KR20180036779A - 온라인 프로세스 모니터링 - Google Patents

온라인 프로세스 모니터링 Download PDF

Info

Publication number
KR20180036779A
KR20180036779A KR1020187006520A KR20187006520A KR20180036779A KR 20180036779 A KR20180036779 A KR 20180036779A KR 1020187006520 A KR1020187006520 A KR 1020187006520A KR 20187006520 A KR20187006520 A KR 20187006520A KR 20180036779 A KR20180036779 A KR 20180036779A
Authority
KR
South Korea
Prior art keywords
sample
fluorescence
profile
fluorescence excitation
excitation signals
Prior art date
Application number
KR1020187006520A
Other languages
English (en)
Inventor
테리 디. 롱
프레드릭 엔. 부시로
아르망 스페르듀티
윌리엄 푸엔트
스티븐 제이. 블롬퀴스트
Original Assignee
센티넬 모니터링 시스템즈, 인코포레이션.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 센티넬 모니터링 시스템즈, 인코포레이션. filed Critical 센티넬 모니터링 시스템즈, 인코포레이션.
Publication of KR20180036779A publication Critical patent/KR20180036779A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

샘플을 분석하는 방법은 레플리케이트(replicate)를 생성하기 위하여 상기 샘플에 샘플 인터로게이션 사이클들(sample interrogation cycles)을 수행하는 것을 포함한다. 상기 샘플 인터로게이션 사이클들 각각은: 상이한 형광 여기 파장들(fluorescence excitation wavelengths)에서 2 또는 그 이상의 형광 여기 신호들(fluorescence excitation signals)로 상기 샘플을 조사하는 것; 및 상기 샘플의 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들(fluorescence emission spectral profiles) 그리고 2 또는 그 이상의 형광 수명 프로파일들(fluorescence lifetime profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 방출 스펙트럼 프로파일 그리고 형광 수명 프로파일을 검출하는 것에 의해 수행되는 것을 포함한다. 각각의 레플리케이트는 상기 샘플 인터로게이션 사이클들 중 대응되는 하나에 대하여 생성된 상기 2 또는 그 이상의 형광 수명 프로파일들 및 상기 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들을 포함한다. 이 방법은 복수의 미리 결정된 분광 관계들(spectroscopic relationships)에 대한 상기 레플리케이트들의 비교를 수행하는 것을 포함한다. 이 방법은 상기 미리 결정된 분광 관계들에 대해 상기 레플리케이트들의 비교에 기초하여 상기 샘플의 표적 분석물 농도를 결정하는 것을 포함한다.

