 형상은 문자 'C'와 유사하게 보인다. 스피닝 튜브(301A)는 출구 포트(303)에서 종결된다. 더 어두운 굵게 그려진 구조(315A)는 스피닝 튜브(301A)에 부착된 핀이다. 핀(315A)은 도 3에 도시된 바와 같이 출구 포트(303)를 차단하지 않는다.
장치(400)가 도 4의 만곡된 스피닝 튜브 시스템에 도시되어 있다. 스피닝 튜브(401, 402, 403, 404) 각각은 도면부호가 표시된 출구(401E, 402E, 403E, 404E)를 각각 갖는다. 모터 샤프트(414)는 회전 방향을 반영한다. 호퍼(416)가 도시되어 있으며, 물질 유동 계량 시스템(415)도 마찬가지이다. 큰 '화살표'(422)는 고정된 구조 출구에서의 비행체의 접선을 나타내며, 이는 수납체를 초과하여 연장한다. 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(444)는 이 구조의 다른 특징부이다. 고정된 구조(409)는 두 개의 표면을 갖는 것으로 도시되어 있으며, 이들은 최내측 에지(411) 및 최외측 에지(410)의 내부 표면이다.
장치(560)가 도 5의 만곡된 스피닝 튜브 시스템 - 고정된 구조 없음 -에 도시되어 있다. 장치(560)는 장치(560)에서 고정된 구조가 없다는 것을 제외하면 장치(400)와 거의 동일하다. 고정된 구조(409)는 장치(400)에서 그 주연부(410, 411)에 의해 규정되는 요소이다. 장치(560)의 모든 특징부는 고정된 표면 상으로의 물질 전이까지 장치(400)와 정확히 동일하게 동작한다. 장치(560)에 고정된 구조가 존재하지 않기 때문에, 물질은 안내 튜브(582)에 진입할 때까지 스피닝 튜브(561E, 562E, 563E, 564E)의 출구로부터 비행한다. 안내 튜브(582)는 수납체를 초과하여 연장한다. 이 장치는 타이밍에 민감하며, 안내 튜브(582)로의 입구에 도달하지 못하는 임의의 물질은 수납체 내부 표면에 충돌할 것이다.
장치(670)가 도 6의 만곡된 스피닝 튜브 시스템 - 부분적 고정된 구조 -에 도시되어 있다. 장치(670)는 '원형' 또는 '360도' 고정된 구조와 고정된 구조 없음 사이의 혼성형이다. 구별되는 특징은 고정된 구조(609)의 원호이며, 이는 그 최내측 에지(611) 및 그 최외측 에지(610)의 그 내부 표면을 갖는다. 장치(670)는 전체 360도 회전을 커버하는 고정된 구조를 갖는 임의의 장치에 비해 구성이 더 용이할 수 있다. 장치(670) 동작은 타이밍 오류에 민감할 것이지만, 장치(560)보다는 더 많은 허용범위를 제공한다.
도 7의 대형 스피닝 튜브 내부의 다중 튜브는 회전하는 튜브 개념의 두 가지 버전을 도시한다. 도 7의 아래 부분은 도 1b 스피닝 튜브(151), 이중-포트 스피닝 삽입 튜브(152) 및 물질 유동 계량 시스템(155)으로부터 복사되어 있다. 도 7에서, 이들은 스피닝 튜브(701), 이중-포트 스피닝 삽입 튜브(702) 및 물질 유동 계량 시스템(703)으로 표시되어 있다. 도 7의 위쪽 부분은 대형 튜브 내부의 6개의 더 작은 튜브(701A-F) 및 단일 삽입 튜브 내부의 6개의 별개의 삽입 튜브(702A-F)를 도시하고, 물질 유동 계량 시스템으로부터의 6개 포트(703A-F, 701A-F, 702A-F, 703A-F)는 우측을 향하는 거울상 구성요소를 갖는다(이들은 명료성을 위해 도시되지 않음).
구동 샤프트(104)는 샤프트로서 도시되어 있지만, 이 샤프트에 연결된 소정 특성의 모터가 존재한다. 한가지 구성은 직접 구동 전기 모터이며, 따라서, 실제 구동 샤프트는 단지 전기 모터의 인터페이스 구성요소일 뿐이다. 다른 구성은 트럭이나 트랙터 같은 이동 차량의 모터로부터의 동력 취출 장치이다. 이들 양자 모두는 산업계에 알려져 있으며, 회전을 야기하기 위한 자명한 수단으로서 생략되어 있다. 다른 구동 샤프트 파워 트레인이 사용될 수 있다. 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(120)는 조립체의 잔여부 모두를 보유하는 수납체에 부착되거나 그로부터 떨어져 있을 수 있다. 보상되지 않은 각 운동량은 물질을 카운터-스피닝함으로써 또는 전체 장치를 대형 오브젝트(예로서, 콘크리트 패드)에 볼트결합함으로써 또는 양자 모두에 의해 제어될 수 있다.
물질 유동 계량 시스템(105)은 어떠한 전자장치도 없이 순수 기계적일 수 있다. 삽입 튜브 내로 물질을 계량하기 위해 순수 기계적 디자인을 사용하는 구성에서, 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(120)는 실제로 단지 모터 및 모터 전자장치이다.
시계방향(CW) 또는 반시계방향(CCW) 회전은 도 1에 도시된 스피닝 튜브(101)를 위한 수용가능한 회전 방향이다. 회전 방향은 스피닝 튜브(101)의 형상에 의해 제한될 수 있다. 곡률을 갖는 튜브는 CW 또는 CCW 회전에 대한 선호도를 가질 것이다.
