KR20180038302A - Igbt 모듈 냉각 열 교환기 - Google Patents

Igbt 모듈 냉각 열 교환기 Download PDF

Info

Publication number
KR20180038302A
KR20180038302A KR1020160129245A KR20160129245A KR20180038302A KR 20180038302 A KR20180038302 A KR 20180038302A KR 1020160129245 A KR1020160129245 A KR 1020160129245A KR 20160129245 A KR20160129245 A KR 20160129245A KR 20180038302 A KR20180038302 A KR 20180038302A
Authority
KR
South Korea
Prior art keywords
igbt module
cooling
plate
heat exchanger
disposed
Prior art date
Application number
KR1020160129245A
Other languages
English (en)
Other versions
KR102599984B1 (ko
Inventor
김재영
정민우
김세현
김봉준
이요한
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020160129245A priority Critical patent/KR102599984B1/ko
Priority to PCT/KR2017/001331 priority patent/WO2018066771A1/ko
Publication of KR20180038302A publication Critical patent/KR20180038302A/ko
Application granted granted Critical
Publication of KR102599984B1 publication Critical patent/KR102599984B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20936Liquid coolant with phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

실시예에 따른 IGBT 모듈 냉각 열 교환기는, 냉매가 통과하는 적어도 하나 이상의 채널을 갖는 복수의 튜브; 내부에 상기 튜브를 수용하는 플레이트; 상기 플레이트의 일면에 배치되는 적어도 하나 이상의 제 1 IGBT 모듈; 및 상기 플레이트의 타면에 배치되는 적어도 하나 이상의 제 2 IGBT 모듈을 포함한다.

