KR20180033927A - 마이크로 소자 어레이 및 이의 형성방법 - Google Patents

마이크로 소자 어레이 및 이의 형성방법 Download PDF

Info

Publication number
KR20180033927A
KR20180033927A KR1020160123754A KR20160123754A KR20180033927A KR 20180033927 A KR20180033927 A KR 20180033927A KR 1020160123754 A KR1020160123754 A KR 1020160123754A KR 20160123754 A KR20160123754 A KR 20160123754A KR 20180033927 A KR20180033927 A KR 20180033927A
Authority
KR
South Korea
Prior art keywords
layer
micro
substrate
semiconductor layer
magnetization
Prior art date
Application number
KR1020160123754A
Other languages
English (en)
Other versions
KR101899651B1 (ko
Inventor
박성주
임용철
이광재
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020160123754A priority Critical patent/KR101899651B1/ko
Publication of KR20180033927A publication Critical patent/KR20180033927A/ko
Application granted granted Critical
Publication of KR101899651B1 publication Critical patent/KR101899651B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

마이크로 소자 어레이의 구조 및 마이크로 소자 어레이의 형성방법이 개시된다. 마이크로 소자는 발광 다이오드를 마이크로 사이즈로 형성한 것으로 디스플레이에 사용될 수 있다. 전사 기판 상에 실장된 마이크로 소자 상에는 자화층이 형성되고, 형성된 자화층에 자계를 인가하여 마이크로 소자를 선택적으로 이송할 수 있다.