동작시, 구동 샤프트(104)는 분당 회전수(RPM)가 상승될 것이며, 이는 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(120)에 의해 제어된다. 원하는 RPM에 도달한 이후, 모터 및 물질 유동 계량 시스템 전자장치(120)는 물질 유동 계량 시스템(105)으로부터 스피닝 삽입 튜브(102)내로, 그리고, 결국, 스피닝 튜브(101) 내로의 물질 유동(일명 매체 게이팅)에 관여하게 될 것이다. 매체 게이팅은 구멍 또는 나선형 활송로를 갖는 회전하는 디스크일 수 있다. 모터와 유사하게, 게이팅 장치에 대한 선택사항은 본 기술 분야에 공지되어 있다. 물질 유동 계량 시스템(105)이 순수 기계적이고, 물질의 유동을 작동시키기 위해 전기 신호가 사용되지 않는 경우, 이때, 게이트는 필요한 RPM이 도달되고 나면 개방된다.
도 1b의 스피닝 튜브 및 이중-포트형 스피닝 삽입 튜브는 도 1의 장치(100)와 매우 유사한 장치(150)를 도시한다. 두 가지 변경사항이 장치(150)를 장치(100)로부터 구별한다; 장치(150)는 이중-포트 스피닝 삽입 튜브(152)를 갖는 반면 장치(100)는 단일 포트 스피닝 삽입 튜브(102)를 갖고, 결과적으로, 장치(150)는 두 개의 출구 포트(151, 157)를 가지며, 이 두 개의 출구 포트는 스피닝 튜브(151)의 각 단부에 하나씩 있다. 이중 포트 스피닝 삽입 튜브(152) 내로의 물질(매체)의 게이팅은 도 1에 도시된 구성의 빈도의 두 배일 것이다. 스피닝 삽입 튜브의 단일 물질 유형의 이중 포트 버전이 구성될 수 있거나, 두 개의 포트는 상이한 물질, 예컨대, 반응성 화학물질이 독립적으로 가속되고 반응이 필요할 때까지 격리되는 것을 가능하게 하도록 규정될 수 있다.
장치(150)는 또한 호퍼(156), 구동 샤프트(154), 고정된 구조(160), 물질 유동 계량 시스템(155) 및 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(170)를 갖는다. 이들 기능 요소는 장치(100)의 동일한 명칭의 요소의 균등물과 동일하거나 유사하다.
도 1c의 고정된 구조에서, 장치(130)는 도 1의 오브젝트(110) 및 도 1b의 오브젝트(160)의 더 상세한 표현이다. 이들 예에 대해, 고정된 구조(130)는 실린더이다. 고정된 구조(130)의 단지 일부만 만곡된 표면을 가질 필요가 있다. 고정된 구조(130)는 물질을 위한 안내부로서 역할을 하고, 이동하는 구조가 기계적 장애를 갖는 경우 격납 체적으로서 작용한다. 두 개의 표면인 실린더의 내부 표면(162)과 외부 표면(161)이 나타나 있다. 내부 표면(162) 상에는 개구인 내부 표면 출구(163)가 존재하고, 이는 안내 튜브(164)에 연결되어 있다. 안내 튜브(164)는 수납체를 초과하여 연장한다.
동작시, 스피닝 튜브는 물질을 가속하고, 물질은 스피닝 튜브를 벗어난다. 이 물질은 내부 표면(162) 상으로 전달된다. 적절한 타이밍으로, 물질이 내부 표면(162)에 전달되고, 그래서, 물질은 단지 잠시만 내부 표면(162) 상에 존재할 것이다. 최악의 경우의 타이밍 시나리오는 내부 표면 출구(163)를 통해 내부 표면(162)을 벗어나기 전에 360도(내부 표면 출구는 범위가 수 도임)보다 미소하게 작도록 내부 표면(162) 상에서 물질이 미끄러지는 것이다. 내부 표면 출구(163)는 안내 튜브(164)의 일 단부이다. 도 1c에서, 안내 튜브(164)는 고정된 구조(130)의 이면측에 부착되며, 점선은 '은닉된 모습' 효과를 반영한다.
도 1d의 고정된 구조 내부 표면 '162'는 롤링되지 않은 내부 표면(162)이다. 내부 표면 출구(163)는 타원 형상으로 도시되어 실린더의 내부로부터의 모습을 반영한다. 안내 튜브(164)는 내부 표면(162) 뒤에 있다는 것을 반영하기 위해 점선이다. 두 개의 새로운 특징부는 안내 레일(165, 166)이다. 안내 레일(165, 166)은 각을 이루지만, 안내 튜브(164)와 동일선상에 있을 수 있다. 안내 레일(165, 166)은 도 1에서 스피닝 튜브(101)의 외경보다 큰 거리만큼 서로 분리되어 있고, 내부 표면(162) 상에서 이격되어 스피닝 튜브와 간섭하지 않는다.
도 2의 스피닝 튜브 및 비-스피닝 삽입 튜브(측면도)(200)는 스피닝 튜브 내로 물질을 삽입하는 다른 수단을 도시한다. 장치(100, 150)와는 달리, 이 장치는 정지 삽입 튜브(202)를 갖는다. 삽입 튜브(202)는 회전하는 구동 샤프트(204)에 연결되지 않는다. 모터 및 제어 전자장치는 도 1 및 도 1b에 이미 도시되어 있다. 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치는 명료성을 위해 생략되어 있지만, 이들 기능은 필요하다. 물질은 정지 튜브(202)를 벗어나 스피닝 튜브(201)에 진입하고, 스피닝 튜브(201)의 단부로 가속되고 위치(203)에서 빠져나온다.
고정된 구조에 대한 더 많은 세부사항은 명료성을 위해 도 2에서 생략되어 있으며, 이들 고정된 구조 세부사항은 도 1c의 고정된 구조 및 도 1d의 고정된 구조 내부 표면 '162'에 포함되어 있다.
물질은 호퍼(206)에 저장되고, 정지 삽입 튜브(202)에 진입하기 이전에 물질 유동 계량 시스템(205) 내로 유동한다. 이러한 구성에서, 유동은 단지 스피닝 튜브(201)의 두 단부 중 하나로만 이루어지며, 샤프트(204)에 의해 규정되는 회전축에 관한 삽입 튜브(202)의 오프셋에 의해 결정된다. 물질 유동 계량 시스템(205)은 정지 삽입 튜브(202) 내로의 물질(매체)의 게이팅을 위해 소정의 기계적 이동 수단을 필요로 하며, 이 물질(매체)은 회전 샤프트(204) 또는 다른 작동기(이들 도면에는 정의되어 있지 않음)에 의해 공급될 수 있다.