Description

IGBT 모듈 냉각 열 교환기 {Heat exchanger for cooling IGBT module}
본 발명은 IGBT 모듈 냉각 열 교환기에 관한 것이며, 특히 전력변환장치를 효율적으로 냉각하는 IGBT 모듈 냉각 열 교환기에 관한 것이다.
최근 에너지 저장 시스템(Energy Storage System; ESS)용 전력변환장치(Power conversion system; PCS)에 대한 개발이 주목 받고 있다.
에너지 저장 시스템이 전력저장 일변도에서 신 재생 에너지 연계·전력 주파수조정(FR)용 등으로 다양화되면서 대용량 배터리에만 쏠렸던 에너지 저장시스템의 구성품 시장에 전력변환장치가 새로운 유망 품목으로 떠올랐다. 고압·고품질 전력을 다루는 기술 영역이라 국내외 업체 간 경쟁도 뜨겁다.
이러한 에너지 저장 시스템(Energy Storage System)은 생산된 전력을 발전소, 변전소 및 송전선 등을 포함한 각각의 연계 시스템에 저장한 후, 전력이 필요한 시기에 선택적, 효율적으로 사용하여 에너지 효율을 높이는 시스템이다.
에너지 저장 시스템은 시간대 및 계절별 변동이 큰 전기부하를 평준화시켜 전반적인 부하율을 향상시킬 경우, 발전 단가를 낮출 수 있으며 전력설비 증설에 필요한 투자비와 운전비 등을 절감할 수 있어서 전기요금을 인하하고 에너지를 절약할 수 있다.
그리고 에너지 저장 시스템은 전력계통에서 발전, 송배전, 수용가에 설치되어 이용되고 있으며, 주파수 조정(Frequency Regulation), 신재생에너지를 이용한 발전기 출력 안정화, 첨두부하 저감(Peak Shaving), 부하 평준화(Load Leveling), 비상 전원 등의 기능으로 사용되고 있다.
또한, 에너지 저장 시스템은 전력이 필요한 경우 충전된 전력을 방전하여 전력을 공급한다. 이를 통해, 에너지 저장 시스템은 전력을 유동적으로 공급할 수 있도록 한다.
이러한 배터리 관리 장치(Battery Conditioning System, BCS)에 설치된 배터리들은 계통에 전력을 공급하기 위해 방전(放電)되거나 계통으로부터 공급되는 전력을 이용하여 충전(充電)된다. 전력변환장치는 계통과 배터리 관리장치 사이에서 전력 변환(AC/DC)을 수행하는 등 배터리 관리장치에 설치된 배터리들의 전력을 관리하는 기능을 수행할 수 있다.
이러한 전력변환장치에서 전력 변환을 수행하는 전력변환소자(Insulated gate bipolar transistor; IGBT)에서는 고온의 열이 발생한다. 이와 같이 발생한 열은 전력변환장치의 성능을 저하시키고, 고온인 경우 전력변환장치를 손상 내지 파손시킬 수 있다. 따라서, 전력변환장치에서 발생하는 열을 해소할 수 있는 기술의 개발이 요구된다.
대한민국 공개특허공보 제10-2001-0104006호, “HVIGBT를 이용한 인버터 파워 스택”
본 발명은 상술한 바와 같은 문제를 해결하고자 안출된 것으로, 배터리들의 전력을 변환하는 과정에서 발생되는 고온의 열을 냉매 냉각하는 IGBT 모듈 냉각 열 교환기를 제공하기 위한 것이다.
자세히, 본 발명은, 전력변환소자를 지지함과 동시에 냉각하는 IGBT 모듈 냉각 열 교환기의 소형화된 구조를 제공할 수 있다.
제안되는 실시 예에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 제안되는 실시 예가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
실시예에 따른 IGBT 모듈 냉각 열 교환기는, 냉매가 통과하는 적어도 하나 이상의 채널을 갖는 복수의 튜브; 내부에 상기 튜브를 수용하는 플레이트; 상기 플레이트의 일면에 배치되는 적어도 하나 이상의 제 1 IGBT 모듈; 및 상기 플레이트의 타면에 배치되는 적어도 하나 이상의 제 2 IGBT 모듈을 포함한다.
이때, 상기 제 1 IGBT 모듈과, 상기 제 2 IGBT 모듈은 상기 쿨링 플레이트를 사이에 두고 서로 오버랩(overlap)되도록 배치될 수 있다.
또한, 상기 IGBT 모듈과, 상기 제 2 IGBT 모듈은 상기 쿨링 플레이트를 사이에 두고 서로 엇갈리도록 배치될 수 있다.
또한, 상기 튜브는, 복수의 마이크로 채널(Micro-channel)을 포함하는 플랫형상의 튜브일 수 있다.
또한, 상기 복수의 튜브는, 상기 쿨링 플레이트 내부에 2 열 이상으로 나열되며, 상기 전열과 후열의 튜브들은 상호 지그재그형으로 배열될 수 있다.
또한, 상기 복수의 튜브는, 상기 쿨링 플레이트 내부에 2 열 이상으로 나열되며, 상기 전열과 후열의 튜브들은 상호 나란하게 배열될 수 있다.
또한, 상기 쿨링 플레이트는, 전면에 상기 제 1 IGBT 모듈이 배치되는 제 1 쿨링 플레이트와, 전면에 상기 제 2 IGBT 모듈이 배치되는 제 2 쿨링 플레이트를 포함하고, 상기 제 1 쿨링 플레이트의 후면에는 복수의 돌출부와 홈이 형성되며, 상기 복수의 돌출부 상에는 상기 튜브가 배치되고, 상기 제 2 쿨링 플레이트의 후면에는 복수의 돌출부와 홈이 형성되며, 상기 복수의 돌출부 상에는 상기 튜브가 배치되며, 상기 제 1 쿨링 플레이트의 후면에 돌출부와, 상기 제 2 쿨링 플레이트의 후면의 홈이 끼워지도록 상기 제 1 쿨링 플레이트와 상기 제 2 쿨링 플레이트가 결합할 수 있다.
실시예에 따른 IGBT 모듈 냉각 열 교환기는, 소형이며 냉각 효율이 높아 IGBT 모듈의 온도를 효율적으로 제어할 수 있는 장점이 있다.
자세히, 실시예에 따른 IGBT 모듈 냉각 열 교환기는, IGBT 모듈을 간접적으로 냉각하는 쿨링 팬과 달리 IGBT 모듈에 직접 접촉하여 냉매 냉각함으로써, IGBT 모듈의 온도를 좀더 효과적으로 낮출 수 있는 장점이 있다.
또한, 실시예에 따른 IGBT 모듈 냉각 열 교환기는, 플레이트 형 구조로 컴팩트하게 구성 가능하여, IGBT 모듈 냉각 열 교환기만을 이용하여 IGBT 모듈을 냉각할 경우, 전력변환장치를 작게 형성하여 컨테이너 내에 다수의 전력변환장치를 집약시킬 수 있는 장점이 있다.
특히, 실시예에 따른 IGBT 모듈 냉각 열 교환기는, 쿨링 플레이트의 양면에 IGBT 모듈을 각각 배치하여, 부피를 최소화할 수 있다.
또한, IGBT 모듈 냉각 열 교환기는, 마이크로 채널 플랫 튜브를 사용하며, 마이크로 채널 플랫튜브는 고압 냉매를 이용하여 고효율 냉각이 가능하며, 크기가 작아 IGBT 모듈 냉매 교환기를 컴팩트하게 형성할 수 있는 장점이 있다.
이러한 실시예에 따른 IGBT 모듈 냉각 열 교환기는, 전력변환소자가 가동하는 과정에서 발생하는 고온의 열을 효과적으로 방출하여, 전력변환 효율을 향상시킬 수 있고, 열에 의해 전력변환소자의 손상 내지 파손에 의한 유지보수작업을 줄임으로써 전력변환장치의 가동률을 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 에너지 저장 시스템을 포함하는 전력 제공 시스템의 개략적인 개념을 설명하기 위한 블록도이다.
도 2는 본 발명의 실시예에 따른 에너지 저장 시스템의 개략적인 구성을 나타내는 블록도이다.
도 3은 본 발명의 실시예에 따른 전력변환장치의 개략적인 구성을 나타내는 블록도이다.
도 4는 본 발명의 실시예에 따른 전력변환장치의 냉각과정을 나타내는 흐름도이다.
도 5는 공냉식 냉각수단만을 사용한 경우와, 냉매 냉각식 냉각수단만을 사용한 경우와, 공냉식과 냉매 냉각식 냉각수단을 모두 사용한 경우에 전력변환소자의 온도를 각각 나타내는 그래프이다.
도 6은 본 발명의 실시예에 따른 전력변환장치의 하우징 박스 내부를 투시하여 나타내는 투시도이다.
도 7은 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기 내부를 투시한 투시도이다.
도 8a는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기의 정면을 나타내고, 도 8b는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기의 후면을 나타내며, 도 8c는 도 8b의 A-A'의 단면을 나타낸다.
도 9a 내지 도 9c는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기 구조의 일례로, 도 9a는 IGBT 모듈 냉각 열 교환기의 쿨링 플레이트 정면을 나타내고, 도 9b는 IGBT 모듈 냉각 열 교환기의 커버와 튜브를 나타내며, 도 9c는 도 9b의 B-B'의 단면을 나타낸다.
도 10a 내지 도 10b는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기 구조의 다른 일레로, 도 10a는 IGBT 모듈 냉각 열 교환기의 분리 사시도이고, 도 10b는 도 10a의 C-C'의 단면도이다.
도 11a 내지 도 11b는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기 구조의 또 다른 일레로, 도 11a는 IGBT 모듈 냉각 열 교환기의 분리 사시도이고, 도 11b는 도 11a의 D-D'의 단면도이다.
도 12는 쿨링 플레이트 두께에 따른 전력변환소자의 온도변화를 나타내는 그래프이다.
도 13은 본 발명의 또 다른 실시예에 따른 전력변환장치의 사시도이다.
도 14는 본 발명의 또 다른 실시예에 따른 전력변환장치의 측면의 일례이다.
도 15는 본 발명의 또 다른 실시예에 다른 전력변환장치의 측면의 다른 일례이다.
도 16은 본 발명의 또 다른 실시예에 따른 전력변환장치의 단면의 일례이다.
도 17은 본 발명의 또다른 실시예에 따른 전력변환장치의 단면의 다른 일례이다.
이하, 본 발명과 관련된 실시 예에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 구현할 수 있을 것이다. 그러나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 수 있다.
