KR20180041293A - Total mixed ration compostion comprising by-product of cabbage and method of manufacturing the same - Google Patents

Total mixed ration compostion comprising by-product of cabbage and method of manufacturing the same Download PDF

Info

Publication number
KR20180041293A
KR20180041293A KR1020160132831A KR20160132831A KR20180041293A KR 20180041293 A KR20180041293 A KR 20180041293A KR 1020160132831 A KR1020160132831 A KR 1020160132831A KR 20160132831 A KR20160132831 A KR 20160132831A KR 20180041293 A KR20180041293 A KR 20180041293A
Authority
KR
South Korea
Prior art keywords
chinese cabbage
product
feed
weight
forage
Prior art date
Application number
KR1020160132831A
Other languages
Korean (ko)
Inventor
장문백
배귀석
최아름
최주영
김효윤
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020160132831A priority Critical patent/KR20180041293A/en
Publication of KR20180041293A publication Critical patent/KR20180041293A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Health & Medical Sciences (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)

Abstract

The present invention relates to a completely mixed feed composition including a Chinese cabbage by-product, and more particularly, to a completely mixed feed composition including 5 to 15 wt% of a Chinese cabbage by-product, 15 to 25 wt% of a forage, 25 to 35 wt% of dried rice straw, 20 to 30 wt% of ground cones, and 10 to 20 wt% of soybean meal, and a manufacturing method thereof. As described above, if the Chinese cabbage by-product is used as a raw material for the completely mixed feed, the use amount of the forage can be reduced. Thereby reducing the processing costs of the Chinese cabbage by-product and increasing the productivity of the livestock at the same time.

Description

배추 부산물을 포함하는 완전혼합사료 조성물 및 이의 제조방법{TOTAL MIXED RATION COMPOSTION COMPRISING BY-PRODUCT OF CABBAGE AND METHOD OF MANUFACTURING THE SAME}TECHNICAL FIELD The present invention relates to a complete mixed feed composition containing a Chinese cabbage by-product and a method for producing the same.

본 발명은 배추 부산물을 이용하여 완전혼합사료 조성물 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a complete mixed feed composition using Chinese cabbage by-products and a method for producing the same.

국내 가축사료 중 95% 이상의 원료사료를 수입에 의존하고 있는 실정이다. 지속적인 국제 곡물, 조사료 가격 및 유가의 상승은 축산물 생산비 상승의 원인이 되고 있다. 그러므로 반추가축에 대한 사료비 절감에 의한 생산성 증대의 일환으로 국내에서 생산되는 농·식품 부산물의 적극적인 사료화 자원화에 대한 노력이 진행되고 있으며, 향후 지속적인 "순환형 농업개발"의 기반 기술 확보 차원의 일환으로 사료자원 자급율 증대 및 가축 생산성 증대에 이바지할 것이다.In fact, more than 95% of domestic livestock feeds depend on imports. Continued international grain, forage prices, and rising oil prices are causing livestock production costs to rise. Therefore, as part of the increase in productivity due to the reduction of feed costs for ruminant livestock, efforts are being made to aggressively utilize agricultural and food byproducts produced in Korea as part of efforts to secure the foundation technology for continuous "recirculating agricultural development" It will contribute to increase the self-sufficiency rate of feed resources and increase productivity of livestock.

상품용 배추김치의 경우 2012년 기준으로 연간 약 50만톤 이상으로 국내 주요 식품생산 실적 기준 11위를 차지하고 있으나 가공전 전체 중량기준 약 30만톤의 배추부산물은 산업폐기물로 분류되어 폐기물 처리비용으로 1,250원/kg의 비용이 소요되어 배추김치 생산비 증가의 원인이 되고 있다. 이와 관련하여, 상기 부산물을 이용하여 식이섬유를 제조하는 시도도 존재하였다(국내공개특허 제2012-0119178호).In the case of Chinese cabbage kimchi, the annual consumption of Chinese cabbage kimchi is more than 500,000 tons per year, ranking 11th in terms of domestic food production. However, about 300,000 tons of Chinese cabbage by-product is classified as industrial waste before processing. / kg, which is a cause of increased production cost of cabbage kimchi. In this connection, attempts have also been made to produce dietary fiber using the by-products (Korean Patent Publication No. 2012-0119178).

현재 김치공장에서 폐기되고 있는 배추 부산물은 건물기준으로 회분 12.3%, 조단백질 19.2% 수준이며, 유리당 함량이 높은 특징을 가지고 있다. 그러므로 배추부산물을 사료자원으로 이용시 가축사료의 기호성 증진과 배추부산물의 사일리지 제조 시 유용미생물 발효의 최적 조건을 유지할 수 있어 배추와 건물함량이 높은 사료원 혼합에 의한 사일리지 제조가 용이할 수 있다.At present, the Chinese cabbage by-products that are discarded at the Kimchi factory are 12.3% ash and 19.2% crude protein as a building standard, and have high free sugar content. Therefore, when the Chinese cabbage by - product is used as a feedstock, it is possible to maintain optimum conditions of useful microbial fermentation for the improvement of palatability of livestock feed and the production of silage of Chinese cabbage by - products.

따라서, 본 발명은 김치공장에서 김치제조시 생산되는 배추부산물을 활용하여 반추가축(한우, 젖소)용 TMR 사료 제조 기술을 개발하고, 제조사료에 대한 반추가축 사료용으로의 사료가치평가를 통한 반추가축의 생산성을 증대하고자 하였다.Accordingly, the present invention has been made to develop TMR feed manufacturing technology for ruminant livestock (cattle, dairy cattle) using Chinese cabbage by-products produced during kimchi manufacturing in a kimchi factory, and to develop a TMR feed production technology for ruminant domestic cattle To increase productivity.

이에, 본 발명자들은 배추 부산물을 활용하기 위해서 예의 연구한 결과, 완전혼합사료에 포함시킬 경우, 조사료를 대체하면서도 영양적으로 우수하다는 것을 확인함으로써 본 발명을 완성하였다.The inventors of the present invention have made intensive studies to utilize the Chinese cabbage by-products, and as a result, found that when they are included in the complete mixed feed, they are superior in nutrition while replacing the forage.

따라서, 본 발명의 목적은, 배추 부산물을 포함하는 완전혼합사료 조성물 및 상기 조성물의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a completely mixed feed composition comprising a Chinese cabbage by-product and a method of producing the composition.

그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 과제를 해결하기 위하여, 본 발명은 배추 부산물, 조사료, 건조 볏집, 분쇄된 옥수수, 및 대두박을 포함하는, 완전혼합사료 조성물을 제공한다.In order to solve the above problems, the present invention provides a completely mixed feed composition comprising a Chinese cabbage by-product, a forage, a dried rice straw, ground corn, and soybean meal.