Description

온라인 프로세스 모니터링
본 명세서에 개시된 실시예는 온라인 프로세스 모니터링에 관한 것이다.
달리 명시되지 않는 한, 배경 기술에 개시된 내용은 본 출원의 청구 범위에 대한 선행 기술이 아니며, 배경 기술에 포함됨으로써 선행 기술로 인정되지 않는다.
기업들은 기존의 품질 관리 실험실을 생산 공정 중 제품 품질을 모니터링 할 수 있는 시스템으로 대체하고자 한다. 진보된 테스트 및 진단 시스템은 계속해서 물리적으로 작아지고, 더 민감해지며, 또한 핵심 실험실 환경 밖에서 적용될 수 있을 정도로 견고해졌다. 이러한 추세는 임상 및 산업 시장 내에서 꾸준히 성장해 왔다. 임상 진단은 실험실의 결과를 위하여 수일 동안 기다리는 것에 비하여, 의사(physician) 사무실 및 응급실에 있는 환자에게 즉시 수행될 수 있다. 산업체는, 제조 효율성과 민첩성을 향상시키기 위하여, 제품 제조 및 품질을 실시간으로 모니터링할 수 있는 시스템을 진보 시켜오고 있다. 최근까지 이러한 진보는 매우 정확하고 반복적인 화학물질 및 물질 검사에 주로 제한되었다.
비교하자면, 미생물학은 복잡하다. 살아있는 유기체는 항상 예측 가능한 방식으로 행동하지는 않는다. 따라서, 미생물학은 일반적으로 “현장 위(in the floor)”가 아니라 “실험실 내에” 남아있다. 살아있는 유기체를 검출하는 미생물학 검사들은 종종 많은 노동이 요구되며, 비용이 많이 들고, 느리다. 결과는 수행되는 검사에 따라 전형적으로는 2 내지 14일, 또는 그 이상 동안 받지 못한다. 미생물학 검사는 제품 구성 및 제품 품질 모두에 대한 크리티컬한 측정(critical measures)일 수 있으며, 종종 법으로 제품 안전성을 입증할 것이 요구된다. 이러한 미생물학 검사와 관련된 비효율성과 지연의 결과로, 산업 및 규제 당국(industry and regulatory authorities)은 검사를 역행적인 실험실-기반 검사에서 실시간 모니터링으로 전환하려는 요구를 받고 있다.
본원에서 청구된 사상은 임의의 단점을 해결하거나 또는 전술한 바와 같은 환경에서만 작용하는 실시예에 제한되지 않는다. 오히려, 배경 기술은 본원에 기술된 일부 실시예가 실시될 수 있는 하나의 예시적인 기술 영역을 설명하기 위해 제공된다.
이 요약은 아래의 발명을 실시하기 위한 구체적인 내용에서 더 자세히 설명되는 단순한 형태 내 개념의 선택을 소개하기 위하여 제공된다. 이 요약은 청구된 내용의 주요 특징이나 필수적인 특징을 식별하기 위한 것이 아니며, 청구된 내용의 범위를 결정하는 데 도움을 주기 위한 것이 아니다. 일 실시예에서, 샘플을 분석하는 방법은 다수의 레플리케이트들(replicates)을 생성하기 위하여 상기 샘플에 복수의 샘플 인터로게이션 사이클들(sample interrogation cycles)을 수행하는 것을 포함하고, 상기 복수의 샘플 인터로게이션 사이클들 각각은: 상이한 형광 여기 파장들(fluorescence excitation wavelengths)에서 2 또는 그 이상의 형광 여기 신호들(fluorescence excitation signals)로 상기 샘플을 조사하는 것; 상기 샘플의 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들(fluorescence emission spectral profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 방출 스펙트럼 프로파일을 검출하는 것; 및 상기 샘플의 2 또는 그 이상의 형광 수명 프로파일들(fluorescence lifetime profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 수명 프로파일을 검출하는 것;에 의해 수행되는 것을 포함한다. 각각의 레플리케이트는 상기 샘플 인터로게이션 사이클들 중 대응되는 하나에 대하여 생성된 상기 2 또는 그 이상의 형광 수명 프로파일들 및 상기 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들을 포함한다. 이 방법은 또한, 복수의 미리 결정된 분광 관계들(spectroscopic relationships)에 대한 상기 레플리케이트들의 비교를 수행하는 것을 포함한다. 이 방법은 또한, 상기 미리 결정된 분광 관계들에 대해 상기 레플리케이트들의 비교에 기초하여 상기 샘플의 표적 분석물 농도를 결정하는 것을 포함한다.
다른 실시예에서, 샘플을 분석하는 방법은 레플리케이트(replicate)를 생성하기 위하여 상기 샘플에 샘플 인터로게이션 사이클(sample interrogation cycle)을 수행하는 것을 포함하고, 상기 샘플 인터로게이션 사이클은: 상이한 형광 여기 파장들(fluorescence excitation wavelengths)에서 2 또는 그 이상의 형광 여기 신호들(fluorescence excitation signals)로 상기 샘플을 조사하는 것; 상기 샘플의 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들(fluorescence emission spectral profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 방출 스펙트럼 프로파일을 검출하는 것; 및 상기 샘플의 2 또는 그 이상의 형광 수명 프로파일들(fluorescence lifetime profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 수명 프로파일을 검출하는 것;에 의해 수행되는 것을 포함한다. 상기 레플리케이트는 상기 샘플 인터로게이션 사이클에 대하여 생성된 상기 2 또는 그 이상의 형광 수명 프로파일들 및 상기 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들을 포함한다. 이 방법은 또한, 미리 결정된 분광 관계들(spectroscopic relationships)에 대한 상기 레플리케이트의 비교를 수행하는 것을 포함한다. 이 방법은 또한, 상기 복수의 미리 결정된 분광 관계들에 대해 상기 레플리케이트의 비교에 기초하여 상기 샘플의 표적 분석물 농도를 결정하는 것을 포함한다.
또다른 실시예에서, 샘플 분석을 위한 프로세스 모니터는 샘플 영역, 2 또는 그 이상의 형광 여기원들, 하나 또는 그 이상의 검출기들, 및 컨트롤러를 포함한다. 상기 샘플은 상기 샘플 영역에 존재한다. 상기 2 또는 그 이상의 형광 여기원들은 상기 샘플 영역에 광학적으로 연결된다. 상기 하나 또는 그 이상의 검출기들은 상기 2 또는 그 이상의 형광 여기원들에 의해 방출된 2 또는 그 이상의 형광 여기 신호들 각각의 광학 경로를 빗겨가게 상기 샘플 영역에 광학적으로 연결된다. 상기 컨트롤러는 상기 2 또는 그 이상의 형광 여기원들 및 상기 하나 또는 그 이상의 검출기들 각각에 통신 가능하게 연결되고, 다양한 작동들을 수행하기 위하여, 상기 2 또는 그 이상의 형광 여기원들 및 상기 하나 또는 그 이상의 검출기들을 포함하는 프로세스 모니터를 제어한다. 상기 작동들은 다수의 레플리케이트들을 생성하기 위하여 상기 샘플에 복수의 샘플 인터로게이션 사이클들을 수행하는 것을 포함하고, 상기 샘플 인터로게이션 사이클들 각각은: 상기 2 또는 그 이상의 형광 여기원들을 이용하여, 상이한 형광 여기 파장들에서 2 또는 그 이상의 형광 여기 신호들로 상기 샘플을 조사하는 것; 상기 하나 또는 그 이상의 검출기들을 이용하여, 상기 샘플의 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 방출 스펙트럼 프로파일을 검출하는 것; 및 상기 하나 또는 그 이상의 검출기들을 이용하여, 상기 샘플의 2 또는 그 이상의 형광 수명 프로파일들을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 수명 프로파일을 검출하는 것;을 수행하는 것을 포함한다. 각각의 레플리케이트는 상기 샘플 인터로게이션 사이클들 중 대응되는 하나에 대하여 생성된 상기 2 또는 그 이상의 형광 수명 프로파일 및 상기 2 또는 그 이상의 형광 방출 스펙트럼 프로파일을 포함한다. 상기 조작들은 또한, 복수의 미리 결정된 분광 관계들에 대한 상기 레플리케이트들의 비교를 수행하는 것을 포함한다. 상기 조작들은 또한, 상기 미리 결정된 분광 관계들에 대해 상기 레플리케이트들의 비교에 기초하여 상기 샘플의 표적 분석물 농도를 결정하는 것을 포함한다.
본 명세서의 추가적인 특징 및 이점은 후술하여 설명될 것이고, 일부는 발명을 실시하기 위한 구체적인 내용으로부터 명백해 질 것이며, 또는 본 명세서에 의해 개시되는 실시예를 통해 알 수 있을 것이다. 본 명세서의 특징 및 이점은 첨부된 청구범위에 특별히 지적된 도구 및 조합의 수단에 의해 실현 및 획득될 수 있다. 본 명세서의 이들 및 다른 특징은 이하의 발명을 실시하기 위한 구체적인 내용 및 청구범위로부터 보다 명백해 질 것이며, 또는 후술하는 본 명세서에 의해 개시되는 실시예에 의해 알 수 있을 것이다.
본 명세서의 전술한 및 다른 이점 및 특징을 보다 명백하게 하기 위하여, 본 명세서의 보다 구체적인 설명은 첨부된 도면에 도시된 특정 실시예를 참조하여 제공될 것이다. 이들 도면은 본원의 전형적인 실시예를 도시한 것으로 이해되는 것이고, 본 명세서에서 개시되는 범위를 제한하는 것으로 간주되어서는 안된다. 본 명세서는 첨부된 도면의 사용을 통해 추가적인 특이성 및 세부사항으로 개시되고 설명될 것이다.
도 1은 일부 시스템이 어떻게 간섭 입자들(interfering particles)로부터 표적 분석물들(target analytes)을 구별할 수 있는지를 나타내는 그래프이다.
도 2는 특정 형광 여기 파장(fluorescence excitation wavelength)에 응답하는 다양한 표적 분석물들 및 간섭 물질들(interfering materials)의 형광 방출 스펙트럼 프로파일들(fluorescence emission spectral profiles)을 나타내는 그래프이다.
도 3은 2개의 상이한 형광 여기 파장들에 응답하는 2개의 표적 분석물들의 형광 방출 스펙트럼 프로파일들(fluorescence emission spectral profiles)을 나타내는 그래프이다.
도 4는 2개의 상이한 형광 여기 파장들로부터 표적 분석물 및 간섭 물질의 형광 방출 스펙트럼 프로파일들을 나타내는 그래프이다.
도 5는 340nm 형광 여기 파장 및 613nm 형광 방출 파장에 대한 표적 분석물 및 간섭 물질의 형광 수명 프로파일들을 나타내는 그래프이다.
도 6은 프로세스 모니터의 일 예를 도시한다.
도 7은 유체 샘플, 예를 들어, 도 6의 샘플 영역 내에서 유체 샘플 분석 방법의 순서도를 나타낸다.
도 8은 도 7의 방법과 연관된 다양한 그래프를 나타낸다.
도 9는 도 6 및/또는 그들의 일부의 프로세스 모니터의 일 예의 구현을 나타낸다.
도 10은 도 6 및/또는 그들의 일부의 프로세스 모니터의 다른 예의 구현을 나타낸다.
도 11은 도 6 및/또는 그들의 일부의 프로세스 모니터의 또다른 예의 구현을 나타낸다.
도 12는 도 6 및/또는 그들의 일부의 프로세스 모니터의 또다른 예의 구현을 나타낸다.