도 1은 본 발명의 실시예에 따른 에너지 저장 시스템을 포함하는 전력 제공 시스템의 개략적인 개념을 설명하기 위한 블록도이다.
도 1을 참조하면, 에너지 저장 시스템은 발전장치(2), 에너지 저장 시스템(2) 및 부하(3)를 포함한다.
발전장치(2)는 전기 에너지를 생산한다. 발전장치(2)는 태양광 발전장치, 화력 발전장치, 원자력 발전장치 또는 수력 발전장치일 수 있으며, 이와 다르게 풍력 발전장치일 수 있다.
발전장치(2)가 태양광 발전장치인 경우, 발전장치(2)는 태양 전지 어레이일 수 있다.
태양전지 어레이는 복수의 태양전지 모듈을 결합한 것이다. 태양전지 모듈은 복수의 태양전지 셀을 직렬 또는 병렬로 연결하여 태양 에너지를 전기 에너지로 변환하여 소정의 전압과 전류를 발생시키는 장치이다. 따라서, 태양전지 어레이는 태양 에너지를 흡수하여 전기 에너지로 변환한다.
또한, 발전장치(2)가 풍력 발전장치인 경우, 발전장치(2)는 풍력 에너지를 전기 에너지로 변환하는 팬(Fan)일 수 있다.
한편, 발전장치(2)는 이에 한정되지 않으며, 태양광 발전장치 및 풍력 발전장치 이외에도 조력 발전장치 등일 수 있다. 그러나, 이는 예시적인 것으로, 발전장치(2)는 언급한 종류에 한정되는 것은 아니며, 태양열이나 지열 등, 신재생 에너지를 이용하여 전기 에너지를 생성하는 발전 시스템을 모두 포함할 수 있다.
에너지 저장 시스템(2)는 발전장치(2)를 통해 변환된 전기 에너지를 이용하여 배터리의 충전을 위한 충전 전력을 공급하거나, 부하(3)의 구동을 위한 구동 전력을 공급한다.
이를 위해, 에너지 저장 시스템(2)는, 전력변환장치와, 배터리 관리 장치(Battery Conditioning System, BCS)를 포함한다.
전력변환장치는, 발전장치(2)와 연결되고, 발전장치(2)로부터 발전되는 직류전력을 상용전원인 교류전력으로 변환하는 기능을 수행할 수 있다. 또한, 전력변환장치는, 배터리 관리 장치의 배터리에 저장된 직류 또는 교류전력을 컨버팅하여, 부하(3)에 공급하는 기능을 수행할 수 있다.
이러한 전력변환장치는 상대적으로 대용량의 전력을 공급하기 위한 에너지 저장 시스템에 제공될 수 있다. 에너지 저장 시스템은 상대적으로 대용량의 전력을 소비처에 공급하기 위하여, 대용량의 전력 변환이 요구된다. 이를 위하여 전력변환장치는 다수 개로 제공될 수 있다. 예를 들어, 전력변환장치는 250KW, 500KW, 1MW, 2MW급의 에너지 저장 시스템에 다수 개로 제공될 수 있다.
그리고 전력변환장치가 변환할 수 있는 전력의 한계량에 따라서 전력변환장치의 개수는 변경될 수 있다. 또한, 전력변환장치가 변환할 수 있는 전력의 한계량 또한 전력변환장치에 제공되는 다수의 부품에 의하여 변경될 수 있다. 이러한 사상에 제한되지 않는다.
또한, 베터리 관리장치는, 다수의 직류-직류 컨버터 중 어느 하나의 특정 직류-직류 컨버터와 연결되어 연결된 직류-직류 컨버터를 통해 출력되는 전력에 따라 충전 동작을 수행하거나, 다른 직류-직류 컨버터로의 전력 공급을 위한 방전 동작을 수행하는 배터리와, 배터리의 상태를 관리하는 배터리 관리 시스템를 포함한다.
부하(3)는 에너지 저장 시스템(2)로부터 전기 에너지를 공급받아 전력을 소모한다.
이하에서는 상기와 같이 구성된 에너지 저장 시스템에 대해 보다 구체적으로 설명하기로 한다.
도 2는 본 발명의 실시예에 따른 에너지 저장 시스템의 개략적인 구성을 나타내는 블록도이다.
도 2를 참조하면, 에너지 저장 시스템(1)은, 컨테이너(8), IGBT 모듈 냉각 열 교환기(100)를 포함하는 전력변환장치(10), 변압기(20), 공조기(30), 소화전(40), 실외기(50) 및, 실외기(50)와 IGBT 모듈 냉각 열 교환기(100) 연결하는 제 1 냉매배관(71, 72), 실외기(50)와 공조기(30)를 연결하는 제 2 냉매배관을 포함할 수 있다. 다만, 도 2에 도시된 에너지 저장 시스템의 유닛들은 에너지 저장 시스템을 구현하는데 있어서 필수적인 것은 아니어서, 본 명세서 상에서 설명되는 에너지 저장 시스템은 위에서 열거된 구성요소들 보다 많거나, 또는 적은 구성요소들을 가질 수 있다.
자세히, 에너지 저장 시스템(1)은, 상자형상의 용기인 컨테이너(8)를 포함하며, 컨테이너(8)의 실내에는 전력변환장치(10)가 배치되어 외부 환경으로부터 안전하게 보호될 수 있다.
그리고 에너지 저장 시스템(1)은, 컨테이너(8) 외부에 배치되며, 압축기와 응축기를 갖는 실외기(50)를 포함할 수 있다.
이러한 실외기(50)는, 제 1 냉매배관(71, 72)을 통해 IGBT 모듈 냉각 열 교환기(100)에 냉매를 공급 및 수급할 수 있으며, 제 2 냉매배관을 통해 공조기(30)에 냉매를 공급하고 사용된 냉매를 수급할 수 있다. 즉, 공통된 하나의 공조기(30)를 통해 공냉식 냉각 기능과 IGBT 모듈 냉각 열 교환기(100)를 통한 냉매 냉각식 냉각 기능을 상황에 따라 선택적으로 제공하여, 냉각 효율을 향상시킬 수 있다.
또한, 에너지 저장 시스템(1)은, 컨테이너(8) 내부에 적어도 하나 이상 배치되는 전력변환장치(10)(Power conversion system; PCS)를 포함할 수 있다.
그리고 전력변환장치(10)는, 복수의 전력변환소자(Insulated gate bipolar transistor; IGBT, 이하 IGBT 모듈(300))과, 실외기(50)와 연결된 제 1 냉매배관(71, 72)과, 제 1 냉매배관(71, 72)과 연결되어 IGBT 모듈(300)을 지지하고 냉매 냉각하는 IGBT 모듈 냉각 열 교환기(100)를 포함할 수 있다. IGBT 모듈 냉각 열 교환기(100)는, 증발기로 지칭될 수도 있다.
도 3은 본 발명의 실시예에 따른 전력변환장치(10)의 개략적인 구성을 나타내는 블록도이다.
자세히, 도 3을 참조하면, 전력변환장치(10)는, IGBT 모듈 냉각 열 교환기(100), 쿨링 팬(200), IGBT 모듈(300), 온도 센서(400) 및 온도 제어부(500)를 포함할 수 있다.
자세히, 전력변환장치(10)는, 몸체인 하우징 박스(Housing box)를 포함하며, 하우징 박스 내에는 상기 IGBT 모듈(300)과 IGBT 모듈(300)을 지지하는 IGBT 모듈 냉각 열 교환기(100)가 배치될 수 있다.
또한, 하우징 박스의 적어도 일 측면에는 컨테이너(8) 내부의 냉각된 공기를 유입하여 하우징 박스 내부를 공냉하는, 적어도 하나의 쿨링 팬(200)(Cooling Fan)이 구비될 수 있다.
또한, IGBT 모듈(300)은, 전력변환소자와 회로기판을 포함할 수 있으며, 실시예에서 전력변환소자는 절연 게이트 양극성 트랜지스터일 수 있다. 이러한 전력변환 소자는, 직류를 필요로 하는 전자기기를 교류로 작동시키기 위해서 배터리의 교류를 직류로 변환시키는 교류/직류 변환기(A/D Converter)로 동작할 수 있으며, 반대로 교류를 필요로 하는 전자기기를 축전지로 작동시키기 위해서는 직류를 교류로 변환시키는 인버터(inverter)로 동작할 수 있다.
또한, IGBT 모듈(300)은, 이러한 전력변환소자와 배터리, 부하를 전기적으로 연결하기 위한 회로기판을 더 포함할 수 있다.
이러한 전력변환소자가 직류-교류 변환, 교류-직류 변환하기 위해 동작하는 과정에서 고온의 열이 발생하며, 고온의 열이 적절하게 방출되지 아니하면 전력변환소자 및 그 밖에 회로기판 소자들에게 손상을 주어, 전력변환효율이 감소하고 장치의 수명이 감소될 수 있다.
따라서, 에너지 저장 시스템(1)은, 전력변환장치(10)를 공냉하기 위한 실외기(50), 제 2 냉매배관, 공조기(30) 및 쿨링 팬(200) 등으로 구성된 공냉 시스템을 포함할 수 있다.
자세히, 공조기(30)는, 컨테이너(8) 내부에 배치되고 제 2 냉매배관을 통해 실외기(50)와 연결되어 냉매를 공급받아 냉각된 공기를 컨테이너(8) 내부로 공급하여, 컨테이너(8) 전체 내부를 냉각시킬 수 있다.
그리고 전력변환장치(10)의 쿨링 팬(200)은 이와 같이 냉각된 컨테이너(8) 내부 공기를 덕트(duct)를 통해 하우징 박스 내부로 유입하여, 하우징 박스를 공냉함으로써, 전력변환장치(10)를 공냉할 수 있다.
또한, 에너지 저장 시스템(1)은, 전력변환장치(10)를 냉매 냉각하기 위한 실외기(50), 제 1 냉매배관(71, 72) 및 IGBT 모듈 냉각 열 교환기(100)를 포함할 수 있다.
자세히, 실외기(50)는, 제 2 냉매배관과 별도로 구비되는 제 1 냉매배관(71, 72)으로 냉매 일부를 분지하여 IGBT 모듈 냉각 열 교환기(100)로 공급할 수 있다. 이때, 실외기(50)가 공급하는 냉매는 R410A로, 120psi 정도의 고압 냉매일 수 있다.
고압 냉매를 공급받는 IGBT 모듈 냉각 열 교환기(100)는 적어도 하나 이상의 IGBT 모듈(300)이 부착하여 지지할 수 있으며, 제 1 냉매배관(71, 72)의 냉매가 밸브를 통과하며 팽창된 냉매를 튜브에서 증발시켜, 부착된 IGBT 모듈(300)을 직접 냉매 냉각시키는 직팽식 구조일 수 있다. 자세히, IGBT 모듈 냉각 열 교환기(100)는 냉동사이클을 구성하는 1차 유체의 팽창된 냉매를 직접적으로 냉각에 사용할 수 있다.
이러한 IGBT 모듈 냉각 열 교환기(100)는, IGBT 모듈(300)을 간접적으로 냉각하는 쿨링 팬(200)과 달리 IGBT 모듈(300)에 직접 접촉하여 냉매 냉각함으로써, IGBT 모듈(300)의 온도를 좀더 효과적으로 낮출 수 있는 장점이 있다.
또한, IGBT 모듈 냉각 열 교환기(100)를 통한 IGBT 모듈(300) 냉매 냉각 시스템은, 플레이트 형 구조로 컴팩트하게 구성 가능하여, IGBT 모듈 냉각 열 교환기(100)만을 이용하여 IGBT 모듈(300)을 냉각할 경우, 전력변환장치(10)를 작게 형성하여 컨테이너(8) 내에 다수의 전력변환장치(10)를 집약시킬 수 있는 장점이 있다. 예를 들어, IGBT 모듈 냉각 열 교환기(100)만을 이용하여 IGBT 모듈(300)을 냉각하는 전력변환장치(10)는, 공냉식 전력변환장치(10)에 비해 적어도 30% 이상의 부피가 축소될 수 있다.