본 발명의 일 구현예로, 상기 조성물은 배추 부산물 5 내지 15 중량%, 조사료 15 내지 25 중량%, 건조 볏집 25 내지 35 중량%, 분쇄된 옥수수 20 내지 30 중량%, 및 대두박 10 내지 20 중량%을 포함하는 것을 특징으로 한다.In one embodiment of the present invention, the composition comprises 5 to 15% by weight of Chinese cabbage byproduct, 15 to 25% by weight of forage, 25 to 35% by weight of dried rice husk, 20 to 30% by weight of ground corn, and 10 to 20% And a control unit.

본 발명의 다른 구현예로, 상기 조사료는 티모시 건초인 것을 특징으로 한다.In another embodiment of the present invention, the forage is characterized by being timothy hay.

또한, 본 발명은 배추 부산물, 조사료, 건조 볏집, 분쇄된 옥수수 및 대두박을 혼합하는 단계를 포함하는, 완전혼합사료의 제조 방법을 제공한다.In addition, the present invention provides a method for producing a fully mixed feed comprising the step of mixing Chinese cabbage by-products, forage, dried rice cakes, ground corn and soybean meal.

본 발명의 일 구현예로, 상기 완전혼합사료는 배추 부산물 5 내지 15 중량%, 조사료 15 내지 25 중량%, 건조 볏집 25 내지 35 중량%, 분쇄된 옥수수 20 내지 30 중량%, 및 대두박 10 내지 20 중량%을 포함하는 것을 특징으로 한다.In one embodiment of the present invention, the complete mixed feed comprises 5 to 15% by weight of Chinese cabbage by-products, 15 to 25% by weight of forage, 25 to 35% by weight of dried straw, 20 to 30% by weight of ground corn, % By weight.

본 발명은 배추부산물과 건초와의 혼합을 통하여 완전배합사료를 제조하는 방법에 관한 것으로, 세미 TMR제조 기술확립과 더불어 배추부산물의 수분 함량 조절 효과 역시 입증하였다. 이를 통해 지속적으로 증가하고 있는 배추부산물을 사료 자원으로 활용도를 높일 수 있다.The present invention relates to a method for preparing a fully compounded feed by mixing Chinese cabbage by-products and hay, and demonstrates the effect of controlling the moisture content of Chinese cabbage byproducts as well as establishing the technology for producing semi-TMR. Through this, it is possible to increase the utilization of Chinese cabbage by-products as feed resources.

또한 김치가공공장에서의 폐기물 처리비용을 절감과 동시에, 반추가축의 생산성 증대효과를 기대할 수 있다.In addition, it can reduce waste treatment costs in the kimchi processing plant and increase the productivity of the ruminant cattle.

도 1은 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 pH 변화를 확인한 결과를 나타낸 도면이다.
도 2는 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 가스 생성량의 변화를 확인한 결과를 나타낸 도면이다.
도 3은 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 CH4 생성량의 변화를 확인한 결과를 나타낸 도면이다.
도 4는 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 CO2 생성량의 변화를 확인한 결과를 나타낸 도면이다.
도 5는 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 미생물 단백질 합성량의 변화를 확인한 결과를 나타낸 도면이다.
도 6은 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 NH3-N 농도의 변화를 확인한 결과를 나타낸 도면이다.
도 7은 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 건물 소화율 변화를 확인한 결과를 나타낸 도면이다.
도 8은 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 VFA 농도 변화를 확인한 결과를 나타낸 도면이다.
도 9는 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 A/P 비율 변화를 확인한 결과를 나타낸 도면이다.
도 10은 본 발명의 사료 조성물(T1), 배추 부산물 원물(T2), 및 기본원료사료(Cotrol)의 배양에 따른 건물소실율 변화를 확인한 결과를 나타낸 도면이다.
FIG. 1 is a graph showing the results of confirming pH changes according to the cultivation of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) of the present invention.
Fig. 2 is a graph showing the results of confirming changes in gas production amount according to the cultivation of the feed composition (T1), the Chinese cabbage by-product raw material (T2), and the basic raw material feed (Cotrol) of the present invention.
FIG. 3 is a graph showing the results of confirming changes in the amount of CH 4 produced by the cultivation of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) according to the present invention.
FIG. 4 is a graph showing the results of confirming changes in the amount of CO 2 produced by the cultivation of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) according to the present invention.
FIG. 5 is a graph showing the results of confirming changes in microbial protein synthesis amount according to the cultivation of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) of the present invention.
FIG. 6 is a graph showing the results of confirming changes in the NH 3 -N concentration according to the cultivation of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) of the present invention.
FIG. 7 is a graph showing the results of confirming changes in dry digestibility of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) according to the present invention.
FIG. 8 is a graph showing the results of confirming changes in VFA concentration according to the cultivation of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) of the present invention.
9 is a view showing the results of confirming the change in A / P ratio according to the cultivation of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) of the present invention.
FIG. 10 is a view showing the results of confirming the change in the disappearance rate of the building according to the cultivation of the feed composition (T1), the Chinese cabbage by-product material (T2), and the basic raw material feed (Cotrol) of the present invention.

본 발명자들은 김치 제조에 의해 발생하는 배추 부산물을 활용하여 가축을 위한 TMR 사료를 개발하기 위하여 예의 노력한 결과, 배추 부산물을 완전혼합사료에 혼합하여 사용할 경우, 조사료의 사용을 절감하면서도, 사료의 영양분 및 보관 품질이 우수하다는 것을 발견하여, 본 발명을 완성하였다.As a result of intensive efforts to develop a TMR feed for livestock using the Chinese cabbage byproducts produced by the manufacture of kimchi, the present inventors have found that when the Chinese cabbage by-products are mixed into a complete mixed feed, And that the storage quality is excellent, and the present invention has been completed.

이에, 본 발명은 배추 부산물, 조사료, 건조 볏집, 분쇄된 옥수수, 및 대두박을 포함하는, 완전혼합사료 조성물을 제공하는 것을 그 목적으로 한다. 상기 조성물은 배추 부산물 5 내지 15 중량%, 조사료 15 내지 25 중량%, 건조 볏집 25 내지 35 중량%, 분쇄된 옥수수 20 내지 30 중량%, 및 대두박 10 내지 20 중량%을 포함하는 것을 특징으로 한다.Accordingly, it is an object of the present invention to provide a completely mixed feed composition comprising a Chinese cabbage by-product, a forage, a dried rice straw, ground corn, and soybean meal. The composition is characterized by comprising 5 to 15% by weight of Chinese cabbage by-products, 15 to 25% by weight of forage, 25 to 35% by weight of dried rice husk, 20 to 30% by weight of pulverized corn, and 10 to 20% by weight of soybean meal.