도 13은 도 6 및/또는 그들의 일부의 프로세스 모니터의 또다른 예의 구현을 나타낸다.
도 14는 도 6 및/또는 그들의 일부의 프로세스 모니터의 또다른 예의 구현을 나타낸다.
도 15는 도 6 및/또는 그들의 일부의 프로세스 모니터의 또다른 예의 구현을 나타낸다.
이들 모두는 본 명세서에 의해 개시된 적어도 하나의 실시예에 따라 배열된다.
일부 온라인 워터 바이오버든 모니터링 시스템들(online water bioburden monitoring systems)은 형광 검출 기능이 부가된 액체 입자 계수 기술(liquid particle counting technologies)을 기반으로 한다. 이러한 시스템들은 모니터링되는 수계(water system)에서 간섭 물질들(interfering materials)에 의하여 생성된 위양성 결과로 인해 민감도 및 정확도 요구를 충족시키는 데 심한 어려움을 겪고 있다. 간섭 물질들은 테플론, 고무, 플라스틱, 스테인리스 강, 적산화철(rouge) 등의 미세입자 같은 것들을 포함할 수 있다. 이러한 간섭 물질들은 유사한 크기 결정(size determination)을 산출하는 표적 분석물들(예를 들어, 미생물)과 유사한 크기일 수 있기 때문에, 간섭할 수 있고, 및/또는 간섭 물질들은 이들 시스템에서 형광 여기 신호에 대한 응답으로 표적 분석물과 유사한 스펙트럼 프로파일을 가질 수 있다. 이들 시스템들은 때로는 여기 채널로 지칭되며, 전형적으로 단일 형광 여기 파장 (또는 보다 구체적으로 상대적으로 더 좁은 파장 밴드)에서 형광 여기 신호를 방출하는 단일 여기원을 포함한다.
이들 시스템들은 다음과 같은 가정 하에 작동한다. 첫째, 입자가 검출되어야 한다(미에 산란; mie scattering). 둘째, 표적 분석물들로부터 고유 형광은 특정 시간 및 형광 세기 범위들을 통해 간섭 물질들의 고유 형광과 측정 가능하게 다르다; 이때, 표적 분석물들로부터 형광 방출은 형광 신호로 지칭될 수 있다. 셋째, 물 속의 다른 물질들/화학물질로부터의 백그라운드 형광은 표적 분석물들의 형광 신호를 막지 않는다.
도 1은 이들 시스템들이 어떻게 간섭 입자들로부터 표적 분석물들을 구별할 수 있는지를 나타내는 그래프이다. 특히, 이들 시스템들은 형광 여기 신호를 물 속으로 방출하고, 동시에 형광 신호, 산란광 신호 및 입자 크기를 검출한다. 상기 형광 신호 및 산란광 신호 각각은 시간의 함수로서 검출된 입자들에 상응하는 피크들을 포함할 수 있다. 상기 형광 신호의 각 피크 값은 상응하는 입자의 형광 세기를 나타낼 수 있다. 상기 산란광 신호의 각 피크 값은 상응하는 입자의 크기를 나타낼 수 있다. 생물학적 형광 세기 범위(도 1에서 “형광 세기 범위”로 표지) 내의 형광 세기를 가지며, 비율 범위(도시 되지 않음) 내의 크기-대-형광 세기 비를 가지는 이들 입자는 표적 분석물들(도 1에서 “생물학적 입자”로 지칭)로 결정할 수 있다. 생물학적 형광 세기 범위 외의 형광 세기 및/또는 비율 범위 외의 크기-대-형광 세기 비를 가지는 입자는 간섭 입자들(도 1에서 “비-생물학적 입자”로 지칭)로 결정할 수 있다.
표적 분석물들 및 간섭 물질들의 유사한 크기 및 배향(orientation)은 입자 크기를 식별 인자로 이용하는 이러한 시스템들을 혼동시킬 수 있다. 추가적으로, 표적 분석물들 및 간섭 물질들의 유사한 형광 방출 스펙트럼 프로파일은 형광 세기를 식별 인자로 이용하는 이러한 시스템들을 혼동시킬 수 있다.
이러한 시스템들은 상이한 형광 여기 파장 및 다수의 결과적인 형광 방출 스펙트럼 프로파일들에서 다수의 여기원을 통합함으로써 다소 개선될 수 있다. 그러나, 만일 표적 분석물들 및 간섭 물질들이 유사한 고유 형광 특징들을 가진다면, 이 둘 간의 식별능이 제대로 발휘되지 않을 수 있다.
미소체, 부스러기 및 미생물들은 크기, 모양, 형광 방출 스펙트럼, 및 세기가 유사할 수 있어, 입자 크기를 식별자로 사용하는 단일 형광 여기 파장 시스템들에서 표적 분석물들과 간섭 물질들을 구별하는 것은 중요한 도전일 수 있다. 특히, 간섭 물질들로부터의 형광 방출 스펙트럼 프로파일은 표적 분석물들의 형광 방출 스펙트럼 프로파일에 간섭할 수 있다. 예를 들어, 도 2는 특정 형광 여기 파장에 응답하는 다양한 표적 분석물들 및 간섭 물질들의 형광 방출 스펙트럼 프로파일들을 나타내는 그래프이다. 도 2에 도시된 바와 같이, 간섭 물질 “폴리스티렌 미소체”의 형광 방출 스펙트럼 프로파일은 표적 분석물들 “타이로신” 및 “트립토판”의 형광 방출 스펙트럼 프로파일의 검출과 상당하게 중첩되고, 간섭할 수 있다. 유사하게, 간섭 물질들 “폴리머”의 다양한 형광 방출 스펙트럼 프로파일들은 표적 분석물 “NADH”의 형광 방출 스펙트럼 프로파일의 검출과 상당하게 중첩되고, 간섭할 수 있다. 도 2에서, 표적 분석물 “리보플라빈”의 형광 방출 스펙트럼 프로파일은 간섭 물질들의 형광 방출 스펙트럼 프로파일들에 의해 크게 중첩되지 않는 유일한 것이다.
전술한 시스템들은 모두 연속 단일 파장 여기원을 사용한다. 이들 시스템들은 먼저 미에 산란(Mie scattering)을 통해 입자를 검출한 다음, 입자로부터의 고유 형광이 입자를 표적 분석물로 분류할 만큼 충분히 고유한지 여부를 식별하려 시도한다. 이들 시스템들은 표적 분석물로부터 크기와 형광이 매우 비슷한 간섭 물질 입자들을 식별하는 데 혼동을 겪는다. 이는 위양성 결과가 생성되어, 신뢰할 수 없는 데이터가 생성되고, 불필요한 공장 검증을 발생시켜 비용이 많이 들 수 있다. 산업계는 여전히 이전 시스템들에서 이용 가능한 것보다, 온라인 워터 바이오버든 모니터링에 대해 보다 신뢰성있고, 정확하며, 민감한 해결책을 찾고 있다.
경우에 따라, 다중-파장 형광 여기는 단일-파장 여기는 표적 분석물들 사이에 더 많은 식별을 제공할 수 있다. 예를 들어, 도 3은 2개의 상이한 형광 여기 파장들, 266nm 및 351nm에 응답하는 2개의 표적 분석물들의 형광 방출 스펙트럼 프로파일들(fluorescence emission spectral profiles)을 나타내는 그래프이다. 상기 266nm 형광 여기 파장에서, 두 표적 분석물들, “곰팡이 포자”와 “B. subtilis var. niger”의 형광 방출 스펙트럼 프로파일들은 식별하기 어렵다. 상기 351nm 형광 여기 파장에서, “B. subtilis var. niger” 표적 분석물의 형광 방출 스펙트럼 프로파일의 피크들은 “곰팡이 포자” 표적 분석물의 형광 방출 스펙트럼 프로파일의 피크들보다 일반적으로 긴 파장들로 이동되므로, 두 표적 분석물들의 형광 방출 스펙트럼 프로파일들은 훨씬 더 식별하기 쉽다. 대안적으로 또는 추가적으로, 다중-파장 형광 여기-다중 스펙트럼 프로파일링이라고도 지칭됨-는 생물학적 종, 하위 종 및 잠재적 개별 종을 공장 검증에서 더 이용하기 위해 식별할 수 있다. 다중 스펙트럼 프로파일링은 활성 성분, 효소, 부형제 등의 농도를 모니터링하는것과 같은 다른 모니터링 어플리케이션에서도 적용될 수 있다.
전술한 연속 여기원을 이용하는 시스템들은 고유의 백그라운드 노이즈에 의해 혼동될 수 있고, 따라서 표적 신호들을 노이즈로부터 구별하기 위하여 여기 전력을 증가시키는 것이 필요할 수 있다. 이것은 간섭 물질들이 표적 분석물들과 유사한 방출 특성을 갖는 경우, 민감도에 문제가 될 수 있다. 예를 들어, 도 4는 2개의 상이한 형광 여기 파장들(도 4에서 “여기 파장 #1” 및 “여기 파장 #2”)로부터 표적 분석물 및 간섭 물질의 형광 방출 스펙트럼 프로파일들(401 내지 404)을 나타내는 그래프이다. 형광 방출 스펙트럼 프로파일들(401 및 402)은 각각 여기 파장 #1 및 여기 파장 #2에 대한 표적 분석물의 형광 스펙트럼 응답을 나타낸다. 형광 방출 스펙트럼 프로파일들(403 및 404)은 여기 파장 #1 및 여기 파장 #2에 대한 간섭 물질의 형광 스펙트럼 응답을 나타낸다. 도 4에 도시된 바와 같이, 표적 분석물의 형광 방출 스펙트럼 프로파일들(401 및 402)과 간섭 물질의 형광 방출 스펙트럼 프로파일들(403 및 404) 사이에는 상당한 중첩이 존재하고, 이 예에서 형광 여기 파장들 중 어느 하나에서 표적 분석물과 간섭 물질 사이를 효율적으로 식별하기에 충분한 해상도가 아닐 수 있다. 결과적으로, 간섭 물질들은 다중 스펙트럼 프로파일링이 있는 시스템들에서도 위양성들로 계수될 수 있다. 대안적으로 또는 추가적으로, 여기 전력을 낮추는 것은 수용될 수 없는 민감도를 야기할 수 있다. 본 명세서에 개시된 일부 실시예에서, 펄스 여기 신호들 및 진보된 광학계들의 이용은 관심있는 어플리케이션에 대한 신호-대-노이즈 비를 상당히 개선 할 수 있다.
시간-분해 형광 분광법(time-resolved fluorescence spectroscopy)은 형광 표적 분석물들의 방출 역학들, 예로, 형광 발색단(fluorophore)의 전자 여기와 방출된 광자들을 생성하는 여기 상태로부터의 전자의 방사성 붕괴(radiative decay) 사이의 시간 분포를 연구하는 기술이다. 이러한 분포의 시간적 범위는 표적 분석물의 형광 수명으로 지칭된다.
형광 수명은 표적 분석물들 및 간섭 물질들을 구별할 수 있는 식별 가능한 특성일 수 있다. 예를 들어, 생물학적 형광 발색단의 형광 수명은 일반적으로 4ns(nanoseconds) 미만으로 보고되는 반면, 간섭 형광 발색단의 형광 수명은 일반적으로 5 내지 20ns 이상으로 보고된다. 이러한 차이는 도 5에 340nm 형광 여기 파장 및 613nm 형광 방출 파장에 대한 표적 분석물 및 간섭 물질의 형광 수명 프로파일들을 나타내는 그래프로 도시된다. 도 5에서 표적 분석물의 형광 수명 프로파일(도 5에서 “단-수명 형광(short-lived fluorescence)”)은 간섭 물질의 형광 수명 프로파일(도 5에서 “장-수명 형광(long-lived fluorescence)”)보다 현저히 짧은 것을 알 수 있다. 서로 다른 표적 분석물들 및/또는 표적 분석물과 간섭 물질 사이를 식별하기 위한 시간 프로파일의 이용은 다중 시간 프로파일링(multitemporal profiling)이라 지칭할 수 있다.
따라서, 본 명세서에 기술된 실시예들에는 다변량 방법들(multivariatemethods) 또는 다변량 프로파일링(multivariateprofiling)으로 집합적으로 지칭되는 다중 스펙트럼 프로파일링 및 다중 시간 프로파일링 모두를 구현한다. 본원에 기술된 일부 실시예들은 샘플 내에서 복잡한 형광 프로파일의 보다 완전한 (다변량) 설명을 구성한다. 이는 별개의 다중 스펙트럼 및 시간 감쇠 프로파일들의 다중 레플리케이트들을 분광 관계들의 데이터베이스에 피팅시킴으로써 얻을 수 있다. 이들 및 다른 실시예들에서, 검출된 신호들은 예로, 상대적으로 낮은 농도의 표적 분석물들의 결과로서, 상대적으로 약한 신호 세기를 가질 수 있다. 본 명세서에 의해 개시되는 실시예들은 이하에서 보다 상세하게 설명되는 바와 같이, 신호 품질을 향상시키기 위해 고속, 다중 레플리케이트 분석을 이용함으로써 충분한 신호 품질을 확립할 수 있다.