Description

마이크로 소자 어레이 및 이의 형성방법{Micro-LED Array and Method of forming the same}
본 발명은 마이크로 소자 어레이의 구조 및 이의 형성방법에 관한 것으로, 더욱 상세하게는 마이크로 소자의 손상을 최대한 회피하여 정밀하게 배열된 마이크로 소자 어레이 및 이의 형성방법에 관한 것이다.
최근 마이크로미터 사이즈를 가지는 발광 다이오드를 성장용 기판으로부터 분리하고, 이를 수용기판으로 전사하는 기술에 대한 개발이 진행중에 있다. 특히, 수용기판에 전사된 마이크로 소자는 집적된 상태로 패키징되거나, 다른 기판으로 이송되는 용도로 사용된다. 마이크로 소자의 전사는 단일 소자로 이루어지기 보다는 복수개의 소자가 전사되고, 이송됨이 요구된다.
이는 마이크로 소자를 이용한 디스플레이 등의 제작시의 효율과 양산성을 확보하기 위한 것으로 단일 소자를 개별적으로 전사하거나 이송하는 것은 전체 공정시간을 증가시키고, 불량률을 증가시키는 일 요인이 된다. 또한, 전사 및 이송 시에 각각 개별적으로 분리된 마이크로 소자들은 손상을 입는 경우가 발생하며, 전사 및 이송의 정확도가 저하되는 문제로 인해 원하는 디스플레이를 구현하지 못하는 문제가 발생한다.
마이크로 소자를 전사하거나 이송하는 기술로는 PDMS(poly(dimethylsiloxane))와 같은 탄성 중합체를 스탬프로 이용한다. 탄성 중합체로 구성된 스탬프는 성장용 기판 상에 형성된 마이크로 소자와 반데르 발스 힘으로 치밀하게 결합되며, 마이크로 소자를 픽업 및 이송하는데 사용된다. 탄성 중합체를 스탬프로 이용하는 경우, 반복적인 전사와 이송 과정에서 스탬프의 접착력이 감소하는 문제가 발생된다. 또한, 스탬프의 접착력의 복원을 위해 산소 플라즈마 또는 오존 처리가 지속적으로 수행되어야 하며, 이는 생산성을 저하시키는 일 요인이 된다.
이외에 마이크로 소자를 픽업하고 이송하기 위한 기술로는 정전기를 이용하는 방법이 사용될 수 있다. 미국공개특허 제2013-0128585호는 정전기를 이용한 이송 헤드를 통한 마이크로 소자 어레이의 형성방법을 개시한다. 상기 발명에서는 이송 헤드는 정전기 발생을 위한 전원이 연결되고, 전사용 기판 상에 형성된 마이크로 소자들에 정전기를 이용하여 선택적으로 픽업하고 이송한다. 또한, 정전기의 인가를 위해 이송 헤드 또는 마이크로 소자에는 박막 형태의 유전체가 도포되어야 하는 바, 유전체는 반복적인 픽업, 이송, 접합 과정에서 물리적 손상 또는 화학적 손상이 발생된다. 특히, 높은 정전기가 인가되면, 정전 파괴 현상이 발생되어 이송 헤드를 통한 정전기의 인가가 불가능해지는 문제점이 발생한다.
따라서, 보다 효과적으로 마이크로 소자 어레이를 형성하고, 이를 이송할 수 있는 기술은 여전히 요청된다 할 것이다.
본 발명이 이루고자 하는 제1 기술적 과제는 효과적인 이송을 통해 형성된 마이크로 소자 어레이를 제공하는데 있다.
또한, 본 발명이 이루고자 하는 제2 기술적 과제는 상기 제1 기술적 과제를 달성하기 위한 마이크로 소자 어레이의 형성방법을 제공하는데 있다.
상술한 제1 기술적 과제를 달성하기 위한 본 발명은, 디스플레이용 수용 기판; 상기 수용 기판 상에 형성된 복수개의 마이크로 소자들을 포함하고, 상기 마이크로 소자들 각각은 상기 수용 기판 상에 형성된 제2 전극층; 상기 제2 전극층 상에 형성된 제2 반도체층; 상기 제2 반도체층 상에 형성되고, 광을 형성하기 위한 활성층; 상기 활성층 상에 형성되고, 상기 제2 반도체층과 상보적인 도전형을 가지는 제1 반도체층; 및 상기 제1 반도체층 상에 형성되고, 특정 방향으로 자화된 강자성체를 가지는 자화층을 포함하는 마이크로 소자 어레이를 제공한다.
상술한 제2 기술적 과제를 달성하기 위한 본 발명은, 성장용 기판 상에 제1 반도체층, 활성층 및 제2 반도체층을 형성하는 단계; 상기 제1 반도체층, 상기 활성층 및 상기 제2 반도체층의 일부를 제거하여 상기 성장용 기판의 일부를 노출시키고, 개별화된 마이크로 소자를 형성하는 단계; 상기 개별화된 마이크로 소자를 전사 기판 상에 전사하는 단계; 상기 전사 기판 상의 마이크로 소자 상에 자화층을 형성하는 단계; 및 상기 자화층에 특정 방향의 자계를 가진 이송 헤드를 도입하여 상기 마이크로 소자를 디스플레이용 수용 기판 상에 이동시키는 단계를 포함하는 마이크로 소자 어레이의 형성방법을 제공한다.
상술한 본 발명에 따르면, 개별화되고 마이크로 사이즈를 가지는 발광 다이오드인 마이크로 소자의 이송은 자기력을 통해 이루어진다. 마이크로 소자는 전사 기판 상으로 개별화된 상태로 전사되고, 전사 기판 상에 배치된 마이크로 소자는 수용 기판으로 자기력을 통해 이송된다.
기존의 방법인 진공 흡착을 통해 마이크로 소자를 이송하는 경우, 진공도의 제어가 곤란하며, 정전기를 이용하여 마이크로 소자를 이송하는 경우, 과도한 정전기로 인해 마이크로 소자의 특성이 저하될 수 있다, 그러나, 본 발명에서는 소자의 특성에 영향을 미치지 않는 자기력을 이용하여 마이크로 소자를 이송한다. 따라서, 보다 안정적으로 마이크로 소자를 이용한 디스플레이의 구현이 가능해진다.
도 1은 본 발명의 제1 실시예에 따른 마이크로 소자 어레이를 도시한 단면도이다.
도 2 내지 도 8은 본 발명의 바람직한 실시예에 따라 상기 도 1의 마이크로 소자 어레이의 형성방법을 설명하기 위한 단면도들이다.
도 8 내지 도 12는 본 발명의 제2 실시예에 따라 상기 도 1의 마이크로 소자 어레이의 형성방법을 설명하기 위한 단면도들이다.
도 13은 본 발명의 제1 실시예 및 제2 실시예에 사용되는 이송 헤드의 일 예를 도시한 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
제1 실시예
도 1은 본 발명의 제1 실시예에 따른 마이크로 소자 어레이를 도시한 단면도이다.