상기 조성물의 각 성분은 상기 범위에서 우수한 영양분 유지에 더하여 보관에 따른 품질 유지 효과를 보였으므로, 상기 범위 내의 성분을 사용하는 것이 완전혼합사료의 제조에 유리하다.Since each component of the composition has a good quality maintenance effect in addition to excellent nutritive maintenance in the above-mentioned range, it is advantageous to use a component within the above range in the production of a completely mixed feed.

본 발명의 일구현예로, 상기 조사료는 티모시 건초인 것이 바람직하나, 이에 제한되지는 않는다. 본 발명에서, 배추 부산물을 완전혼합사료의 성분으로 이용함으로써, 조사료인 티모시 건초의 사용량을 절감할 수 있는 것이다.In one embodiment of the present invention, the forage is preferably timothy hay but is not limited thereto. In the present invention, by using the Chinese cabbage by-product as a component of the completely mixed feed, the amount of the timothy hay to be used as the forage can be reduced.

또한, 본 발명은 배추 부산물, 조사료, 건조 볏집, 분쇄된 옥수수 및 대두박을 혼합하는 단계를 포함하는, 완전혼합사료의 제조 방법을 제공할 수 있다.In addition, the present invention can provide a method for producing a fully mixed feed comprising a step of mixing the Chinese cabbage by-products, the forage, the dried rice husk, the ground corn and the soybean meal.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

[[ 실시예Example ]]

실시예Example 1. 배추 부산물 세미  1. Chinese cabbage by-products TMRTMR 제조 Produce

1.1. 공시시험사료1.1. Disclosure test feed

축우용 TMR을 제조하기 위한 기본 원료사료로 옥수수, 대두박, 티모시, 볏짚을 이용하였으며(표 1), 각 원료를 대체할 사료원으로 김치공장에서 3월에 생산된 배추부산물을 사용하였다.Maize, soybean meal, timothy and rice straw were used as raw materials for the production of TMR for axial use (Table 1), and the Chinese cabbage by-products produced in March at the Kimchi factory were used as feed sources to replace each raw material.

사료원Feed circle 원물(수분포함), Raw materials (including moisture), %% 건물기준, Building standards, %% 조사료(티모시)Forage (Timothy) 14.814.8 21.821.8 건조 볏집Dried rice straw 15.515.5 23.123.1 분쇄된 옥수수Ground corn 18.918.9 26.426.4 대두박Soybean meal 11.111.1 15.815.8 배추부산물Chinese cabbage by-product 8.88.8 12.912.9

1.2. 배추 부산물 반추가축용 세미 1.2. Chinese cabbage by-product Ruminate for livestock TMRTMR 제조 및 시험 사료 배합비 작성 Preparation of preparation and test compounding ratio

기본원료사료(옥수수, 대두박, 티모시, 볏짚)를 이용하여 NRC사양표준(2001)의 요구량을 맞춘 TMR을 제조하였으며(표 2), 총 가소화 영양분(total digestible nutrients, TDN)의 산출 방식은 [TDN (%) = tdNFC (%) + tdCP (%) + tdFat (%)*2.25 - 7, ※td = total digestible values]을 이용하여 계산하였다. 제조된 세미 TMR 시험사료의 일반성분 함량은 하기 표 3과 같다.Using the basic raw feeds (corn, soybean meal, timothy and rice straw), TMRs meeting the requirements of the NRC specification standard (2001) were produced (Table 2), and the total digestible nutrients (TDN) TDN (%) = tdNFC (%) + tdCP (%) + tdFat (%) * 2.25 - 7, * td = total digestible values. The general component content of the prepared semi-TMR test diets is shown in Table 3 below.

ItemsItems Basic TMRBasic TMR DM(%)DM (%) 60.760.7 CP(CP ( %% )) 15.6915.69 EEEE (( %% )) 2.212.21 NDFNDF (( %% )) 44.5144.51 e-e- NDFNDF (( %% )) 40.2140.21 F-F- NDFNDF (( %% )) 37.1937.19 NFC(NFC ( %% )) 31.8431.84 TDNTDN (( %% )) 58.1758.17 Ca(Ca ( %% )) 0.30.3 P(P ( %% )) 0.350.35 Ca:PCa: P 0.850.85

항목Item 배추 부산물 세미 TMR(건물기준)Cabbage by-product semi-TMR (Building Standard) DM (%)DM (%) 61.661.6 CP (%)CP (%) 15.0715.07 EE (%)EE (%) 2.062.06 NDF (%)NDF (%) 42.842.8 e-NDF (%)e-NDF (%) 37.3937.39 F-NDF (%)F-NDF (%) 34.9934.99 NFC (%)NFC (%) 32.3132.31 TDN (%)TDN (%) 45.0245.02 Ca (%)Ca (%) 0.380.38 P (%)P (%) 0.370.37 Ca:P ratioCa: P ratio 1.041.04

실시예Example 2. 배추 부산물 원물 및 배추 부산물을 활용한 사료에 대한  2. Effects of Chinese cabbage by-products and Chinese cabbage by-products on feed in vitroin vitro 평가 evaluation

2.1. 재료 및 방법2.1. Materials and methods

(a)(a) In vitroIn vitro 시험 및 반추위 내 미생물 접종액 준비 Test and preparation of microbial inoculum in rumen

In vitro 반추위 미생물 발효특성 시험을 위한 반추위 미생물 접종액의 제조는 cannulae가 장착된 2년생 한우 번식암소의 반추위 내에서 채취한 내용물을 8겹의 cheese cloth에 거른 뒤 보온용기에 담아 1시간 내에 실험실로 운반하였다. 채취된 반추위액은 artificial saliva (McDougall, 1948)(표 4)와 1:1 비율로 희석하여 미생물 혼합액을 제조하였으며, 혐기상태를 유지하기 위해 O2-free CO2를 주입하였다. 반추위 내 미생물 발효 효율을 극대화하기 위해 미생물 혼합액에는 공시농후사료(20 g)와 볏짚(20 g)을 첨가하여 24시간 동안 39℃ incubator에서 계대배양을 실시하였다(Van Soest 등, 1982). 배양이 끝난 후 미생물혼합액은 원심분리(1,500g × 15분)하여 상층액만을 취하여 반추위 내 미생물 접종액으로 사용하였다. In vitro rumen microbial fermentation test for the in vitro ruminal microbial fermentation test was performed by inserting the contents collected in the rumen of the 2 year old Hanwoo breeding cow equipped with cannulae into an 8 layer cheese cloth, Respectively. The collected ruminal fluid was diluted 1: 1 with artificial saliva (McDougall, 1948) (Table 4) to prepare a microbial mixture. O 2 -free CO 2 was injected to maintain the anaerobic state. In order to maximize the efficiency of microbial fermentation in the rumen, 20 g of dense concentrated feed (20 g) and 20 g of rice straw were added to the mixture of microorganisms and subcultured in a 39 ° C incubator for 24 hours (Van Soest et al., 1982). After the incubation, the microbial mixture was centrifuged (1,500 g × 15 min) and only the supernatant was used as the microbial inoculum in the rumen.