일부 실시예들은 다중 샘플 인터로게이션 사이클들의 각각에 대한 검출 채널에 특정한 신호-대-노이즈 비를 최대화 또는 향상시키기 위해 다중 검출기 어셈블리 및 고속 신호 처리 전자장치들을 포함할 수 있다. 상기 다중 검출기 어셈블리 및 고속 신호 처리 전자장치들은 짧은 분석 시간에서 레플리케이트 분석을 가능하게 하도록 빠른 분석 사이클을 가능하게 할 수 있으며, 신호-대-노이즈 비를 최대화하거나 적어도 향상시키는 것을 가능하게 할 수 있다. 또한, 시스템의 백그라운드 노이즈 또는 베이스라인을 얻기 위한 여기 이벤트(excitation event) - 이는 인터로게이션 이벤트들의 능동적인 일부가 아니면서, 시스템 고유의 바이어스 또는 노이즈를 보상하는 데 사용할 수 있음-를 구현하지 않고, 샘플에서 데이터를 수집할 수 있다.
일부 실시예들은 샘플의 순간 또는 실시간(또는 거의 순간 또는 거의 실시간) 분광 분석을 제공할 수 있으며, 증가된 통계적 신뢰를 위해 서브-밀리초(millisecond) 사이클들로 다중 레플리케이트들 분석을 수행할 수 있다. 따라서, 본 명세서에 의해 개시된 일부 모니터링 시스템들은 온라인 상의, 라인에서의(at-line) 그리고 실험실에서의 워터 바이오버든 모니터링 어플리케이션들에 필요한 민감도, 정확도, 특이성, 정밀성, 및 견고성을 가질 수 있다. 대안적으로 또는 추가적으로, 본원에 개시된 모니터링 시스템들은 활성 성분 및 무균 모니터링 어플리케이션들과 같은 특정 표적 분석물들을 검출하고 정량화 하기 위한 시스템을 “튜닝(tune)”하는 능력을 포함할 수 있다. 상기 시스템을 튜닝하는 것은 식별 시그니쳐(signature) 또는 핑거프린트(fingerprint)를 확립하기 위하여 특정 시스템 매트릭스에서 표적 분석물(들)의 순수 샘플을 평가하는 것을 포함할 수 있다. 상기 시스템을 튜닝하는 것은 원칙적으로 구성요소 분석들 또는 유사한 고유 벡터 기반의 다변량 분석들에서와 같이 시스템에서 관측치를 상관 또는 비상관 변수로 변환하는 통계적 절차의 활용을 포함할 수 있다. 대안적으로 또는 추가적으로, 인공 지능 학습 알고리즘은 하나 또는 그 이상의 표적 분석물들 및/또는 간섭 물질들의 특이적 응답 시그니쳐들 또는 핑거프린트들에 대한 검출 신호들을 평가하는 데 및/또는 분광 관계들을 결정하는 데 이용될 수 있다.
본 명세서에 기술된 일부 실시예들에서, 표적 분석물들 및 간섭 물질들의 형광 감쇠율들의 차이는 관심 산업 어플리케이션에서 가치있는 식별 플랫폼일 수 있다. 일부 실시예는, 이런 차이를 검출하고, 다중 여기 파장들(또는 여기 채널들) 및 특정 방출 검출 파장 서브 밴드들(또는 검출 채널들)의 다중 스펙트럼 차원들에 시간 분석을 부가할 수 있다. 일부 실시예들은 500ns 미만에서 이 다변수 분석 사이클을 완료하여 표적이 샘플 분석 영역 내에 있는 동안 다중 레플리케이트들(예로, >10)을 완료하고 비교할 수 있게 한다.
본 출원의 몇몇 예시적인 실시예들의 다양한 양태를 설명하기 위하여 도면을 참조할 것이다. 상기 도면들은 이런 예시적인 실시예들의 도해 및 도식 표현이며, 본 출원에서 개시되는 내용을 제한하는 것이 아니며, 반드시 축척에 맞게 그려진 것도 아니다.
도 6은 본원에 개시된 적어도 하나의 실시예에 따라 배열된, 프로세스 모니터(600)의 일 예를 도시한다. 상기 프로세스 모니터(600)는 온라인 워터 바이오버든 모니터링(예로, 물에서의 바이오버든 모니터링) 및/또는 다른 유체, 가스 등의 다른 표적 분석물들의 모니터링을 위해 구현될 수 있다. 표적 분석물들의 예는 미생물, 활성 성분, 효소, 부형제 또는 다른 표적 분석물들을 포함한다.
상기 프로세스 모니터(600)는 컨트롤러(602), 다중 형광 여기원(604), 하나 또는 그 이상의 검출기들(606)을 포함할 수 있다. 상기 컨트롤러(602)는 상기 형광 여기원(604), 상기 검출기들(606), 및/또는 하나 또는 그 이상의 구동 회로, 증폭기 회로, 또는 프로세스 모니터(600)의 작동을 제어하기 위한 다른 구성요소를 포함할 수 있다. 상기 컨트롤러(602)는 프로세서, 마이크로 프로세서, 마이크로 컨트롤러, 디지털 신호 프로세서(digital signal processor; DSP), 주문형 직접 회로(application specific integrated circuit; ASIC), 필드 프로그램 가능 게이트 어레이(field programmable gate array; FPGA) 또는 다른 적절한 컨트롤러를 포함할 수 있다.
상기 형광 여기원(604) 각각은 상이한 형광 여기 파장들에서 형광 여기 신호(608)를 방출할 수 있다. 상기 형광 여기원(604) 각각은 발광 다이오드(LED), 빅셀(vertical cavity surfaceemitting laser; VCSEL) 또는 단면 발광 반도체 레이저(edge emitting semiconductor laser) 등의 레이저 다이오드, 또는 원하는 형광 여기 파장 및 비교적 짧은 강압 시간에서 형광 여기 신호들을 방출하도록 구성된 다른 적절한 형광 여기원(608)을 포함한다. 비교적 짧은 강압 시간은 약 몇 ns 미만의 강압 시간, 약 1.5ns 또는 그 이하의 강압 시간, 서브-ns 이하의 강압 시간, 또는 그 이하의 강압 시간을 포함할 수 있다. 적어도 하나의 실시예에서, 상기 형광 여기원(604) 중 하나는 405nm 또는 다른 적절한 파장에서 방출할 수 있고, 상기 여기원(604) 중 다른 하나는 635nm 또는 다른 적절한 파장에서 방출할 수 있다. 도 6에는 단지 2개의 여기원(604)만이 도시되어 있지만, 프로세스 시스템(600)은 대안적으로 상이한 형광 여기 파장들에서 방출하는 3개, 4개, 5개 또는 그 이상의 여기원들(604)을 포함할 수 있다.
상기 컨트롤러(602)는 고주파에서 형광 여기원들(604)을 순환시켜, 예로, 전술한 일부 다른 시스템들에서와 같이 단일 연속 파동(wave) 신호의 이용과는 대조적으로 한정된 펄스(pulse)폭을 갖는 대응하는 형광 여기 신호들(608)을 순차적으로 방출하도록 구성될 수 있다. 고주파수들은 0.1 메가헤르츠(MHz) 이상의 주파수들을 포함할 수 있다. 상기 형광 여기 신호들(608)의 펄스 폭은 컨트롤러(602)에 의해 1ns와 50ns 사이 또는 일부 다른 적합한 범위 내로 제어될 수 있다. 상기 형광 여기 신호들(608)의 세기는 컨트롤러(602)에 의해 제어되어 표적 분석물들로부터 형광 방출들을 이끌어내기에 충분할 수 있다.
상기 형광 여기원(604)는 일부 실시예들에서 시간적 중첩 없이, 순차적으로 형광 여기 신호들(608)을 방출하도록 컨트롤러(602)에 의해 제어될 수 있다. 예로, 상기 형광 여기원들(604)은 임의의 주어진 시간에 그들 중 하나만 방출되도록 제어될 수 있다. 만일, 입자(612)가 예상되는 표적 분석물들 중 하나인 경우, 상기 입자(612)로부터 증강된 형광 응답을 유도하기 위해, 하나 또는 그 이상의 형광 여기 신호들(608)이 하나 또는 그 이상의 예상되는 표적 분석물들의 공진 주파수(또는 대응되는 파장)에 있을 수 있다. 일부 실시예들에서, 상기 형광 여기원들(604)은 예상되는 표적 분석물들로부터 증강된 특정 형광 공명 응답을 유도하기 위해, 진동 또는 순환 방식으로 형광 여기 신호들(608)을 방출하도록 제어될 수 있다.
대안적으로 또는 추가적으로, 상기 검출기(606)에 의한 검출은 다크 상태에서(in the dark), 예로, 검출 동안 형광 여기 신호들(608)을 방출하는 임의의 형광 여기원들(604) 없이, 발생할 수 있다. 따라서, 상기 컨트롤러(602)는 형광 여기원들(604)을 제어하여 시간적 중첩 없이 그리고 한 펄스의 끝과 다음 펄스의 시작 사이의 일시적인 중단을 가지고, 다크 상태에서의 검출을 허용하면서 형광 여기 신호들(608)을 순차적으로 방출할 수 있다.
상기 형광 여기원들(604)은 형광 여기 신호들을 프로세스 모니터(600)의 샘플 영역(610)으로 방출할 수 있다. 상기 샘플 영역(610)은 형광 여기원들(604)과 검출기들(606) 사이의 플로우 셀(flow cell)의 일부를 포함할 수 있다. 모니터링되는 물질의 일부 또는 “샘플” (임의의 단계에서, 예로, 고체, 액체, 기체)은 샘플 영역(610) 내에 존재할 수 있으며, 하나 또는 그 이상의 형광 여기 신호들(608)에 응답하여 형광을 내는 하나 또는 그 이상의 표적 분석물들 및/또는 입자들(612)(이하, “입자(612)” 또는 “입자들(612)”이라 지칭)을 포함할 수 있다. 이하에서 설명되는 것을 간략하게 하기 위해, 하기 설명은 표적 분석물들의 검출 및/또는 형광에도 적용되지만, 입자들의 검출 및/또는 형광에 대해서도 언급한다.
상기 검출기들(606) 각각은 형광 여기 신호들(608)에 응답하여 입자들(612)에 의해 방출된 형광 방출 신호(614)를 검출하는 PIN 다이오드(positive-intrinsic-negative diode; PIN diode) 또는 어발란체 포토 다이오드(avalanche photodiode; APD), 광전자 증폭관(photo multiplier tube; PMT), 실리콘 광전자 증폭관 (silicon photo multiplier; SiPMT) 또는 다른 적합한 검출기 등의 포토다이오드(photodiode)를 포함할 수 있다. 일부 실시예들에서, 상기 프로세스 모니터(600)는 백그라운드 신호, 예로, 형광 여기 신호(608)같은 형광 방출 신호(614) 이외의 신호의 검출기들(606)에 의한 검출을 최소화하거나 적어도 감소시키기 위해, 형광 여기 신호들(608)의 검출기들(606)로의 전송을 최소화하거나 또는 적어도 감소시키도록 설계될 수 있다. 예를 들어, 형광 방출 신호들(614)을 수집하여 검출기들(606)로 지향시키는 광학 장치들 및/또는 검출기들(606)은 형광 여기 신호들(608)의 광학 경로에서 어긋나게 배치되고, 그렇지 않으면, 입자들(612)과의 상호작용 없이 샘플 영역(610)을 통과할 수 있다.
상기 프로세스 모니터(600)의 광학 검출 시스템은 형광 방출 신호들(614)을 수집하여 검출기들(606)로 지향시키는 광학 장치들 및 검출기들(606)을 포함하고, 입자들(612)의 형광 방출 스펙트럼 프로파일들의 다중 스펙트럼 서브 밴드들을 개별적으로 검출할 수 있다. 상이한 스펙트럼 서브 밴드들은 검출 채널들로 지칭될 수 있다. 일부 실시예들에서, 상이한 검출기들(606)은 서브 밴드들의 각각 내에서 입자(612)에 의해 방출된 형광의 형광 수명 프로파일 및/또는 상이한 스펙트럼 서브 밴드들을 검출할 수 있다. 대안적으로 또는 추가적으로, 단일 검출기(606)는 단일 검출기(606)에서의 다양한 서브 밴드 성분들의 도달 및 검출을 시간적으로 분리하기 위해서, 예로, 2 또는 그 이상의 광 지연선들(optical delay lines)(예로, 상이한 길이들의 광학 경로들 또는 광섬유들) 및/또는 다른 광 지연 수단들을 이용함으로써, 2 또는 그 이상의 서브 밴드 및/또는 형광 수명 프로파일을 검출할 수 있다. 이들 및 다른 실시예들에서, 광학 검출 시스템은 하나 또는 그 이상의 광학 밴드 통과 필터들(예로, 다이크로익 필터(dichroic filter)), 광섬유들, 광학 경로들, 광 가이드들(light guides;LG), 광 파이프들, 빔 스플리터들(beam splitters), 프리즘들, 모자이크 필터들, 다변량 광학 소자들(multivariateoptical elements; MOEs), 광자 결정(photonic crystal; PC) 섬유들, LG 또는 PC 도파관들(waveguides) 또는 PC 섬유들, PC 광학 장치들, 렌즈들, 및/또는 다른 적합한 광학 장치들 중 하나 이상을 포함할 수 있다. 전술한 구성 요소들 중 하나 이상을 포함하는 프로세스 모니터(600)의 다양한 예시적인 구성들이 도 9 내지 도 15와 관련하여 이하에서 설명된다.