동작시, 구동 샤프트(204)는 분당회전수(RPM)가 상승될 것이고, 이는 도시되지 않은 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치에 의해 제어된다. 원하는 RPM에 도달한 이후, 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치는 물질 유동 계량 시스템(205)으로부터 정지 삽입 튜브(202) 내로, 그리고, 결국 스피닝 튜브(201)내로의 물질(일명 매체)의 유동에 관여한다. 게이팅의 정확한 구현은 구멍 또는 나선형 활송로를 갖는 회전하는 디스크를 포함할 수 있다. 모터와 유사하게, 게이팅 장치는 본 기술 분야에 공지되어 있다.
도 2b의 2개의 도면인 스피닝 튜브(201)-인덱싱됨-은 스피닝 튜브(201)의 세그먼트의 두 개의 도면을 도시한다. 스피닝 튜브(201)의 이러한 부분들은 '201X'로 표시되어 있다. 양 도면은 문자 'A'를 갖는 인덱스가 부여되어 두 도면(605, 606) 사이의 90도 회전을 반영하고 있다. 인덱스 'A'를 갖는 도면(605)에서, 물질(매체)이 삽입 튜브(202)(도 2에서 정의된 바와 같음)로부터 스피닝 튜브(201) 내로 떨어지는 개구(607)가 명료히 도시되어 있다. 90도 회전 이후, 인덱스 'A'로 정의된 바와 같은 아래의 도면(606)에서 볼 수 있는 바와 같이, 인덱스 'A'를 갖는 위의 도면(605)에 비해, 개구(608)는 관찰 형태로 인해 덜 명확하다.
도 3의 급송 및 저장부를 갖는 스피닝 튜브(상면도)(300)는 두 개의 대향하는 스피닝 튜브(301A, 301B)의 상면도이고, 이는 중앙 구동 샤프트(304), 호퍼(306) 및 물질 유동 계량 시스템(305)을 갖는다. 스피닝 튜브(301A)의 출구(303)에는 추가적 구조인 핀(315A)이 존재한다. 핀(315A)은 두 가지 목적의 역할을 한다. 핀(315A)은 고정된 구조 내부 표면(310)으로의 물질의 전이를 용이하게 하기 위한 국소 공기(대기)의 유동을 생성한다. 핀(315A)은 또한 물질이 고정된 구조 내부 표면(310) 상으로의 전이에 실패하는 경우에 차폐부로서 작용한다. 동일한 핀(315B)이 스피닝 튜브(301B) 상에 위치된다. 스피닝 튜브(301B)의 출구(307)는 핀(315B)에 인접한다. 고정된 구조 출구(312)는 고정된 구조 출구(312)에서 국소 접선을 나타내는 화살표와 함께 도시되어 있다. 고정된 구조 출구(312)는 수납체를 초과하여 연장한다. 고정된 구조(309)는 음영처리되어 있으며, 정의된 주연 에지, 최내측 에지(311) 및 최외측 에지(310)의 내부 표면을 갖는다. 물질은 스피닝 튜브 출구(307, 303)로부터 고정된 구조(309), 최외측 에지(310)의 내부 표면 상으로 전이된다. 도 3b 및 도 3c는 고정된 구조(309)의 더 많은 세부사항을 제공할 것이다.
도 3b의 고정된 구조 상면도 및 측면도는 고정된 구조의 두 개의 도면이다. 고정된 구조의 구성은 긴 중공 튜브를 취하여 이를 원으로 굴곡시킴으로써 달성될 수 있다. 원 형상을 완성한 이후, '내부' 벽의 일부가 절단 제거되어 문자 'C'와 유사한 단면 형상을 남기게 된다. 도 3에서, 표면(310, 311)은 고정된 구조의 체적의 에지이다.
고정된 구조 내부 표면(310), 핀(315A), 스피닝 튜브(301A), 출구 포트(303), 장치(325)의 측면도인 도 3c는 도 3의 일부의 확대 측면도이다. 도 3c에서, 고정된 구조의 단면 형상은 문자 'C'와 유사하게 보인다. 스피닝 튜브(301A)는 출구 포트(303)에서 종결된다. 더 어두운 굵게 그려진 구조(315A)는 스피닝 튜브(301A)에 부착된 핀이다. 핀(315A)은 도 3에 도시된 바와 같이 출구 포트(303)를 차단하지 않는다.
장치(400)가 도 4의 만곡된 스피닝 튜브 시스템에 도시되어 있다. 스피닝 튜브(401, 402, 403, 404) 각각은 도면부호가 표시된 출구(401E, 402E, 403E, 404E)를 각각 갖는다. 모터 샤프트(414)는 회전 방향을 반영한다. 호퍼(416)가 도시되어 있으며, 물질 유동 계량 시스템(415)도 마찬가지이다. 큰 '화살표'(422)는 고정된 구조 출구에서의 비행체의 접선을 나타내며, 이는 수납체를 초과하여 연장한다. 모터, 모터 전자장치 및 물질 유동 계량 시스템 전자장치(444)는 이 구조의 다른 특징부이다. 고정된 구조(409)는 두 개의 표면을 갖는 것으로 도시되어 있으며, 이들은 최내측 에지(411) 및 최외측 에지(410)의 내부 표면이다.
장치(560)가 도 5의 만곡된 스피닝 튜브 시스템 - 고정된 구조 없음 -에 도시되어 있다. 장치(560)는 장치(560)에서 고정된 구조가 없다는 것을 제외하면 장치(400)와 거의 동일하다. 고정된 구조(409)는 장치(400)에서 그 주연부(410, 411)에 의해 규정되는 요소이다. 장치(560)의 모든 특징부는 고정된 표면 상으로의 물질 전이까지 장치(400)와 정확히 동일하게 동작한다. 장치(560)에 고정된 구조가 존재하지 않기 때문에, 물질은 안내 튜브(582)에 진입할 때까지 스피닝 튜브(561E, 562E, 563E, 564E)의 출구로부터 비행한다. 안내 튜브(582)는 수납체를 초과하여 연장한다. 이 장치는 타이밍에 민감하며, 안내 튜브(582)로의 입구에 도달하지 못하는 임의의 물질은 수납체 내부 표면에 충돌할 것이다.