한편, 공냉 시스템과 냉매 냉각 시스템을 IGBT 모듈(300)의 온도와 관계없이 모두 동작시키는 것은 불필요한 전력낭비를 발생시킬 수 있다.
전력변환장치(10)는, IGBT 모듈(300)의 온도에 따라 선택적으로 냉각 시스템을 동작시키기 위해 IGBT 모듈(300)의 온도를 측정하는 온도 센서(400)와, 온도 센서(400)가 측정한 온도에 따라서 제 1 냉매배관(71, 72)과 실외기(50)를 연결하는 팽창밸브(60)를 제어하는 온도 제어부(500)를 더 포함할 수 있다.
도 4는 본 발명의 실시예에 따른 온도 제어부(500)의 제어에 따라 전력변환장치(10)의 냉각과정을 나타내는 흐름도이다.
도 4를 참조하면, IGBT 모듈(300)이 전력을 변환하는 동작을 수행할 수 있다. (S101)
IGBT 모듈(300)의 전력변환 과정에서는 고온의 열이 발생할 수 있으며, 이러한 열은 폐쇄된 하우징 박스 내부의 온도를 점차적으로 상승시킬 수 있다.
전력변환장치(10)를 공냉하기 위해, 먼저, 공조기(30)를 동작시켜 컨테이너(8) 내부 전체 온도를 낮출 수 있다. (S103)
자세히, 실외기(50)로부터 냉매를 공급받은 공조기(30)는, 냉매를 기화시켜 냉각된 공기를 컨테이너(8) 내부로 방출함으로써, 컨테이너(8) 내부 전체 온도를 하강시킬 수 있다.
온도 제어부(500)는, 컨테이너(8) 내부 온도와 온도 센서(400)를 통해 IGBT 모듈(300)의 온도를 측정하고, IGBT 모듈(300)이 소정의 온도 이하라면, 쿨링 팬(200)을 동작시켜 IGBT 모듈(300)을 공냉할 수 있다. (S105)
즉, 온도 제어부(500)는, IGBT 모듈(300)의 온도가 낮으면, 컨테이너(8) 내부의 냉각된 공기를 공급하여 하우징 박스 온도를 낮추는 공냉 시스템 만을 동작시켜, 일거에 복수의 전력변환장치(10)를 냉각시킴으로써, 전력효율을 향상시킬 수 있다.
온도 제어부(500)는, 온도 센서(400)를 통해 IGBT 모듈(300)의 온도를 측정하고, IGBT 모듈(300)이 소정의 온도 이상이라면, IGBT 모듈 냉각 열 교환기(100)를 동작시켜 IGBT 모듈(300)을 공냉할 수 있다. (S107, S109, S111)
자세히, 온도 제어부(500)는, 온도 센서(400)를 통해 IGBT 모듈(300)의 온도가 소정의 온도를 넘어 전력변환소자가 손상을 입을 위험이 있다고 판단되면, 제 1 냉매배관의 팽창밸브(60)를 오픈하여 IGBT 모듈 냉각 열 교환기(100)에 냉매를 공급함으로써, IGBT 모듈(300)을 냉매 냉각시킬 수 있다. (S113)
위 실시예와 반대로, 온도 제어부(500)는, 복수의 전력변환장치(10) 중 소정의 온도 이상의 IGBT 모듈(300)을 지지하는 IGBT 모듈 냉각 열 교환기(100)만을 동작시켜, 불필요한 전력소모를 막을 수 있다.
즉, 온도 제어부(500)는, IGBT 모듈(300)의 온도에 따라 선택적으로 공냉 시스템과 냉매 냉각 시스템을 동작시킬 수 있으며, 복수의 전력변환장치(10) 중 필요한 IGBT 모듈 냉각 열 교환기(100)만을 동작시켜, 효율적인 IGBT 모듈(300)의 온도를 제어할 수 있다.
나아가, 온도 제어부(500)는, IGBT 모듈(300)의 온도에 따라 팽창밸브(60)의 개폐정도를 제어하여, IGBT 모듈 냉각 열 교환기(100)로 공급하는 냉매 유량을 제어함으로써, IGBT 모듈(300)의 온도를 정밀하게 제어할 수도 있다.
또한, 온도 제어부(500)는, 공조기(30)와 IGBT 모듈(300)의 필요 냉매를 산출하고, 필요 냉매에 따라 실외기(50) 내의 압축기의 회전수와, 팽창장치를 동시에 제어할 수 있다.
한편, 위 실시예와는 달리, 온도 제어부(500)는 냉매 냉각식을 우선으로 IGBT 모듈(300)을 냉각하고, 온도가 소정의 온도 이상일 때, 쿨링 팬(200)을 추가적으로 작동하는 실시예도 가능할 것이다.
도 5를 참조하면, (a) 그래프는 IGBT 모듈(300)이 동작하여 온도가 향상된 상태에서 공냉 시스템만을 동작시킨 경우 IGBT 모듈(300)의 온도를 나타내고, (b) 그래프는 IGBT 모듈(300) 동작하여 온도가 향상된 상태에서 냉매 냉각 시스템만을 동작시킨 경우 IGBT 모듈(300)의 온도를 나타내며, (c) 그래프는 IGBT 모듈(300) 동작하여 온도가 향상된 상태에서 공냉과 냉매 냉각 시스템을 모두 동작시킨 경우 IGBT 모듈(300)의 온도를 나타낸다.
이러한 그래프를 통해, 냉매 냉각 시스템을 통해 IGBT 모듈(300)을 냉각하였을 때, 공냉 보다 IGBT 모듈(300)의 온도를 빠르고 좀더 낮게 제어할 수 있음을 알 수 있으며, 두가지 냉각 시스템 모두를 동작시켰을 때 IGBT 모듈(300)의 온도를 가장 낮게 제어할 수 있음을 알 수 있다.
이하, 전력변환장치(10)의 구체적인 구조에 대해 좀더 상세히 설명한다.
도 6은 본 발명의 실시예에 따른 전력변환장치(10)의 하우징 박스 내부를 투시하여 나타내는 투시도이다.
도 6을 참조하면, 전력변환장치(10)는, 하우징 박스(250), 쿨링 팬(200), 덕트(210), 핀 히트 싱크(220)(Fin heat sink), IGBT 모듈 냉각 열 교환기(100) 및 IGBT 모듈(300)을 포함할 수 있다.
자세히, 하우징 박스(250)는 상자형상의 용기로, 내부의 수용 공간을 구비할 수 있다.
이러한 하우징 박스(250)의 적어도 일 측면에는 외부 공기를 하우징 박스(250) 내부로 공급하는 쿨링 팬(200)이 배치될 수 있다.
그리고 쿨링 팬(200)으로부터 공급된 공기를 안내하는 덕트(210)가 하우징 박스(250) 내에 배치될 수 있다. 자세히, 덕트(210)는, 쿨링 팬(200)에 대응되는 크기로 쿨링 팬(200)에 공급된 공기를 직접 공급받는 덕트 헤드부(211)와, 헤드부(211)보다 좁은 폭으로 하우징 박스(250)의 일면을 따라 연장된 덕트 몸통부(212)를 포함할 수 있다.
이러한 덕트(210)의 몸통부 일면에는 핀 히트 싱크(220)가 배치될 수 있다. 핀 히트 싱크(220)는 적어도 하나 이상의 플레이트 형상을 가질 수있으며, 내부에 덕트(210) 측을 향한 다수의 핀을 포함하여 IGBT 모듈(300)에서 발생된 열을 덕트(210) 측을 향해 방출할 수 있다.
그리고 핀 히트 싱크(220)의 일면에는 IGBT 모듈 냉각 열 교환기(100)가 배치될 수 있다. 그리고 IGBT 모듈 냉각 열 교환기(100)의 일면 상에는 적어도 하나 이상의 IGBT 모듈(300)이 배치될 수 있다.
자세히, IGBT 모듈 냉각 열 교환기(100)의 일면은 핀 히트 싱크(220)와 접하고, 타면에는 IGBT 모듈(300)이 접하여 배치될 수 있다.
좀더 자세히 IGBT 모듈 냉각 열 교환기(100) 구조를 설명하기 위해 도 7을 참조하면, 한 쌍의 배관헤더(111, 112)와, 플랫튜브(120), 쿨링 플레이트(130)를 포함할 수 있다.
자세히, 냉매를 공급하는 제 1 냉매배관(71)과 연결된 제 1 배관헤더(111)는 쿨링 플레이트(130) 상측에 배치될 수 있고, 냉매를 환수하는 제 1 냉매배관(72)과 연결된 제 2 배관헤더(112)는 쿨링 플레이트(130) 하측에 배치될 수 있다.
그리고 제 1 배관헤더(111)와 제 2 배관헤더(112) 사이에는 복수의 플랫튜브(120)가 배치될 수 있다. 자세히, 제 1 배관헤더(111)에 연결되어 제 2 배관헤더(112)를 향해 연장되는 플랫튜브(120)는, 배관헤더의 연장방향을 따라 등간격으로 나열될 수 있다. 즉, 플랫튜브(120)의 일단은 제 1 배관헤더(111)와 연결되고, 타단은 제 2 배관헤더(112)와 연결될 수 있다.
이러한 플랫튜브(120)는, 쿨링 플레이트(130)의 후면에 부착되어 지지될 수 있으며, 실시예에서 플랫튜브(120)는, 쿨링 플레이트(130) 후면과 커버의 전면에 의해 둘러싸여 지지될 수 있다.
이러한 플랫튜브(120)는, 제 1 배관헤더(111)로부터 냉매를 공급받아 냉매를 직팽시키거나 팽창밸브(60)에서 팽창된 냉매를 받아 쿨링 플레이트(130)를 냉각하여, 쿨링 플레이트(130)에 부착된 IGBT 모듈(300)을 냉매 냉각할 수 있다.
그리고 쿨링 플레이트(130)의 전면에는 IGBT 모듈(300)이 접하여 배치될 수 있다. 자세히, IGBT 모듈(300)은, 전력변환소자와 회로기판을 포함하며, 전력변환소자와 회로기판은 몸체에 의해 둘러 싸여져서, 몸체의 일면은 개방되며 개방된 면과 쿨링 플레이트(130) 전면이 접하며, 냉각된 쿨링 플레이트(130)에 의해 직접적으로 냉각되는 구조를 가질 수 있다. 즉, 전력변환소자는 몸체와 쿨링 플레이트(130)에 의해 폐쇄된 공간 내에 배치되어, 효과적으로 냉매 냉각될 수 있다.
도 8a는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기(100)의 정면을 나타낸다.
도 8a를 참조하면, 쿨링 플레이트(130)의 정면에는 복수의 IGBT 모듈(300)이 서로 엇갈리게 배치될 수 있다. 자세히, 쿨링 플레이트(130)의 제 1 배관헤더(111) 측에 제 1 행에 IGBT 모듈(300)이 배치될 수 있고, 쿨링 플레이트(130)의 제 2 배관헤더(112) 측 제 2 행에 IGBT 모듈(300) 배치될 수 있으며, 제 1 행에 배치된 IGBT 모듈(300)과 제 2 행에 배치된 IGBT 모듈(300)은 서로 엇갈리도록 배치될 수 있다.
자세히, 제 1 행에 두개의 IGBT 모듈(300)이 중앙에 배치되고, 제 2 행에 두개의 IGBT 모듈(300)이 모서리 측 외곽에 배치되어, 제 1 행 IGBT 모듈(300)과 제 2 행 IGBT 모듈(300)이 서로 엇갈리게 배치될 수 있다.