상기 프로세스 모니터(600)의 하나 또는 그 이상의 상기 검출기들(606)에 의해 검출된 검출 채널들의 총 수는, 일 실시예에서 수질 정화 프로세스에서 물의 바이오버든을 모니터링하기 위한 3개의 검출 채널들 같이, 비교적 적을 수 있다. 이 예에서, 상기 프로세스 모니터(600)는, 사실상, 3-채널 분광기로서, 3개의 별개의 서브 밴드들 또는 검출 채널들 상에서 검출한다. 상기 3-채널 분광기의 식별을 위한 해상도는 다소 제한적일 수 있으며, 본 명세서에서 개시하는 형광 수명 프로파일의 부가로 개선될 수 있다. 상기 3-채널 분광기는, 만일 큰 부피의 물, 예로, 1L의 물 내에 표적 분석물 및 간섭 물질 모두 샘플 영역(610)에 존재한다면, 간섭 물질로부터 표적 분석물을 효율적으로 정량 및 식별하는데 여전히 어려움을 겪을 수 있다. 이와 같이, 일부 실시예들에서 검출 채널의 수가 상대적으로 적을 때, 샘플 영역(610)의 부피는 상대적으로 작을 수 있다. 본 예시에서, 상기 샘플 영역(610)의 부피는 약 1uL 또는 다른 적합한 부피일 수 있어, 샘플 영역(610)에 존재하는 많은 양의 표적 분석물 및 간섭 물질 각각 또는 모두를 가질 확률이 최소화될 수 있다. 이로 인해, 표적 분석물 및/또는 간섭 물질의 적은 양이 상기 샘플 영역(610)에 존재하게 되어, 충분한 신호 품질을 확보하기 어려울 수 있다. 본 명세서에 개시된 실시예들은 신호 품질을 향상시키기 위해, 고속 다중 레플리케이트 분석을 이용함으로써, 충분한 신호 품질을 확보할 수 있다. 예를 들어, 이 경우 1uL의 샘플 영역(610) 내의 유체 샘플은 고정밀 신호의 대응물을 생성하도록 입자들(612)이 상기 샘플 영역(610)을 가로지를 때 많은 횟수(예로, 1,000 내지 2,000회)로 분석될 수 있다.
도 7은 본 명세서에 개시된 적어도 하나의 실시예에 따라 배열된, 예로, 도 6의 샘플 영역(610) 내에서 유체 샘플을 분석하는 방법(700)의 순서도이다. 상기 방법(700)은 도 6의 상기 프로세스 모니터(600) 또는 본 명세서에서 개시된 다른 프로세스 모니터들에 의해 구현될 수 있다. 대안적으로 또는 추가적으로, 상기 방법(700)은 흐르는 분말들, 컨베이어 라인의 알약들, 반죽들, 또는 다른 모든 상을 포함하는 다른 물질의 고체 샘플 또는 기체 샘플을 분석하는데 적용될 수 있다. 일부 실시예들에서, 상기 방법(700)의 수행은, 예로, 도 6의 컨트롤러(602) 또는 상기 방법(700)을 수행하기 위하여 상기 프로세스 모니터(600)를 제어하기 위해 비-일시적인 컴퓨터 판독 가능 매체(예로, 컴퓨터 메모리 또는 저장매체)에 저장된 컴퓨터 판독 가능 명령어들(예로, 코드 또는 소프트웨어)을 실행하는 다른 프로세서에 의해 제어될 수 있다.
도 6 및 도 7을 함께 참조하면, 상기 방법(700)은 블록(702)에서 하나 또는 그 이상의 레플리케이트들을 생성하기 위해 상기 샘플 영역(610) 내의 유체 샘플에 하나 또는 그 이상의 샘플 인터로게이션 사이클들을 수행하는 프로세스 모니터(600)를 포함할 수 있다. 각각의 인터로게이션 사이클을 수행하는 것은 하나 또는 그 이상의 블록들(704, 706 및/또는 708)을 포함할 수 있다. 이하에서는, 다수의 인터로게이션 사이클들은 다수의 레플리케이트들을 생성하기 위하여 수행되는 것으로 가정한다. 다른 실시예들에서, 단일 인터로게이션 사이클은 단일 레플리케이트를 생성하기 위하여 수행된다.
704 블록에서, 상기 샘플 영역(610) 내의 상기 유체 샘플은 상이한 형광 여기 파장들에서 2 또는 그 이상의 형광 여기 신호들(608)로 조사될 수 있다. 상기 조사하는 것은 시간적 중첩 없이 2 또는 그 이상의 형광 여기 신호들(608)로 상기 샘플 영역(610) 내의 상기 유체 샘플을 순차적으로 조사하는 것을 포함할 수 있다. 다른 실시예들에서, 상기 조사하는 것은 상이한 여기 파장들에서 2 또는 그 이상의 형광 여기 신호로 상기 샘플 영역(610) 내의 상기 유체 샘플을 동시에 조사하는 것을 포함할 수 있다. 대안적으로 또는 추가적으로, 상기 2 또는 그 이상의 형광 여기 신호들(608)은 각각의 인터로게이션 사이클들에서 펄싱될 수 있고, 다크 상태에서 검출을 허용하기 위하여 형광 여기 신호들(608) 중 하나의 펄스의 종료와 다른 형광 여기 신호들(608)의 펄스의 시작 사이의 시간적 중단이 있을 수 있다. 검출은 연속적으로 발생될 수 있으며, 또는 각 펄스가 종료되는 시점 또는 그와 거의 같은 시점에 시작될 수 있으며, 및 다음 펄스가 시작되는 시점 또는 그 다음 펄스가 시작되기 전과 같은 시점에서 종료될 수 있다.
706 블록에서, 상기 유체 샘플의 상이한 형광 방출 스펙트럼 프로파일은 형광 여기 신호들(608) 각각에 의한 조사(illumination) 후에 상기 상이한 형광 방출 신호들(614)로부터 검출될 수 있다. 예를 들어, 형광 여기 신호들(608) 중 하나에 의한 조사 후에, 상기 입자(612)는 대응하는 형광 방출 신호(614)를 방출할 수 있고, 그의 대응하는 형광 방출 스펙트럼 프로파일은 검출기들(606) 중 하나에 의해 검출될 수 있다. 다른 형광 여기 신호들(608)에 의한 조사 후에, 상기 입자들(612)은 다른 형광 방출 신호(614)를 방출할 수 있고, 그 대응하는 형광 방출 스펙트럼 프로파일은 다른 검출기들(606) (또는 단일 검출기(606)만 존재하는 동일한 검출기(606))에 의해 검출될 수 있다. 그 결과는, 형광 여기 신호들(608) 중 하나에 대응하는 것에 의한 조사에 응답하여 또는 형광 여기 신호들(608) 중 적어도 2개에 대응하는 것에 의한 동시 조사에 응답하여, 각각 생성된 2 또는 그 이상의 형광 방출 스펙트럼의 프로파일들의 생성일 수 있다. 상기 706 블록에서 형광 방출 스펙트럼의 프로파일들의 각각을 검출하는 것은, 형광 방출 스펙트럼 프로파일들의 각각을 위하여, 형광 방출 스펙트럼 프로파일에 대응하는 스펙트럼 서브 밴드들을 개별적으로 검출하는 것을 포함할 수 있다.
708 블록에서, 상기 유체 샘플의 상이한 형광 수명 프로파일은 형광 여기 신호들(608) 각각에 의한 조사 후에 상기 상이한 형광 방출 신호들(614)로부터 검출될 수 있다. 예를 들어, 형광 여기 신호들(608) 중 하나에 의한 조사 후에, 상기 입자(612)는 대응하는 형광 방출 신호(614)를 방출할 수 있고, 그의 대응하는 형광 수명 프로파일은 검출기들(606) 중 하나에 의해 검출될 수 있다. 다른 형광 여기 신호들(608)에 의한 조사 후에, 상기 입자들(612)은 다른 형광 방출 신호(614)를 방출할 수 있고, 그 대응하는 형광 수명 프로파일은 다른 검출기들(606) (또는 단일 검출기(606)만 존재하는 동일한 검출기(606))에 의해 검출될 수 있다. 그 결과는, 형광 여기 신호들(608) 중 하나에 대응하는 것에 의한 상기 입자(612)의 조사에 응답하여 또는 형광 여기 신호들(608) 중 적어도 2개에 대응하는 것에 의한 동시 조사에 응답하여, 각각 생성된 2 또는 그 이상의 형광 방출 스펙트럼의 프로파일들의 생성일 수 있다.
702 블록에서 수행된 각각의 샘플 인터로게이션 사이클 - 704, 706 및 708 블록들을 포함 - 각각은 대응하는 레플리케이트를 생성할 수 있다. 상기 레플리케이트 각각은 대응되는 샘플 인터로게이션 사이클에 대하여 생성된 2 또는 그 이상의 형광 수명 프로파일들 및 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들을 포함할 수 있다.
710 블록에서, 미리 결정된 분광 관계들에 대한 상기 레플리케이트들의 비교가 수행될 수 있다. 상기 레플리케이트들을 미리 결정된 분광 관계들과 비교하는 것은 상기 레플리케이트들로부터 유도된 평균 또는 합성 신호를 상기 미리 결정된 분광 관계들과 비교하는 것을 포함할 수 있다. 대안적으로 또는 추가적으로, 상기 레플리케이트들을 미리 결정된 분광 관계들과 비교하는 것은 상기 레플리케이트들(예로, 평균 또는 합성 신호)를 상기 미리 결정된 분광 관계들에 맞추어 상기 유체 샘플에 존재하는 하나 또는 그 이상의 입자들(612)을 표적 분석물들로 식별하는 것을 포함할 수 있다.
상기 미리 결정된 분광 관계들은 데이터베이스에 저장될 수 있고 및/또는 프로세스 모니터(600) 또는 프로세스 모니터(600)에 통신가능하게 연결된 컴퓨터 디바이스에 액세스 가능할 수 있다. 상기 미리 결정된 분광 관계들은 하나 또는 그 이상의 표적 분석물들 및/또는 간섭 물질들의 특성 응답 시그니쳐들 또는 핑거프린트들을 확보할 수 있고, 특성 응답 시그니쳐 방출 프로파일들로 지칭될 수 있다. 대안적으로 또는 추가적으로, 인공 지능 학습 알고리즘들은 분광 관계들을 결정하고 및/또는 하나 또는 그 이상의 표적 분석물들 및/또는 간섭 물질들의 특성 응답 시그니쳐들 또는 핑거프린트들에 대한 검출 신호들을 평가하는 데 이용될 수 있다. 다변량(예로, 다중 스펙트럼 및 다중 시간) 형광 프로파일들은, 예로, 상기 레플리케이트들은, 상기 유체 샘플 내에 표적 분석물들로서 존재하는 하나 또는 그 이상의 입자들(612)을 식별하기 위하여, 예로, 상기 레플리케이트들 또는 평균 또는 합성 신호의 속성/특성을 다양한 서브 밴드 및/또는 시간 주기에서의 특성 응답 시그니쳐 방출 프로파일들의 대응하는 속성/특성을 비교함으로써, 상기 미리 결정된 분광 관계들과 비교되거나 또는 맞추어 질 수 있다. 예를 들어, 만일 상기 레플리케이트들의 평균 또는 합성 형광 방출 스펙트럼 프로파일 및/또는 평균 또는 합성 형광 수명 프로파일(예로, 스펙트럼 프로파일에서 형태/방출 파장과 세기 사이의 대응 및/또는 수명 프로파일에서 형태/감쇠시간과 세기 사이의 대응)이 특성 응답 시그니쳐 방출 프로파일들에 포함된 표적 분석물의 수명 프로파일 및/또는 형광 방출 스펙트럼 프로파일에 일치한다면, 표적 분석물이 상기 유체 샘플에 존재하는 것으로 식별될 수 있다.