장치(670)가 도 6의 만곡된 스피닝 튜브 시스템 - 부분적 고정된 구조 -에 도시되어 있다. 장치(670)는 '원형' 또는 '360도' 고정된 구조와 고정된 구조 없음 사이의 혼성형이다. 구별되는 특징은 고정된 구조(609)의 원호이며, 이는 그 최내측 에지(611) 및 그 최외측 에지(610)의 그 내부 표면을 갖는다. 장치(670)는 전체 360도 회전을 커버하는 고정된 구조를 갖는 임의의 장치에 비해 구성이 더 용이할 수 있다. 장치(670) 동작은 타이밍 오류에 민감할 것이지만, 장치(560)보다는 더 많은 허용범위를 제공한다.
도 7의 대형 스피닝 튜브 내부의 다중 튜브는 회전하는 튜브 개념의 두 가지 버전을 도시한다. 도 7의 아래 부분은 도 1b 스피닝 튜브(151), 이중-포트 스피닝 삽입 튜브(152) 및 물질 유동 계량 시스템(155)으로부터 복사되어 있다. 도 7에서, 이들은 스피닝 튜브(701), 이중-포트 스피닝 삽입 튜브(702) 및 물질 유동 계량 시스템(703)으로 표시되어 있다. 도 7의 위쪽 부분은 대형 튜브 내부의 6개의 더 작은 튜브(701A-F) 및 단일 삽입 튜브 내부의 6개의 별개의 삽입 튜브(702A-F)를 도시하고, 물질 유동 계량 시스템으로부터의 6개 포트(703A-F, 701A-F, 702A-F, 703A-F)는 우측을 향하는 거울상 구성요소를 갖는다(이들은 명료성을 위해 도시되지 않음).
1 인치 내지 16 인치 범위의 내부 직경을 갖는 중공 튜브 또는 다른 안내 구조가 회전된다. 튜브 또는 안내 구조의 내부 직경보다 작은 물질이 중공 스피닝 튜브 또는 다른 안내 구조 내로 삽입되어 물질이 회전축으로부터 멀어지게 이동하게 한다; 고전적 반경방향 가속. 회전축에 근접한 중공 튜브 또는 다른 안내 구조 내의 개구가 물질 삽입 지점으로서 선택된다. 개구는 물질의 치수보다 커야한다. 중공 튜브 또는 다른 안내 구조의 내부에 있는 동안, 물질은 고전적 반경방향 가속과 마찰력을 중공 튜브 또는 다른 안내 구조의 길이를 따라 받게 된다. 회전축으로부터 가장 멀리, 중공 스피닝 튜브 또는 다른 안내 구조의 단부에는 물질 출구 포트가 있다. 물질은 접선방향으로 중공 스피닝 튜브 또는 다른 안내 구조를 벗어난다. 정지 구조 또는 고정된 구조가 물질의 궤적을 구속하고, 안내 튜브를 통한 충돌로 물질을 안내하는데 사용된다. 안내 튜브의 내부 직경은 물질의 치수보다 크다. 정지 튜브는 스피닝 튜브보다 클 것이며 2 인치 내지 32 인치의 범위이다. 정지 구조는 관형이 아닌 경우, 물질이 가속 구조를 벗어난 이후 물질의 접선방향 비행을 정의하는 백터에 수직인 축에서, 가속된 물질의 가장 큰 치수보다 명목상 더 큰, 2 인치 내지 32인치의 범위인, 가속된 물질을 위한 수용 표면을 가질 것이다.
안내 튜브는 연장 및 수축할 수 있고, 물질을 공급하는 하나 이상의 정지 구조와 하나 이상의 출구 포트를 갖는다. 안내 튜브는 또한 가속된 물질로부터의 충돌 이전 또는 이후에 표면을 준비하는 것을 돕도록 예로서 저속이거나 흡입성인 물질, 유동하는 물 또는 기타 화학물질의 다른 소스들을 가질 수 있다.
중공 배관은 단부들만이 개구이기 때문에 '폐쇄형'이라 지칭될 수 있다. 다양한 '개방형' 튜브-유사 도관이 물질 안내 구조로서 사용될 수 있다.
물질의 특성이 여기서 소개되지는 않지만, 실제 세상은 균일한 밀도의 구형 물질 오브젝트가 아니다. 모래, 돌, 물 및 주변 가스를 포함하는 관심 대상의 수많은 물질 오브젝트의 목록이 고려된다. 단지 순수한 분석보다는 작동 제품의 정립시 실험 데이터가 더 유용하다.
분석 솔루션을 위해 고려되는 추가적 항목이 존재한다; 물질의 특성, 마찰, 중력, 공기 저항 및 주파수 천이. 이들 모두는 무시되며, 그 이유는 이러한 디자인이 충분한 파워를 갖고, 단순한 주파수 조절이 출구 속도를 증가 또는 감소시키기 위해 사용될 것이기 때문이다. 상업화를 위한 실제적 요인은 물질 유량, 충돌시 물질의 속도, 장치의 비용 및 장치를 동작시키기 위한 비용이다. 2차적 요인은 장치의 파워 요건, 폼 팩터, 안전성 및 숙련도이다. 관심 물질은 실질적으로 국소적 분위기보다 크고, 속도는 다른 복합 상태(complication)가 매우 중요해지는 마하 1 미만으로 유지될 것이다.