따라서, 플랫튜브(120)는, 제 1 행 IGBT 모듈에만 오버랩되는 제 1 플랫튜브와, 상기 제 2 행 IGBT 모듈에만 오버랩되는 제 2 플랫튜브를 포함할 수 있다. 또한, 플랫튜브(120)는, 상기 제 1 행 IGBT 모듈과 상기 제 2 행 IGBT 모듈에 동시에 오버랩되는 제 3 플랫튜브를 포함할 수도 있다.
즉, 이러한 행별로 IGBT 모듈(300) 배치를 달리하여, 제 1 행의 IGBT 모듈(300)과 제 2 행의 IGBT 모듈(300)을 별개의 플랫튜브(120)로 냉각함으로써, 냉각 효율을 향상시킬 수 있다.
도 8b는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기(100)의 후면을 나타내며, 도 8c는 도 8b의 A-A'의 단면을 나타낸다.
도 8b를 참조하면, 쿨링 플레이트(130)의 후면에는 플랫튜브(120)가 제 1 배관헤더(111)와 제 1 배관헤더(111)에 수직방향으로 이격된 제 2 배관헤더(112)를 사이에 배치되며, 복수의 플랫튜브(120)들은 소정 간격 이격되어 수평방향으로 배열될 수 있다.
도 8c를 참조하면, 이러한 플랫튜브(120) 내부에는, 적어도 일렬로 나열된 복수의 마이크로 채널(122)을 포함하며, 마이크로 채널(122)들은 배관헤더로부터 공급받은 고압 냉매를 이용하여 쿨링 플레이트(130)를 냉각할 수 있다.
이러한 마이크로 채널 플랫튜브(120)는 고압 냉매를 이용하여 고효율 냉각이 가능하며, 크기가 작아 IGBT 모듈(300) 냉매 교환기를 컴팩트하게 형성할 수 있는 장점이 있다.
이하, 마이크로 채널 플랫튜브(120)를 포함하는 IGBT 모듈 냉각 열 교환기(100) 구조의 일례들과 각각의 일례들의 제조방법에 대해 상세히 설명한다.
도 9a 내지 도 9c는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기(100) 구조의 일례로, 도 9a는 IGBT 모듈 냉각 열 교환기(100)의 쿨링 플레이트(130) 정면을 나타내고, 도 9b는 IGBT 모듈 냉각 열 교환기(100)의 커버와 튜브를 나타내며, 도 9c는 도 9b의 B-B'의 단면을 나타낸다.
도 9a 내지 도 9c를 참조하면, 일 실시예에 따른 IGBT 모듈 냉각 열 교환기(100)는, 쿨링 플레이트(130), 배관헤더 및 플랫튜브(120)를 포함할 수 있다.
자세히, 쿨링 플레이트(130)의 전면에는 IGBT 모듈(300)이 배치되며, IGBT 모듈(300)을 볼팅 체결하기 위한 볼팅 홀들이 형성될 수 있다.
그리고 쿨링 플레이트(130)의 일측 모서리에는 제 1 배관헤더(111)가 배치되고, 반대측 모서리에는 제 2 배관헤더(112)가 배치될 수 있다. 이러한 쿨링 플레이트(130) 후면에는, 제 1 배관헤더(111)에서 제 2 배관헤더(112) 측으로 연장되며 배관헤더 연장방향으로 나열되는 복수의 홈들이 형성될 수 있다.
그리고 복수의 홈에는 각각 플랫튜브(120)가 배치될 수 있다. 자세히, 홈에 플랫튜브(120)를 브레이징하여, 쿨링 플레이트(130)와 플랫튜브(120)를 일체형으로 형성할 수 있다.
이때, 홈의 높이와 플랫튜브(120)의 높이를 일치시켜, 플랫튜브(120) 상면(125)과 쿨링 플레이트(130)의 상면(135)이 연장되도록 형성할 수 있다. 이러한 경우, 플랫튜브(120)가 형성된 쿨링 플레이트(130) 후면에 IGBT 모듈(300)을 접촉 배치시켜, 플랫튜브(120)와 IGBT 모듈(300)이 접하는 구조로 형성할 수도 있다.
쿨링 플레이트(130)와 플랫튜브(120) 일체형 구조는 IGBT 모듈 냉각 열 교환기(100) 두께를 얇게 형성하여 공간 효율을 향상되나, 쿨링 플레이트(130)의 두께 제한이 있어, IGBT 모듈(300)에서 발생된 열의 확산이 어려워 IGBT 모듈(300)의 일부가 부분적으로 가열됨에 의해 핫 스팟(hot spot)이 발생할 수 있다.
도 10a 내지 도 10b는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기(100) 구조의 다른 일레로, 도 10a는 IGBT 모듈 냉각 열 교환기(100)의 분리 사시도이고, 도 10b는 도 10a의 C-C'의 단면도이다.
도 10a를 참조하면, 다른 실시예에 따른 IGBT 모듈 냉각 열 교환기(100)는, 쿨링 플레이트(130), 커버 플레이트(140), 배관헤더(111, 1112) 및 플랫튜브(120)를 포함할 수 있다.
자세히, 커버 플레이트(140)의 일측 모서리에는 제 1 배관헤더(111)가 배치되고, 타측 모서리에는 제 2 배관헤더(112)가 배치될 수 있다.
그리고 커버 플레이트(140)의 상면에는 플랫튜브(120)가 등간격으로 나열될 수 있다. 자세히, 커버 플레이트(140)의 상면에 플랫튜브(120)를 브레이징하여, 커버 플레이트(140)와 플랫튜브(120)를 일체형으로 형성할 수 있다.
쿨링 플레이트(130)의 전면에는 IGBT 모듈(300)이 배치되며, IGBT 모듈(300)을 볼팅 체결하기 위한 볼팅 홀들이 형성될 수 있다. 이때, 커버 플레이트(140)에도 쿨링 플레이트(130)의 볼팅 홀에 대응되는 위치에 볼팅 홀이 형성될 수 있다.
이러한 쿨링 플레이트(130) 후면에는, 커버 플레이트(140)에 형성된 플랫튜브(120)에 대응되는 위치에 복수의 홈들이 형성될 수 있다.
도 10b를 참조하면, 커버 플레이트(140) 상면에 배치된 플랫튜브(120)는 쿨링 플레이트(130) 홈에 끼워져 결합되어, 플랫튜브(120)는, 커버 플레이트(140) 상면과 쿨링 플레이트(130)의 홈으로 둘러 싸일 수 있다.
이러한 실시예의 IGBT 모듈 냉각 열 교환기(100)는, 플랫튜브(120)를 커버 플레이트(140)에 브레이징한 후 쿨링 플레이트(130)와 결함시킴으로, 쿨링 플레이트(130)의 두께를 충분히 확보할 수 있어, 커버 플레이트(140)와 쿨링 플레이트(130)를 통한 열확산 증가로, IGBT 모듈(300)의 온도를 효과적으로 감소시킬 수 있는 장점이 있다.
나아가, 커버 플레이트(140)와 쿨링 플레이트(130)는 체결부재(150)로 결합되어, 플랫튜브(120)와 쿨링 플레이트(130)의 접촉 저항을 좀더 향상시킴으로써, 플랫튜브(120)와 IGBT 모듈(300) 사이에 열 교환이 효과적으로 이루어질 수 있다.
자세히, 체결부재(150)는, 커버 플레이트(140)와 쿨링 플레이트(130)를 관통하는 복수의 볼트(152)와, 볼트(152)의 양단에 배치되어 커버 플레이트(140)와 쿨링 플레이트(130)에 조임력을 제공하는 너트(151, 153)를 포함하여, 쿨링 플레이트(130)와 커버 플레이트(140) 결합력을 증가시킬 수 있다.
도 11a 내지 도 11b는 본 발명의 실시예에 따른 IGBT 모듈 냉각 열 교환기(100) 구조의 또 다른 일레로, 도 11a는 IGBT 모듈 냉각 열 교환기(100)의 분리 사시도이고, 도 11b는 도 11a의 D-D'의 단면도이다.
도 11a를 참조하면, 또 다른 실시예에 따른 IGBT 모듈 냉각 열 교환기(100)는, 쿨링 플레이트(130), 커버 플레이트(140), 배관헤더(111, 112) 및 플랫튜브(120)를 포함할 수 있다.
자세히, 자세히, 커버 플레이트(140)의 일측 모서리에는 제 1 배관헤더(111)가 배치되고, 타측 모서리에는 제 2 배관헤더(112)가 배치될 수 있다.
이러한 커버 플레이트(140) 일면에는, 제 1 배관헤더(111)에서 제 2 배관헤더(112) 측으로 연장되며 배관헤더 연장방향으로 나열되는 복수의 돌출부(131)들이 형성될 수 있다.
그리고 커버 플레이트(140)의 돌출부(131)에는 플랫튜브(120)가 배치될 수 있다. 자세히, 커버 플레이트(140)의 돌출부(131) 상면에 플랫튜브(120)가 써머 본딩(thermal bonding)되어 결합할 수 있다.
그리고 쿨링 플레이트(130)의 전면에는 IGBT 모듈(300)이 배치되며, IGBT 모듈(300)을 볼팅 체결하기 위한 볼팅 홀들이 형성될 수 있다. 이러한 쿨링 플레이트(130) 후면에는, 제 1 배관헤더(111)에서 제 2 배관헤더(112) 측으로 연장되며 배관헤더 연장방향으로 나열되는 복수의 홈(142)들이 형성될 수 있다.
이러한 쿨링 플레이트(130)의 홈(142)과 커버 플레이트(140)의 돌출부(131)는 서로 대응되는 위치에 형성되어, 커버 플레이트(140)의 복수의 돌출부(131)는, 쿨링 플레이트(130)의 홈(142)에 끼워지도록 결합할 수 있다.
즉, 커버 플레이트(140)의 돌출부(131) 상면에는 플랫튜브(120)의 일면이 접하도록 배치되며, 플랫튜브(120)는, 커버 플레이트(140)의 돌출부(131) 상면과 쿨링 플레이트(130)의 바닥면 사이에 배치되어 돌출부(131)와 홈(142)에 의해 가압됨으로써, 접촉저항이 향상될 수 있다.
이러한 실시예의 IGBT 모듈 냉각 열 교환기(100)는, 플랫튜브(120)를 커버 플레이트(140)에 플랫튜브(120)를 써머 본딩한 후 쿨링 플레이트(130)와 결함시킴으로, 쿨링 플레이트(130)의 두께를 충분히 확보할 수 있어, 커버 플레이트(140)와 쿨링 플레이트(130)를 통한 열확산 증가로, IGBT 모듈(300)의 온도를 효과적으로 감소시킬 수 있는 장점이 있다.
자세히, 도 12를 참조하면, 쿨링 플레이트(130)의 두께가 5mm 이상일 때, 쿨링 플레이트(130)의 온도가 급격하게 하강하는 것을 확인할 수 있으며, 10mm 이상일 때에는 온도 하강율이 급격하게 낮아지는 것을 알 수 있다.
따라서, 쿨링 플레이트(130) 두께가 5mm 내지 10mm 사이일 때, 최적의 효율로 IGBT 모듈(300)을 냉각시킬 수 있음을 알 수 있다.
또한, 플랫튜브(120)는, 커버 플레이트(140)의 돌출부(131)와 쿨링 플레이트(130) 홈(142) 싸이에 끼워져 접촉 저항이 향상됨으로써, 쿨링 플레이트(130)를 좀더 효과적으로 냉각할 수 있는 장점이 있다.
나아가, 커버 플레이트(140)와 쿨링 플레이트(130)는 체결부재(150)로 결합되어, 플랫튜브(120)와 쿨링 플레이트(130)의 접촉 저항을 좀더 향상시킬 수 있다.
자세히, 체결부재(150)는, 커버 플레이트(140)와 쿨링 플레이트(130)를 관통하는 복수의 볼트(152)와, 볼트(152)의 양단에 배치되어 커버 플레이트(140)와 쿨링 플레이트(130)에 조임력을 제공하는 너트(151, 153)를 포함하여, 쿨링 플레이트(130)와 커버 플레이트(140) 결합력을 증가시킬 수 있다.
이하, IGBT 모듈 냉각 열 교환기(100)를 이용하여 IGBT 모듈(300)을 냉각하는 전력변환장치(10)를 좀더 소형화하기 위한 전력변환장치(10)의 구조에 대해 상세히 설명한다.
도 13은 본 발명의 또 다른 실시예에 따른 전력변환장치(10)의 사시도이다.
도 13을 참조하면, 또 다른 실시예에 따른 전력변환장치(10)는, IGBT 모듈 냉각 열 교환기(100), 제 1 IGBT 모듈(301) 및 제 2 IGBT 모듈(302)을 포함할 수 있다. 그리고 IGBT 모듈 냉각 열 교환기(100)는, 복수의 튜브와 쿨링 플레이트를 포함할 수 있다.
자세히, 쿨링 플레이트의 전면에는 적어도 하나 이상의 제 1 IGBT 모듈(301)이 배치될 수 있다. 그리고 쿨링 플레이트의 후면에는 적어도 하나 이상의 제 2 IGBT 모듈(302)이 배치될 수 있다.
그리고 이러한 쿨링 플레이트 내부에는, 복수의 튜브가 배치되고, 복수의 튜브는 냉매를 공급받아 냉매를 직팽시키거나 팽창밸브(60)에서 팽창된 냉매를 받아 쿨링 플레이트를 냉각하여, 쿨링 플레이트의 양면에 부착된 IGBT 모듈(300)들을 동시에 냉매 냉각할 수 있다.
쿨링 플레이트 내부에 배치되는 튜브는, 원형관, 플랫 튜브 등 다양한 형상을 가질 수 있다. 그리고 하나의 튜브는, 쿨링 플레이트의 일단에서 쿨링 플레이트의 연장방향을 따라 연장되다 쿨링 플레이트의 타단에서 휘어져 다시 반대측 연장방향으로 연장되는 구조로, 냉매 유입구와 냉매 환수구를 동시에 포함할 수 있다.
실시예에서, 튜브는, 마이크로 채널을 포함하는 플랫튜브(120)일 수 있으며, 이러한 마이크로 채널들은 공급받은 고압 냉매를 이용하여 쿨링 플레이트를 효과적으로 냉각할 수 있다. 이러한 마이크로 채널 플랫튜브(120)는 고압 냉매를 이용하여 고효율 냉각이 가능하며, 크기가 작아 IGBT 모듈(300) 냉매 교환기를 컴팩트하게 형성할 수 있는 장점이 있다.
도 14는 본 발명의 또 다른 실시예에 따른 전력변환장치(10)의 측면의 일례이다.
도 14를 참조하면, 제 1 IGBT 모듈(301)과, 제 2 IGBT 모듈(302)은 쿨링 플레이트를 사이에 두고 서로 오버랩(overlap)되도록 배치될 수 있다. 자세히, 쿨링 플레이트가 수평방향으로 연장된다고 볼 때, 제 1 IGBT 모듈(301)을 수직방향으로 이동시키면 제 2 IGBT 모듈(302)과 정확히 중첩될 수 있다.
제 1 IGBT 모듈(301)과 제 2 IGBT 모듈(302)이 쿨링 플레이트를 사이에 두고 오버랩되는 구조의 전력변환장치(10)는, 하나의 쿨링 플레이트로 양면에 배치된 IGBT 모듈(300)을 동시에 방열시켜, 일면에만 IGBT 모듈(300)을 배치하는 구조에 비해 IGBT 모듈 냉각 열 교환기(100)의 부피가 50% 이상 감소될 수 있다.
정리하면, 또 다른 실시예에 따른 IGBT 모듈 냉각 열 교환기(100)는, 부피가 큰 IGBT 모듈(300) 공냉 시스템에서 냉매 냉각 시스템으로 전환하며 부피를 적어도 30%이상 축소시킬 수 있으며, 쿨링 플레이트의 양면에 IGBT 모듈(300)을 배치하는 구조를 통해 전력변환장치(10)의 부피를 50% 이상 감소시킬 수 있는 장점이 있다.
다만, 제 1 IGBT 모듈(301)과, 제 2 IGBT 모듈(302)은 쿨링 플레이트를 사이에 두고 서로 완전히 오버랩될 경우, 양 사이의 쿨링 플레이트 영역이 과다하게 과열되어 핫 스팟이 발생할 수 있다.
도 15는 본 발명의 또 다른 실시예에 다른 전력변환장치(10)의 측면의 다른 일례이다.
도 15를 참조하면, 제 1 IGBT 모듈(301)과, 제 2 IGBT 모듈(302)은 쿨링 플레이트를 사이에 두고 서로 엇갈리도록 배치될 수 있다. 자세히, 쿨링 플레이트가 수평방향으로 연장된다고 볼 때, 제 1 IGBT 모듈(301)을 수직방향으로 이동시키면 제 2 IGBT 모듈(302)과 일부만 오버랩될 수 있다.
자세히, 쿨링 플레이트는 제 1 IGBT 모듈(301)과 제 2 IGBT 모듈(302) 사이에 배치되는 제 1 영역(L1)과, 제 1 IGBT 모듈(301)과 제 2 IGBT 모듈(302) 각각에만 오버랩되는 제 2 영역(L2)을 포함할 수 있다.
도 15와 달리, 제 1 IGBT 모듈(301)과 제 2 IGBT 모듈(302)은 완전히 엇갈리도록 배치되어, 쿨링 플레이트는 제 1 IGBT 모듈(301)과 제 2 IGBT 모듈(302) 각각에만 오버랩되는 제 2 영역(L2)을 포함할 수 있다.
즉, 다른 일례의 IGBT 모듈 냉각 열 교환기(100)는, 제 1 IGBT 모듈(301)과 제 2 IGBT 모듈(302) 사이에 배치되는 쿨링 플레이트의 제 1 영역(L1)을 감소시켜 핫 스팟 발생을 막을 수 있다.
한편, 쿨링 플레이트의 양면에 IGBT 모듈(300)을 배치함에 따라서, IGBT 모듈 냉각 열 교환기(100)는 하나의 튜브로 IGBT 모듈(300) 한 쌍을 동시에 냉각해야 하므로, 냉각 효율이 감소할 수 있다.
양면 IGBT 모듈(300) 배치구조에서 냉각 효율 감소를 막기 위하여, 쿨링 플레이트 내부에 튜브를 적어도 2열 이상으로 배치하여 냉매 압손에 의한 성능 저하를 개선할 수 있다.
도 16은 본 발명의 또 다른 실시예에 따른 전력변환장치(10)의 측 단면의 일례이다.
도 16을 참조하면, 쿨링 플레이트(130) 내부에 복수의 튜브(120a, 120b)는 적어도 2열 이상으로 배열될 수 있다. 이때, 전열과 후열의 튜브(120a, 120b)들은 상호 나란하게 배열되는 구조일 수 있다.
즉, 전열에 배치되는 튜브(120a)의 일면과, 후열에 배치되는 튜브(120b)의 일면은 서로 마주보도록 배치될 수 있다.
이러한 IGBT 모듈 냉각 열 교환기(100)는, 쿨링 플레이트(130) 내부에 튜브(120a, 120b)를 적어도 2열 이상으로 배치하여 냉매 압손에 의한 성능 저하를 개선할 수 있다.
도 17은 본 발명의 또 다른 실시예에 따른 전력변환장치(10)의 단면의 다른 일례이다.
쿨링 플레이트(130) 내부에 복수의 튜브(120a, 120b)는 적어도 2열 이상으로 배열될 수 있다. 이때, 전열과 후열의 튜브(120a, 120b)들은 상호 지그 재그형으로 배열될 수 있다.
즉, 전열에 배치되는 튜브(120a)의 일면과, 후열에 배치되는 튜브(120a)의 일면은 서로 엇갈리게 배치될 수 있다.
이러한 IGBT 모듈 냉각 열 교환기(100) 구조는, 쿨링 플레이트(130) 내부에 튜브(120a, 120b)를 적어도 2열 이상으로 배치하여 냉매 압손에 의한 성능 저하를 개선할 수 있고, 쿨링 플레이트(130) 전면을 균일하게 냉각하여, 핫 스팟 발생을 감소시킬 수 있다.
도 18은, 도 17의 전력변환장치(10)의 IGBT 모듈 냉각 열 교환기(100) 단면을 구체적으로 도시한 도면이다.
도 18을 참조하면, 쿨링 플레이트(130)는, 전면에 제 1 IGBT 모듈(301)이 배치되는 제 1 쿨링 플레이트(130a)와, 전면에 제 2 IGBT 모듈(302)이 배치되는 제 2 쿨링 플레이트(130b)를 포함하고, 제 1 쿨링 플레이트(130a)의 후면에는 복수의 돌출부(131a)와 홈이 형성되며, 복수의 돌출부 상에는 튜브(120a, 120b)가 배치되고, 제 2 쿨링 플레이트(130b)의 후면에는 복수의 돌출부(131b)와 홈이 형성되며, 복수의 돌출부 상에는 튜브(120a, 120b)가 배치되며, 제 1 쿨링 플레이트(130a)의 후면에 돌출부(131a)와, 제 2 쿨링 플레이트(130b)의 후면의 홈이 끼워지도록 제 1 쿨링 플레이트(130a)와 제 2 쿨링 플레이트(130b)가 결합할 수 있다.
즉, 제 1 쿨링 플레이트(130a)의 돌출부(131a) 상면에는 튜브(120a, 120b)의 일면이 접하도록 배치되고 상기 돌출부(131a)는 제 2 쿨링 플레이트(130b)의 홈에 끼워져, 튜브(120a, 120b)는, 제 1 쿨링 플레이트(130a)의 돌출부(131a) 상면과 제 2 쿨링 플레이트(130b)의 홈 바닥면 사이에 끼워져 돌출부와 홈에 의해 가압됨으로써, 접촉저항이 향상될 수 있다. 그리고 튜브(120a, 120b)의 접촉저항 향상으로 인하여, 튜브(120a, 120b)와 IGBT 모듈(300) 사이에 열 교환이 좀더 효과적으로 이루어질 수 있다.
나아가, 제 2 쿨링 플레이트(130b)와 제 1 쿨링 플레이트(130a)는 체결부재(150)로 결합되어, 튜브(120)와 제 1 쿨링 플레이트(130a)의 접촉 저항을 좀더 향상시킴으로써, 튜브(120)와 IGBT 모듈(301, 302) 사이에 열 교환이 효과적으로 이루어질 수 있다.
자세히, 체결부재(150)는, 제 2 쿨링 플레이트(130b)와 제 1 쿨링 플레이트(130a)를 관통하는 복수의 볼트(152)와, 볼트(152)의 양단에 배치되어 제 2 쿨링 플레이트(130b)와 제 1 쿨링 플레이트(130a)에 조임력을 제공하는 너트(151, 153)를 포함하여, 제 1 쿨링 플레이트(130a)와 제 2 쿨링 플레이트(130b) 결합력을 증가시킬 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (8)