712 블록에서, 상기 유체 샘플의 표적 분석물 농도는 인터로게이션된 샘플로부터의 레플리케이트들 내의 세기에 존재하는 것으로 결정된 하나 또는 그 이상의 표적 분석물들 또는 간섭 물질들의 특성 응답 시그니쳐 방출 프로파일의 세기의 비교에 기초하여 결정될 수 있다. 상기 표적 분석물 농도를 결정하는 것은 바이오버든 농도를 결정하는 것을 포함할 수 있다. 표적 분석물 농도를 결정하기 위한 상기 비교는 710 블록의 비교에 또는 그 일부로서 포함될 수 있다. 이들 및 다른 실시예들에서, 특성 응답 시그니쳐 방출 프로파일은 표적 분석물 또는 간섭 물질의 단일 입자(또는 다른 공지된 수의 입자들)의 다변량 응답을 나타낼 수 있다. 상기 유체 샘플 내의 표적 분석물 또는 간섭 물질의 농도가 높을수록, 형태 및/또는 다른 속성들에서, 특성 응답 시그니쳐 방출 프로파일의 일부분을 일치시키지만, 더 큰 세기가 나타나는 형광 수명 프로파일 및/또는 형광 방출 스펙트럼 프로파일을 도출할 수 있다. 상기 레플리케이트들의 상기 세기(또는 그로부터 유도된 평균 또는 합성 신호)는 상기 유체 샘플 내에 존재하는 상기 표적 분석물의 입자들의 양 또는 농도의 함수로서, 특성 응답 시그니쳐 방출 프로파일의 세기와 비교하여, 선형으로 또는 다른 공지의 관계에 따라 변화될 수 있다. 따라서, 상기 표적 분석물의 입자들의 수 또는 농도는 특성 응답 시그니쳐 방출 프로파일의 세기를 상기 레플리케이트들의 세기와 비교함으로써 결정될 수 있다. 일부 실시예들에서, 상기 결정된 농도는(상기 유체 샘플에 존재하는 것보다) 큰 부피의 또는 시간 값과 관련시키기 위해 시간에 따라 ”합산”될 수 있다. 대안적으로 또는 추가적으로, 상기 방법(700)은 상기 유체 샘플에서 특정 유형의 표적 분석물의 바이오버든 농도를 결정하는 것을 더 포함할 수 있다.
당업자는 본 명세서에 개시된 이 프로세스 및 다른 프로세스들 및 방법들에 대하여, 상기 프로세스들 및 방법들에서 수행되는 기능들이 상이한 순서로 구현될 수 있다는 것을 이해할 것이다. 또한, 대략적인 단계들 및 작동들은 단지 예시들로서 제공되며, 일부 단계들 및 작동들은 선택적일 수 있고, 보다 적은 단계들 및 작동들로 결합되거나, 또는 개시된 실시예들의 본질을 손상시키지 않으면서 부가적인 단계들 및 작동들로 확장될 수 있다.
도 8을 참조하여 상기 방법(700)의 양태들은 보다 상세하게 설명되며, 본원에 개시된 적어도 하나의 실시예에 따라 배열된 다양한 그래프들(802, 804, 806)를 도시한다. 상기 그래프(802)는 만일 상기 유체 샘플 내에 표적 분석물의 입자 또는 입자들이 존재한다면, “여기 파장 #1” 및 “여기 파장 #2”에서 두 개의 형광 여기 신호들을 갖는 상기 유체 샘플의 조사에 응답하여, 도 7의 하나의 샘플 인터로게이션 사이클에서 생성될 수 있는, 도 4의 형광 방출 스펙트럼 프로파일들(401 및 402)을 포함한다.
상기 그래프(804)는 표적 분석물의 형광 수명 프로파일(808) 및 간섭 물질의 형광 수명 프로파일(810)을 포함한다. 표적 분석물의 형광 수명 프로파일(808) 또는 간섭 물질의 형광 수명 프로파일(810) 중 적어도 하나는 “여기 파장#1” 및 “여기 파장 #2”에서 두 개의 형광 여기 신호들 중 하나에 의한 상기 유체 샘플의 조사에 응답하여, 하나의 샘플 인터로게이션 사이클에서 생성될 수 있다. 표적 분석물 또는 간섭 물질 중 적어도 하나에 대한 개별적인 형광 수명 프로파일(808 또는 810)은 상기 두 개의 형광 여기 신호들 중 다른 하나에 의한 상기 유체 샘플의 조사에 응답하여, 상기 샘플 인터로게이션 사이클 동안 생성될 수 있다. 상기 인터로게이션 사이클 동안 표적 분석물 및 간섭 물질 모두의 입자가 상기 유체 샘플에 존재할 때, 상기 검출된 형광 수명 프로파일은 형광 수명 프로파일들(808 및 810)의 합성일 수 있다.
상기 그래프(806)는 각각 상기 표적 분석물 및 상기 간섭 물질에 대한 형광 방출 스펙트럼 및 수명 프로파일(이하, “프로파일” 또는 “프로파일들”)의 결합(812 및 814)을 포함한다. 상기 그래프(806)는 제1축(816)이 세기에 대응하고, 제2축(818)이 ns 단위의 시간에 대응하고, 및 제3축(820)이 nm 단위의 방출 파장에 대응하는 3D 그래프이다. 상기 제2축(818)을 따라서, 초기 시간 값(예로, 제2축(818)의 최 좌측)은 표적 분석물의 형광 방출 스펙트럼 및 수명 프로파일의 결합(812)에 대해 0이고, 우측으로 증가한다. 상기 제2축(818)을 따른 상기 시간 값은 간섭 물질의 형광 방출 스펙트럼 및 수명 프로파일의 결합(814)의 최 좌측에서 0으로 재설정되고, 우측으로 증가한다.
상기 프로파일들(812 및 814)은 미리 결정된 분광 관계들의 예시들이며, 각각은 표적 분석물 및 간섭 물질 중 대응하는 하나에 대해 다변량 시그니쳐 또는 핑거프린트를 확보한다. 각각의 인터로게이션 사이클동안 생성된 2 또는 그 이상의 형광 수명 프로파일들(예로, 808 및/또는 810) 및 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들(예로, 401 및 402)을 포함하는, 도 7의 상기 방법(700)의 상기 블록(702)동안 생성된 상기 다양한 레플리케이트들은, 상기 프로파일들(812 및 814) 또는 그들의 특성과 비교하여 상기 유체 샘플의 바이오버든을 결정할 수 있다.
도 9 내지 도 15는 도 6의 상기 프로세스 모니터(600) 및/또는 이의 일부분의 다양한 예시적인 구현들을 도시하며, 본원에 기술된 적어도 하나의 실시예에 따라 배열된다. 일반적으로, 상기 프로세스 모니터(600)는 최소한 논리적으로 여기 수집 시스템 및 검출 시스템으로 나뉠 수 있다.
도 9의 일 실시예에서, 상기 프로세스 모니터(600)의 여기 수집 시스템은 플로우 셀의 샘플 영역(906) 내에 형광 여기 신호들(902 및 904)을 방출하는, 두 개의 형광 여기원들(도 9 및 다른 도면들에서 “여기원 1” 및 “여기원 2”)을 포함한다. 상기 샘플 영역(906)은 검출 시스템의 수집 렌즈들(도 9 및 다른 도면들에서 “수집 렌즈들”로 표기됨)에 형광 방출 신호들을 모으기 위해 반사기에 의해 적어도 부분적으로 둘러 쌓일 수 있다. 상기 반사기는 형광 여기 신호들을 투과시키고 형광 방출 신호들을 반사시킬 수 있다. 도 9의 상기 실시예는, 도 9에 도시된 바와 같이, 형광 여기 신호들(902 및 904)을 검출 경로를 빗겨가게 지향시킴으로써, 검출 시스템으로의 형광 여기 신호(902 및 904)의 송신을 최소화 할 수 있다.
도 9 또는 다른 도면들에서 상기 수집 렌즈들은 광 입사면 및 광 출사면 모두를 가질 수 있다. 상기 광 입사면은 볼록형, 오목형, 비구면형, 평면형 또는 다른 적합한 형태일 수 있다. 유사하게, 상기 광 출사면은 볼록형, 오목형, 비구면형, 평면형 또는 다른 적합한 형태일 수 있다. 이들 및 다른 실시예들에서, 상기 수집 렌즈들은 순 양의 광학 전력(net positive optical power)을 가질 수 있다. 따라서, 상기 수집 렌즈들의 상기 광 입사면 또는 광 출사면들 중 적어도 하나는 볼록형 또는 비구면 또는 양의 광학 전력을 갖는 다른 형태일 수 있고, 반면 상기 광 입사면 또는 광 출사면들 중 다른 하나는 볼록형, 오목형, 비구현명, 평면형 또는 양의 광학 전력과 합산된 임의의 광학 전력으로써, 여전히 순 양의 광학 전력을 갖는 다른 형태일 수 있다.
조준 렌즈 뒤의 여기 필터는 예상되는 형광 방출 신호 스펙트럼 외의 광의 파장을 여광할 수 있다. 제1 다이크로익 필터(dichroic filter)(예로, 빔 스플리터)(도 9에서 “다이크로익 필터 1”)는 하나의 서브 밴드를 제1 검출기(도 9의 “검출기 밴드 1”) 로 재지향시키고, 다른 파장들을 통과시키는 밴드 통과 필터일 수 있다. 제2 다이크로익 필터(도 9에서 “다이크로익 필터 2”)는 또 다른 서브 밴드를 제2 검출기(도 9의 “검출기 밴드 2”)로 재지향시키고, 다른 파장들을 통과시키는 밴드 통과 필터일 수 있다.
도 10 내지 도 15에서, 본 명세서의 다른 곳에서 이용된 유사한 명칭 및/또는 부호는 유사한 구성 요소들을 나타낸다. 도 10에 예시된 바와 같이 도 10의 일 예에서, 상기 프로세스 모니터(600)는 시스템 플로우 셀을 통해 형광 여기 신호를 제어 가능하게 지향시키기 위해 광 파이프 방법들을 활용할 수 있다. 도 9 내지 도 15에서, 여기 필터(하나가 존재하는 경우) 이후의 출력 신호(output)는 광 가이드 또는 광섬유 번들에 커플될 수 있고, 그 후 검출기들로 가는 2 또는 그 이상의 레그들(legs)로 분리될 수 있는데, 상기 광 가이드와 검출기 사이에 개별적인 필터들이 있을 수 있고 또는 상기 개별 레그들 내에 필터들이 있을 수 있고 또는 폴리머(저비용)로 제조된 성형된 광 가이드 또는 광 가이드 물질에 흡수성 염료를 갖는 글라스와 같은 고유한 필터 특징을 가지는 광 가이드의 각 레그가 있을 수 있다.
도 11의 일 예에서, 상기 프로세스 모니터(600)는 광 파이프 방법을 이용하여, 도 10에 도시된 것과 다른 방식으로, 형광 여기 신호들을 시스템 플로우 셀을 통해 제어 가능하게 지향시킨다.
도 12 내지 도 15는 상기 프로세스 모니터(600)에 포함될 수 있는 검출기 시스템의 다양한 구성들을 도시한다. 이들 및 다른 실시예에서, 다이크로익 필터(들)는 큐브 빔 스플리터(cubebeam splitter) 또는 큐브 빔 스플리터 어레이가 서로 산개하거나 접착된 것으로 대체될 수 있다. 대안적으로, K-프리즘 (K-Prism) 또는 필립스 (Phillips) 프리즘 구성과 같은 필터 기능을 갖는 프리즘 어셈블리가 이용될 수 있거나, 적절한 필터 기능을 갖는 X-큐브(X-cube) 구성이 적용될 수 있다. 이들 프리즘들은 패션(fashion)과 같은 어레이로 확장될 수 있다. 검출기들은 근접 초점 (예로, 맞대기 결합), 렌즈들 또는 섬유들을 통해 프리즘으로부터 형광 방출 신호들을 수신할 수 있다.
도 12에서, 광섬유 방법론들은 단일 검출기를 향하는 원하는 서브 밴드를 제어 가능하게 지연시키도록 할 수 있다. 예를 들어, 광섬유(1202, 1204 및 1206)은 상이한 길이를 가질 수 있다. 상기 광섬유(1202)와 비교하여, 더 긴 길이의 광섬유(1204 및 1206)는 여기 수집 시스템(예로, 도 10 참조)으로부터 도 12의 검출기로 전송되는 형광 방출 신호들(또는 그들의 서브 밴드들)의 상이하고 공지된 지연들을 도입할 수 있다. 서브 밴드들로 지연을 도입함으로써, 단일 검출기는 다수의 서브 밴드들을 검출하는 데 이용될 수 있다.
도 13은 광섬유 방법론들을 이용하여 원하는 서브 밴드를 단일 검출기로 제어 가능하게 지연시키는 검출기 시스템의 다른 구성을 도시한다. 도 14는 광섬유 방법론들을 이용하여 모자이크 필터와 같은 필터 장비로 원하는 서브 밴드 검출기 어레이로 제어 가능하게 지연시키는 검출기 시스템의 구성을 도시한다. 도 15는 광학 지연이 없는 검출기 시스템 및 모자이크 필터들과 같은 필터 장비를 갖는 검출기 어레이 구성을 도시한다.
본 명세서에서 실질적으로 임의의 복수 및/또는 단수 용어의 사용과 관련하여, 당업자는 복수 및 단수 및/또는 단수에서 복수로 번역할 수 있으며, 문맥 및/또는 적용에 적절하다. 다양한 단수/복수의 순열은 명료성을 위해 본원에서 명백하게 설명될 수 있다.
본 명세서에서 개시하는 내용은 그 사상 또는 본질적인 특성을 벗어나지 않고 다른 특정 형태로 구체화 될 수 있다. 본원에 기술된 실시예들은 모든 면에서 단지 예시적인 것으로서 제한적이지는 않다. 그러므로, 본 발명의 범위는 전술한 설명보다는 첨부된 청구범위에 의해 지시된다. 청구범위와 균등한 의미 및 범위 내에 있는 모든 변경은 그 범위 내에 포함되어야 한다.