회전 주파수 및/또는 물질이 증가함에 따라, 파워가 증가되어야 한다. 물질 유량은 삽입 위치 및 주파수를 선택함으로써 가용한 파워에 최적화될 수 있다. 경로 형태, 즉, 곡선 대 직선 길이를 변경하는 것은 파워 부하를 감소시키는 것을 도울 수 있으며, 곡선 경로는 직선 경로보다 수학적 정의에 의거하여 더 길다. 출구 속도가 반경방향 선단 속도에 의해 정의되기 때문에, 곡선 경로는 더 길어야 하고, 이에 따라 더 적은 파워를 사용한다. 출구 포트 직전의 스피닝 튜브 또는 안내 구조의 곡률은 비이동 정지 구조로의 전이를 보조할 수 있다.
추가적 구조인 국소 핀이 물질을 조종하기 위해 회전하는 튜브 또는 안내 구조로부터 고정된 구조로의 공기 흐름을 출구 포트에서 발생시키기 위해 사용될 수 있다. 이들 추가적 구조는 또한 안내부, 펀늘 또는 범퍼로서 작용할 수도 있다. 건 배럴 내의 선조 표면과 유사하게 회전하는 튜브 내에서의 조종이 또한 사용되어 그 비행 축을 중심으로 물질이 회전하게 함으로써 각 운동량을 발생시킬 수 있다.
고정된 구조 내의 추가적 구조인 채널은 물질이 진입되어 충돌 지점으로 안내될 수 있게 한다. 채널은 표적에서 물질의 충돌 속도를 최대화하는 것을 보조하기 위해 낮은 마찰 계수를 갖도록 이루어질 수 있다.
격리 튜브 또는 안내 구조 내의 상이한 화학물질과 다수의 중공 튜브 또는 다른 안내 구조를 사용하여 표적 충돌 지점에서의 복합적 화학작용이 달성될 수 있다.
이들 디자인에 수반되는 물리학 및 화학은 매우 간단하게, 돌을 가속시키고, 그 궤적을 마모를 수행하도록 지향시키는 것일 수 있거나 매우 복잡할 수 있다. 매우 복잡한 디자인은 그 상호작용의 타이밍이 중요한 프로세스에 수반되는 다수의 화학물질을 가질 수 있으며, 이는 물질의 상태에 대해서도 마찬가지이다. 중간 정도의 복합성은 특정 온도에 도달한 이후 원하는 효과를 달성하며, 소정의 더 낮은 온도 미만에서 혼합되는 경우(명목상 화재로의 수송 도중에 발생됨) 원치않는 결과를 발생시킬 수 있는 화학물질을 사용한 진화(fire suppression)일 수 있다.
도 1(측면도)은 정지 공급 호퍼와 회전하는 삽입 튜브를 도시하며, 따라서, 물질은 회전하는 삽입 튜브 내부에서 가속된다. 게이팅 메커니즘은 공급 호퍼와 회전하는 삽입 튜브 사이에 포함되어 회전하는 구조 내로의 물질의 유동을 제어한다. 회전하는 삽입 튜브 내부에 들어가고 나면, 물질은 삽입 튜브의 단부까지 진행되고, 중공 스피닝 튜브 또는 다른 스피닝 안내 구조 내로 빠져나간다. 샤프트 및 샤프트에 부착된 조립체의 회전은 모터로부터의 직접 구동, 벨트 구동부 또는 기어 구동부나 임의의 균등물일 수 있다.
고전적 사용 예는 단순한 물질, 즉, 물 및 모래이며, 공급 호퍼로부터 삽입 튜브 또는 도관 내로 회전하는 디스크에 의해 계량된다. 가속이 발생한 이후, 회전하는 튜브 또는 도관 내에서, 물 및 모래가 정지 구조(고정된 구조) 상으로 전달되고, 표적으로 지향되도록 보조 튜브 내로 안내된다.
도 2는 정지 삽입 튜브를 가지며, 따라서, 이러한 튜브에서 어떠한 반경방향 가속도 발생하지 않는다. 물질의 운동은 중력에 의해 또는 급송 제어 메커니즘에 의해 제공된다. 물질을 회전하는 중공 튜브 또는 다른 안내 구조 내로 삽입하기 위해, 중력 및 다른 힘에 의해 결정되는 타이밍설정된 '낙하'(동기성 이벤트)가 요구된다. 이들 회전하는 중공 튜브 또는 다른 안내 구조는 정지 삽입 튜브를 향한 그 표면에 개구를 갖는다. 회전하는 중공 튜브 또는 다른 안내 구조를 따른 물질의 삽입 위치를 변경함으로써, 물질의 출구 속도 및 가속 구조 내에서의 체류시간이 물질 유량을 최대화하도록 제어될 수 있다.
파워는 운동량의 시간 변화율로서 정의된다. 초기 및 최종 운동 에너지는 물질의 입구 및 출구 속도에 의해 정의된다. 두 개의 동일한 물질이 고정된 길이의 튜브를 따라 두 개의 상이한 위치에서 삽입되는 경우, 회전축으로부터 더 먼 위치에서의 삽입은 더 낮은 속도로 빠져나갈 것이며, 이끌어내어진 그 파워는 더 낮을 것이다.
도 2는 삽입 위치를 선택함으로써 더 낮은 출구 속도를 대가로 하여 물질 유량을 최적화하기 위한 메커니즘을 정의한다.
도 1 및 도 2 양자 모두는 회전하는 중공 튜브 또는 안내 구조의 양 측면들을 위한 하나 또는 두 개의 포트 중 어느 것에서든 물질 삽입이 이루어질 수 있으며, 회전축은 중심 지점에 있다. 이상적으로, 회전하는 중공 튜브 또는 안내 구조로부터의 출구는 표적으로 이어지는 고정된 구조의 물질 안내 포트의 위치와 일치할 것이다. 일부 물질은 그들이 고정된 구조의 물질 안내 포트에 진입할 때까지 격납 구조의 내부 표면을 따라 미끄러지고/구르게 될 것이며, 이는 운동 에너지의 낭비이다.