IngredientsIngredients Amounts (g)Amounts (g) NaHCONaHCO 33 9.89.8 NaNa 22 HPOHPO 44 7H7H 22 OO 7.07.0 KClKCl 0.570.57 NaClNaCl 0.470.47 MgSOMgSO4 44 7H7H 22 OO 0.120.12 CaClCaCl 22 0.040.04 aMix the first 5 chemicals and 500 mL distilled water in volumetric and stir until dissolved, and adjust to liter volume and store. Just before use, add the CaCl2, keep at 39℃ into solution until pH = 6.7 to 7.0 a Mix the first 5 chemicals and 500 mL distilled water in volumetric and distilled until dissolved, and adjust to liter volume and store. Just before use, add the CaCl 2 , keep at 39 ° C into solution until pH = 6.7 to 7.0

(b)(b) In vitroIn vitro 시험 준비 Exam preparation

본 시험에서 반추위 내 미생물 발효 특성에 대한 in vitro 배양 조건은 serum bottle (200 mL)을 이용하여 대조구와 각 시험구에 사료 1.7 g과 artificial saliva (100 mL)(표 4) 주입 후 inoculums (5 mL)을 접종하여 O2-free CO2 gas 분주와 함께 rubber stopper와 알루미늄 뚜껑을 고정장치로 이용하여 밀봉하였다. 모든 배양 조건은 혐기상태를 유지하며 실시되었으며, 접종이 끝난 후 즉시 39℃ incubator에서 배양을 실시하였다(Van Soest 등, 1967). 각 시료의 채취는 0, 2, 4, 6, 8, 10, 12 그리고 24시간대에 실시되었으며, 배양이 끝난 후 즉시 pH matter (Orion 3 star, Thermo scientific, USA)를 이용하여 pH를 측정하였다. Gas 생성량은 gas production matter (model PSGH-28PCCA, DECO Co., Korea)를 이용하여 측정하였다. 각 샘플은 원심분리기(Brushless D. C. motor centrifuge VS-6000CF, Vision scientific Co., LTD., Korea)를 이용하여 원심분리(300 g × 15분)를 실시하였으며, 각 샘플의 상층액은 NH3 nitrogen함량, microbial protein synthesis (MPS), volatile fatty acid(VFA)를 측정하기 위하여 -70℃에서 냉동보관 하였다. 원심분리 후 상층액을 덜어낸 내용물은 건물소화율을 측정하였다.In vitro culture conditions of microbial fermentation in rumen were inoculated with 200 μL of inoculums (5 mL) in the control and in each test group after feeding 1.7 g of feed and 100 mL of artificial saliva (Table 4) ), Sealed with O 2 -free CO 2 gas dispensing with a rubber stopper and an aluminum lid as a fixation device. All incubation conditions were maintained with anaerobic conditions. After the inoculation, the culture was carried out at 39 ° C in an incubator (Van Soest et al., 1967). Each sample was collected at 0, 2, 4, 6, 8, 10, 12, and 24 hours and pH was measured immediately after culturing with pH matter (Orion 3 star, Thermo scientific, USA). Gas production was measured using gas production (model PSGH-28PCCA, DECO Co., Korea). Each sample centrifuge using (Brushless DC motor centrifuge VS-6000CF, scientific Vision Co., LTD., Korea) were subjected to centrifugation (300 g × 15 min), the supernatant of each sample is NH 3 nitrogen content , microbial protein synthesis (MPS), and volatile fatty acid (VFA). After centrifugation, the supernatant was removed and the digestibility of the building was measured.

(c) 시료분석(c) Sample analysis

시험사료 건물함량은 분석 직전 60℃ dry oven에서 72시간 동안 건조한 뒤 측정하였다. 건물소화율은 Van Soest 등(1967)의 방법을 이용하여 측정하였다. NH3-N 농도는 Chaney 와 Marbach (1962)의 방법에 따라 spectrophotometer (Spectrouc PC system 4D-5210, Thermo scientific, USA)를 이용하여 측정하였다. 미생물단백질 합성량은 Lowry 등(1951)의 방법을 이용하여 측정하였다.The dry matter content of the test feed was measured in a dry oven at 60 ° C for 72 hours immediately before analysis. Dry digestibility was measured by Van Soest et al. (1967). The concentration of NH 3 -N was measured by spectrophotometer (Spectrouc PC system 4D-5210, Thermo scientific, USA) according to the method of Chaney and Marbach (1962). The amount of microbial protein synthesis was determined by the method of Lowry et al. (1951).

(d) 실험 설계(d) Experimental design

배추 부산물을 활용한 세미TMR의 사료가치평가를 위하여 본 실험을 진행하였다. 대조구로는 기본원료사료(옥수수, 대두박, 티모시, 볏짚)를 혼합한 Basic TMR(표 2)을 사용하였으며, 시험구에는 배추 부산물로 대체한 세미TMR (T1), 배추 부산물원물(T2)이며, 3처리 3반복으로 사료가치평가를 위한 in vitro 시험을 실시하였다. This experiment was conducted to evaluate the feed value of semi - TMR using Chinese cabbage by - products. As a control, Basic TMR (Table 2) mixed with basic feedstuff (corn, soybean meal, timothy, rice straw) was used. Semi TMR (T1) and Chinese cabbage by-product (T2) Three treatments were repeated in vitro for the evaluation of feed value.

2.2. 결과2.2. result

(a) pH 변화(a) pH change

In vitro 시험의 결과 pH는 모든 처리구와 배양이 진행 될수록 감소하는 경향을 나타내었다(도 1). 배양 0시간에는 대조구가 유의적으로 높은 6.94로 나타냈다(p<0.05). 배양 6~24시간대에는 T2가 대조구에 비해서 유의적으로 낮은 결과를 확인하였다(p<0.05). As a result of the in vitro test, the pH tended to decrease with the progress of all treatments and culture (FIG. 1). At the 0 hour incubation, the control was significantly higher (6.94) ( p <0.05). T2 was significantly lower in the 6-24 hour culture than in the control (p <0.05).

(b) Total gas 생성량(b) Total gas production

In vitro 시험 결과 total gas production은 모든 처리구에서 배양이 진행될수록 증가되는 양상을 나타내었다(도 2). 배양 2~12시간대에는 T2가 대조구에 비해서 유의적으로 높은 결과를 나타내었다(p<0.05)(표 5). 배양 24시간대에는 대조구가 다른 처리구에 비해서 유의적으로 높은 278.4 mL을 나타내었다(p<0.05). In vitro tests showed that total gas production increased as culture progressed in all treatments (Figure 2). T2 was significantly higher in the 2 ~ 12 hour culture than the control ( p <0.05) (Table 5). At 24 hours of culture, the control was significantly higher than other treatments (278.4 mL) (p <0.05).