도 1을 참조하면, 수용 기판(400) 상에 각각의 마이크로 소자들(200)이 상호 분리된 상태로 구비된다. 마이크로 소자들(200)은 수용 기판(400)으로부터 제2 전극층(150), 제2 반도체층(140), 활성층(130), 제1 반도체층(120) 및 자화층(170)을 가진다.
상기 수용 기판(400)은 디스플레이 또는 조명을 위해 사용될 수 있는 재질이라면 어느 것이나 가능할 것이다. 특히, 상기 수용 기판(400)은 별도의 적층구조에 의해 트랜지스터를 구비하거나, 집적 회로 또는 금속 배선을 구비할 수 있다. 또한, 상기 수용 기판(400)은 복수개의 개별적인 기판들이 조합되거나 접합된 기판일 수 있다.
상기 수용 기판(400)을 구성할 수 있는 재질로는 질화갈륨, 유리, 사파이어, 쿼츠, 실리콘카바이드와 같은 세라믹 재질, 또는 폴리에틸렌 테레프탈레이트, 폴리에틸렌 나프탈레이트, 폴리카보네이트, 폴리에테르설폰, 폴리사이클릭올레핀 또는 폴리이미드 등의 유기 재료 또는 유연한 재질의 기판일 수 있다. 또한, 수용 기판(400)은 사용예에 따라 전기적 열적 전도성을 가지거나 전기적 열적 절연성을 가질 수 있다.
상기 수용 기판(400) 상에는 제2 전극층(150)이 형성된다. 제2 전극층(150)은 투명 재질의 전도성 재료인 ITO로 구성될 수 있다. 제2 전극층(150)을 투명 재질의 전도성 재료로 구성할 경우, 상기 제2 전극층(150)은 전류 확산층으로 기능한다. 또한, 상기 제2 전극층(150)은 전류 확산층과 금속 전극층의 적층 구조를 가질 수 있다. 즉, 수용 기판(400) 상에 금속 전극층과 전류 확산층이 순차적으로 형성된 구조일 수 있다. 예컨대, 상기 금속 전극층은 패턴화된 금속 패턴으로 제공될 수 있다.
제2 전극층(150) 상에는 제2 반도체층(140)이 형성된다. 상기 제2 반도체층(140)은 그 상부에 형성되는 활성층(130)의 조성 및 재질에 따라 그 조성 및 재질이 달라진다. 예컨대, 활성층(130)이 청색 또는 녹색의 광을 형성하는 경우, 상기 제2 반도체층(140)은 GaN 또는 InGaN 재질을 가질 수 있다. 또한, 활성층(130)이 적색의 광을 형성하는 경우, 상기 제2 반도체층(140)은 InGaP 재질을 가질 수 있다. 또한, 상기 제2 반도체층은 p형의 도전형을 가짐이 바람직하다.
제2 반도체층(140) 상에는 활성층(130)이 형성된다. 상기 활성층(130)은 다중양자우물 구조를 가짐이 바람직하다. 예컨대, 상기 활성층(130)은 InGaN의 우물층과 GaN의 장벽층을 가지거나, In의 분율에서 차이를 가지는 InGaN들로 우물층과 장벽층이 교대로 형성될 수 있다. 또한, 상기 활성층은 AlInGaP을 우물층으로 하고, InGaP을 장벽층으로 하는 다중양자우물 구조를 가질 수 있다.
상기 활성층(130) 상에는 제1 반도체층(120)이 형성된다. 상기 제1 반도체층(120)은 제2 반도체층(140)과 동일한 기반 물질로 구성되며, 다만 도판트가 상이하며, 상보적인 도전형을 가진다. 따라서, 제1 반도체층(120)이 n형의 도전형을 가지면, 제2 반도체층(140)은 p형의 도전형을 가진다.
제1 반도체층(120) 상에는 자화층(170)이 형성된다. 상기 자화층(170)은 특정의 방향으로 자화된 자성체로 구성됨이 바람직하다. 상기 자성체는 강자성 물질로 구성될 수 있으며, Fe, Ni, Co, Cr, Cu, Si, Mn, W, C, Al, Pt, Sm, Nd, B, P, Bi, Sb, Y, Gd, Dy, Eu 또는 이들의 합금을 가질 수 있다. 또한, 상기 자화층(170)은 특정의 형태로 패턴화된 상태로 제공될 수 있으며, 패턴화된 자화층(170) 사이의 이격 공간에는 제1 전극층이 형성될 수 있다. 이외에 상기 자화층(170)이 특정의 형태로 패턴화되지 않은 경우, 자화층(170) 상에 제1 전극층이 형성될 수도 있다.
도 2 내지 도 7은 본 발명의 바람직한 실시예에 따라 상기 도 1의 마이크로 소자 어레이의 형성방법을 설명하기 위한 단면도들이다.
도 2를 참조하면, 성장용 기판(100) 상에 버퍼층(110), 제1 반도체층(120), 활성층(130), 제2 반도체층(140), 제2 전극층(150) 및 접합층(160)이 순차적으로 형성된다.
성장용 기판(100)은 사파이어, 실리콘, 실리콘 카바이드, 질화갈륨, 갈륨비소, 갈륨인 또는 산화아연의 재질을 가질 수 있다. 상기 성장용 기판(100)은 그 상부에 성장되고 형성되는 막질의 종류에 따라 성장에 적합한 재질로 선택될 수 있다.
예컨대, 버퍼층(110) 또는 제1 반도체층(120)이 GaN 기반의 결정구조를 가지는 경우, 상기 성장용 기판(100)은 사파이어로 선택될 수 있다. 또한, 상기 버퍼층(110) 또는 제1 반도체층(120)이 InGaP 기반의 결정구조를 가지는 경우, 상기 성장용 기판(100)은 갈륨비소로 선택될 수 있다.
성장용 기판(100) 상에는 버퍼층(110)이 형성된다. 상기 버퍼층(110)은 이후에 형성되는 막질과 성장용 기판(100) 사이의 격자상수의 불일치에 따른 결정결함을 해소하기 위해 구비된다. 상기 버퍼층(110)은 실리콘, 실리콘 카바이드, 산화아연, 질화갈륨, 갈륨비소 또는 질화알루미늄을 포함할 수 있다. 상기 버퍼층(110)의 형성은 금속유기화학 기상증착(metal-organic chemical vapor deposition), 분자선 성장(molecular beam epitaxy), 수소화물 기상성장(hydride vapor phase epitaxy) 또는 스퍼터링 등의 방법을 통해 이루어질 수 있다.
또한, 상기 버퍼층(110)은 실시의 형태에 따라 형성공정이 생략될 수 있다.
상기 버퍼층(110) 상에는 제1 반도체층(120), 활성층(130) 및 제2 반도체층(140)이 순차적으로 형성된다.