충돌 지점(들)에서의 복잡한 화학 반응이 요망될 때, 각 화학물질의 상이한 경로가 정의될 수 있다. 도 1 및 도 2에서, 단일 삽입 튜브(회전 및 비회전 버전) 및 단일 회전하는 튜브 또는 다수의 회전하는 튜브 및 고정된 구조 상으로의 단일 출구 위치가 존재한다. 이들 단일 구조 모두는 다수의 경로로 변환될 수 있다.
물질 정의는 각 용례에 고유할 수 있다. 낮은 비용의 마모에 대해, 물을 동반하거나 동반하지 않는 모래 및/또는 돌(윤활제와 물질)이 사용될 수 있다.
콘크리트 트럭의 내부 표면은 각각의 적재 이후 남아있는 콘크리트와 층을 형성하여 수 주 또는 수 개월에 걸쳐 큰 덩어리를 형성하게 된다. 전형적 콘크리트 혼합기 트럭 보급소에서의 가용한 모래, 돌 및 물은 저비용 접근법이다. 적절한 물질 유량 및 속도를 달성하는 것은 디자인 변수이지만, 공지된 기술 이내에 있고; 경화된 콘크리트를 포함하는 재료를 파쇄하기 위한 탄도학적 데이터 기반이 알려져 있다. 140 센티미터 반경의 16 헤르쯔로 회전하는 파이프를 사용한 테스트 데이터는 돌을 가속 및 지향시키고(임의의 치수에서 2-3 센티미터 미만) 경화된 콘크리트 표적을 파쇄하기에 충분한 것으로 검증되었다. 물질의 비용은 0 달러이며, 그 이유는 재료가 후속 콘크리트 혼합물에서 또는 충전재로서 사용가능하기 때문이다.
세라믹 볼 같은 더 작은 더 특수한 물질(매체)은 초기 비용이 동반되며 임의적 형상의 돌로부터의 손상이 허용되기 어려운 산업에 더 적합할 수 있다. 회수되는 경우, 이들 비용은 초기 비용 및 미미한 대체비용으로 제한된다.
화학물질을 사용한 화재 억제는 다른 예이며, 가압된 물을 배제한 가압된 시스템을 통한 전달은 화재시 위험하지만, 화염 내로 진화제를 발진시키기 위해 비가압 비폭발성 가속제를 사용하는 것은 저렴한 비용일 수 있고, 그 이유는 경쟁적 방법의 모든 안전성 요건이 이러한 장치에는 필요하지 않기 때문이다. 비행 중 또는 접촉시 혼합되는 복합적 화학물질의 발진은 유리할 것이다. 물의 제거는 화학물질의 효율을 위해 필요할 수 있으며, 물이 부족한 경우 및/또는 화재 이후 배수가 공해 위험이 있는 경우 물이 더 적은 것이 매우 바람직할 수 있다.
비화학 비가압 발진 시스템의 사용의 예는 다수의 산업 및 용례에 걸쳐질 수 있으며, 이는 터널링, 천공, 파괴, 콘크리트 세정 및 성형, 구멍 보링, 생사(green sand) 및 화학물질 몰드 및 코어 제거, 용융 금속 및 세라믹 내화물 배치, 사태 제어 장치 배치 및 화재 억제 기계를 포함한다.
Claims (25)
- 물질 가속 방법이며,
샤프트를 회전시키기 위한 모터 및 중공 튜브에 연결된 회전하는 샤프트를 포함하고,
회전하는 샤프트 회전축 및 중공 튜브 길이 축은 실질적으로 수직이어서 상기 중공 튜브가 상기 샤프트의 축에 의해 정의된 평면 내에서 회전하게 하며, 상기 중공 튜브는 물질을 수용하고, 상기 물질은 회전축으로부터 가장 떨어져 있는 개구에서 중공 튜브를 벗어나며, 상기 물질은 정지 표면 상에 포획되고, 상기 물질은 상기 정지 표면으로부터 표적으로 지향된 제2 튜브 내로 빠져나가며, 상기 표적에 가속된 물질이 충돌되는, 방법. - 제1항에 있어서, 모터는 전기 모터, 하이드로-카본 기반 모터, 동력 취출 장치를 포함하는 하이드로-카본으로부터의 2차 구동부로부터 선택되는, 방법.
- 제1항에 있어서, 모터로부터 샤프트로의 동력 전달 연결은 직접 구동, 기어 구동, 유압식으로부터 선택되는, 방법.
- 제1항에 있어서, 중공 튜브는 원통형, 직사각형 및 다른 종래의 배관 폐쇄형 및 비폐쇄형 폼 팩터를 포함하며, 재료 조성은 금속, 플라스틱, 복합물을 포함하는, 방법.
- 제1항에 있어서, 회전 주파수 범위는 5 - 100 헤르쯔 사이인, 방법.
- 제1항에 있어서, 샤프트의 회전 인덱싱 정보가 모니터링되는, 방법.
- 제1항에 있어서, 샤프트에 대한 중공 튜브 또는 도관 부착은 용접, 접착, 키이를 사용한 합치식 체결(conformance fit), 볼트 결합 및 그 조합으로부터 선택되는, 방법.
- 제1항에 있어서, 추가적 물질 오브젝트가 중공 튜브 내에 삽입되며, 상기 추가적 물질 오브젝트는 상기 중공 튜브를 빠져나오는, 방법.
- 제8항에 있어서, 중공 튜브 내로 삽입되는 두 개의 인접한 물질 오브젝트들 사이의 시간 간격은 샤프트 회전과 동기되는, 방법.
- 제8항에 있어서, 추가적 물질 오브젝트가 중공 튜브 내로 삽입되고, 상기 추가적 물질 오브젝트는 상기 중공 튜브를 빠져나오며, 물질이 중공 튜브 내부에 있는 시간 기간은 샤프트의 회전 주기와 동일, 샤프트 주기의 1/2 미만 1/3 초과, 샤프트 주기의 1/3 미만 1/4 초과, 샤프트 주기의 1/4 미만 1/5 초과로부터 선택되는, 방법.