ItemsItems Incubation time (h)Incubation time (h) 00 22 44 66 88 1010 1212 2424 pHpH ControlControl 6.94a 6.94 a 6.91b 6.91 b 6.84b 6.84 b 6.80b 6.80 b 6.78b 6.78 b 6.71b 6.71 b 6.72b 6.72 b 6.45b 6.45 b T1T1 6.92ab 6.92 ab 6.89b 6.89 b 6.80b 6.80 b 6.80b 6.80 b 6.72c 6.72 c 6.69b 6.69 b 6.69b 6.69 b 6.44b 6.44 b T2T2 6.89b 6.89 b 6.90b 6.90 b 6.81b 6.81 b 6.62c 6.62 c 6.63d 6.63 d 6.47c 6.47 c 6.49c 6.49 c 6.39c 6.39 c S.E.M.S.E.M. 0.0150.015 0.0080.008 0.0150.015 0.0380.038 0.0120.012 0.0130.013 0.0120.012 0.0150.015 p value p value 0.08610.0861 0.00230.0023 0.00020.0002 0.00290.0029 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 Total Gas Production (mL)Total Gas Production (mL) ControlControl -- 32.73b 32.73 b 65.50b 65.50 b 123.33c 123.33 c 143.23c 143.23 c 188.23b 188.23 b 171.93c 171.93 c 278.40a 278.40 a T1T1 -- 32.63b 32.63 b 66.60b 66.60 b 126.23b 126.23 b 156.53b 156.53 b 203.00a 203.00 a 194.90b 194.90 b 268.40a 268.40 a T2T2 -- 39.70a 39.70 a 100.17a 100.17 a 153.30a 153.30 a 173.63a 173.63 a 203.70a 203.70 a 209.27a 209.27 a 236.00b 236.00 b S.E.M.S.E.M. -- 1.6951.695 2.1442.144 1.4781.478 1.4481.448 2.8212.821 3.7683.768 3.5013.501 p value p value -- 0.00050.0005 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 CH4 Production(mL)CH 4 Production (mL) ControlControl -- 0.600.60 1.51a 1.51 a 4.42a 4.42 a 7.99a 7.99 a 19.56a 19.56 a 14.27a 14.27 a 46.56a 46.56 a T1T1 -- 0.370.37 1.09b 1.09 b 3.73b 3.73 b 7.08a 7.08 a 15.70b 15.70 b 15.22a 15.22 a 38.39b 38.39 b T2T2 -- 0.280.28 0.92b 0.92 b 1.12d 1.12 d 1.20c 1.20 c 2.65d 2.65 d 3.69b 3.69 b 1.49d 1.49 d S.E.M.S.E.M. -- 0.1230.123 0.0830.083 0.0990.099 0.4580.458 1.0671.067 0.9820.982 1.6171.617 p value p value -- 0.24700.2470 0.00540.0054 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 CO2 Production(mL)CO 2 Production (mL) ControlControl -- 26.92b 26.92 b 58.64b 58.64 b 97.42c 97.42 c 122.01a 122.01 a 148.74b 148.74 b 136.48c 136.48 c 191.87a 191.87 a T1T1 -- 28.29b 28.29 b 56.40b 56.40 b 108.83b 108.83 b 136.72a 136.72 a 148.38b 148.38 b 156.85b 156.85 b 186.75a 186.75 a T2T2 -- 34.14a 34.14 a 88.31a 88.31 a 132.01a 132.01 a 124.03a 124.03 a 177.61a 177.61 a 178.63a 178.63 a 185.85a 185.85 a S.E.M.S.E.M. -- 1.6901.690 2.5842.584 1.7341.734 14.83514.835 6.8256.825 4.1624.162 7.6127.612 p value p value -- 0.00130.0013 0.00010.0001 0.00010.0001 0.00870.0087 0.00020.0002 0.00010.0001 0.00010.0001 Total VFA (mmol)Total VFA (mmol) ControlControl 7.817.81 9.48ab 9.48 ab 14.01bc 14.01 bc 21.60c 21.60 c 29.63b 29.63 b 35.99b 35.99 b 36.37c 36.37 c 65.67b 65.67 b T1T1 7.497.49 9.01b 9.01 b 15.43ab 15.43 ab 25.34a 25.34 a 34.35a 34.35 a 41.62a 41.62 a 43.59b 43.59 b 68.72b 68.72 b T2T2 7.317.31 9.22b 9.22 b 13.03c 13.03 c 22.67b 22.67 b 31.18ab 31.18 ab 43.37a 43.37 a 48.76a 48.76 a 82.74a 82.74 a S.E.M.S.E.M. 0.9860.986 0.7380.738 0.4610.461 0.2650.265 1.2491.249 1.1651.165 1.1871.187 1.4381.438 p value p value 0.53590.5359 0.09950.0995 0.00180.0018 0.00010.0001 0.00150.0015 0.00010.0001 0.00010.0001 0.00010.0001 A/P RatioA / P Ratio ControlControl 3.05b 3.05 b 2.92c 2.92 c 2.27d 2.27 d 1.67d 1.67 d 1.54d 1.54 d 1.67c 1.67 c 1.28c 1.28 c 1.73b 1.73 b T1T1 2.93b 2.93 b 3.09c 3.09 c 2.79c 2.79 c 2.05c 2.05 c 1.66c 1.66 c 1.69c 1.69 c 1.41c 1.41 c 1.57bc 1.57 bc T2T2 3.29b 3.29 b 3.35b 3.35 b 3.44b 3.44 b 3.05b 3.05 b 2.57b 2.57 b 2.08b 2.08 b 1.85b 1.85 b 1.48c 1.48 c S.E.M.S.E.M. 0.2760.276 0.0540.054 0.0840.084 0.0420.042 0.0260.026 0.0330.033 0.0450.045 0.0550.055 p value p value 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 Dry matter digestibility (%)Dry matter digestibility (%) ControlControl 13.64c 13.64 c 16.25c 16.25 c 19.82c 19.82 c 21.93bc 21.93 bc 29.58b 29.58 b 31.26b 31.26 b 31.78b 31.78 b 53.90b 53.90 b T1T1 19.06b 19.06 b 20.52b 20.52 b 23.60b 23.60 b 25.70b 25.70 b 32.77b 32.77 b 34.15b 34.15 b 36.99b 36.99 b 53.68b 53.68 b T2T2 51.12a 51.12 a 50.12a 50.12 a 49.84a 49.84 a 57.25a 57.25 a 45.59a 45.59 a 55.50a 55.50 a 63.40a 63.40 a 68.65a 68.65 a S.E.M.S.E.M. 0.4270.427 0.4860.486 0.4910.491 2.3352.335 2.662.66 3.4233.423 2.4192.419 1.7661.766 p value p value 0.00010.0001 0.00010.0001 0.00010.0001 0.00010.0001 0.00020.0002 0.00030.0003 0.00010.0001 0.00010.0001 Microbial protein synthesis (mg/100 mL)Microbial protein synthesis (mg / 100 mL) ControlControl 367.08b 367.08 b 487.10b 487.10 b 458.83458.83 483.37a 483.37 a 503.63a 503.63 a 471.63a 471.63 a 544.70a 544.70 a 495.64a 495.64 a T1T1 396.95b 396.95 b 500.97b 500.97 b 416.69416.69 452.43a 452.43 a 482.30a 482.30 a 483.36a 483.36 a 507.90a 507.90 a 483.36a 483.36 a T2T2 621.52a 621.52 a 633.78a 633.78 a 532.97532.97 408.69b 408.69 b 419.89b 419.89 b 427.36a 427.36 a 441.23b 441.23 b 466.83ab 466.83 ab S.E.M.S.E.M. 17.09817.098 13.49513.495 14.87314.873 12.56612.566 10.02010.020 18.76518.765 12.66712.667 9.7959.795 p value p value 0.00010.0001 0.00010.0001 0.00030.0003 0.00010.0001 0.00010.0001 0.00260.0026 0.00010.0001 0.04770.0477 NH3-Nconcentration(mg/100mL)NH 3 -Nconcentration (mg / 100 mL) ControlControl 0.52b 0.52 b 1.29b 1.29 b 0.23b 0.23 b 0.65b 0.65 b 0.46c 0.46 c 1.25b 1.25 b 1.04b 1.04 b 3.633.63 T1T1 1.32ab 1.32 ab 3.07ab 3.07 ab 0.76b 0.76 b 0.76b 0.76 b 1.74b 1.74 b 1.09b 1.09 b 1.10b 1.10 b 5.545.54 T2T2 1.05b 1.05 b 4.06a 4.06 a 2.47a 2.47 a 1.55a 1.55 a 3.19a 3.19 a 3.93a 3.93 a 4.4a 4.4 a 12.9812.98 S.E.M.S.E.M. 0.3210.321 0.7000.700 0.4810.481 0.1560.156 0.2710.271 0.1850.185 0.8930.893 2.8792.879 p value p value 0.02200.0220 0.10080.1008 0.01310.0131 0.00310.0031 0.00080.0008 0.00010.0001 0.08960.0896 0.15390.1539