제1 반도체층(120)에서 형성된 캐리어는 활성층으로 이동하고, 제2 반도체층(140)에서 형성된 캐리어와 재결합한다. 이를 통해 특정 컬러의 발광 동작이 수행된다. 상기 제1 반도체층(120)은 GaN 또는 InGaP 재질을 가질 수 있다. 제1 반도체층(120)를 형성하는 공정은 상기 버퍼층을 형성하는 공정과 동일함이 바람직하다.
제1 반도체층(120) 상에는 활성층(130)이 형성된다. 활성층(130)은 다중양자우물 구조를 가짐이 바람직하다. 따라서, 우물층과 장벽층이 교대로 형성되며, 우물층의 밴드갭은 제1 반도체층(120) 또는 제2 반도체층(140) 보다 낮도록 설정된다. 특히, 활성층(130)이 청색 또는 녹색의 광을 형성하는 경우, 우물층은 InGaN으로 구성될 수 있으며, In의 분율의 조절을 통해 형성되는 광의 파장은 조절된다. 또한, 활성층(130)이 적색의 광을 형성하는 경우, 우물층은 AlInGaP으로 구성될 수 있으며, Al의 분율의 조절을 통해 형성되는 광의 파장은 조절될 수 있다.
활성층(130) 상에는 제2 반도체층(140)이 형성된다. 상기 제2 반도체층(140)은 제1 반도체층(120)과 동일한 재질과 결정구조를 가지나, 제1 반도체층(120)과 상보적인 도전형을 가진다.
제2 반도체층(140) 상에는 제2 전극층(150) 및 접합층(160)이 순차적으로 형성된다. 상기 제2 전극층(150)은 투명한 도전체인 ITO를 가질 수 있다. 투명 도전체는 전류 확산층으로 사용될 수 있다.
또한, 상기 제2 전극층은 Ni 또는 Ag 기반의 도전체가 사용될 수 있으며, 제2 반도체층에 전계가 인가되고, 외부와 오믹 컨택을 수행할 수 있는 도체라면 그 적용 대상이 된다.
이외에 전류 확산층 상부에 별도의 금속 전극층이 제공될 수 있으며, 상기 금속 전극층은 패턴화된 형태로 제공될 수 있다. 또한, 상기 금속 전극층은 이후에 형성되는 금속 배선과의 전기적 접촉에서 오믹 접합을 달성하기 위해 구비될 수 있으며, 이를 위해서 상기 금속 전극층은 Ni, Pd, Rh, Ti, Cr, Al, Ag, Au, Ge, Si, In, Ga, Sb, W, Mo, Pt, Co, Sn 또는 Ta을 포함할 수 있다.
또한, 상기 접합층(160)은 금속 재질로 구성될 수 있으며, Ni, Pd, Rh, Ti, Cr, Al, Ag, Au, Ge, Si, In, Ga, Sb, W, Mo, Pt, Co, Sn 또는 Ta을 포함할 수 있다.
도 3을 참조하면, 상기 도 2의 구조물에 대한 식각 공정이 수행된다. 식각 공정을 통해 발광 다이오드는 각각의 마이크로 소자(200)로 개별화된다. 식각은 성장용 기판(100)의 표면 일부가 노출될 때까지 진행된다. 따라서, 성장용 기판(100) 상에는 개별화된 마이크로 소자(200)가 형성된다.
이외에 상기 도 2의 공정에서 제2 전극층(150) 및 접합층(160)의 형성은 생략될 수 있다. 즉, 상기 도 2에서 제2 반도체층(140)까지 형성되고, 식각 공정을 통한 마이크로 소자(200)의 분리 공정이 수행된다. 이후에 분리된 마이크로 소자(200)에 대한 증착 공정을 통해 제2 전극층(150)과 접합층(160)이 순차적으로 형성될 수 있다.
도 4를 참조하면, 전사 기판(250) 상에 개별화된 마이크로 소자(200)의 접합층(160)이 접합된다. 상기 전사 기판(250)은 접합층(160)과 접합을 달성할 수 있는 재질이라면 어느 것이나 가능할 것이다. 예컨대, 상기 전사 기판(160)은 금속 재질일 수 있으며, 산화물 또는 질화물의 재질을 가질 수 있다. 전사 기판(250)의 접합은 접합층(160)의 융착에 의해 달성된다. 또한, 전사 기판(250) 상에서는 별도의 접착층이 구비될 수 있다. 접착층의 도입으로 접합층과 전사 기판(250)의 접합은 더욱 용이해진다.
이어서, 성장용 기판(100)의 배면으로부터 레이저를 조사하여 리프트-오프 공정이 수행된다. 리프트-오프 공정은 성장용 기판(100)을 개별화된 마이크로 소자(200)로부터 분리하는 공정이다. 즉, 레이저를 버퍼층(110) 또는 제1 반도체층(120)에 집중시키면 GaN 재질의 버퍼층(110) 등에서 질소 가스가 발생되고, 가스압에 의해 성장용 기판(100)은 분리된다. 만일, 성장용 기판(100)이 사파이어 이외의 갈륨비소 재질을 가지는 경우, 성장용 기판(100)의 분리는 습식 식각에 의해 이루어질 수 있다. 이를 통해 성장용 기판(100)은 마이크로 소자(200)로부터 분리된다.
따라서, 전사 기판(250) 상에 마이크로 소자(200)는 전사되고, 마이크로 소자(200)의 버퍼층 또는 제1 반도체층(120)은 노출된다. 만일, 상기 도 2의 제조공정에서 버퍼층의 형성이 생략되면, 제1 반도체층(120)이 노출될 수 있다. 또한, 실시의 형태에 따라 전사 기판(250) 상의 마이크로 소자(200)의 버퍼층에 대한 제거공정이 수행될 수도 있다.
도 5를 참조하면, 마이크로 소자(200)의 제1 반도체층(120) 상에 자화층(170)이 형성된다. 자화층(170)의 형성은 스퍼터링 증착, 진공 증착, 딥코팅, 스프레이코팅, 분자기상증착 또는 도금법 등 다양한 방법을 통해서 형성될 수 있다. 또한, 자화층(170)은 Fe, Ni, Co, Cr, Cu, Si, Mn, O, W, C, Al, Pt, Sm, Nd, B, P, Bi, Sb, Y, Gd, Dy 또는 Eu를 포함할 수 있다. 자화층(170)의 형성 후에 자화공정이 수행된다. 자화공정은 외부에서 자계를 인가하여 자화층(170)의 자화방향을 일정하게 설정함에 의해 달성된다. 예컨대 자화층(170)이 Supermalloy(16Fe:79Ni:5Mo)를 가지는 경우, 외부에서 보자력(coercivity) 0.0025 Oe 이상의 자계를 인가하여 자화층(170)을 일정한 방향으로 자화시킨다. 이를 통해 특정한 방향으로 자화된 자화층(170)을 얻을 수 있다.