Claims (19)

  1. 샘플을 분석하는 방법으로써,
    다수의 레플리케이트들(replicates)을 생성하기 위하여 상기 샘플에 복수의 샘플 인터로게이션 사이클들(sample interrogation cycles)을 수행하는 것;
    복수의 미리 결정된 분광 관계들(spectroscopic relationships)에 대한 상기 다수의 레플리케이트들의 비교를 수행하는 것; 및
    상기 복수의 미리 결정된 분광 관계들에 대해 상기 다수의 레플리케이트들의 비교에 기초하여 상기 샘플의 표적 분석물 농도를 결정하는 것;을 포함하고,
    상기 복수의 샘플 인터로게이션 사이클들 각각은
    상이한 형광 여기 파장들((fluorescence excitation wavelengths)에서 2 또는 그 이상의 형광 여기 신호들(fluorescence excitation signals)로 상기 샘플을 조사하는 것;
    상기 샘플의 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들(fluorescence emission spectral profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 방출 스펙트럼 프로파일을 검출하는 것; 및
    상기 샘플의 2 또는 그 이상의 형광 수명 프로파일들(fluorescence lifetime profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 수명 프로파일을 검출하는 것;에 의해 수행되고,
    상기 다수의 레플리케이트들(replicates)의 레플리케이트 각각은 상기 복수의 샘플 인터로게이션 사이클들 중 대응되는 하나에 대하여 생성된 상기 2 또는 그 이상의 형광 수명 프로파일들 및 상기 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들을 포함하는
    샘플 분석 방법.
  2. 제1항에 있어서,
    상기 복수의 샘플 인터로게이션 사이클들 각각에서 상기 조사하는 것은 시간적 중첩(temporal overlap) 없이 상기 2 또는 그 이상의 형광 여기 신호들로 상기 샘플을 순차적으로 조사하는 것을 포함하는
    샘플 분석 방법.
  3. 제1항에 있어서,
    상기 샘플의 상기 표적 분석물 농도를 결정하는 것은 상기 샘플 내의 하나 또는 그 이상의 표적 분석물들의 바이오버든 농도(bioburden concentration)를 결정하는 것을 포함하는
    샘플 분석 방법.
  4. 제3항에 있어서,
    상기 하나 또는 그 이상의 표적 분석물들은 생물학적 제재, 활성 인자, 또는 불활성 입자 중 적어도 하나를 포함하는
    샘플 분석 방법.
  5. 제3항에 있어서,
    상기 샘플 내의 상기 하나 또는 그 이상의 표적 분석물들 중 특정한 하나의 양을 결정하는 것을 더 포함하는
    샘플 분석 방법.
  6. 제1항에 있어서,
    상기 샘플의 상기 형광 방출 스펙트럼 프로파일을 검출하는 것은 상기 형광 방출 스펙트럼 프로파일의 다중 스펙트럼 서브 밴드들(sub-bands)을 개별적으로(separately) 검출하는 것을 포함하는
    샘플 분석 방법.
  7. 제6항에 있어서,
    상기 샘플의 상기 형광 수명 프로파일을 검출하는 것은 상기 다중 스펙트럼 서브 밴드의 각각 내에서 상기 샘플의 형광 방출 시간 응답 및 세기(fluorescence emission temporal response and intensity)를 검출하는 것을 포함하는
    샘플 분석 방법.
  8. 샘플을 분석하는 방법으로써,
    레플리케이트(replicate)를 생성하기 위하여 상기 샘플에 샘플 인터로게이션 사이클(sample interrogation cycle)을 수행하는 것;
    복수의 미리 결정된 분광 관계들(spectroscopic relationships)에 대해 상기 레플리케이트의 비교를 수행하는 것; 및
    상기 복수의 미리 결정된 분광 관계들에 대한 상기 레플리케이트의 비교에 기초하여 상기 샘플의 표적 분석물 농도를 결정하는 것;을 포함하고,
    상기 샘플 인터로게이션 사이클은
    상이한 형광 여기 파장들(fluorescence excitation wavelengths)에서 2 또는 그 이상의 형광 여기 신호들(fluorescence excitation signals)로 상기 샘플을 조사하는 것;
    상기 샘플의 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들(fluorescence emission spectral profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 방출 스펙트럼 프로파일을 검출하는 것; 및
    상기 샘플의 2 또는 그 이상의 형광 수명 프로파일들(fluorescence lifetime profiles)을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 수명 프로파일을 검출하는 것;에 의해 수행되고,
    상기 레플리케이트(replicate)는 상기 샘플 인터로게이션 사이클에 대하여 생성된 상기 2 또는 그 이상의 형광 수명 프로파일들 및 상기 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들을 포함하는
    샘플 분석 방법.
  9. 제1항에 있어서,
    상기 조사하는 것은 시간적 중첩(temporal overlap) 없이 상기 2 또는 그 이상의 형광 여기 신호들로 상기 샘플을 순차적으로 조사하는 것을 포함하는
    샘플 분석 방법.
  10. 제1항에 있어서,
    상기 샘플의 상기 표적 분석물 농도를 결정하는 것은 상기 샘플 내의 하나 또는 그 이상의 표적 분석물들의 바이오버든 농도(bioburden concentration)를 결정하는 것을 포함하는
    샘플 분석 방법.
  11. 제10항에 있어서,
    상기 하나 또는 그 이상의 표적 분석물들은 생물학적 제재, 활성 인자, 또는 불활성 입자 중 적어도 하나를 포함하는
    샘플 분석 방법.
  12. 제10항에 있어서,
    상기 샘플 내의 상기 하나 또는 그 이상의 표적 분석물들 중 특정한 하나의 양을 결정하는 것을 더 포함하는
    샘플 분석 방법.
  13. 제1항에 있어서,
    상기 샘플의 상기 형광 방출 스펙트럼 프로파일을 검출하는 것은 상기 형광 방출 스펙트럼 프로파일의 다중 스펙트럼 서브 밴드들(sub-bands)을 개별적으로(separately) 검출하는 것을 포함하는
    샘플 분석 방법.
  14. 제13항에 있어서,
    상기 샘플의 상기 형광 수명 프로파일을 검출하는 것은 상기 다중 스펙트럼 서브 밴드들의 각각 내에서 상기 샘플의 형광 방출 시간 응답 및 세기(fluorescence emission temporal response and intensity)를 검출하는 것을 포함하는
    샘플 분석 방법.
  15. 샘플 분석을 위한 프로세스 모니터로써,
    상기 샘플이 존재하는 샘플 영역;
    상기 샘플 영역에 광학적으로 연결된 2 또는 그 이상의 형광 여기원들(fluorescence excitation sources);
    상기 2 또는 그 이상의 형광 여기원들에 의해 방출된 2 또는 그 이상의 형광 여기 신호들 각각의 광학 경로를 빗겨가게 상기 샘플 영역에 광학적으로 연결된 하나 또는 그 이상의 검출기들(detectors); 및
    상기 2 또는 그 이상의 형광 여기원들 및 상기 하나 또는 그 이상의 검출기들 각각에 통신 가능하게 연결되고, 상기 2 또는 그 이상의 형광 여기원들 및 상기 하나 또는 그 이상의 검출기들을 포함하는 상기 프로세스 모니터를 제어하여,
    다수의 레플리케이트들을 생성하기 위하여 샘플에 복수의 샘플 인터로게이션 사이클들을 수행하고;
    복수의 미리 결정된 분광 관계들에 대해 상기 다수의 레플리케이트들의 비교를 수행하고; 그리고
    상기 복수의 미리 결정된 분광 관계들에 대한 상기 다수의 레플리케이트의 비교에 기초하여 상기 샘플의 표적 분석물 농도를 결정하는 컨트롤러(controller);를 포함하고,
    상기 복수의 샘플 인터로게이션 사이클들 각각은
    상기 2 또는 그 이상의 형광 여기원들을 이용하여, 상이한 형광 여기 파장들에서 2 또는 그 이상의 형광 여기 신호들로 상기 샘플을 조사하는 것;
    상기 하나 또는 그 이상의 검출기들을 이용하여, 상기 샘플의 2 또는 그 이상의 형광 방출 스펙트럼 프로파일들을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 방출 스펙트럼 프로파일을 검출하는 것; 및
    상기 하나 또는 그 이상의 검출기들을 이용하여, 상기 샘플의 2 또는 그 이상의 형광 수명 프로파일들을 생성하기 위하여, 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대한 상기 샘플의 형광 수명 프로파일을 검출하는 것;에 의해 수행되고;
    상기 다수의 레플리케이트들의 레플리케이트 각각은 상기 복수의 샘플 인터로게이션 사이클들 중 대응되는 하나에 대하여 생성된 상기 2 또는 그 이상의 형광 수명 프로파일 및 상기 2 또는 그 이상의 방출 스펙트럼 프로파일들을 포함하는
    샘플 분석을 위한 프로세스 모니터.
  16. 제15항에 있어서,
    상기 샘플 영역과 상기 하나 또는 그 이상의 검출기들 사이에 배치된 여기 필터를 더 포함하고,
    상기 여기 필터는 상기 2 또는 그 이상의 형광 여기 신호들 중 적어도 하나의 광 파장을 거절하도록 구성된 것을 더 포함하는 프로세스 모니터.
  17. 제15항에 있어서,
    상기 하나 또는 그 이상의 검출기들은 적어도 2개의 서브 밴드 검출기들을 포함하고,
    상기 프로세스 모니터는:
    상기 샘플 영역과 상기 적어도 2개의 서브 밴드 검출기들 중 제1 서브 밴드 검출기 사이에 광학적으로 위치된 제1 밴드 통과 필터 - 이때, 상기 제1 밴드 통과 필터는 제1 검출 채널을 상기 적어도 2개의 서브 밴드 검출기들 중 제1 서브 밴드 검출기로 지향시키고, 다른 파장을 다른 곳으로 지향시키도록 구성됨 - ; 및
    상기 샘플 영역과 상기 적어도 2개의 서브 밴드 검출기들 중 제2 서브 밴드 검출기 사이에 광학적으로 위치된 제2 밴드 통과 필터 - 이때, 상기 제2 밴드 통과 필터는 상기 제1 검출 채널과 중첩되지 않는 제2 검출 채널을 상기 적어도 2개의 서브 밴드 검출기들 중 제2 서브 밴드 검출기로 지향시키고, 다른 파장을 다른 곳으로 지향시키도록 구성됨 - ;를 더 포함하는
    프로세스 모니터.
  18. 제15항에 있어서,
    상기 하나 또는 그 이상의 검출기들은 단일 검출기를 포함하고,
    상기 프로세스 모니터는:
    상기 샘플 영역과 상기 단일 검출기 사이의, 제1 지연을 갖는 제1 광학 경로; 및
    상기 샘플 영역과 상기 단일 검출기 사이의, 제1 지연보다 긴 제2 지연을 갖는 제2 광학 경로를 더 포함하며;
    상기 단일 검출기는, 각각의 샘플 인터로게이션 사이클에 대해,
    상기 제1 광학 경로로부터 수신될 때, 상기 2 또는 그 이상의 형광 여기 신호 중 제1 형광 여기 신호에 대하여 형광 방출 스펙트럼 프로파일 및 형광 수명 프로파일을 검출하는 것; 및
    상기 제2 광학 경로로부터 수신될 때, 상기 2 또는 그 이상의 형광 여기 신호 중 제2 형광 여기 신호에 대하여 형광 방출 스펙트럼 프로파일 및 형광 수명 프로파일을 후속적으로 검출하는 것
    에 의해 상기 2 또는 그 이상의 형광 여기 신호들 각각에 대하여 상기 형광 방출 스펙트럼 프로파일 및 상기 형광 수명 프로파일 모두를 검출하는
    프로세스 모니터.
  19. 제 18항에 있어서,
    상기 제1 광학 경로와 상기 단일 검출기 사이에 광학적으로 위치된 제1 밴드 통과 필터 - 이때, 상기 제1 밴드 통과 필터는 상기 2 또는 그 이상의 형광 여기 신호들 중 제1 형광 여기 신호에 대한 상기 형광 방출 스펙트럼 프로파일을 포함하는 제1 검출 채널을 상기 단일 검출기로 통과시키고, 다른 파장을 거절하도록 구성됨 - ; 및
    상기 제2 광학 경로와 상기 단일 검출기 사이에 광학적으로 위치된 제2 밴드 통과 필터 - 이때, 상기 제2 밴드 통과 필터는 상기 2 또는 그 이상의 형광 여기 신호 중 제2 형광 여기 신호에 대한 상기 형광 방출 스펙트럼 프로파일을 포함하는 제2 검출 채널을 상기 단일 검출기로 통과시키고, 다른 파장을 거절하도록 구성됨 - ;를 더 포함하는
    프로세스 모니터.
KR1020187006520A 2015-08-07 2016-08-08 온라인 프로세스 모니터링 KR20180036779A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562202648P 2015-08-07 2015-08-07
US62/202,648 2015-08-07
US15/230,243 2016-08-05
US15/230,243 US20170038299A1 (en) 2015-08-07 2016-08-05 Online process monitoring
PCT/US2016/046059 WO2017027476A1 (en) 2015-08-07 2016-08-08 Online process monitoring