a,b : Mean with different letter differ significantly between treatments (p < 0.05).a, b: Mean with different letter differ significantly between treatments ( p <0.05).

S.E.M. : standard error of the meanS.E.M. : standard error of the mean

Control: Basic TMR, T1: 배추 부산물로 대체한 세미 TMR, T2: 배추 부산물원물Control: Basic TMR, T1: Semi-TMR replaced with Chinese cabbage by-products, T2: Chinese cabbage by-product

(c) CH(c) CH 44 생성량 Production amount

In vitro 시험 결과 CH4 생성량은 배양이 진행될수록 증가하는 양상을 보여주었다(도 3). 배양 2시간대에는 대조구와 모든 처리구간의 유의적 차이는 나타나지 않았다(표 5). 배양 4시간 이후부터는 대조구가 다른 처리구에 비해서 유의적으로 높은 CH4 생성량을 나타내었다(p<0.05). 배양 24시간대의 CH4 생성량은 대조구가 가장 높은 46.56 mL이며, T2는 배양 초기부터 배양 후기에 이르기까지 CH4 생성량 증가폭이 대조구에 비해서 작게 나타났다. In vitro test results CH 4 production showed a tendency to increase as culturing progressed (Fig. 3). There was no significant difference between control and all treatments at 2 hours of culture (Table 5). After 4 hours of incubation, the control group had a significantly higher amount of CH 4 than the other treatments ( p <0.05). CH 4 production in cultures 24 and the control zone is the highest 46.56 mL, T2 appeared smaller the CH 4 production growth rate ranging from initial culture incubated late compared to the control group.

(d) CO(d) CO 22 생산량 output

In vitro 시험 결과 CO2 생성량은 배양이 진행될수록 증가하는 양상을 나타내었다(도 4). 배양 2~6, 10~12시간대에는 T2가 대조구에 비해서 유의적으로 높은 결과를 확인하였다(p<0.05)(표 5). 배양 24시간대에는 대조구가 가장 높은 191.87 mL의 CO2 생성량을 나타내었다. In vitro tests showed that the amount of CO 2 production increased as culture progressed (FIG. 4). ( P <0.05) (Table 5). These results indicate that T2 was significantly higher in the 2 ~ 6 and 10 ~ 12 hours of culture than in the control. At the 24th incubation period, the highest amount of CO 2 produced was 191.87 mL.

(e) 반추위 내 미생물 단백질 합성량 변화(e) Change in the amount of microbial protein synthesis in the rumen

미생물단백질 합성량은 배양 초기에 증가하였다가 이후 시간부터는 안정화되는 경향을 보여주었다(도 5). 배양 0~2시간대에는 T2가 다른 처리구에 비해서 유의적으로 높은 결과를 나타내었다(p<0.05)(표 5). 배양 4시간대에는 대조구와 처리구 간의 유의적 차이는 발생하지 않았다. 배양 6시간대에는 T2가 대조구에 비해서 유의적으로 낮은 결과를 나타내었다(p<0.05).The amount of microbial protein synthesis increased in the early stage of culture and stabilized afterwards (Fig. 5). T2 was significantly higher in the 0-2 hour culture than in the other treatments ( p <0.05) (Table 5). There was no significant difference between the control and treatment groups during the 4th incubation period. T2 was significantly lower than that of control ( p <0.05).

(f) NH(f) NH 33 -N 농도 변화-N concentration change

In vitro 시험 결과 NH3-N 농도는 배양시간이 증가할수록 다소 증가되는 경향을 나타내었다(도 6). 배양 2~24시간대에 T2가 대조구에 비해서 유의적으로 높은 결과를 나타내었다(p<0.05). In vitro test results showed that NH3-N concentration tended to increase slightly with increasing incubation time (Fig. 6). T2 was significantly higher in the 2 ~ 24 hour culture than the control ( p <0.05).

(g) 건물소화율 변화(g) Change in digestibility of building

In vitro 시험 결과 건물소화율은 배양이 진행될수록 증가되는 경향을 나타내었다(도 7). 모든 배양시간에 걸쳐서 T2가 대조구에 비해서 유의적으로 높은 건물소화율을 나타내었다(p<0.05). As a result of in vitro test, the digestibility of dry matter showed a tendency to increase as culture progressed (FIG. 7). T2 was significantly higher than that of control ( p <0.05).