또한, 상기 자화층(170) 상에는 보호층(180)이 형성될 수 있다. 상기 보호층(180)은 마이크로 소자(200)의 이송 과정에서 이송 헤드와 자화층(170)을 보호하기 위해 구비된다. 상기 보호층(170)은 SiO2 또는 SiN이 사용될 수 있으며, 재질에 대한 제한은 실질적으로 없는 것으로 이해되어야 한다.
도 6을 참조하면, 자화층(170)이 형성된 마이크로 소자(200)에 이송 헤드(300)가 도입된다. 이송 헤드(300)는 전자석의 구조를 가진다. 즉, 전류의 방향에 따라 자계의 방향이 변경될 수 있는 특징을 가진다. 또한, 전류의 공급이 차단되면, 자계는 형성되지 않는다. 이를 통해 이송 헤드(300)는 자화층(170) 사이에 인력과 척력의 자기력을 형성할 수 있다. 만일, 도 6의 자화층들(170)이 전사 기판(250)의 하부로부터 상부로 향하는 자계를 형성하는 경우, 특정의 마이크로 소자(200)에 접촉하는 이송 헤드(300)가 하부로부터 상부로 향하는 자계를 형성하면, 특정의 마이크로 소자(200)와 이송 헤드 사이에는 인력이 작용한다.
또한, 이송 헤드(300)와 인력이 작용하는 마이크로 소자(200)에 대해 전사 기판(250)의 하부로부터 열이 가해진다. 인가되는 열로 인해 전사 기판(250)과 마이크로 소자(200)는 분리된다. 즉, 전사 기판(250)의 배면에서 인가되는 열로 인해 접합층(160)은 용융되며, 용융 상태에서 이송 헤드(300)로부터 인력이 작용하면 해당하는 마이크로 소자(200)는 전사 기판(250)으로부터 분리된다. 마이크로 소자(200)의 분리 공정에서 접합층(160)의 일부는 제2 전극층(150) 상에 잔류할 수 있다.
도 7을 참조하면, 이송 헤드를 통해 이동되는 마이크로 소자(200)는 수용 기판(400)에 실장된다. 수용 기판(400)은 디스플레이 또는 조명을 위해 사용될 수 있는 재질이라면 어느 것이나 가능할 것이다. 특히, 상기 수용 기판(400)은 별도의 적층구조에 의해 트랜지스터를 구비하거나, 집적 회로 또는 금속 배선을 구비할 수 있다. 또한, 상기 수용 기판(400)은 복수개의 개별적인 기판들이 조합되고 접합된 기판일 수 있다.
따라서, 수용 기판(400) 상에 실장되는 마이크로 소자(200)는 수용 기판(400)으로부터 제2 전극층(150), 제2 반도체층(140), 활성층(130), 제1 반도체층(120) 및 자화층(170)이 순차적으로 형성된 구조를 가진다. 이를 통해 수 마이크로 내지 수십 마이크로의 직경을 가지는 발광 다이오드를 수용 기판(400) 상에 다수개 형성할 수 있다. 또한, 수용 기판(400) 상에 실장되는 마이크로 소자들(200)은 인접한 마이크로 소자에 대해 다른 컬러의 광을 형성한다. 이를 통해 디스플레이용 화소를 구현할 수 있다.
제2 실시예
도 8 내지 도 12는 본 발명의 제2 실시예에 따라 상기 도 1의 마이크로 소자 어레이의 형성방법을 설명하기 위한 단면도들이다.
도 8을 참조하면, 성장용 기판(500) 상에 버퍼층(510), 제1 반도체층(520), 활성층(530), 제2 반도체층(540) 및 제2 전극층(550)이 순차적으로 형성된다.
각각의 막질의 재질은 제1 실시예의 도 2에서 설명된 바와 동일하다.
또한, 제2 반도체층(540) 상에는 제2 전극층(550)이 형성된다. 상기 제2 전극층(550)은 ITO가 사용되는 전류 확산층 및 오믹 접합을 수행하는 금속 전극층으로 구성될 수 있다. 오믹 접합을 수행하는 금속 전극층은 Ni, Pd, Rh, Ti, Cr, Al, Ag, Au, Ge, Si, In, Ga, Sb, W, Mo, Pt, Co, Sn 또는 Ta을 포함한다. 또한, 제2 전극층(550)은 패턴화된 형태로 제공될 수 있다.
도 9를 참조하면, 제2 전극층(550), 제2 반도체층(540), 활성층(530), 제1 반도체층(520) 및 버퍼층(510)에 대한 선택적 식각을 통해 개별화된 마이크로 소자(600)를 형성한다. 이는 식각을 통해 수행되며, 식각을 통해 수 마이크로 내지 수십 마이크로 사이즈를 가진 발광 다이오드가 개별적으로 생성된다. 또한, 개별화된 마이크로 소자들(600) 사이의 이격공간을 통해 성장용 기판(500)의 표면이 노출된다.
마이크로 소자(600)의 개별화는 다른 방법을 통해서도 달성될 수 있다. 예컨대, 상기 도 8에서 제2 반도체층(540)까지 형성한 다음, 연속으로 제2 전극층(550)의 형성이 배제된다. 또한, 상기 도 9의 단계에서 제2 반도체층(540) 이하의 막질에 대한 선택적 식각을 통해 마이크로 소자(600)의 개별화를 진행할 수 있다. 개별적으로 분리된 마이크로 소자들(600) 각각의 제2 반도체층(540) 상에 통상의 증착법을 통해 제2 전극층(550)을 형성할 수도 있다.
도 10을 참조하면, 전사 기판(650)이 준비된다. 전사 기판(650)은 상기 도 9에서 형성된 개별화된 마이크로 소자(600)의 사이즈에 적합한 홈을 가지며, 홈을 정의하는 돌출부(660)를 가진다. 통상적인 마이크로 소자의 높이는 1um 내지 3um이고, 마이크로 소자의 폭은 수 um 내지 수십 um이므로 돌출부(660)의 높이도 1um 내지 3um로 설정됨이 바람직하다. 다만, 돌출부(660)의 높이는 마이크로 소자(600)의 높이보다 낮은 것이 바람직하다. 이는 이후의 공정에서 마이크로 소자(600)의 이송에 용이하기 때문이다.
전사 기판(650)의 홈에 상기 도 9의 개별화된 마이크로 소자들(600)이 도입된다. 이어서, 성장용 기판(500)의 배면으로 레이저가 조사되고, 레이저에 의해 개별화된 마이크로 소자들(600)은 성장용 기판(500)으로부터 분리된다. 만일, 성장용 기판(500)이 갈륨비소를 포함하는 경우, 습식 식각을 통해 마이크로 소자들(600)을 분리할 수 있다.