  1. 냉매가 통과하는 적어도 하나 이상의 채널을 갖는 복수의 튜브;
    내부에 상기 튜브를 수용하는 플레이트;
    상기 플레이트의 일면에 배치되는 적어도 하나 이상의 제 1 IGBT 모듈; 및
    상기 플레이트의 타면에 배치되는 적어도 하나 이상의 제 2 IGBT 모듈을 포함하는
    IGBT 모듈 냉각 열 교환기.
  2. 제 1 항에 있어서,
    상기 제 1 IGBT 모듈과, 상기 제 2 IGBT 모듈은 상기 플레이트를 사이에 두고 서로 중첩되도록 배치되는
    IGBT 모듈 냉각 열 교환기.
  3. 제 1 항에 있어서,
    상기 제 1 IGBT 모듈과, 상기 제 2 IGBT 모듈은 상기 플레이트를 사이에 두고 서로 일부가 중첩되도록 배치되는
    IGBT 모듈 냉각 열 교환기.
  4. 제 1 항에 있어서,
    상기 튜브는,
    복수의 마이크로 채널(Micro-channel)을 포함하는 플랫형상의 튜브인
    IGBT 모듈 냉각 열 교환기.
  5. 제 1 항에 있어서,
    상기 복수의 튜브는,
    상기 플레이트 내부에 2 열 이상으로 나열되며,
    전열에 배치된 튜브의 적어도 일부는 후열에 배치된 튜브의 적어도 일부와 중첩되도록 배열되는
    IGBT 모듈 냉각 열 교환기.
  6. 제 1 항에 있어서,
    상기 복수의 튜브는,
    상기 플레이트 내부에 2 열 이상으로 나열되며,
    상기 전열과 후열의 튜브들은 상호 나란하게 배열되는
    IGBT 모듈 냉각 열 교환기.
  7. 제 1 항에 있어서,
    상기 플레이트는,
    전면에 상기 제 1 IGBT 모듈이 배치되는 제 1 플레이트와,
    전면에 상기 제 2 IGBT 모듈이 배치되는 제 2 플레이트를 포함하고,
    상기 제 1 플레이트의 후면에는 복수의 돌출부와 홈이 형성되며, 상기 복수의 돌출부 상에는 상기 튜브가 배치되고,
    상기 제 2 플레이트의 후면에는 복수의 돌출부와 홈이 형성되며, 상기 복수의 돌출부 상에는 상기 튜브가 배치되며,
    상기 제 1 플레이트의 후면에 돌출부는상기 제 2 플레이트의 후면의 홈과 결합하는
    IGBT 모듈 냉각 열 교환기.
  8. 전면이 일측을 향하도록 배치된 제 1 IGBT 모듈;
    전면이 타측을 향하도록 배치된 제 2 IGBT 모듈; 및
    상기 제 1 IGBT 모듈의 후면과 상기 제 2 IGBT 모듈의 후면 사이에 배치된 플레이트를 포함하고,
    상기 플레이트는,
    냉매가 통과하는 적어도 하나 이상의 채널을 갖는 복수의 튜브를 포함하는
    IGBT 모듈 냉각 열 교환기.
KR1020160129245A 2016-10-06 2016-10-06 Igbt 모듈 냉각 열 교환기 KR102599984B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160129245A KR102599984B1 (ko) 2016-10-06 2016-10-06 Igbt 모듈 냉각 열 교환기
PCT/KR2017/001331 WO2018066771A1 (ko) 2016-10-06 2017-02-07 Igbt 모듈 냉각 열 교환기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160129245A KR102599984B1 (ko) 2016-10-06 2016-10-06 Igbt 모듈 냉각 열 교환기