(h) Total (h) Total VFAVFA 농도 변화 Concentration change

In vitro 시험 결과 배양 시간이 증가할수록 Total VFA의 농도는 증가하는 경향을 나타내었다(도 8). 배양 0시간대에서는 대조구와 처리구 간의 유의적 차이는 나타나지 않았다(표 5)(p<0.05). 배양 6~8시간대에는 T1이 대조구에 비해서 유의적으로 높은 결과를 나타내었다(p<0.05). 배양 10시간대에는 처리구가 대조구에 비해서 유의적으로 높은 결과를 나타내었다(p<0.05). 배양 12~24시간대에는 T2가 대조구에 비해서 유의적으로 높은 결과를 나타내었다(p<0.05). As a result of the in vitro test, the total VFA concentration tended to increase as the incubation time increased (FIG. 8). There was no significant difference between the control and the treatments at 0 hour of culture (Table 5) ( p <0.05). T1 was significantly higher in the 6 ~ 8 hours of culture than in the control ( p <0.05). ( P <0.05) at 10 hours of incubation compared to the control. T2 was significantly higher in the 12-24 hour culture than in the control ( p <0.05).

(i) A/P 비율 변화(i) A / P ratio change

In vitro 시험 결과 배양 시간이 증가할수록 A/P Ratio는 감소하는 경향을 나타내었다(도 9). 배양 0~12시간대에는 T2가 대조구에 비해서 유의적으로 높은 결과를 나타내었다(p<0.05). As a result of the in vitro test, the A / P ratio tended to decrease as the incubation time increased (FIG. 9). T2 was significantly higher in the 0 ~ 12 hour culture than in the control ( p <0.05).

실시예Example 3. 배추 부산물 원물 및 배추 부산물을 활용한 사료에 대한  3. Diets of Chinese cabbage by-products and Chinese cabbage by-products in in saccosacco 평가 evaluation

3.1. 재료 및 방법3.1. Materials and methods

(a) (a) In In saccosacco 시험 준비Exam preparation

In sacco 시험을 위하여 반추위에 cannulae가 장착된 2년생 한우 번식암소를 사용하였다. 본 시험은 nylon bag technique (Mehrez 와 Orskov, 1977)에 의거하여 진행하였다. pore size는 40㎛이고, 10×20 cm 크기의 nylon bag에 3.0 g 정도의 시료를 넣고 입구를 봉하여 준비하였다. 준비된 nylon bag은 pore size가 큰 세탁망에 넣어 공시축의 cannula를 통하여 반추위에 깊숙이 넣어 3, 6, 12, 24, 48 시간 방치하였고, 시간대 별로 nylon bag을 회수하였다. 회수한 nylon bag은 1차 세척은 PBS buffer를 이용하여 pH변화를 최소화하였고, 2차 세척은 흐르는 증류수를 이용하여 맑은 증류수가 나올 때까지 실시한 뒤 60℃ dry oven에서 72시간 동안 건조하여 건물소실율을 측정하였다. For the in - sacco test, 2 - year - old Hanwoo breeding cows with cannulae in rumen were used. This study was conducted according to the nylon bag technique (Mehrez and Orskov, 1977). The pore size was 40 μm, and a sample of about 3.0 g was placed in a 10 × 20 cm nylon bag and the inlet was sealed. The prepared nylon bag was put into a large washing net with pore size, put into the rumen through the cannula of the axis of rotation and left for 3, 6, 12, 24, 48 hours and recovered nylon bag by time. In the recovered nylon bag, the pH change was minimized by using PBS buffer for the first wash. The second wash was carried out until the clear distilled water came out using distilled water and dried for 72 hours at 60 ° C in a dry oven. Respectively.

(b)실험 설계(b) Experimental design

배추 부산물을 활용한 세미TMR의 사료가치평가를 위하여 본 실험을 실시하였다. 대조구로는 기본원료사료(옥수수, 대두박, 티모시, 볏짚)을 혼합한 Basic TMR을 사용하였으며, 시험구에는 배추 부산물로 대체한 세미TMR (T1), 배추 부산물원물(T2)이며, 3처리 3반복으로 사료가치평가를 위한 in sacco 시험을 실시하였다.This experiment was conducted to evaluate the feed value of semi - TMR using Chinese cabbage by - products. As a control, Basic TMR mixed with basic raw materials (corn, soybean meal, timothy, rice straw) was used. Semi TMR (T1) and Chinese cabbage byproduct (T2) And the in - sacco test for the evaluation of feed value.

3.2. 결과 3.2. result

(a) 건물소실율 변화(a) Change in building loss rate

In sacco 시험 결과 건물 소실율은 시간이 증가할수록 증가하는 양상을 나타내었다(도 10). 12시간대부터는 Control 과 T1 처리구는 건물소실율이 큰 차이가 없었으며, T2 처리구에서는 대조구에 비해 유의적으로 높은 결과를 나타내었다(p < 0.05). 건물 소실율을 분석한 결과 모든 시간대에서 T2 처리구인 배추 부산물 원물이 유의적으로 가장 높은 건물 소실율을 보였다. 6시간을 제외한 3, 12, 24 그리고 48시간대 샘플 모두 Control(Basic TMR)과 T1(세미 TMR: 배추 부산물 대체)의 건물소실율에는 차이가 없었다. In case of the In sacco test, the rate of disappearance of buildings increased with increasing time (Fig. 10). From the 12th time point, there was no significant difference between the control and T1 treatments ( p <0.05). As a result of analysis of the rate of disappearance of the buildings, the Chinese cabbage by - product of T2 treatments showed the highest loss rate of the buildings at all times. There was no difference in the rate of building loss between Control (Basic TMR) and T1 (Semi TMR: Chinese cabbage by-product replacement) at 3, 12, 24 and 48 hour samples except 6 hours.

본 실시예에서, 김치공장에서 발생되는 배추 부산물로 완전 혼합 사료를 제조하였고, 상기 TMR과 원물을 활용하여 in vitro 시험 및 in sacco을 실시한 결과, 반추 동물의 위 내 미생물 발효 특성을 확인한 결과, 두 처리구간의 반추위 내 미생물 발효 특성에 통계적으로 유의한 차이가 발생하지 않았다. In this example, a complete mixed feed was prepared from Chinese cabbage by-products produced in a kimchi factory. In vitro tests and in-situ tests using the TMR and raw materials were carried out. As a result, There was no statistically significant difference in the microbial fermentation characteristics in the rumen of the treatments.