상기 도 10에서 도시된 바와 같이 마이크로 소자들(600)은 전사 기판(650) 상에 형성된 돌출부(660) 사이의 홈에 유입된다. 또한, 홈에 유입된 마이크로 소자들(600)의 제1 반도체층(520)은 외부를 향해 노출된다. 만일, 레이저의 조사에 의해 상기 도 9의 버퍼층(510)이 마이크로 소자(600)에 잔류하는 경우, 별도의 제거 공정을 통해 버퍼층(510)은 제거될 수 있으며, 실시의 형태에 따라 버퍼층(510)은 제1 반도체층(520) 상에 잔류할 수 있다.
다만, 상기 도 10에서 마이크로 소자(600)와 전사 기판(650) 사이에는 별도의 접착층은 개입되지 않으며, 마이크로 소자(600)의 정렬과 고정은 전사 기판(650) 상에 형성된 홈에 의해 이루어진다.
도 11을 참조하면, 마이크로 소자(600)의 제1 반도체층(520) 상에 자화층(560)이 형성된다. 상기 자화층(560)은 노출된 전사 기판(650)의 돌출부(660) 등에 포토레지스트를 도포한 다음, 스퍼터링 등의 통상의 증착법을 수행하고, 형성된 포토레지스트 패턴을 제거하는 리프트-오프 법을 통해 형성될 수 있다. 이외에도 상기 자화층(560)은 진공 증착, 딥코팅, 스프레이코팅, 분자기상증착 또는 도금법 등 다양한 방법을 통해서 형성될 수 있다. 또한, 자화층(560)은 Fe, Ni, Co, Cr, Cu, Si, Mn, O, W, C, Al, Pt, Sm, Nd, B, P, Bi, Sb, Y, Gd, Dy 또는 Eu를 포함할 수 있다. 자화층(560)의 형성 후에 자화공정이 수행된다. 자화공정은 외부에서 자계를 인가하여 자화층(560)의 자화방향을 일정하게 설정함에 의해 달성된다. 예컨대 자화층(560)에 외부의 자계를 인가하여 자화층(560)을 강자성체로 형성하고, 일정한 방향으로 자화시킨다. 이를 통해 특정한 방향으로 자화된 자화층(560)을 얻을 수 있다.
또한, 상기 자화층(560) 상에는 보호층(570)이 형성될 수 있다. 상기 보호층(570)은 마이크로 소자의 이송 과정에서 이송 헤드와 자화층(570)을 보호하기 위해 구비된다. 상기 보호층(570)은 SiO2 또는 SiN이 사용될 수 있으며, 재질에 대한 제한은 실질적으로 없는 것으로 이해되어야 한다.
도 12를 참조하면, 자화층(560)이 형성된 마이크로 소자(600)에 이송 헤드(700)가 도입되며, 이송 헤드(700)는 전자석의 구조를 가진다. 즉, 전류의 방향에 따라 자계의 방향은 변경되며, 전류의 공급이 차단되는 경우, 자계는 발생하지 않는다. 따라서, 특정의 마이크로 소자(600) 상에 배치되어 특정의 마이크로 소자(600)를 이송할 수 있는 인력을 발생시킬 수 있다.
또한, 상기 도 12에서 마이크로 소자(600)는 별도의 접착수단없이 전사 기판(650)의 홈에 장착된 상태이므로 자기력을 통한 인력이 작용하는 경우, 이송 헤드(700)와 접촉하는 마이크로 소자(600)는 용이하게 전사 기판(650)으로부터 이탈될 수 있다.
이어서, 도 7과 같이 이송 헤드를 통해 이동되는 마이크로 소자는 수용 기판에 실장된다. 이를 통해 발광 다이오드를 개별적인 화소로 이용하는 디스플레이를 구현할 수 있다.
도 13은 본 발명의 제1 실시예 및 제2 실시예에 사용되는 이송 헤드의 일 예를 도시한 단면도이다.
도 13을 참조하면, 이송 헤드는 하우징(710), 내부 코일(720) 및 자기 코어(730)를 가진다.
하우징(710)은 내부의 구성을 외부로부터 보호하고, 내부 코일(720)과 외부 접촉 요소와의 전기적 절연을 달성하기 위해 사용된다. 따라서, 절연성을 가진 물질이라면 특별한 제한을 두지 않는다.
또한, 하우징(710) 내벽에는 패턴화된 형태로 내부 코일(720)이 제공된다. 내부 코일(720)은 이송 헤드의 내부에 구비되고, 외부 전원 V와 스위칭 S와 전기적으로 연결된다. 내부 코일(720)은 하우징(710)의 내벽에 패턴화된 형태로 제공될 수 있으며, 자기 코어(730) 주변을 감싸는 형상으로 제공될 수 있다. 다만, 자기 코어(730)에 자기장을 형성할 수 있는 구성이라면 본 발명의 취지를 벗어나지 않는다 할 것이다.
외부 전원 V는 전류의 방향의 변경을 통해 자기 코어(730)에서 형성되는 자장의 방향을 변경시킬 수 있다. 이를 통해 이송 헤드와 접하는 마이크로 소자의 탈착이 이루어진다. 또한, 외부 전원 V는 스위치 S와 연결되고, 스위치 S를 통해 전류는 내부 코일(720)에 전달된다.
다만, 상기 도 13에 개시되는 이송 헤드의 구조는 자기력을 이용하여 마이크로 소자를 이송하기 위한 구조의 일 예를 도시한 것으로 이해되어야 한다. 따라서, 자기력을 이용한 다른 구조의 이송 헤드 등의 사용을 통해 마이크로 소자의 이송이 가능하며, 이는 본 발명의 범위를 벗어나지 않는다.
또한, 본 발명의 실시예들에서는 하나의 이송 헤드가 구비된 것으로 도시되나, 이는 적어도 하나의 마이크로 소자의 이송을 설명하기 위한 것에 불과하다. 따라서, 이송 헤드는 복수개로 구성되고, 필요에 따라 일회의 이송시, 각각의 이송 헤드들에 의해 복수개의 마이클 소자들이 동시에 이송될 수 있다.
본 발명에서는 개별화되고 마이크로 사이즈를 가지는 발광 다이오드인 마이크로 소자의 이송은 자기력을 통해 이루어진다. 마이크로 소자는 전사 기판 상으로 개별화된 상태로 전사되고, 전사 기판 상에 배치된 마이크로 소자는 수용 기판으로 자기력을 통해 이송된다.
기존의 방법인 진공 흡착을 통해 마이크로 소자를 이송하는 경우, 진공도의 제어가 곤란하며, 정전기를 이용하여 마이크로 소자를 이송하는 경우, 과도한 정전기로 인해 마이크로 소자의 특성이 저하될 수 있다, 그러나, 본 발명에서는 소자의 특성에 영향을 미치지 않는 자기력을 이용하여 마이크로 소자를 이송한다. 따라서, 보다 안정적으로 마이크로 소자를 이용한 디스플레이의 구현이 가능해진다.
100, 500 : 성장용 기판 120, 520 : 제1 반도체층
130, 530 : 활성층 140, 540 : 제2 반도체층
150, 550 : 제2 전극층 200, 600 : 마이크로 소자
250, 650 : 전사 기판 170, 560 : 자화층
660 : 돌출부 400 : 수용 기판