- 제10항에 있어서, 추가적 질량 오브젝트는 상기 추가적 질량 오브젝트를 수납하는 용기에 연결된 정지 튜브로부터 중공 튜브 내로 삽입되고, 물질 유동 장치는 정지 튜브에 진입하는 추가적 물질 오브젝트들 사이의 상대적 시간 간격을 제어하고, 상기 정지 튜브의 근위 단부는 중공 튜브와 접촉하지 않고, 상기 중공 튜브는 상기 추가적 물질 오브젝트가 정지 튜브의 근위 단부를 벗어난 이후 추가적 물질 오브젝트를 수용하도록 그 길이 축을 따른 개구를 갖는, 방법.
- 제11항에 있어서, 중공 튜브의 개구의 위치는 샤프트의 회전축과 정렬되는 것 및 샤프트의 회전축으로부터 오프셋되는 것으로부터 선택되는, 방법.
- 제10항에 있어서, 추가적 물질 오브젝트는 상기 추가적 물질 오브젝트를 수납하는 용기에 연결된 회전하는 튜브로부터 중공 튜브 내로 삽입되고, 물질 유동 장치는 회전 튜브에 진입하는 추가적 물질 오브젝트들 사이의 상대적 시간 간격을 제어하며, 상기 회전하는 튜브의 근위 단부는 중공 튜브와 접촉하는, 방법.
- 제4항에 있어서, 중공 튜브는 직선형의 매끄러운 내부 표면이며, 40-200 센티미터 길이이고, 핀이 부착되어 있는, 방법.
- 제4항에 있어서, 중공 튜브는 곡선형의 매끄러운 내부 표면이며, 40-250 센티미터 길이인, 방법.
- 제1항에 있어서, 물질은 고체, 액체, 가스 또는 플라즈마의 물질 상태인, 방법.
- 제16항에 있어서, 물질은 얼음, 모래, 돌, 금속, 세라믹, 플라스틱, 물질 내에 물질 상태 중 하나 이상을 사용하여 형성된 복합체인, 방법.
- 제16항에 있어서, 액체는 그 용기의 형상에 합치되고 압력에 독립적으로 일정한 체적을 유지하는 거의 비압축성 유체인, 방법.
- 제16항에 있어서, 물질은 1 g/㎝3보다 큰 밀도를 가지며, 거친 에지를 갖는, 방법.
- 제1항에 있어서, 물질은 마하 1을 초과하지 않는, 방법.
- 제1항에 있어서, 상기 정지 표면은 회전하는 튜브가 지나가는 직경보다 미소하게 큰 직경을 갖는 정 원형 실린더의 벽의 내부 표면, 회전하는 튜브가 지나가는 직경보다 미소하게 큰 직경을 갖는 부분 환형의 원추형 섹션, 및 회전하는 튜브가 지나가는 직경보다 미소하게 큰 곡률 반경을 갖는 곡선형 평면으로부터 선택되는, 방법.
- 제21항에 있어서, 정지 표면은 제2 튜브로의 정지 표면으로부터의 출구로 이어지는 궤적으로부터 물질이 이탈하는 것을 구속하도록 하는 윤곽을 내부 표면 상에 가지며, 상기 정지 표면 상의 윤곽은 회전하는 튜브가 지나가는 체적과의 동적 간섭으로부터 자유로운, 방법.
- 제21항에 있어서, 정지 표면의 마찰 계수는 경화된 강철과 일치하는, 방법.
- 물질을 가속하는 방법이며,
샤프트를 회전시키는 모터와 중공 튜브에 연결된 회전하는 샤프트를 포함하고,
회전하는 샤프트 회전축 및 중공 튜브의 길이 축은 실질적으로 수직이어서 상기 중공 튜브가 상기 샤프트의 축에 의해 정의된 평면 내에서 회전하게 하고, 상기 중공 튜브는 물질을 수용하며, 상기 물질은 회전축으로부터 가장 떨어져 있는 개구에서 중공 튜브를 벗어나고, 상기 물질은 표적으로 지향된 제2 튜브 내에 포획되고, 상기 표적에 가속된 물질이 충돌되는, 방법. - 물질을 가속하는 방법이며,
샤프트를 회전시키는 모터와, 중공 튜브에 연결된 회전하는 샤프트를 포함하고,
회전하는 샤프트 회전축 및 중공 튜브의 길이 축은 실질적으로 수직이어서 상기 중공 튜브가 상기 샤프트의 축에 의해 정의된 평면 내에서 회전하게 하고, 상기 중공 튜브는 물질을 수용하며, 상기 물질은 회전축으로부터 가장 떨어져 있는 개구에서 중공 튜브를 벗어나고, 상기 물질은 표적으로 지향된 제2 튜브 내에 포획되고, 상기 표적에 가속된 물질이 충돌되는 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662295129P | 2016-02-14 | 2016-02-14 | |
US62/295,129 | 2016-02-14 | ||
PCT/US2017/017621 WO2017139739A1 (en) | 2016-02-14 | 2017-02-13 | Acceleration and precision controlled ejection of mass |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180116318A true KR20180116318A (ko) | 2018-10-24 |
Family
ID=59560063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187026508A KR20180116318A (ko) | 2016-02-14 | 2017-02-13 | 가속도 및 정밀도 제어된 물질 배출 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10088263B2 (ko) |
EP (1) | EP3414512A4 (ko) |
JP (1) | JP2019513572A (ko) |
KR (1) | KR20180116318A (ko) |
AU (1) | AU2017217992A1 (ko) |
CA (1) | CA3014058A1 (ko) |
MX (1) | MX2018009689A (ko) |
WO (1) | WO2017139739A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2019009298A (es) | 2017-03-03 | 2019-12-02 | Westmeyer Paul | Aparato híbrido rotatorio- giratorio. |
US12044504B1 (en) * | 2021-07-15 | 2024-07-23 | Stephen Kennedy | Digitally controlled mobile ground launching fire retardant delivery system |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB100791A (en) * | 1915-06-25 | 1900-01-01 | Schimmel Francois | An Improved Machine for Throwing Projectiles. |
US1408137A (en) * | 1918-10-16 | 1922-02-28 | Arthur C Bunnell | Centrifugal gun |
US2684062A (en) * | 1950-11-18 | 1954-07-20 | Rose David | Centrifugal projector |
US3015991A (en) * | 1958-10-29 | 1962-01-09 | Jr Ernest E Forbes | Projectile launching device |
US3102569A (en) * | 1959-03-30 | 1963-09-03 | Arthur R Forsberg | Apparatus for hulling seeds |
US3613655A (en) * | 1969-06-30 | 1971-10-19 | Westinghouse Electric Corp | Centrifugal gun |
US3822688A (en) * | 1970-08-17 | 1974-07-09 | D Mayne | Hockey puck shooting machine |
GB1320641A (en) * | 1971-03-29 | 1973-06-20 | Vacu Blast Ltd | Impelling wheel for particulate material |
US4057938A (en) * | 1976-06-17 | 1977-11-15 | Rohlfs John H | Portable sand blasting device |
GB2037197B (en) * | 1978-12-16 | 1982-08-11 | Vapormatt Ltd | Abrasive finishing machines |