Publications (1)

Publication Number Publication Date
KR20180036779A true KR20180036779A (ko) 2018-04-09

Family

ID=57983604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187006520A KR20180036779A (ko) 2015-08-07 2016-08-08 온라인 프로세스 모니터링

Country Status (8)

Country Link
US (1) US20170038299A1 (ko)
EP (1) EP3332245A4 (ko)
JP (1) JP2018529980A (ko)
KR (1) KR20180036779A (ko)
CN (1) CN108139327A (ko)
CA (1) CA2994854A1 (ko)
WO (1) WO2017027476A1 (ko)
ZA (1) ZA201801390B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102381322B1 (ko) * 2021-09-06 2022-04-01 주식회사 유앤유 용존 유기물질 모니터링 방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11137338B2 (en) * 2017-04-24 2021-10-05 Sony Corporation Information processing apparatus, particle sorting system, program, and particle sorting method
US10705001B2 (en) * 2018-04-23 2020-07-07 Artium Technologies, Inc. Particle field imaging and characterization using VCSEL lasers for convergent multi-beam illumination
EP3588057A1 (en) 2018-06-29 2020-01-01 Koninklijke Philips N.V. Method of reducing false-positive particle counts of an interference particle sensor module
US11137331B2 (en) * 2018-08-21 2021-10-05 Viavi Solutions Inc. Multispectral sensor based alert condition detector
US11835456B2 (en) * 2018-09-18 2023-12-05 The University Of Tokyo Substance identification device, substance identification method and substance identification program
CN109205952A (zh) * 2018-10-26 2019-01-15 江门市新会区猫淘鹰贸易有限公司 一种水处理净化系统
CN109205852A (zh) * 2018-10-26 2019-01-15 江门市新会区猫淘鹰贸易有限公司 一种智能水处理调控系统
JP7528087B2 (ja) * 2018-12-28 2024-08-05 ベクトン・ディキンソン・アンド・カンパニー サンプルの蛍光物質をスペクトル的に分解する方法及びシステム
EP3702759A1 (en) * 2019-02-26 2020-09-02 Nokia Technologies Oy Method and apparatus for fluorescence lifetime measurement
EP3715830B1 (en) * 2019-03-26 2024-01-03 Eaton Intelligent Power Limited System for detection of particles in fluids
EP3795982B1 (en) * 2019-09-18 2022-10-26 Centre National de la Recherche Scientifique Method and apparatus for detecting a photochemically active chemical species in a sample
WO2022030201A1 (ja) * 2020-08-03 2022-02-10 コニカミノルタ株式会社 測光装置
CN112432934B (zh) * 2020-11-05 2021-07-06 北京中科生仪科技有限公司 发射光检测方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004913A (en) * 1982-08-06 1991-04-02 Marcos Kleinerman Remote measurement of physical variables with fiber optic systems - methods, materials and devices
US6982431B2 (en) * 1998-08-31 2006-01-03 Molecular Devices Corporation Sample analysis systems
SE0003796D0 (sv) * 2000-10-20 2000-10-20 Astrazeneca Ab Apparatus and method for monitoring
ATE364174T1 (de) * 2001-01-26 2007-06-15 Biocal Technology Inc Optische detektion in einem mehrkanaligen bioseparationssystem
US7139598B2 (en) * 2002-04-04 2006-11-21 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence
US7015484B2 (en) * 2001-04-16 2006-03-21 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
US20020158211A1 (en) * 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
DE10133844B4 (de) * 2001-07-18 2006-08-17 Micronas Gmbh Verfahren und Vorrichtung zur Detektion von Analyten
US7285424B2 (en) * 2002-08-27 2007-10-23 Kimberly-Clark Worldwide, Inc. Membrane-based assay devices
CN100415157C (zh) * 2002-12-30 2008-09-03 皇家飞利浦电子股份有限公司 分析仪器及方法
JP2006527018A (ja) * 2003-06-06 2006-11-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 血液のpH特定のための装置および方法
CA2466387A1 (en) * 2004-04-02 2005-10-02 Microbiosystems, Limited Partnership Method for detecting the presence of dormant cryptobiotic microorganisms
WO2006014351A2 (en) * 2004-07-02 2006-02-09 Blueshift Biotechnologies, Inc. Exploring fluorophore microenvironments
US20120104278A1 (en) * 2004-11-03 2012-05-03 Downing Elizabeth A System And Method For The Excitation, Interrogation, And Identification Of Covert Taggants
US7391512B2 (en) * 2004-12-22 2008-06-24 Avago Technologies General Ip Pte. Ltd. Integrated optoelectronic system for measuring fluorescence or luminescence emission decay
CN1912587A (zh) * 2005-08-12 2007-02-14 深圳大学 时间分辨荧光光谱测量和成像方法及其装置
JP2007300840A (ja) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd 衛生管理方法
US8089625B2 (en) * 2006-11-28 2012-01-03 The Regents Of The University Of California Time-resolved and wavelength-resolved spectroscopy for characterizing biological materials
US20090112482A1 (en) * 2007-10-26 2009-04-30 Sandstrom Perry L Microarray detector and synthesizer
US20090227043A1 (en) * 2008-02-19 2009-09-10 Wei Huang Fluorescence Resonance Energy Transfer Assay Based on Modified Solid Surface
JP5320915B2 (ja) * 2008-09-08 2013-10-23 株式会社Ihi 微生物汚染検出用キット、微生物汚染検出方法、及び汚染源判別方法
JP2010279670A (ja) * 2009-06-08 2010-12-16 Yasuhiro Kachi J字形の箒の柄
US20110140001A1 (en) * 2009-12-15 2011-06-16 Los Alamos National Security, Llc High throughput fiber optical assembly for fluorescence spectrometry
EP2362207A1 (de) * 2010-01-28 2011-08-31 F. Hoffmann-La Roche AG Messsystem und Messverfahren insbesondere zur Blutzuckerbestimmung
FR2961597B1 (fr) * 2010-06-16 2017-02-24 Spectralys Innovation Procede de caracterisation d'un produit agroalimentaire et appareil pour la mise en oeuvre d'un tel procede.
EP2645975A1 (en) * 2010-11-30 2013-10-09 Avery Dennison Corporation Sensing patch applications
JP2012132741A (ja) * 2010-12-21 2012-07-12 Fujifilm Corp 時間分解蛍光測定装置、及び方法
FR2976936B1 (fr) * 2011-06-24 2013-08-02 Millipore Corp Systeme et procede de purification et de distribution d'eau, avec barriere de separation eliminant la contamination bacterienne
CN102279174B (zh) * 2011-07-15 2015-04-01 中国科学院苏州纳米技术与纳米仿生研究所 藻类识别测量传感器及方法
JP5931493B2 (ja) * 2012-02-17 2016-06-08 ダイセン・メンブレン・システムズ株式会社 医療用精製水の製造方法
US9897543B2 (en) * 2012-03-29 2018-02-20 University Of Calcutta Half-frequency spectral signatures
AU2013277946B2 (en) * 2012-06-22 2018-07-12 Macquarie University Multiplex suspension assay/array using lifetime coding
JP5923027B2 (ja) * 2012-11-01 2016-05-24 ダイセン・メンブレン・システムズ株式会社 医療用精製水の製造装置とその運転方法
US8743356B1 (en) * 2012-11-22 2014-06-03 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Man-portable device for detecting hazardous material
JP5923030B2 (ja) * 2012-12-06 2016-05-24 ダイセン・メンブレン・システムズ株式会社 医療用精製水の製造装置とその運転方法
JP5584321B1 (ja) * 2013-03-08 2014-09-03 ダイセン・メンブレン・システムズ株式会社 医療用精製水の製造装置の運転方法
CN104614353B (zh) * 2015-01-28 2017-05-10 中国科学院半导体研究所 基于双通道的多光谱荧光成像显微系统和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102381322B1 (ko) * 2021-09-06 2022-04-01 주식회사 유앤유 용존 유기물질 모니터링 방법

Also Published As

Publication number Publication date
EP3332245A1 (en) 2018-06-13
US20170038299A1 (en) 2017-02-09
JP2018529980A (ja) 2018-10-11
CN108139327A (zh) 2018-06-08
CA2994854A1 (en) 2017-02-16
ZA201801390B (en) 2018-12-19
WO2017027476A1 (en) 2017-02-16
EP3332245A4 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
KR20180036779A (ko) 온라인 프로세스 모니터링
US10429291B2 (en) Multi-spectral filter profiling and quality control for flow cytometry
US9029800B2 (en) Compact analyzer with spatial modulation and multiple intensity modulated excitation sources
WO2016124083A1 (zh) 一种超小型化多通道实时荧光光谱检测装置
US6791676B1 (en) Spectrophotometric and nephelometric detection unit
EP2609418B1 (en) Defect inspection and photoluminescence measurement system
CN101939633B (zh) 荧光检测装置和荧光检测方法
JP6501714B2 (ja) 光学調査装置
JP2011513740A (ja) 光子混合検出器を用いた時間分解分光分析方法およびシステム
CN202149881U (zh) 时间分辨的光诱导生物体超微弱光子检测系统
US10175171B2 (en) Compact multi-UV-LED probe system and methods of use thereof
US11674877B2 (en) Apparatus and method for cyclic flow cytometry using particularized cell identification
CN107995950B (zh) 用于流式细胞术的多光谱滤波器剖析及质量控制
CN113711013B (zh) 样品分析方法、分析装置及计算机程序
US11022489B2 (en) Portable multi-spectrometry system for chemical and biological sensing in atmospheric air
CN112666103A (zh) 基于光谱特征的水质监测系统
JP2004527767A (ja) 濃縮媒質に含まれる化学種の光学検出方法
CN113252637B (zh) 拉曼光谱检测中的荧光背景抑制系统及抑制方法
CN212321446U (zh) 一种双波长激光共焦拉曼探头及拉曼光谱仪
US8716026B2 (en) Methods and systems for determining composition and completion of an experiment
TWI454684B (zh) 生化檢測系統及其光源模組
CN117916579A (zh) 用于同时多成分分析的拉曼光度计;测量系统和计算机程序产品
JPH08285772A (ja) 光分析装置
CN117607010A (zh) 一种基于流式细胞仪的全光谱检测系统及检测方法
CN116930149A (zh) 一种空间偏移拉曼光谱检测装置及获得拉曼光谱的方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application