Claims (13)

  1. 디스플레이용 수용 기판;
    상기 수용 기판 상에 형성된 복수개의 마이크로 소자들을 포함하고,
    상기 마이크로 소자들 각각은
    상기 수용 기판 상에 형성된 제2 전극층;
    상기 제2 전극층 상에 형성된 제2 반도체층;
    상기 제2 반도체층 상에 형성되고, 광을 형성하기 위한 활성층;
    상기 활성층 상에 형성되고, 상기 제2 반도체층과 상보적인 도전형을 가지는 제1 반도체층; 및
    상기 제1 반도체층 상에 형성되고, 특정 방향으로 자화된 강자성체를 가지는 자화층을 포함하는 마이크로 소자 어레이.
  2. 제1항에 있어서, 상기 제2 반도체층은 p형의 도전형을 가지고, 정공을 상기 활성층에 공급하는 것을 특징으로 하는 마이크로 소자 어레이.
  3. 제1항에 있어서, 상기 자화층은 Fe, Ni, Co, Cr, Cu, Si, Mn, O, W, C, Al, Pt, Sm, Nd, B, P, Bi, Sb, Y, Gd, Dy 또는 Eu를 포함하는 것을 특징으로 하는 마이크로 소자 어레이.
  4. 제3항에 있어서, 상기 자화층은 자성 물질의 도포 이후에 외부 자계의 인가에 의해 자화 방향을 고정하여 형성된 것을 특징으로 하는 마이크로 소자 어레이.
  5. 제1항에 있어서, 상기 마이크로 소자는 인접한 마이크로 소자와 다른 컬러의 광을 형성하는 것을 특징으로 하는 마이크로 소자 어레이.
  6. 성장용 기판 상에 제1 반도체층, 활성층 및 제2 반도체층을 형성하는 단계;
    상기 제1 반도체층, 상기 활성층 및 상기 제2 반도체층의 일부를 제거하여 상기 성장용 기판의 일부를 노출시키고, 개별화된 마이크로 소자를 형성하는 단계;
    상기 개별화된 마이크로 소자를 전사 기판 상에 전사하는 단계;
    상기 전사 기판 상의 마이크로 소자 상에 자화층을 형성하는 단계; 및
    상기 자화층에 특정 방향의 자계를 가진 이송 헤드를 도입하여 상기 마이크로 소자를 디스플레이용 수용 기판 상에 이동시키는 단계를 포함하는 마이크로 소자 어레이의 형성방법.
  7. 제6항에 있어서, 상기 개별화된 마이크로 소자를 형성하는 단계 이전에 상기 제2 반도체층 상에 제2 전극층 및 접합층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 마이크로 소자 어레이의 형성방법.
  8. 제7항에 있어서, 상기 개별화된 마이크로 소자를 상기 전사 기판에 전사하는 단계는,
    상기 접합층을 상기 전사 기판 상에 융착하는 단계; 및
    상기 성장용 기판을 상기 개별화된 마이크로 소자로부터 분리시키는 단계를 포함하는 것을 특징으로 하는 마이크로 소자 어레이의 형성방법.
  9. 제8항에 있어서, 상기 마이크로 소자를 상기 수용 기판 상에 이동시키는 단계는,
    상기 융착된 접합층을 용융하고, 상기 이송 헤드를 통해 상기 마이크로 소자를 상기 전사 기판으로부터 분리하는 것을 특징으로 하는 마이크로 소자 어레이의 형성방법.
  10. 제6항에 있어서, 상기 자화층을 형성하는 단계는,
    상기 전사 기판 상의 제1 반도체층 상에 상기 자화층을 증착하는 단계; 및
    상기 자화층을 특정 방향의 자계를 인가하여 상기 자화층을 특정 방향으로 자화시키는 단계를 포함하는 것을 특징으로 하는 마이크로 소자 어레이의 형성방법.
  11. 제10항에 있어서, 상기 자화층을 형성하는 단계 이후에 상기 자화층 상에 절연성을 가진 보호층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 마이크로 소자 어레이의 형성방법.
  12. 제6항에 있어서, 상기 전사 기판은 돌출부와 상기 돌출부에 의해 정의되는 홈을 가지고, 상기 개별화된 마이크로 소자는 상기 홈에 유입되는 것을 특징으로 하는 마이크로 소자 어레이의 형성방법.
  13. 제12항에 있어서, 상기 홈은 상기 개별화된 마이크로 소자에 상응하여 구비되며, 상기 홈을 정의하는 상기 돌출부의 높이는 1um 내지 3um인 것을 특징으로 하는 마이크로 소자 어레이의 형성방법.
KR1020160123754A 2016-09-27 2016-09-27 마이크로 소자 어레이 및 이의 형성방법 KR101899651B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160123754A KR101899651B1 (ko) 2016-09-27 2016-09-27 마이크로 소자 어레이 및 이의 형성방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160123754A KR101899651B1 (ko) 2016-09-27 2016-09-27 마이크로 소자 어레이 및 이의 형성방법