Publications (2)

Publication Number Publication Date
KR20180038302A true KR20180038302A (ko) 2018-04-16
KR102599984B1 KR102599984B1 (ko) 2023-11-09

Family

ID=61831591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160129245A KR102599984B1 (ko) 2016-10-06 2016-10-06 Igbt 모듈 냉각 열 교환기

Country Status (2)

Country Link
KR (1) KR102599984B1 (ko)
WO (1) WO2018066771A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752478A (zh) * 2020-12-14 2021-05-04 中车永济电机有限公司 一体式双面风冷散热器及简统化功率模块
KR20230088135A (ko) * 2021-12-10 2023-06-19 한국원자력연구원 전력 변환 장치 및 이의 동작 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435973A (zh) * 2020-12-02 2021-03-02 珠海格力电器股份有限公司 开关管散热组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104006A (ko) 2000-05-12 2001-11-24 차 동 해 Hvigbt를 이용한 인버터 파워 스택
KR20070081584A (ko) * 2006-02-13 2007-08-17 주식회사 엘지화학 수직 적층 구조의 중대형 전지모듈
KR20120015947A (ko) * 2010-08-13 2012-02-22 삼성전기주식회사 에너지 저장장치 모듈
KR20140147166A (ko) * 2013-06-17 2014-12-30 현대자동차주식회사 열전소자를 구비한 배터리 팩 공냉 구조와 이의 제어 방법
KR20160051407A (ko) * 2014-11-03 2016-05-11 현대모비스 주식회사 전력변환장치용 냉각유로모듈 및 이를 구비한 전력변화장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800938B2 (ja) * 2000-09-13 2006-07-26 日産自動車株式会社 パワーモジュールの冷却装置
JP4668103B2 (ja) * 2006-03-22 2011-04-13 トヨタ自動車株式会社 冷却器
JP4675283B2 (ja) * 2006-06-14 2011-04-20 トヨタ自動車株式会社 ヒートシンクおよび冷却器
JP5924106B2 (ja) * 2012-05-08 2016-05-25 富士電機株式会社 電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104006A (ko) 2000-05-12 2001-11-24 차 동 해 Hvigbt를 이용한 인버터 파워 스택
KR20070081584A (ko) * 2006-02-13 2007-08-17 주식회사 엘지화학 수직 적층 구조의 중대형 전지모듈
KR20120015947A (ko) * 2010-08-13 2012-02-22 삼성전기주식회사 에너지 저장장치 모듈
KR20140147166A (ko) * 2013-06-17 2014-12-30 현대자동차주식회사 열전소자를 구비한 배터리 팩 공냉 구조와 이의 제어 방법
KR20160051407A (ko) * 2014-11-03 2016-05-11 현대모비스 주식회사 전력변환장치용 냉각유로모듈 및 이를 구비한 전력변화장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752478A (zh) * 2020-12-14 2021-05-04 中车永济电机有限公司 一体式双面风冷散热器及简统化功率模块
KR20230088135A (ko) * 2021-12-10 2023-06-19 한국원자력연구원 전력 변환 장치 및 이의 동작 방법

Also Published As

Publication number Publication date
KR102599984B1 (ko) 2023-11-09
WO2018066771A1 (ko) 2018-04-12

Similar Documents

Publication Publication Date Title
US10305154B2 (en) Apparatus for controlling temperature of coolant in water-cooled battery system and method thereof
JP6234595B2 (ja) 太陽光エアコンシステム
US20120129020A1 (en) Temperature-controlled battery system ii
US8785024B2 (en) Combination of heat pipe and louvered fins for air-cooling of Li-Ion battery cell and pack
US20100085708A1 (en) High-efficiency, fluid-cooled ups converter
WO2014083976A1 (ja) インバータ装置
JPWO2012070129A1 (ja) 積層型冷却器
JP2006127921A (ja) 電源装置
CN202309552U (zh) 电力转换装置和使用该电力转换装置的电力驱动车
KR102599984B1 (ko) Igbt 모듈 냉각 열 교환기
JP2019009220A (ja) 端子冷却装置
KR102080867B1 (ko) Igbt 모듈 냉각 열 교환기
Taghavi et al. Liquid Cooling System for a High Power, Medium Frequency, and Medium Voltage Isolated Power Converter
KR20180038301A (ko) 에너지 저장 장치
CN109612152A (zh) 热电制冷、加热一体式部件
US20230118671A1 (en) Photovoltaic air conditioning system
CN207652329U (zh) 一种水冷式的光伏逆变器
US20230135372A1 (en) Energy storage system
KR101767421B1 (ko) 열전 변환 모듈 및 이를 이용한 폐열수 냉각 시스템
CN221228137U (en) Inverter and energy storage all-in-one machine
US20240023294A1 (en) Energy storage system
CN211240653U (zh) 一种一体化交直流电源系统
CN220528467U (zh) 变流器、电气设备以及储能系统
CN215647971U (zh) 一种光伏逆变器电力调整保护装置
CN110416573B (zh) 一种中冷模块、燃料电池中冷系统及其工作方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right