BE886482A (fr) * | 1980-12-04 | 1981-06-04 | Rutten Leon | Rotor pour lanceur centrifuge. |
BE891864A (fr) * | 1982-01-22 | 1982-07-22 | Rutten Leon | Distributeur de projectiles pour lanceur centrifuge |
IL109239A0 (en) * | 1993-04-08 | 1994-07-31 | Haneda Hisatsugu | Bullet shooting apparatus,bullet supply apparatus, and bullet shooting system comprising these apparatuses |
US5813391A (en) * | 1995-02-17 | 1998-09-29 | Johnson; Albert | Method and apparatus for pitching and lobbing balls |
US5857451A (en) * | 1995-11-15 | 1999-01-12 | Ciluffo; Gary | Launcher apparatus for spherical and disc-shaped objects |
JPH09150369A (ja) * | 1995-11-24 | 1997-06-10 | Sintokogio Ltd | 砥粒遠心投射装置 |
US6520169B1 (en) * | 2000-02-29 | 2003-02-18 | Trinamic Technologies, Llc | Weapon for centrifugal propulsion of projectiles |
US6712055B1 (en) * | 2001-03-07 | 2004-03-30 | Advanced Launch Corporation | Spiral mass launcher |
WO2003101880A2 (en) * | 2002-05-28 | 2003-12-11 | Westmeyer Paul A | Method and apparatus for moving a mass |
CN1566895A (zh) | 2003-06-19 | 2005-01-19 | 郑悦 | 离心发射方式及其机构 |
JP2006142422A (ja) * | 2004-11-18 | 2006-06-08 | Ohbayashi Corp | ショットブラスト装置 |
DE202006006572U1 (de) * | 2006-04-25 | 2006-07-06 | Airmatic Gesellschaft für Umwelt und Technik mbH | Vorrichtung zum Erzeugen eines rotierenden Hochdruckstrahls |
US7950379B2 (en) * | 2007-07-27 | 2011-05-31 | Advanced Launch Corporation | High velocity mass accelerator and method of use thereof |
US8613641B2 (en) * | 2008-10-22 | 2013-12-24 | Pratt & Whitney Canada Corp. | Channel inlet edge deburring for gas diffuser cases |
AU2016100226B4 (en) * | 2016-02-18 | 2016-09-08 | Bhattacharya, Utpal DR | A projectile firing apparatus |
-
2017
- 2017-02-13 WO PCT/US2017/017621 patent/WO2017139739A1/en active Application Filing
- 2017-02-13 EP EP17750945.2A patent/EP3414512A4/en not_active Withdrawn
- 2017-02-13 KR KR1020187026508A patent/KR20180116318A/ko unknown
- 2017-02-13 JP JP2018561196A patent/JP2019513572A/ja active Pending
- 2017-02-13 AU AU2017217992A patent/AU2017217992A1/en not_active Abandoned
- 2017-02-13 MX MX2018009689A patent/MX2018009689A/es unknown
- 2017-02-13 CA CA3014058A patent/CA3014058A1/en active Pending
- 2017-02-13 US US15/430,663 patent/US10088263B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10088263B2 (en) | 2018-10-02 |
JP2019513572A (ja) | 2019-05-30 |
MX2018009689A (es) | 2018-11-29 |
US20170232578A1 (en) | 2017-08-17 |
CA3014058A1 (en) | 2017-08-17 |
WO2017139739A1 (en) | 2017-08-17 |
AU2017217992A1 (en) | 2018-08-23 |
EP3414512A4 (en) | 2019-10-02 |
EP3414512A1 (en) | 2018-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7500477B2 (en) | Method and apparatus for moving a mass | |
US20200378206A1 (en) | Downhole tool with a propellant charge | |
US4768709A (en) | Process and apparatus for generating particulate containing fluid jets | |
CA2138782C (en) | An abrasive fluid jet cutting composition and method | |
US9988844B2 (en) | Ram accelerator system with rail tube | |
CN108386134B (zh) | 冲压加速器系统 | |
KR20180116318A (ko) | 가속도 및 정밀도 제어된 물질 배출 | |
CN109690228A (zh) | 用于从连接至主武器和/或副武器的弹药链或条弹出弹壳和/或连接器的弹出装置 | |
EP2774686B1 (en) | Spindle device and electrostatic coating device | |
JP2019513572A5 (ko) | ||
JP2006142422A (ja) | ショットブラスト装置 | |
RU2435128C1 (ru) | Способ формирования компактного элемента и взрывное метательное устройство для его осуществления | |
WO1999002302A1 (en) | Method and apparatus for producing a high-velocity particle stream | |
US20130287504A1 (en) | Method and Apparatus Accelerate Gases Peripherally | |
Fossey et al. | The use of an abrasive waterjet system at 700 bar for the cutting of military munitions as part of a demilitarization program | |
RU2273726C1 (ru) | Способ вскрытия пластов | |
Lavin | July system safety progress report ALSEP Array E |