또한 완전혼합사료 제조에 있어 배추부산물을 8.8% 첨가시, 반추가축 급여사료 중 조사료의 경우 1.5%, 농후사료의 경우 6.5%를 대체할 수 있다는 것을 확인하였고, 이와 같은 결과를 통해 배추 부산물을 대체하여 배합된 세미 TMR은 젖소 및 축우용 사료로 가치가 있을 것으로 사료된다. In addition, it was confirmed that the addition of 8.8% of Chinese cabbage byproducts in the preparation of complete mixed feeds could replace 1.5% of the feed for the ruminant feed and 6.5% for the concentrated feed. And the semi - TMR compounded with cow 's milk.

또한 본 발명은 김치 공장이나 농산물 시장 등에서 다량 발생하는 고수분의 배추 부산물을 활용할 수 있는 새로운 방법을 제공할 수 있는 것으로, 본 발명의 방법을 활용할 경우, 김치공장에서 발생되는 고수분의 배추부산물의 사료제로를 용이하게 할 수 있을 정도의 수분조절을 통한 사일리지제조 방법을 제시할 수 있으며, 이로써 농가현장에서 세미 TMR사료 제조 실시 방법을 제시할 수 있는 것이며, 궁극적으로는 TMR사료에 대한 농후사료원와 조사료원에 대한 비용을 절감할 수 있다.Further, the present invention can provide a new method for utilizing high-yielding Chinese cabbage by-products which are generated in large quantities in a kimchi factory or an agricultural product market. When utilizing the method of the present invention, the high- It is possible to suggest a method of producing silage through moisture control to facilitate the feed zero and thus to suggest a method of producing semi-TMR feed in a farm site, and ultimately to a feed feed source for TMR feed The cost of the forage source can be reduced.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (5)

배추 부산물, 조사료, 건조 볏집, 분쇄된 옥수수, 및 대두박을 포함하는, 완전혼합사료 조성물.
Chinese cabbage by-products, forage, dried reeds, ground corn, and soybean meal.
제1항에 있어서,
상기 조성물은 배추 부산물 5 내지 15 중량%, 조사료 15 내지 25 중량%, 건조 볏집 25 내지 35 중량%, 분쇄된 옥수수 20 내지 30 중량%, 및 대두박 10 내지 20 중량%을 포함하는 것을 특징으로 하는, 완전혼합사료 조성물.
The method according to claim 1,
Characterized in that the composition comprises 5 to 15% by weight of Chinese cabbage by-products, 15 to 25% by weight of forage, 25 to 35% by weight of dried rice husk, 20 to 30% by weight of ground corn, and 10 to 20% Complete mixed feed composition.
제1항 또는 제2항에 있어서,
상기 조사료는 티모시 건초인 것을 특징으로 하는, 완전혼합사료 조성물.
3. The method according to claim 1 or 2,
Wherein the forage is timothy hay.
배추 부산물, 조사료, 건조 볏집, 분쇄된 옥수수 및 대두박을 혼합하는 단계를 포함하는, 완전혼합사료의 제조 방법.
A method for the production of a complete mixed feed comprising the step of mixing Chinese cabbage by-products, forage, dried rice cakes, ground corn and soybean meal.
제4항에 있어서,
상기 완전혼합사료는 배추 부산물 5 내지 15 중량%, 조사료 15 내지 25 중량%, 건조 볏집 25 내지 35 중량%, 분쇄된 옥수수 20 내지 30 중량%, 및 대두박 10 내지 20 중량%을 포함하는 것을 특징으로 하는, 완전혼합사료의 제조 방법.
5. The method of claim 4,
Characterized in that the complete mixed feed comprises 5 to 15% by weight of Chinese cabbage by-product, 15 to 25% by weight of forage, 25 to 35% by weight of dried rice husk, 20 to 30% by weight of ground corn, and 10 to 20% by weight of soybean meal Wherein the method comprises the steps of:
KR1020160132831A 2016-10-13 2016-10-13 Total mixed ration compostion comprising by-product of cabbage and method of manufacturing the same KR20180041293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160132831A KR20180041293A (en) 2016-10-13 2016-10-13 Total mixed ration compostion comprising by-product of cabbage and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160132831A KR20180041293A (en) 2016-10-13 2016-10-13 Total mixed ration compostion comprising by-product of cabbage and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20180041293A true KR20180041293A (en) 2018-04-24

Family

ID=62087510

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160132831A KR20180041293A (en) 2016-10-13 2016-10-13 Total mixed ration compostion comprising by-product of cabbage and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20180041293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087388A (en) 2019-01-10 2020-07-21 정채규 Animal feed additive using agricultural wastes and process for preparing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087388A (en) 2019-01-10 2020-07-21 정채규 Animal feed additive using agricultural wastes and process for preparing the same

Similar Documents

Publication Publication Date Title
CN103349186B (en) Weaned piglet feed additive and preparation method thereof
KR100840145B1 (en) Fermented feeds for livestock farming using lactic acid bacteria and yeast and processing method thereof
CN103798553B (en) Environment-friendly pig feed additive and preparation method thereof
CN101744146A (en) Fermented type full-value nutritious diet for dairy cattle and preparing method thereof
CN101683125A (en) Method for preparing biological fermentation feed for pigs
CN102293332A (en) Milk replacer for stimulating calf rumen development and feeding method thereof
KR20160113590A (en) Use of an enzymatic composition in the feed of ruminants
CN102125182B (en) Needle mushroom fungus dreg feed for dairy cow
CN108041310B (en) Preparation method and application of liquid feed
CN105104847A (en) Fermented feed for fish
KR20150129145A (en) Total mixed ration feed for reduce of raising term and method for breeding of korean native cattle
KR101795499B1 (en) Fermented total mixed ration feed using Lactobacillus strain composition
KR101319097B1 (en) Feed Supplement and method for making Fermented Green Tea Probiotics
CN105341379A (en) Complete mixed granular feed for breeding ewes and preparation method of complete mixed granular feed
CN105851539A (en) Fermented feed capable of improving milk producing ability of milk goats in winter and preparation method of fermented feed
CN103734499A (en) Aquatic organism feed
CN106509437A (en) Additive for pig feed, capable of solving problem of indigestion for new corn
CN106578369A (en) Pig feed recipe and manufacture method thereof
KR100663890B1 (en) Fermentation Feed Made of Food By-products and Manufacturing Method of the Same and Milk Product from the Fermentation Feeded Livestock
KR100876521B1 (en) A probiotics for fermenting mixed rations and a method for fermenting the mixed rations using the probiotics
KR101455823B1 (en) Non-antibiotics feed for raising livestock and manufacturing method thereof
CN103637005A (en) Biological livestock feed production method and biological feed made by method
KR20180041293A (en) Total mixed ration compostion comprising by-product of cabbage and method of manufacturing the same
CN105724762A (en) Biologically fermented sow feed and preparation method thereof
KR102548441B1 (en) Breeding method of korean native cattle using feed additive enhanced omega-3 fatty acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application