Publications (2)

Publication Number Publication Date
KR20180033927A true KR20180033927A (ko) 2018-04-04
KR101899651B1 KR101899651B1 (ko) 2018-09-17

Family

ID=61975682

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160123754A KR101899651B1 (ko) 2016-09-27 2016-09-27 마이크로 소자 어레이 및 이의 형성방법

Country Status (1)

Country Link
KR (1) KR101899651B1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216400A (zh) * 2018-10-29 2019-01-15 厦门乾照光电股份有限公司 Micro LED阵列器件、巨量转移装置及相关方法
KR102017554B1 (ko) * 2018-03-27 2019-09-03 (주)라이타이저 원칩 타입의 발광 소자 및 그 제조 방법
KR20200026693A (ko) * 2019-07-23 2020-03-11 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치의 제조방법
CN111244016A (zh) * 2020-03-10 2020-06-05 深超光电(深圳)有限公司 转移装置、转移装置的制备方法、转移方法及显示装置
CN111833800A (zh) * 2019-04-18 2020-10-27 云谷(固安)科技有限公司 微元件的接收基板以及转移方法、显示装置
KR20210026144A (ko) * 2019-08-29 2021-03-10 주식회사 디플랫 마이크로 led 전사방법
KR20210120406A (ko) * 2020-03-26 2021-10-07 엘씨스퀘어(주) 자화 방식을 이용한 개별 소자들의 전사 방법
WO2022035094A1 (ko) * 2020-08-10 2022-02-17 삼성디스플레이 주식회사 발광 소자 및 이를 이용한 표시 장치와 그의 제조 방법
CN115831805A (zh) * 2022-06-21 2023-03-21 Tcl华星光电技术有限公司 芯片转移方法、芯片转移装置和显示装置
US11990566B2 (en) 2018-07-19 2024-05-21 Samsung Display Co., Ltd. Display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261654A (zh) * 2018-11-30 2020-06-09 昆山工研院新型平板显示技术中心有限公司 微发光二极管阵列器件、制作方法及转移方法
KR20210012516A (ko) 2019-07-25 2021-02-03 삼성전자주식회사 Led 패키지를 구비한 디스플레이 모듈 및 그 제조 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170124282A (ko) * 2016-05-02 2017-11-10 엘지이노텍 주식회사 픽 앤 플레이스 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170124282A (ko) * 2016-05-02 2017-11-10 엘지이노텍 주식회사 픽 앤 플레이스 방법

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102017554B1 (ko) * 2018-03-27 2019-09-03 (주)라이타이저 원칩 타입의 발광 소자 및 그 제조 방법
US11990566B2 (en) 2018-07-19 2024-05-21 Samsung Display Co., Ltd. Display device
CN109216400A (zh) * 2018-10-29 2019-01-15 厦门乾照光电股份有限公司 Micro LED阵列器件、巨量转移装置及相关方法
CN111833800A (zh) * 2019-04-18 2020-10-27 云谷(固安)科技有限公司 微元件的接收基板以及转移方法、显示装置
KR20200026693A (ko) * 2019-07-23 2020-03-11 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치의 제조방법
KR20210026144A (ko) * 2019-08-29 2021-03-10 주식회사 디플랫 마이크로 led 전사방법
CN111244016A (zh) * 2020-03-10 2020-06-05 深超光电(深圳)有限公司 转移装置、转移装置的制备方法、转移方法及显示装置
KR20210120406A (ko) * 2020-03-26 2021-10-07 엘씨스퀘어(주) 자화 방식을 이용한 개별 소자들의 전사 방법
WO2022035094A1 (ko) * 2020-08-10 2022-02-17 삼성디스플레이 주식회사 발광 소자 및 이를 이용한 표시 장치와 그의 제조 방법
CN115831805A (zh) * 2022-06-21 2023-03-21 Tcl华星光电技术有限公司 芯片转移方法、芯片转移装置和显示装置

Also Published As

Publication number Publication date
KR101899651B1 (ko) 2018-09-17

Similar Documents

Publication Publication Date Title
KR101899651B1 (ko) 마이크로 소자 어레이 및 이의 형성방법
CN107680983B (zh) Micro LED阵列器件、拾取装置及相关制作方法、转运方法
US10147622B2 (en) Electric-programmable magnetic module
US9911764B2 (en) Display apparatus and method of manufacturing the same
KR20180131496A (ko) 디스플레이 장치 및 디스플레이 장치 형성 방법
KR101737281B1 (ko) 안정화 포스트를 갖는 마이크로 소자
US20200185368A1 (en) Led display device and method for manufacturing same
US9087764B2 (en) Adhesive wafer bonding with controlled thickness variation
US20220223754A1 (en) Method for manufacturing micro led display, and micro led display using same
KR20180117004A (ko) 액체를 이용한 마이크로 소자의 이송방법
US11211366B2 (en) Method for manufacturing display device and substrate for manufacturing display device
US10825702B2 (en) Method and device for self-assembling semiconductor light-emitting diodes
EP3726576B1 (en) Method for forming a display device
KR102521632B1 (ko) 픽 앤 플레이스 방법
US11581210B2 (en) Micro LED transfer system
US20230043559A1 (en) Apparatus and method for self-assembly of semiconductor light-emitting element
JP6842783B1 (ja) マイクロledディスプレイの製造方法およびマイクロledディスプレイ
EP3731276B1 (en) Apparatus and method for self-assembling of semiconductor light-emitting element
KR101938044B1 (ko) 희생층을 이용한 마이크로 소자의 이송방법
US20230031398A1 (en) Display device using semiconductor light-emitting element, and manufacturing method therefor
KR20190091072A (ko) 전자석이 삽입된 캐리어 기판 및 이를 이용한 마이크로 소자의 이송 방법
US20230078258A1 (en) Display device using semiconductor light-emitting element, and method for manufacturing same
US20230307598A1 (en) Display device using semiconductor light-emitting element
US11152540B2 (en) Light emitting diode structure and method of manufacturing thereof
US20230327062A1 (en) Semiconductor light-emitting device and display device using semiconductor light-emitting device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant