KR20180022689A - 열 적응성 재료를 위한 시스템 및 방법 - Google Patents

열 적응성 재료를 위한 시스템 및 방법 Download PDF

Info

Publication number
KR20180022689A
KR20180022689A KR1020177036923A KR20177036923A KR20180022689A KR 20180022689 A KR20180022689 A KR 20180022689A KR 1020177036923 A KR1020177036923 A KR 1020177036923A KR 20177036923 A KR20177036923 A KR 20177036923A KR 20180022689 A KR20180022689 A KR 20180022689A
Authority
KR
South Korea
Prior art keywords
bimorph
length
temperature range
fabric
layer
Prior art date
Application number
KR1020177036923A
Other languages
English (en)
Other versions
KR102409006B1 (ko
Inventor
브렌트 리들리
사울 그리피스
샤라 마이크란스
지안 창
페트 린
Original Assignee
어더 랩 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어더 랩 엘엘씨 filed Critical 어더 랩 엘엘씨
Publication of KR20180022689A publication Critical patent/KR20180022689A/ko
Application granted granted Critical
Publication of KR102409006B1 publication Critical patent/KR102409006B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/06Thermally protective, e.g. insulating
    • A41D31/065Thermally protective, e.g. insulating using layered materials
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/002Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with controlled internal environment
    • A41D13/005Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with controlled internal environment with controlled temperature
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/02Layered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/02Layered products comprising a layer of synthetic resin in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/04Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a layer being specifically extensible by reason of its structure or arrangement, e.g. by reason of the chemical nature of the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2500/00Materials for garments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/706Anisotropic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2601/00Upholstery

Abstract

적응성 시트로서, 제1 길이를 한정하는 제1 층을 포함하고, 상기 제1 층은 제1 환경 조건에 반응하여 기본 형태를 취하고, 제2 환경 조건에 반응하여, 상기 기본 형태에 비해, 상기 제1 층이 상기 제1 길이를 따라 컬링된 상태에 있는 상승된 형태를 취하도록 구성된, 상기 적응성 시트가 제시된다. 상기 제1 직물 층은, 제2 길이를 한정하고 제1 팽창 계수를 갖는 제1 재료로서, 상기 제1 재료는 상기 제2 환경 조건에 반응하여 상기 제2 길이를 따라 길이가 점점 변하도록 구성된, 상기 제1 재료, 및 제3 길이를 한정하고 상기 제1 팽창 계수와는 상이한 제2 팽창 계수를 갖는 제2 재료를 포함한다.

Description

열 적응성 재료를 위한 시스템 및 방법
관련 출원에 대한 상호 참조
본 출원은 전체 내용이 모든 목적을 위해 본 명세서에 병합된 2015년 5월 21일자로 출원된 발명의 명칭이 "SYSTEM AND METHOD FOR THERMALLY ADAPTIVE MATERIALS"인 미국 가특허 출원 번호 62/164,740의 정식 출원이고 그 우선권을 주장한다. 또한, 본 출원은 전체 내용이 모든 목적을 위해 본 명세서에 병합된 2015년 11월 18일자로 출원된 발명의 명칭이 "SYSTEM AND METHOD FOR THERMALLY ADAPTIVE MATERIALS"인 미국 가특허 출원 번호 62/257,126의 정식 출원이고 그 우선권을 주장한다.
연방 후원 연구에 관한 진술
본 발명은 미국 에너지부(U.S. Department of Energy)에 의해 부여된 DE-AR0000536에 따른 정부 지원으로 이루어졌다. 정부는 본 발명에 대해 특정 권리를 가지고 있다.
절연 재료는 종래 정적이며, 그 절연 값은 주위 조건의 변화에 대부분 반응하지 않는다. 전술된 면에서, 종래의 절연 재료의 전술된 장애물 및 결함을 극복하기 위해 개선된 적응성 재료 시스템 및 방법에 대한 필요성이 존재한다.
[도면의 간단한 설명]
도 1a는 바이모프가 평탄하고 구부러져 있지 않은 평탄한 온도(flat temperature)에서 제1 및 제2 재료를 포함하는 예시적인 바이모프(bimorph)를 도시한다.
도 1b는 상이한 온도에서 구부러진 형태의 도 1a의 바이모프를 도시한다.
도 2a는 제1 재료가 제2 재료의 양측 상에 교번하는 패턴으로 제시되어 각 결합 평면에서 결합되어 있는, 제1 재료 및 제2 재료를 포함하는 교번하는 구조물을 갖는 예시적인 바이모프를 도시한다.
도 2b는 상이한 온도에서 구부러진 형태의 도 2a의 바이모프를 도시한다.
도 3은 제1 및 제2 바이모프를 포함하는 상승된(lofted) 상태의 예시적인 바이모프 아키텍처를 도시한다.
도 4a는 2개의 축을 따라 구부러지도록 구성된 예시적인 바이모프 구조물을 도시한다.
도 4b는 상이한 온도에서 구부러진 형태의 도 4a의 바이모프를 도시한다.
도 5a 및 도 5b는 도 1a 및 도 1b의 바이모프가 복수 개 느슨하게 열 적응성 충전 재료 등으로 사용될 수 있는 방식의 일례를 도시한다.
도 6a는 평탄한 온도에서의 사행형(serpentine) 바이모프 구조물의 일례를 도시한다.
도 6b는 온도 변화에 반응하여 변위된 도 6a의 바이모프 구조물을 도시한다.
도 7은 바이모프 시트(bimorph sheet)를 제조하는데 사용될 수 있는 반복 타일(repeating tile) 또는 단위 셀(unit cell)에서 상호 연결된 4개의 예시적인 2-층 바이모프를 포함하는 구조물의 오버헤드뷰 또는 평면도를 도시한다.
도 8a는 바이모프들이 상부 바이모프 및 하부 바이모프 상의 각 와이어들을 분리시키는 공동(cavity)을 형성하고 있는, 바이모프 구조물의 개방된 형태를 도시한다.
도 8b는 바이모프들이 접촉하여 수평 와이어 및 수직 와이어가 접촉해 있거나 가까이 근접해 있는, 도 8a의 바이모프 구조물의 폐쇄된 형태를 도시한다.
도 9a는 바이모프를 제조하기 위한 일 예시적인 장치 및 방법을 도시한다.
도 9b는 도 9a의 장치에 의해 생성되는 도 9a의 바이모프의 에지(edge)의 확대 사시도를 도시한다.
도 10은 도 11에 도시된 평탄한 바이모프 구조물을 생성하도록 구성된 파형 표면 패턴(undulating surface pattern)을 갖는 롤러의 일 실시예를 도시한다.
도 12a 및 도 12b는 제1 단부 및 제2 단부에서 결합된 코일형 액추에이터(coiled actuator) 및 필라멘트(filament)를 포함하는 예시적인 바이모프를 도시한다.
도 13a는 바이모프가 평탄한 형태(좌측) 및 구부러진 형태(우측)에 있을 때 코일형 액추에이터가 선형 형태를 유지하고 있는, 코일형 액추에이터 및 필라멘트를 갖는 바이모프의 예시적인 실시예를 도시한다.
도 13b는 제1 필라멘트와 제2 필라멘트 사이에 코일형 액추에이터를 갖는 제1 및 제2 필라멘트를 포함하는 바이모프를 도시한다.
도 14a는 코일형 액추에이터들이 반대되는 열 반응을 갖고 평탄한 형태(좌측) 및 구부러진 형태(우측)에서 모두 인접하게 유지되는 예시적인 실시예를 도시한다.
도 14b는 코일형 액추에이터들이 평탄한 형태(좌측)에서는 인접해 있고 구부러진 형태(우측)에서는 분리될 수 있는 예시적인 실시예를 도시한다.
도 15는 바이모프가 평탄한 형태(좌측) 및 구부러진 형태(우측)에 있을 때 필라멘트가 선형 형태를 유지하고 있는, 코일형 액추에이터 및 필라멘트를 갖는 바이모프의 예시적인 실시예를 도시한다.
도 16은 반대 방식으로 온도 변화에 반응할 수 있는 교번하는 헤테로-키랄 및 호모-키랄 구역을 갖는 코일형 액추에이터를 제조하기 위한 이중 맨드럴 구조물을 도시한다.
도 17은 열 적응성 직조된 구조물(thermally adaptive woven structure)의 일 예시적인 실시예를 도시한다.
도 18a 및 도 18b는 온도의 상승에 반응하여 상승을 나타내는 파우치 또는 퀼팅(quilting)의 열 반응성 직조된 구조물을 도시한다.
도 19a 및 도 19b는 온도의 감소에 반응하여 상승을 나타내는 열 반응성 직조된 구조물을 도시한다.
도면은 축척에 맞게 그려진 것이 아니며 유사한 구조물 또는 기능을 갖는 요소는 일반적으로 도면 전체에 걸쳐 예시적인 목적을 위해 동일한 참조 번호로 표시된다는 점에 유의해야 한다. 또한 도면은 단지 바람직한 실시예의 설명을 용이하게 하기 위해 의도된 것임을 유의해야 한다. 도면들은 설명된 실시예의 모든 양태를 나타내는 것이 아니고 본 발명의 범위를 제한하는 것이 아니다.
하나의 양태는, 사용자의 신체 상에 착용되어 상기 신체를 둘러싸도록 구성된 열 적응성 의복(thermally adaptive garment)으로서, 상기 열 적응성 의복은, 열 적응성 직물(fabric)에 의해 형성된 의복 몸체를 포함하되, 상기 열 적응성 직물은, 착용하는 사용자의 상기 신체를 향하도록 구성된 내부 면; 상기 착용하는 사용자의 외부 환경을 향하도록 구성된 외부 면; 상기 외부 면의 적어도 일부를 형성하는 제1 직물 층; 상기 내부 면의 적어도 일부를 형성하고 하나 이상의 결합 솔기(coupling seam)에서 상기 제1 직물 층에 결합된 제2 직물 층; 및 상기 제1 및 제2 직물 층 및 상기 하나 이상의 결합 솔기에 의해 획정되고 상기 제1 및 제2 직물 층 및 상기 하나 이상의 결합 솔기 내에 배치된 복수의 공동(cavity)을 포함하는, 상기 열 적응성 의복을 포함한다.
일 실시예에서, 상기 제1 직물 층은, 제1 환경 온도 범위에 반응하여, 상기 제1 직물 층이 제1 평균 거리만큼 상기 제2 직물 층으로부터 분리된 상태에 있는 기본 형태(base configuration)를 취하도록 구성되며; 상기 제1 직물 층은, 상기 제1 환경 온도 범위와는 상이한 제2 환경 온도 범위에 반응하여, 상기 제1 직물 층이 상기 제2 직물 층으로부터 상기 제1 평균 거리보다 더 큰 제2 평균 거리만큼 분리된 상태에 있는 상승된 형태(lofted configuration)를 취하도록 구성된다.
다른 실시예에서, 상기 제1 층과 상기 제2 층 사이의 상기 평균 거리는, 상기 환경 온도가 상기 제1 환경 온도 범위와의 차이가 증가함에 따라, 상기 제2 온도 범위 내의 온도에 반응하여 증가한다. 추가적인 실시예에서, 상기 의복 몸체는, 상기 제2 환경 온도 범위에 인접하고 상기 제1 환경 온도 범위와는 상이한 제3 환경 온도 범위를 기계적으로 한정하고, 상기 제1 층과 상기 제2 층 사이의 증가하는 상기 평균 거리는 상기 의복 몸체의 물리적 형태에 의한 최대 거리에 구속(constrained)된다. 또 다른 실시예에서, 상기 제2 환경 온도 범위의 온도는 상기 제1 환경 온도 범위의 온도보다 더 낮다.
일 실시예에서, 상기 제1 직물 층은 제1 길이를 획정하는 제1 재료를 포함하고, 상기 제1 재료는 제1 열 팽창 계수에 따라 상기 제2 환경 온도 범위 내의 온도 변화에 반응하여 상기 제1 길이를 따라 점점 팽창하도록 구성된다.
다른 실시예에서, 상기 제1 직물 층은 상기 제1 길이와 평행한 제2 길이를 획정하는 제2 재료를 포함하고, 상기 제2 재료는 상기 제1 열 팽창 계수와는 상이한 제2 열 팽창 계수에 따라 상기 제2 환경 온도 범위 내의 온도 변화에 반응하여 상기 제2 길이를 따라 점점 팽창하도록 구성된다.
또 다른 실시예에서, 상기 제1 재료 및 상기 제2 재료는 실질적으로 평면이고 결합 평면을 따라 함께 결합된다. 또 다른 실시예에서, 상기 제1 재료 및 상기 제2 재료는 상기 제1 길이 및 상기 제2 길이에 수직인 각각의 제1 폭 및 제2 폭을 형성하고, 상기 제1 폭 및 상기 제2 폭은 상기 제2 환경 온도 범위 내의 온도 변화에 반응하여 실질적으로 동일하게 유지된다.
다른 양태는, 열 적응성 직물로서, 제1 길이를 획정하는 직물 층을 포함하되, 상기 직물 층은, 제1 온도 범위에 반응하여 평탄한 기본 형태를 취하고, 제2 온도 범위에 반응하여, 상기 기본 형태에 비해, 상기 직물 층이 상기 제1 길이를 따라 컬링(curled)된 상태에 있는 상승된 형태를 취하도록 구성된, 상기 열 적응성 직물을 포함한다. 상기 직물 층은, 제2 길이를 획정하고 제1 열 팽창 계수를 갖는 제1 재료로서, 상기 제1 재료는 상기 제2 환경 온도 범위 내의 온도 변화에 반응하여 상기 제2 길이를 따라 길이가 점차로 변하도록 구성된, 상기 제1 재료, 및 제3 길이를 획정하고 상기 제1 열 팽창 계수와는 상이한 제2 열 팽창 계수를 갖는 제2 재료를 포함한다.
일 실시예에서, 상기 제1 재료는 온도 변화에 반대 방식으로 각각 반응하도록 구성된 교번하는 헤테로-키랄(hetero-chiral) 부분 및 호모-키랄(homo-chiral) 부분을 포함하는 적어도 하나의 코일형 액추에이터(coiled actuator)를 포함한다. 다른 실시예에서, 상기 제1 직물 층은 10℃의 온도 변화에 반응하여 5% 이하의 면적 변화를 나타내도록 구성된다. 추가적인 실시예에서, 상기 제1 재료 및 상기 제2 재료는 복수의 상호 직조된(interwoven) 각각의 제1 섬유 및 제2 섬유를 형성한다. 또 다른 실시예에서, 상기 제1 재료는 상기 제1 길이를 따라 수축 또는 팽창하도록 구성된 열 적응성 코일을 포함한다. 더 다른 실시예에서, 상기 제1 재료는 평면 시트(planar sheet)를 포함한다.
추가적인 양태는, 적응성 시트로서, 제1 길이를 획정하는 층을 포함하되, 제1 층은, 제1 환경 조건에 반응하여 기본 형태를 취하고, 제2 환경 조건에 반응하여, 상기 기본 형태에 비해, 상기 제1 층이 상기 제1 길이를 따라 컬링된 상태에 있는 상승된 형태를 취하도록 구성된, 상기 적응성 시트를 포함한다. 상기 제1 층은, 제2 길이를 획정하고 제1 팽창 계수를 갖는 제1 재료로서, 상기 제1 재료는 상기 제2 환경 조건에 반응하여 상기 제2 길이를 따라 길이가 변하도록 구성된, 상기 제1 재료, 및 제3 길이를 획정하고 상기 제1 팽창 계수와는 상이한 제2 팽창 계수를 갖는 제2 재료를 포함한다.
일 실시예에서, 상기 제1 환경 조건은 제1 온도 범위를 포함하고, 상기 제2 환경 조건은, 상기 제1 온도 범위와는 상이하고 상기 제1 온도 범위보다 더 낮은 온도를 포함하는 제2 온도 범위를 포함한다. 다른 실시예에서, 상기 제1 환경 조건은 제1 수분 범위를 포함하고, 상기 제2 환경 조건은 상기 제1 수분 범위와는 상이한 제2 수분 범위를 포함한다.
추가적인 실시예에서, 상기 제1 직물 층은 적어도 제1 방향으로 배치된 제1 복수의 와이어(wire)를 포함하고, 상기 제2 직물 층은 상기 제1 방향과 평행하지 않은 적어도 제2 방향으로 배치된 제2 복수의 와이어를 포함하고, 상기 제1 및 제2 복수의 와이어는, 분리된 형태에서 상기 제1 및 제2 복수의 와이어의 반사율 및 흡수율 특성과는 상이한 적외선 반사율 및 흡수율 특성을 갖는 와이어 메쉬(wire mesh)를 형성하도록 상기 기본 형태에서 결합하도록 구성된다.
또 다른 실시예에서, 적응성인 상기 제1 및 제2 재료는 직조된 직물(woven fabric)의 일부를 형성한다. 더 다른 실시예에서, 적응성인 상기 제1 및 제2 재료는 편조된 직물(knit fabric)의 일부를 형성한다.
다양한 응용에서, 의복, 담요 또는 텍스타일(textile)이 가변 절연성을 갖는 절연 재료, 즉 온도 변화에 반응하는 재료를 포함하는 것이 바람직할 수 있다. 개선된 사람의 열적 쾌적함을 넘어, 이러한 재료는, 10%를 초과하는 에너지가 건물을 가열 및 냉각하는데 들어가기 때문에 상당한 에너지 절감을 가능하게 할 수 있으며, 열 적응성 재료를 광범위하게 사용하는 것을 통해 가열 및 냉각 비용을 줄일 수 있다.
다양한 실시예에서, 열 적응성 재료는 온도 변화에 반응하여 그 절연 값이 변하는 재료일 수 있다. 이러한 열 작동은 유리 전이를 나타내는 재료 및 형상 기억 중합체를 포함하지만 이에 한정되지 않는 관심 온도에서 상 변화(phase change)를 나타내는 바이모프 또는 대안적으로 재료를 사용하는 것을 통해 달성될 수 있다. 일부 실시예에서, 바이모프들이 온도 변화에 연속적으로 반응하거나, 온도 변화에 따라 구부러지거나 또는 곧게 펴지는 것이 바람직할 수 있다.
이와 달리, 일부 재료는 이산 온도에서 발생하는 상 변화에 반응하여 온도에 대해 계단식 반응을 생성한다. 이러한 재료는 다양한 실시예에 따라 상이한 상 변화 온도를 갖는 재료의 세트를 사용함으로써 연속적인 반응 프로파일을 달성하는데 사용될 수 있다.
바이모프는 임의의 적절한 방식으로 함께 라미네이팅(laminated)되거나, 접착되거나, 용접되거나 또는 연합(joined), 유지되거나 또는 구속되는 2개 이상의 재료를 포함할 수 있다. 일부 실시예에서, 바이모프는 환경 온도가 변함에 따라 바이모프의 일측이 타측보다 더 팽창하여 바이모프가 구부러질 수 있도록 다른 열 팽창 특성을 가질 수 있다. 바이모프는 "평탄한 온도", 즉 구조물이 평탄한 상태에 있는 온도를 가질 수 있다. 일부 실시예에서, 이 "평탄한 온도" 위 및 아래의 온도에서는 바이모프가 두 층의 열 팽창의 차이로 인해 반대 방향으로 만곡(curved)될 수 있다.
바이모프들의 이러한 온도로-제어되는 구부러짐은 온도 의존 특성을 갖는 직물 및 의복을 구성하는데 활용(leveraged)될 수 있는데, 즉 온도가 떨어지면 더 두꺼워져서 보다 절연성으로 되는 직물, 및/또는 온도가 증가하면 더 개방되어, 더 다공성으로 되어 더 많은 냉각이 가능한 직물을 구성하는데 활용될 수 있다.
열 적응성 재료에 대해 바람직할 수 있는 비교적 큰 두께 변화를 달성하기 위해, 바이모프 섬유, 리본 또는 시트의 배열이 다수의 층에 걸쳐 결합된 변화가 원하는 변화를 생성하도록 제어될 수 있다.
개별 바이모프의 변위의 변화량은 온도의 차이, 바이모프 내의 2개 이상의 재료에 대한 열 팽창 계수의 차이, 재료의 강성, 및 바이모프의 두께 및 길이에 의존할 수 있다. 열 팽창 계수의 차이는 작을 수 있고, 일부 실시예에서 상업용 재료에 대해서 기껏 100-200 ㎛/m/K 정도일 수 있다.
예를 들어, 약 1 mm의 두께의 변화는 일부 의류 및 침구에 응용하기 위한 타깃(target)으로 취해질 수 있다. 바이모프 내의 층들 각각에 대해 예시적으로 취해진 두께(얇은 섬유에 필적하는 두께)로 10 마이크론을 취하고 10 켈빈(Kelvin)의 온도 변화(실내 온도에 대한 적절한 변화 범위)를 취하면, 1 mm의 변위를 달성하기 위해 섬유 길이는 10 mm일 필요가 있다. 바이모프가 이러한 변화를 나타내기 위해서는 바이모프는 전체 길이에 걸쳐 자유롭게 이동할 필요가 있고, 일부 실시예에서는 다른 섬유 또는 표면 층과 임의의 접촉이 움직임(motion)을 감소시키거나 심지어 완전히 차단할 수도 있다. 이러한 길이에 걸쳐 자유로운 섬유 움직임은 다양한 의복 실시예에서는 가능할 것 같지 않으며, 이 길이 및 두께 스케일에서 바이모프의 일부 실시예는 외부 힘에 대해 낮은 구조적 저항을 받을 수 있다. 이 바이모프는 1 mm의 유효 두께를 생성할 수 있지만, 평탄할 때 바이모프는 비실용적으로 얇을 수 있다. 이 두께가 얇은 문제뿐만 아니라 바이모프의 길이가 긴 문제는 다층 바이모프 구조물을 사용하여 해결될 수 있다.
일부 실시예에서, 1 mm 이상 정도의 열 반응 재료의 두께 변화는 다층 바이모프 구조물의 사용을 통해 달성될 수 있다. 이러한 응용에서 주위 온도가 낮아짐에 따라 열 적응성 재료가 그 두께를 두 배, 세 배 또는 심지어 네 배까지 증가시켜서 쾌적함을 증가시키는 것이 바람직할 수 있다. 개별적으로 더 작은 변위를 갖는 복수의 더 짧은 바이모프로 형성된 이 바이모프 층들 각각은 구조물 내에서 기계적으로 결합되어, 각 층의 변위는 재료의 전체 두께 변화에 기여할 수 있다. 바이모프 층 내의 제어된 구조물과 층들 사이에 제어된 관계 및 구조물을 결합하면 온도에 반응하여 원하는 누적 두께 변화를 실현할 수 있는 재료를 생산할 수 있다. 추가적으로, 일부 실시예에서, 다층 바이모프 구조물은 마주하는 직물로부터의 장력 또는 중량 또는 바람으로 인한 부하와 같은 외부 부하에 저항하는 향상된 능력을 가질 수 있다.
이러한 다층 구조물의 일부 실시예의 하나의 장점은 단지 작은 길이만으로도 구조물의 높이에 큰 변화가 가능하다는 것일 수 있다. 두께와 관련하여, 빔은 큰 길이를 가지는 것에 의해 변위에 큰 변화를 나타낼 수 있지만, 자유로이 이동할 수 있는 긴 길이는 의류 및 침구의 일부 실시예에서는 바람직하지 않을 수 있다. 추가적으로, 이러한 움직임을 방지하는 데 필요한 힘은 이 길이가 증가됨에 따라 더 작아질 수 있다. 다양한 실시예에서, 각각 작은 길이를 갖는 다수의 구조화된 층들로 이동함으로써, 높이의 큰 변화는 단지 작은 전체 길이로 실현될 수 있다.
다시 말해, 다층 구조물의 일부 실시예는, 층들이 온도 변화에 반응하여 기하학적 변화를 나타냄에 따라 그 구조물이 서로 보강하고 서로 쌓이는 위치에 개별 바이모프를 위치시켜, 큰 전체 두께 변화를 생성한다는 점에서 장점을 가질 수 있고; 다층 구조물의 일부 실시예는 다층 구조물이 개별 바이모프 층들 각각에서 보다 작은 변화를 합산하기 때문에 큰 두께 변화를 가질 수 있다. 분리시, 일부 실시예의 개별 층들은 재료 선택, 큰 온도 변화, 작은 두께 또는 긴 길이를 통해 큰 상승된 변화를 달성할 수 있다.
일부 실시예에서, 다층 열 작동 구조물은, 물리적 변화의 대부분이 1차원이어서, 다른 차원들에서의 변화를 최소화하면서 두께의 변화를 비교적 크게 가능하도록 구성될 수 있다. 서로 꼬인(twisted) 많은 개별 섬유들로 구성된 원사(yarn)들에 통합된 바이모프들은 두께 변화 및 필적하는 측방향 변화를 나타낼 수 있다. 측방향 변화는 전체 재료에 원치 않는 좌굴(buckling)을 야기할 수 있고, 원하는 형상을 유지하기 위해 의복에 추가적인 구조적 요소를 요구할 수도 있다. 다양한 실시예에서, 다층 열 적응성 구조물의 이방성 거동은 원사와 같은 꼬인 구조물과 관련될 수 있는 이러한 한계를 극복할 수 있다.
종래의 꼬인 구조물에서 또는 랜덤하게 배팅(batting) 또는 부직포 구조물에서, 개개의 섬유들이 바이모프 섬유인 경우, 하나의 섬유의 만곡이 다른 섬유의 만곡에 추가되어 전체 재료 두께를 증가시키는 방식으로 개개의 섬유들이 함께 이동하는 것을 보장하는 방식으로 개개의 섬유들이 함께 유지되지 않을 수 있다. 각 섬유의 변화가 이웃한 섬유와 협력하여 큰 누적 상승을 생성하는 추가적인 변화가 일부 실시예에서 바람직할 수 있다. 원사에서 흔히 발견되는 것과 같은 꼬임은 섬유들이 반대 방향으로 이동하거나, 또는 하나의 섬유가 다른 섬유의 움직임에 의해 생성된 공간 내로 이동하여 서로 포개질(nest)될 수 있는 기회를 제공한다. 이것은 일부 실시예에서 바람직하지 않을 수 있는 전체 또는 원하는 두께 변화를 갖지 않는 원사 또는 직물을 초래할 수 있다.
복수의 개별 섬유들을 포함하는 원사들은 서로 꼬인 섬유들에 인장 응력을 도입할 수 있으며, 이러한 잔류 응력은 일부 실시예에서 기하학적 반응의 크기를 제한할 수 있다. 제어된 다층 구조물의 다양한 실시예는 최소화된 응력을 갖게 제조되어 온도가 변함에 따라 더 자유롭고 더 충분한 바이모프 움직임을 허용할 수 있다.
열 적응성 재료에 대한 상업적 기회는, 예를 들어, 절연물이 피부에 가까이 근접해 위치되고, 의류, 침구, 침낭 및 텐트와 같이 사람의 열적 쾌적함과 밀접하게 관련된 분야에 존재한다. 추가적인 응용 분야는 커튼(drapery), 실내 장식물(upholstery), 절연물, 의료, 여과 및 미세 유체를 포함할 수 있지만 이로 국한되지는 않는다.
다양한 실시예에서, 다층 구조물은 열로 유도된 편향을 나타내는 다수의 섬유 또는 리본을 포함하는 적층된(stacked) 구조물을 포함할 수 있다. 이러한 섬유 또는 리본의 편향은 주로 일 차원을 따라 나타날 수 있고 의복 또는 담요의 두께에 대응하고; 리본의 폭이 증가되거나 다수의 리본 또는 섬유가 평행하게 이어짐(run)에 따라 전체 구조물이 시트와 유사하기 시작한다. 일부 실시예에서, 선형 팽창은 실질적으로 전체 바이모프 구조물의 2개의 축을 따라 발생하여 제3 축을 따라 구부러짐 및 유효 두께 변화를 생성할 수 있다.
다층 열 적응성 구조물은 의복 또는 담요의 적응성 충전재, 퀼팅 또는 내부 층에 사용될 수 있으며, 여기서 외부 층은 내마모성, 외관 및 촉감을 위해 선택될 수 있고, 내부 층은 촉감 및 위킹(wicking) 특성을 위해 선택될 수 있다. 다층 열 적응성 구조물은, 추가적인 층 또는 라미네이션을 통해 추가적인 기능이 추가되는 구조물에서 또는 다층 구조물로 또는 다층 구조물을 통해 편조되거나, 직조되거나 스티칭(stitched)되는 섬유 또는 원사들을 통해 추가적인 기능이 추가되는 구조물에서 특정 응용을 위해 방수, 방풍, 위킹, 또는 다른 층 또는 재료와 통합될 수 있다.
다양한 실시예에서, 이러한 구조물에서 열로 구동되는 작동은 이하에 설명되는 바와 같이 바이모프 구조물의 사용을 통해 실현될 수 있지만, 상 변화에 반응하여 기하학적 변화를 나타내는 다른 적절한 재료 또는 형상 기억 중합체를 통해 달성될 수도 있다. 개별 바이모프들은 인쇄, 블레이드 코팅 또는 다른 적절한 기술을 통해 하나의 층을 다른 층 위에 공-압출, 라미네이션 또는 증착(deposition)을 통해 구성될 수 있다. 층들 중 하나의 층을 하부 층과 다르게 패턴화하는 것이 바람직한 경우, 패턴화된 층은 인쇄되거나, 마스크를 통해 코팅되거나, 에칭되거나, 또는 미리-패턴화된 시트 등으로 증착되고, 접착제, 열 용접 또는 초음파 용접, 또는 일부 다른 적절한 연합 기술을 통해 다른 시트에 연합될 수 있다. 유사하게 두 층을 패턴화하고 리본 또는 코일과 같은 2차원 구조물을 부여하는 것이 바람직한 경우, 미리 제조된 바이모프 시트는 나이프 절단, 레이저 절단, 스탬핑, 에칭 또는 유사한 기술에 의해 그 형상이 제공될 수 있다.
바이모프 구조물은 또한 두 재료를 인접하고 상반되는 관계로 배치하는 방식으로 상이한 특성을 갖는 2개의 섬유 또는 리본이 조직되고 구속되는 텍스타일 구조물로 생산될 수 있다. 텍스타일 구조물은 다양한 범위의 패턴을 제공할 수 있으며, 인쇄되고 절단되고 일반적으로 전술된 바이모프로서 취급될 수 있다.
절연물에 걸쳐 온도 구배가 있을 수 있다. 추운 환경에서 이것은 의복의 (더 차가운) 외부측에 있는 절연물의 층과 이 층의 바이모프(들)에 대한 평탄한 온도 사이의 온도 차이가 (더 따뜻한) 피부 근처의 층과 이 층의 바이모프(들)에 대한 평탄한 온도 사이의 온도 차이보다 상당히 더 클 수 있다는 것을 의미한다. 피부에 더 가까운 층들은 작은 변화만을 나타낼 수 있는 반면, 외부 층은 큰 변화를 나타낼 수 있다. 사람은 열 조절을 하는 것으로 인해 피부 근처의 온도 변화 범위는 의복 표면의 온도 변화 범위만큼 크지 않을 수 있으며, 의복 표면의 바이모프 층은 피부 근처의 층보다 더 큰 온도 범위를 경험할 수 있다. 일부 응용에서, 다층 구조물 전체에 걸쳐 고유한 평탄한 온도를 각각 갖는 상이한 바이모프 층들을 사용하여, 온도 감응성 물품의 표면에 가까운 층들의 열 반응에 비해 신체에 가까운 층들에 고유한 열 반응을 가능하게 하는 것이 유리할 수 있다.
의복 또는 담요의 열적 쾌적함을 위해, 임계 값을 넘는 임의의 온도에서 열 적응성 물품이 최저 상승된 상태에서 최소화된 두께 및 절연 값을 갖는 것이 바람직할 수 있다. 랜덤하게 꼬이거나 또는 구조화되지 않은 매트의 간단한 바이모프는 이러한 온도에서 평탄할 수 있지만 온도가 감소하거나 증가하면 바이모프에 만곡이 생겨 두께가 증가할 수 있다. 일부 실시예에서, 이것은 고온에서 바이모프가 저온에서 갖는 거동과 동일한 유형의 거동을 갖는 기하학적 변화 및 절연 증가를 나타낼 것이라는 것을 의미하기 때문에 바람직하지 않을 수 있다.
다양한 실시예에서, 다층 열 적응성 재료는 임계 온도를 넘어서는 완전히 평탄한 상태에 들어가는 것에 의해 이 문제를 극복할 수 있다. 이것은, 2개의 바이모프가 미러링된 배향에 있고 서로 푸시하여 선택된 값을 넘는 모든 온도에서 평탄한 최소로 상승된 구조물을 생성하는 구조물로 설계될 수 있다. 간단한 바이모프 구조물은 일부 실시예에서 평탄한 온도가 매우 높고 의복의 사용 가능한 범위 밖에 있도록 바이모프를 제조하는 것에 의해 이러한 문제를 최소화할 수 있다. 그러나 이것은 의복이 일부 응용에서 최소로 상승된 상태에 도달하지 못할 수도 있음을 의미할 수 있으며 이는 특정 응용에서 바람직하지 않을 수 있다.
다음의 예시적인 설명은 바이모프를 통해 기하학적 형상 및 절연성의 연속적인 변화에 주로 초점을 둔다. 그러나 이러한 구조물뿐만 아니라 상 변화 메커니즘을 통해 작동되는 구조물은 또한 쌍-안정 시스템을 생성할 수 있으며, 효과적인 절연성 변화는 격자, 광학 코팅, 또는 나노 재료를 포함하는 이웃한 재료에 유전체 환경 또는 근접함에 감응하는 광학 활성 재료(optically active material)의 기하학적 조작을 통해 다공성 또는 광학 특성의 제어된 변화를 통해 일어날 수 있다.
다양한 실시예에서, 개별 바이모프 또는 바이모프 층은 함께 연합된 2개 이상의 재료를 포함한다. 바이모프는 섬유, 리본, 시트일 수 있거나 또는 바이모프는 2개의 쌍으로 된 섬유, 리본 또는 시트로 이루어질 수 있거나, 또는 바이모프는 일부 실시예에서는 더 복잡한 기하학적 형상 또는 단면을 가질 수 있다. 일부 실시예에서, 바이모프는 상이한 열 팽창 계수를 갖는 2개의 재료를 포함할 수 있지만, 층들 사이의 접착을 개선하기 위해 또는 일부 다른 물리적 특성을 변경하기 위해 추가적인 재료들이 포함될 수 있다. 다른 실시예에서, 바이모프는 상이한 열 팽창 계수를 갖는 부분을 갖는 단일 재료를 포함할 수 있다. 두 재료에서, 환경적 자극에 반응하여 열 팽창 또는 다른 차원의 변화에 차이가 있는 경우 바이모프의 형상이 변할 수 있다.
바이모프의 다양한 실시예가 함께 라미네이팅된 2개의 재료를 포함할 수 있지만, 일부 실시예에서, 재료들은 전체 길이를 따라 연합되거나 접합(bonded)될 필요가 없으며, 2개의 재료 사이에 패턴 또는 형상에 차이가 있어서, 이들 재료가 항상 서로 정렬하는 것은 아닐 수 있다. 추가적인 실시예에서, 이러한 이층(bilayer) 구조물은 직조 또는 편조와 같은 텍스타일 구조물에 존재하여, 여기서 텍스타일 구조물 내에 2개의 섬유 또는 섬유 층이 실질적으로 함께 쌍을 이루어 그 전체 거동이 라미네이팅된 바이모프의 거동과 유사할 수 있다. 바이모프와 마찬가지로 이층 구조물은 2개의 층이 상이한 열 팽창 특성, 수분에의 상이한 반응 또는 일부 다른 외부 자극에 대한 상이한 반응을 가지도록 2개의 상이한 형태 또는 상이한 구조물 또는 처리 이력을 갖는 단일 재료로 만들어질 수 있다.
추가적으로, 일부 실시예에서, 제1 재료 또는 기재가 제1 재료의 양측에 패턴화되거나 배치된 다른 열 팽창 계수를 갖는 제2 재료를 갖고, 여기서 패턴들은 교번하여, 개개의 바이모프가 온도 변화에 반응하여 교번하는 방식으로 구부러지게 하는, 교번하는 또는 양면(doubled-sided) 바이모프 구조물을 갖는 것이 유리할 수 있다.
교번하는 바이모프 구조물은 국부적인 곡률을 갖는 영역 및 장거리 구부러짐 없이 구부러지는 영역을 가질 수 있다. 최소로 바이모프를 포함하는 2개의 재료의 길이 및 두께는 주어진 온도 변화에 원하는 곡률을 위해 선택될 수 있고, 교번하는 바이모프 층 내에 다양한 곡률을 갖는 구역들을 생성하도록 제어될 수 있다.
다층 열 적응성 재료는, 바이모프 움직임을 구속하여, 개개의 바이모프들의 변위가 함께 더해져 다층 구조물에 큰 변위를 생성하는 다중 스칼라 구조물(multi-scalar structure)을 가질 수 있다. 이러한 제약(constraint)은 실질적으로 보다 복잡한 구조물을 갖는 바이모프 뿐만 아니라 단순 및/또는 교번하는 바이모프에 도입될 수 있다. 이러한 층간 순서(interlayer order)는 층들 사이에 접착, 용접, 접합, 스티치 등을 통해, 직조 또는 편조와 같은 텍스타일 구조물을 통해, 또는 바이모프 구조물 자체의 기하학적 설계에 의해 부과된 제한을 통해 도입될 수 있다.
이하의 도면의 설명은 일부 예시적인 실시예를 포함하지만, 본 발명의 범위 및 사상 내에 있는 다양한 다른 가능한 실시예를 제한하는 것으로 해석되어서는 안 된다.
도 1a는 바이모프(100A)가 평탄하고 구부러져 있지 않는 상태에 있는 평탄한 온도에서 제1 및 제2 재료(110, 120)를 포함하는 예시적인 바이모프(100A)를 도시한다. 제1 재료(110)는 길이(L1) 및 폭(W1)에 의해 획정되는 것으로 도시된다. 제2 재료(120)는 길이(L2) 및 폭(W2)에 의해 획정되는 것으로 도시된다. 이 예에서, 제1 재료(110)는 제2 재료(120)의 길이(L2)보다 더 짧은 길이(L1)를 갖지만, 폭(W1, W2)은 실질적으로 동일하다. 제1 및 제2 재료(110, 120)는 각각 대향하는 opposing 외부 면(111, 121)을 가질 수 있고, 결합 평면(115)을 따라 함께 연합될 수 있다.
도 1b는 상이한 온도에서 구부러진 형태의 도 1a의 바이모프(100)를 도시한다. 이 예에서, 온도의 변화는 제1 재료의 외부 표면(111)이 볼록하게 구부러지고 제2 재료의 외부 표면(121)이 오목하게 구부러지도록 바이모프(100A)가 구부러지게 한다.
평탄한 형태(도 1a)로부터 구부러진 형태(도 1b)로 바이모프(100A)의 형태의 변화는 다양한 방식으로 일어날 수 있다. 예를 들어 표 1은 이러한 형태의 변화가 발생할 수 있는 방법에 대한 5가지 예를 보여준다.
평탄한 형태(도 1a)로부터 구부러진 형태(도 1b)로 바이모프(100)의 형태의 예시적인 변화 원인
제1 재료(110) 제2 재료(120)
1 L1을 따라 팽창 변화 없음
2 L1을 따라 팽창 L2는 L1보다 더 작게 팽창한다
3 L1을 따라 팽창 L2를 따라 수축
4 변화 없음 L2를 따라 수축
5 L2를 따라 수축 L2는 L1보다 더 많은 수축
다양한 실시예에서, 표 1의 예 1 내지 예 5는 온도가 양으로 또는 음으로 변하는 것으로 인해 발생할 수 있다. 따라서, 일부 실시예에서, 온도의 상승은 제1 재료(110)가 L1을 따라 팽창하거나 또는 수축하게 할 수 있다. 추가적인 실시예에서, 온도의 감소는 제1 재료(110)가 L1을 따라 팽창하거나 수축하게 할 수 있다. 유사하게, 일부 실시예에서, 온도의 상승은 제2 재료(120)가 L2를 따라 팽창하거나 또는 수축하게 할 수 있다. 추가적인 실시예에서, 온도의 감소는 제2 재료(120)가 L2를 따라 팽창하거나 수축하게 할 수 있다. 추가적으로, 일부 실시예에서, 온도가 양으로 또는 음으로 변하는 것에 의해 제1 재료 또는 제2 재료(110, 120)가 각 길이(L1, L2)를 따라 팽창하거나 또는 수축하지 않을 수 있다.
일부 실시예에서, 바이모프(100)는 10℃의 온도 변화에 반응하여 5% 이하의 면적 변화를 나타내도록 구성될 수 있다. 추가적인 실시예에서, 바이모프(100)는 10℃ 이하의 환경 변화에 반응하여 유효 두께를 두 배로 하도록 구성될 수 있다.
도 1a 및 도 1b는 바이모프(100A)가 구부러져 제2 재료의 외부 면(121)이 오목해지는 예시적인 형태의 변화를 도시하지만; 추가적인 실시예에서, 바이모프(100A)는 제2 재료의 외부 면(121)이 볼록해지고 제1 재료의 외부 면(111)이 오목해지는 추가적인 형태(도시되지 않음)를 취할 수 있다. 예를 들어, 일 실시예에서, 바이모프(100A)는 X℃의 온도에서 평탄한 형태(도 1a)를 취할 수 있고, 제2 재료의 외부 면(121)이 (X+Y) ℃의 온도에서 볼록해진 구부러진 형태(도 1b)를 취할 수 있다. 추가적으로, 바이모프(100A)는 제2 재료의 외부 면(121)이 (X-Y) ℃의 온도에서 오목해진 구부러진 형태(도시되지 않음)를 취할 수 있다. 다시 말해, 일부 실시예에서, 바이모프(100)는 온도가 변하는 경우에 기초하여 하나의 방향으로 구부러지고 나서 다른 방향으로 구부러질 수 있다. 추가적으로, 다양한 실시예에서, 양방향 화살표로 도시된 바와 같이 바이모프(100)는 온도 변화에 기초한 형태들 사이에서 앞뒤로 동적으로 이동할 수 있다.
추가적으로, 본 명세서의 다양한 실시예는 온도 변화에 기초하여 바이모프(100)의 변화를 설명하지만, 추가적인 실시예에서 바이모프(100)는 습도(humidity), 광에의 노출, 화학 물질에의 노출, 액체(예를 들어, 물)에의 노출, 기압(barometric pressure), 적용된 힘(예를 들어, 바람이나 터치를 통해), 자기장에의 노출, 전기 전류에의 노출 등을 포함하는 하나 이상의 변화 조건에 기초하여 형태를 변화시킬 수 있다. 따라서, 본 명세서에서 논의된 예시적인 실시예는 본 발명의 범위 및 사상 내에 있는 다양한 대안적인 및 추가적인 실시예를 제한하는 것으로 해석되어서는 안 된다.
도 2a는 제1 및 제2 재료(110, 120)를 포함하는 교번하는 구조물을 갖는 예시적인 바이모프(100B)를 도시하고, 여기서 제1 재료(110)는 제2 재료(120)의 양측에 교번하는 패턴으로 도시되고 각 결합 평면(115)에서 결합된다. 이 예에서, 2개의 부분(P1, P2)은 대향하는 외부 면(111, 121)들을 갖는 각 쌍의 제1 및 제2 재료(110, 120)에 의해 형성된다. 도 2는 바이모프(100B)가 평탄하여 구부러지지 않는 형태에 있는 "평탄한 온도"에서의 바이모프(100B)를 도시한다.
도 2b는 상이한 온도에서 도 2a의 예시적인 바이모프(100B)를 도시한다. 이 예에서 온도의 변화는 바이모프(100B)가 "S" 형상으로 구부러지게 하였다. 보다 구체적으로, 도 2b의 구부러진 형태에서, 제1 및 제2 재료(110, 120)는 제2 재료의 외부 면(121)이 오목하고 제1 재료의 외부 면(111)이 볼록하도록 구부려졌다. 본 명세서에서 논의된 바와 같이, 이러한 구부러짐은 재료(110, 120)의 다양한 특성에 의해 생성될 수 있다. 비록 도 2a 및 도 2b는 예시적인 바이모프(100B)가 제1 및 제2 재료(110, 120)의 교번하는 구조물의 2개의 부분(P1, P2)을 포함하는 일례를 도시하지만, 추가적인 실시예에서, 이러한 바이모프(100B)는 임의의 적절한 복수의 부분(P)을 포함할 수 있고, 복수의 바이모프(100)는 바이모프 아키텍처로 결합될 수 있다.
예를 들어, 도 3은 제1 및 제2 바이모프(100B 1 , 100B 2 )를 포함하는 상승된 상태에 있는 예시적인 바이모프 아키텍처(300)를 도시한다. 도 3에 도시된 각 세장형 바이모프(100B)는 평면 세장형 제2 재료(120)의 교번하는 측면들 상에 결합된 제1 재료(110)를 포함하는 제1, 제2 및 제3 부분(P1, P2, P3)을 포함한다. 바이모프(100B)들을 각 단부(303, 304)에서 결합되고, 높이(H)를 갖는 내부 공동(305)을 한정한다. 이 예에서, 제1 및 제3 부분(P1, P3)은 공동(350) 내를 향하는 제2 재료(120) 상에 배치된 제1 재료(110)에 의해 형성된다. 제2 부분(P2)은 각각의 상부 측면 및 하부 측면(301, 302) 상에서 외부를 향하는 제2 재료(120) 상에 배치된 제1 재료(110)에 의해 형성된다.
도 3에 도시된 예에서, 바이모프(100B)는 환경 온도에 기초하여 구부러진 형태에 있어서, 제1 바이모프가 중심이 상부 단부(301)에서 위쪽으로 구부러지고 중심이 하부 단부(302)에서 아래쪽으로 구부러진 아키텍처(300)의 상승된 형태를 생성한다. 그러나, 일부 실시예에서, 바이모프(100B)는 온도에 기초하여 더 많이 또는 더 적게 상승될 수 있다. 다시 말해, 공동(350)의 높이(H)는 온도 변화에 기초하여 팽창되거나 또는 수축될 수 있다.
도 3에 도시된 예가 제한된 폭(W)의 바이모프(100)를 갖는 예시적인 아키텍처(300)를 도시하지만, 추가적인 실시예에서, 바이모프(100)는 직물 등을 포함할 수 있는 세장형 평면 시트일 수 있다. 유사하게, 비록 도 3은 단부(303, 304)에서 결합된 3개의 부분(P1, P2, P3)을 갖는 바이모프(100)를 갖는 예시적인 아키텍처(300)를 도시하지만 추가적인 실시예에서, 바이모프(100)는 임의의 적절한 복수의 부분을 포함할 수 있고, 대향하는 부분들이 규칙적이거나 또는 불규칙적인 임의의 선택된 간격으로 결합된다. 예를 들어, 일부 실시예에서, 복수의 부분을 갖는 바이모프(100)는 단부(303, 304)에서만 결합될 필요는 없고, 대신 복수의 공동(350)을 생성할 수 있는 단부들 사이에 결합될 수 있다.
추가적으로, 일부 실시예에서, 바이모프(100)들은 바이모프(100)의 폭 및/또는 길이를 따라 임의의 바람직한 방식으로 결합될 수 있거나 또는 바이모프(100)의 길이 또는 폭과 평행한 결합을 포함하거나 포함하지 않을 수 있는 임의의 다른 바람직한 규칙적이거나 또는 불규칙인 패턴으로 결합될 수 있다. 따라서, 본 명세서에서 보다 상세히 논의되는 바와 같이, 일부 실시예에서, 바이모프 아키텍처(300)는 다양한 적절한 크기 및 형상의 복수의 공동(305)을 한정하는 직물 등을 포함할 수 있는 평면 시트를 형성할 수 있다. 본 명세서에서 논의된 바와 같이, 바이모프(100) 및/또는 바이모프 아키텍처(300)를 포함하는 이러한 직물은 온도에 기초하여 다양한 목적에 요구될 수 있는 형태를 동적으로 변화시킬 수 있다.
예를 들어, 일 실시예에서, 도 3을 참조하면, 바이모프 아키텍처(300)는 하나 이상의 공동(350)의 높이(H)가 온도가 낮아짐에 따라 증가하도록 형태를 변화시킬 수 있으며, 이는 추운 환경에서 절연성을 동적으로 생성하는 데 요구될 수 있다. 다시 말해, 재킷, 침낭, 담요, 가방 또는 다른 물품은 추위에의 노출에 반응하여 형태를 변화시켜 착용자 또는 물품을 추위로부터 동적으로 점점 더 절연시킬 수 있다. 한편, 더위에 노출될 때, 하나 이상의 공동의 높이(H)는 온도가 높아짐에 따라 감소하고, 이는 더운 환경에서 착용자 또는 물품의 과열을 동적으로 방지하는 데 요구될 수 있다. 다시 말해, 착용자 또는 밀폐된 물품을 특정 온도 범위 내에 유지하는 것이 요구되는 경우, 다양한 실시예가 변하는 환경 온도에 기초하여 더 많거나 더 적은 절연성을 동적으로 제공하도록 구성될 수 있다.
도 4a 및 도 4b는 2개의 축을 따라 구부려지도록 구성된 예시적인 바이모프 구조물(400)을 도시한다. 예시적인 바이모프 구조물(400)은 결합 평면(115)을 따라 적층된 삼각형으로 형성된 제1 및 제2 재료(110, 120)를 각각 포함하는 4개의 바이모프(100C)를 포함한다. 바이모프(100C)들은 각각의 에지(415)에서 접한 삼각형 형태로 함께 연합되고 중심 위치(420)에서 함께 결합된다. 다양한 실시예에서, 결합된 중심 위치는 중심 위치(420)에 인접한 에지(415)들의 부분을 포함할 수 있다. 이 예에서, 구조물(400) 내 대향하는 바이모프(100C)들은 상부 면(401) 및 하부 면(402)에 동일한 재료(410, 420)를 갖는다.
도 4a는 평탄한 형태의 바이모프 구조물(400)을 도시한다. 도 4b는 상부 면(401)에 제2 재료(120)를 갖는 대향하는 바이모프(100C)들이 상부 면(401)에 오목 부분을 생성하도록 위쪽으로 컬링된 만곡 형태의 바이모프 구조물(400)을 도시한다. 추가적으로, 하부 면(402)에 제2 재료(120)를 갖는 대향하는 바이모프(100C)들은 하부 면(402)에 오목 부분을 생성하도록 아래쪽으로 컬링된다. 본 명세서에서 논의된 바와 같이, 구조물(400)은 온도 변화에 기초하여 도 4a 및 도 4b의 형태들 사이에서 이동할 수 있다.
유사한 기하학적 변화를 달성하기 위해 많은 유사한 기하학적 형상, 구조 및 슬릿(slit) 패턴이 추가적인 실시예에서 제공될 수 있다. 예를 들어, 추가적인 실시예는 중심 위치(420) 주위에 배열된 임의의 적절한 복수의 바이모프(100)를 포함할 수 있다. 바이모프(100)의 형상 및 이러한 바이모프에 의해 생성된 구조물의 전체 형상은 임의의 적절한 규칙적이거나 또는 불규칙한 형상일 수 있다.
다양한 실시예에서, 이러한 구조물은 느슨한 열 적응성 충전 재료로서 기능할 수 있다. 이러한 단일 바이모프 층 구조물(400)의 다층으로부터 큰 두께 변화를 달성하기 위해, 일부 실시예에서, 컵 형상(cupped)의 3차원 형상이 서로 내에 포개지는 것을 방지하기 위해 복수의 유사하지만 동일하지 않은 구조물을 갖는 것이 유리할 수 있다. 변경된 3차원 구조물은 다중 스칼라 구조물에서 구성 제약으로 기능할 수 있다. 일부 실시예에서, 복수의 이러한 바이모프(400)는 전술된 바와 같이 공동(350)(도 3)에 배치될 수 있다. 도 5a 및 도 5b는 도 1a 및 도 1b의 바이모프(100A)가 느슨한 열 적응성 충전 재료 등으로서 복수 개 사용될 수 있는 방식의 일례를 도시한다.
도 6a는 평탄한 온도에서 예시적인 사행형 바이모프 구조물(600)을 도시한다. 바이모프 구조물(600)은, 함께 연합될 수 있고 동일한 오버헤드 또는 절단 패턴을 가질 수 있는 2개의 재료(110, 120)를 포함할 수 있다. 이 예에서, 실질적으로 연속하는 제2 재료(120)는 중심 공동(605)을 한정하는 직사각형 형상으로 존재하고, 여기서 제1 재료(110)의 부분들은 제2 재료(120)의 양측에 교번하는 형태로 배치된다. 일부 실시예에서, 구조물(600)은 하나를 초과하는 축을 따라 기하학적 변화를 나타낼 수 있다.
도 6b는 온도 변화에 반응하여 변위를 나타내는 코일형 또는 콘볼루션된(convoluted) 구조물(600)을 도시하며; 여기서 구조물(600)의 제1 아암(610)의 단부는 일부 실시예에서 베이스(base)로서 기능할 수 있는 제2 아암(615)에 대해 들어 들뜨게 된다(lifted). 제1 및 제2 아암(610, 615)은 바이모프 구조물(600)의 종료 및 시작으로 고려될 수 있지만, 대안적으로 열적으로 반응하지 않는 패드가 제1 아암(610)에 도입될 수 있고, 또는 제2 아암(615)은 온도 변화에 반응하여 구부러짐을 나타내지 않도록 재료(110, 120)들 중 단 하나의 재료로만 구성될 수 있다. 추가적으로, 일 실시예에서, 아암(610, 615)은 다른 바이모프 또는 바이모프 구조물에 연결하기 위한 패드로서 기능할 수 있도록 상이한 형상을 가질 수 있다. 개별 층 내에서, 바이모프 구조물(600)은 상호 연결된 시트, 박막 또는 멤브레인이 생산되도록 다른 바이모프 구조물에 직접 연결되거나, 얇은 테더(tether)를 통해 연결되거나, 다른 것을 통해 연결될 수 있다.
도 6a 및 도 6b의 예시적인 구조물(600)은 중심에 공동을 갖게 도시되어 있지만, 추가적인 실시예에서 제공될 수 있는, 다공성을 위해 구멍이 도입되거나 도입되지 않은, 많은 대안적인 코일 또는 사행형 구조물이 존재한다. 특정 응용을 위해 미세 조정될 수 있는, 평면 스프링 또는 다이어프램 굴곡부(diaphragm flexure)와 유사한 구조물을 포함하는 많은 유사한 기하학적 형상 및 구조물이 추가적인 실시예에서 제공될 수 있다.
추가적으로, 예시적인 구조물(600)은, 제2 재료(120)가 제1 재료(110)의 2개의 조각들 사이에 적층되어 있는 부분(620)들, 및 또한 제1 및 제2 재료(110, 120)의 단일 조각의 적층물에 의해 형성된 부분(625)들을 갖는 것으로 도시되어 있다. 다양한 실시예에서, 3개 이상의 재료의 적층물을 갖는 부분(620)은 다른 부분들이 구부러진 경우에도 온도 변화에 반응하여 구부러지지 않는 "평탄한 구역"을 구조물(600)에 생성할 수 있다. 이것은, 동일한 적층물의 상부 재료 및 하부 재료의 임의의 변화가 구조물(600)의 이 부분에서 서로 상쇄되어서 이 부분(620)에서 구부러지지 않게 하기 때문일 수 있다. 3개 재료의 적층물을 갖는 부분(620)들은 예시적인 구조물(600)의 코너에 도시되어 있지만, 다른 실시예에서, 이러한 부분(620)들은 주어진 구조물의 임의의 적절한 부분에 존재할 수 있다. 유사하게, 적층된 쌍의 재료(110, 120)에 의해 형성된 부분(625)들은 또한 일부 실시예에서 바이모프 구조물의 임의의 적절한 위치에 존재할 수 있다.
일부 실시예에서, 코일형 또는 사행형 구조물(600) 자체는 다층 구조물에 이상적이도록 하는 기하학적 제약을 도입하지 않는다. 그러나 유사한 온도-변위 반응을 갖지만 특정 콘볼루션을 변화시키는 다수의 기하학적 형상을 사용함으로써 상호 연결된 코일 또는 사행형 구조물의 시트는 온도 반응성 바이모프에 의해 남아 있는 개방된 공간 안으로 쉽게 상호 얽히거나(intertwine) 이동하지 못할 수 있다. 이러한 유형의 콘볼루션된 사행형 구조물은 추가적인 실시예에 따라 다층 열 적응성 구조물에서 하나의 구성 요소로서 역할을 할 수 있다.
도 7은 바이모프 시트를 제조하는데 사용될 수 있는 반복 타일 또는 단위 셀에서 상호 연결된 4개의 예시적인 2-층 바이모프(100)를 포함하는 구조물(700)의 오버헤드뷰 또는 평면도를 도시한다. 재료들 중 하나의 재료는 음영으로 도시되어 있으며, 이 재료는 이 예시적인 실시예에 걸쳐 기재로서 기능한다. 실선은 재료를 통한 절단을 나타내며, 대시 라인은 기재 재료의 상부에 위치하는, 음영 처리되지 않은 상부 재료의 단부를 나타내고, 도트 라인은 구조물(700)의 에지를 나타낸다. 전체 구조물(700)은 반복 단위 셀이어서, 상호 연결된 바이모프의 큰 시트를 생성한다.
바이모프 영역은 여기서 4개의 바이모프 외팔보(bimorph cantilever)(100)로 분해되고, 4개의 바이모프 외팔보 각각은 온도 변화에 반응하여 구조물의 중심에서 평면 밖으로 이동할 수 있다. 음영 처리된 기재 재료(120)만을 갖게 도시된 영역은 이 단위 셀 및 인접한 단위 셀들의 바이모프(100)들 사이의 가요성 테더 또는 연결부로서 기능할 수 있다. 일부 실시예에서, 이 연결부는 온도에 반응하여 구부러질 필요가 없다. 바이모프들 사이의 이러한 연결은 온도에 반응하는 두께를 갖는 가요성 시트를 생성할 수 있다.
큰 두께 변화를 달성하기 위해, 다층 구조물이 다양한 실시예에서 요구될 수 있다. 도 7에 도시된 것과 같은 층들 사이의 다중 스칼라 순서(multi-scalar order)는, 예를 들어, 하나 건너 하나의 층이 그 바로 위의 층 및 그 바로 아래의 층과 직교하도록 각 층의 배향을 교번함으로써 도입될 수 있다. 층의 베이스는 아래 층의 직교하는 바이모프 위에 있고, 이 층의 들떠 있는 바이모프는 위 층의 직교하는 베이스에 대해 지지부로서 기능한다. 바이모프 영역의 종횡비가 주어진 경우, 층들 사이에 직교 회전은 각 층이 다양한 실시예에서 그 아래 층에 있는 적어도 2개의 바이모프 영역에 걸치게 하여, 하나의 층의 바이모프들이 그 아래의 층에 의해 지지되고 바이모프의 기하학적 변화에 의해 생성된 빈 공간 안으로 떨어지지 않는 것을 보장한다.
하나의 층이 다른 층에 대해 직교하는 배향으로 인해 발생하는 층간 순서에 더하여, 도시된 예시적인 구조물은 연장된 시트에서 개별적인 바이모프들을 함께 나란하게 연결하는 가요성 테더를 단위 셀 구조물에 가질 수 있다. 이와 같은 시트 구조물은 모여서 중력에 의해 퀼팅 포켓의 바닥으로 떨어지지 않고 더 높은 온도에서 평탄한 시트로 남아 있을 수 있다는 점에서 유리할 수 있다. 평면 내 또는 시트 내 순서는 적응성 절연물을 둥글게 말거나(balling) 응집되는(clump) 것을 방지할 수 있다.
테더의 가요성은 상호 연결부의 폭 및 컨볼루션 경로를 변화시킴으로써 제어될 수 있다. 단일 면을 갖는 바이모프 활성 구역으로 도시되어 있지만, 전술된 층간 및 층내 순서에서 양면 바이모프 기하 형상이 추가적인 실시예에 존재할 수 있다. 전반적으로, 다층 구조물에서 층의 기하학적 형상 및 층들이 직교하는 배열은 바이모프 층들 사이에 기계적 결합을 제공할 수 있다.
도 7의 것과 같은 시트 구조물은 개개의 바이모프들 사이의 가요성 층-내 상호 연결부를 가질 수 있고, 다른 바이모프 구조물들이 유사하게 상호 연결될 수 있다. 그러나, 일부 실시예는 상호 연결 공간을 필요로 하지 않고 바이모프들을 연결할 수 있는 시트 구조물을 포함한다. 하나의 이러한 구조물은 기재 상에 도트 어레이를 포함하고, 기재의 다른 면에 동일한 재료의 동심 링을 갖고, 원형 구조물을 갖는 양면 바이모프를 형성한다. 이러한 재료는 온도가 변함에 따라 딤플(dimpled)된 표면을 형성할 수 있으며, 이 경우 두 축을 따라 재료 왜곡으로부터 두께 변화가 발생한다. 가요성 테더들이 이러한 딤플 표면의 활성 영역들 사이에서 사용될 수 있지만, 원형 구조물은 바이모프 영역들을 최대 면적 밀도로 배치하고 이웃한 것들 사이에 상호 연결이 직접 이루어질 수 있는 방식으로 배열될 수 있다.
일부 실시예에서, 딤플된 구조물 및 실제로, 다양한 시트 구조물은 비-다공성 구조물로 인해 원치 않은 통기성(breathability)을 가질 수 있다. 따라서, 다양한 실시예에서, 증기 수송 및 증발을 위한 향상된 기회를 제공하기 위해 작은 구멍 또는 슬릿이 이들 다층 구조물에 도입될 수 있다. 추가적으로, 다층 구조물에서 온도에 반응하는 기하 구조물의 변화는 다공성을 증가시키거나 감소시키는 기능을 할 수 있다.
바이모프의 다층 집합체의 유효 온도-반응을 위해 일부 실시예에서 하나의 바이모프를 다른 바이모프에 대해 배열하고 정렬하는 것이 바람직할 수 있다. 이 순서는 도 3에 도시된 바와 같이 조인트 또는 접합을 통해, 또는 도 7에 도시된 바와 같이 각 층의 기하학적 설계와 배향에 의해 부과된 기계적 제약을 통해 발생할 수 있다. 직조하는 것과 같은 접근법은 또한 2개의 바이모프 영역이 오버랩되고 개개의 온도 의존적인 두께들이 최적화된 방식으로 합께 더해지도록 다층 구조물에 순서를 도입하는데 적절할 수 있다. 이러한 다층 구조물은 단일 면(sing-sided)), 양면 또는 보다 복잡한 바이모프, 기계적 증폭을 갖는 구조물, 또는 바이모프를 포함하지 않는 작동 메커니즘을 포함하는 개별 층들로 구축될 수 있다. 다양한 실시예에서, 각각의 개별 층의 다공성 및 가요성은 층 내의 구멍, 슬릿, 또는 콘볼루션된 사행형 구조물 등을 통해 제어될 수 있다.
도 8a 및 도 8b는 각각의 단부(801, 802)에서 결합된 상부 바이모프 및 하부 바이모프(100U, 100L)를 포함하는 바이모프 구조물(800)을 도시한다. 이 예에서 상부 바이모프(100U)는 복수의 수직으로 배향된 와이어(810V)를 포함하는 것으로 도시되고, 하부 바이모프(100L)는 복수의 수평으로 배향된 와이어(810H)를 포함하는 것으로 도시된다. 도 8a는 바이모프 구조물(800)의 개방된 구조물을 도시하며, 여기서 바이모프(100)는 상부 바이모프 및 하부 바이모프(100U, 100L) 상의 각각의 와이어(810)를 분리시키는 공동(850)을 형성한다. 도 8b는 바이모프 구조물(800)의 폐쇄된 구조물을 도시하고, 여기서 바이모프(100)들은 접촉하고 공동(850)은 실질적으로 존재하지 않는다. 수평 와이어 및 수직 와이어(810H, 810V)는 도 8b에서 접촉하거나 또는 가까이 근접해 있는 것으로 도시된다.
다양한 실시예에서, 금속 나노 와이어 메쉬 구조물은 열 적외선 영역에서 반사성을 생성할 수 있다. 텍스타일 응용의 예에서, 이러한 나노 와이어 메쉬 구조물을 포함하는 의류 조각은 열 에너지를 의복의 착용자에게 되 반사시킴으로써 의복의 절연성을 생성할 수 있다.
도 8a 및 도 8b의 맥락에서, 일부 실시예에서, 바이모프 구조물(800)은, 도 8b에 도시된 바와 같이 열 적외선 반사 메쉬(860)를 생성하도록 형태를 변화시키고, 도 8a에 도시된 바와 같이 와이어(810)들을 분리시킴으로써 열 적외선 반사 메쉬를 분할함으로써 절연성을 동적으로 제공할 수 있다. 다시 말해, 상부 바이모프 및 하부 바이모프(100U, 100L)의 각 와이어(810)들이 도 8b에 도시된 바와 같이 결합될 때, 바이모프 구조물(800)은 열 적외선 영역에서 반사율을 생성할 수 있는 반면, 상부 바이모프 및 하부 바이모프(100U, 100L)의 각 와이어(810)들이 도 8a에 도시된 바와 같이 분리될 때, 바이모프 구조물(800)의 열 적외선 반사 특성이 제거될 수 있다.
따라서, 다양한 실시예에서, 도 8a에 도시된 형태는 더 더운 온도에서 생성되고, 도 8b에 도시된 형태는 더 추운 온도에서 생성되는 것이 바람직할 수 있다. 이러한 바이모프 구조물(800)이 의복 내에 존재하는 실시예에서, 이러한 특성은 더운 조건에서 의복을 통해 열 적외선 열을 투과시켜 더운 온도에서 의복 착용자가 과열되는 것을 자동적으로 방지할 수 있고, 추운 조건에서 열 적외선 열을 포함하는 것을 자동적으로 도와줄 수 있다.
따라서, 도 8a 및 도 8b에 도시된 바와 같은 바이모프 구조물(800)은 의류, 담요, 침낭, 텐트 등을 포함하는 다양한 물품에 사용되도록 구성될 수 있다. 추가적으로, 도 8a 및 도 8b에 도시된 예시적인 구조물은 본 발명의 범위 및 사상 내에 있는 다양한 실시예로 제한하는 것으로 해석되어서는 안 된다. 예를 들어, 와이어(810)는 임의의 적절한 재료를 포함할 수 있고 다양한 적절한 방향으로 배향될 수 있다. 반사율에 더하여 일부 재료의 흡수율은 재료들이 이웃하는 재료에 가까이 근접해 있을 때 변위될 수 있고 이는 이러한 유형의 바이모프 구조물이 재료의 반사율 및 흡수율 특성을 향상시켜 바이모프 재료의 전반적인 절연 특성에 영향을 미친다. 대안적으로, 일부 재료 또는 패턴화된 구조물(예를 들어, 회절 격자)의 광학 특성은 물리적 변형 또는 신장을 통해 변위될 수 있고, 바이모프 구조물과 통합되면 온도에 감응하는 광학 흡수 및 반사 특성을 얻을 수 있다.
바이모프 및 바이모프 구조물은 다양한 적절한 방식으로 제조될 수 있다. 도 9a는 바이모프(100D)를 제조하는 일 예시적인 장치(900) 및 방법을 도시한다. 장치(900)는 제1 재료(110)의 권취 시트를 갖는 제1 스풀(905), 및 제2 재료(120)의 권취 시트를 갖는 제2 스풀(910)을 포함한다. 장치(900)는 제1 재료(115)의 시트를 길이 방향으로 절단하여 제1 재료(110)의 복수의 스트립을 생성하는 커터(915)를 더 포함한다. 상부 및 하부 분리기 막대(separator bar)(920U, 920L)는 제1 재료(110)의 복수의 스트립을 상부 및 하부 스트립(110U, 110L)의 세트로 분리하여, 제1 재료의 상부 및 하부 스트립(110U, 110L)의 세트 사이에 스트립 공동(925)을 한정한다. 제2 재료(120)의 제2 스풀(910)은 스트립 공동(925) 내에 배치된다. 이 예에서, 제1 재료를 절단하여 모든 짝수 스트립이 상부 스트립(110U)이 되고 모든 홀수 스트립이 하부 스트립(110L)이 되도록 제1 재료(110)의 인접한 스트립들을 분리함으로써 스트립(110U, 110L)의 세트가 생성된다. 대안적으로, 상부 및 하부 스트립(110U, 110L)은 별도의 롤(roll)로부터 섬유, 실, 원사 또는 리본을 포함할 수 있다.
제2 재료(120)의 시트는 제2 스풀(910)로부터 및 롤러 세트(930U, 930L)를 통해 연장된다. 제1 재료의 스트립(110U, 110L)은 또한 롤러(930U, 930L)를 통과하고 바이모프(100D)를 형성하도록 제2 재료(120)의 시트의 상부 면 및 하부 면에 각각 결합된다. 다양한 실시예에서, 제1 및 제2 재료(110, 120)는 용접, 라미네이션, 융합, 접착, 스티칭 등을 포함하는 임의의 적절한 방식으로 함께 결합될 수 있다.
도 9b는 장치(900)에 의해 생성된 바이모프(100D)의 에지의 확대 사시도를 도시한다. 전술된 바와 같이, 상부 스트립(110U)은 제2 재료의 하부 면 상에 배치된 하부 스트립(110L)으로부터 오프셋되어, 제2 재료(120)의 상부 면에 배치된 것으로 도시된다. 다양한 실시예에서 바이모프(100D)는 도 3에 도시된 바이모프(100B)의 것과 유사한 특성을 가질 수 있고, 도 9a 및 도 9b에 도시된 바이모프(100B) 시트는 도 3에 도시된 바이모프 구조물(300) 등을 생성하는데 사용될 수 있다.
다양한 실시예에서, 바이모프 시트(100D)는 천공(perforation), 슬릿 등을 포함하는 것이 바람직할 수 있다. 이러한 구조물은 통기성, 가요성 및/또는 신장성에 바람직할 수 있다. 일부 실시예에서, 기재(120)는 천공될 수 있거나 또는 다공성 직조물, 편조물 또는 부직포 재료일 수 있다. 일부 실시예에서, 제어된 천공은 바이모프(100)가 1축 또는 2축으로 배향된 중합체의 바람직한 방향으로 동작하도록 하는데 요구될 수 있다(CTE, 모듈러스, 및 강도 값은 모두 이러한 재료에서 이방성일 수 있고 특정 방향이 선호될 수 있다). 일부 실시예는 교번하는 바이모프의 상부 및 하부 부분을 포함하는 층(110)들의 바람직한 방향을 정렬할 수 있는 오프셋 천공된 또는 관통된 상부 층 및 하부 층을 갖는 양면 바이모프 구조물을 제조하는 방법을 포함할 수 있다. 일 실시예에서, 재료(110)는 2개의 스트라이프로 슬릿되지 않고, 대신 천공되거나 또는 관통되어서, 중실(solid) 부분들이 천공된 구역에 의해 연결되어 있는 스트라이프(stripe) 구조물을 갖게 된다. 천공된 재료(110)는 제2 재료(120)에 한 면 또는 양면에서 도포될 수 있다. 천공 또는 관통은 롤-투-롤(roll-to-roll) 기계 방향으로 이어지거나 또는 기계 방향에 수직으로 이어지거나 또는 임의의 다른 적절한 방향으로 이어질 수 있는 패턴으로 생성될 수 있다. 천공된 재료(110)는 기계류로 취급하기 쉽고, 롤-투-롤 및 시트 처리 모두에 적응하기 쉽고, 최적의 바이모프 성능을 위해 박막에서 바람직한 배향을 선택할 수 있다는 점에서 일부 실시예에서 유리할 수 있다.
일부 실시예에서, 복수의 바이모프 시트(100D)는 그 두께 변화가 함께 더해져서 넓은 범위의 온도 반응 움직임을 갖는 더 두꺼운 구조물을 생성하는 방식으로 배열될 수 있다. 다양한 실시예에서, 본 명세서에 설명된 바이모프(100)는 층상화될 수 있고, 그 형태는 층들이 서로 직교하게 적층될 수 있게 하여, 층들이 서로 정착되거나 서로 포개지는 것을 방지할 수 있는 층들 사이의 기하학적 제약을 생성하여, 각 층이 그 아래의 층 위에 "건축"되거나 그 아래의 층으로부터 "들뜨게" 할 수 있다. 직교 회전은 단 하나의 예시적인 실시예이며, 추가적인 실시예에서 다른 각도의 회전이 존재할 수 있다. 다양한 실시예에서, 이러한 층마다 회전하는 구성은 용접과 같은 층간 연결을 회피할 수 있으나, 일부 실시예에서, 개별 층들은 접착제, 용접 또는 라미네이션, 스티치 등을 통해 함께 결합될 수 있다.
도 10은 도 10 및 도 11에 도시된 평탄한 바이모프 구조물(100E)을 생성하도록 구성된 파형 표면 패턴(1001)을 갖는 롤러(1000)의 일 실시예를 도시한다. 다양한 실시예에서, 바이모프 구조물(100E)은 원하는 온도 또는 온도 범위에서 평탄하도록 구성될 수 있다. 바람직한 일 실시예에서, 이 온도 또는 온도 범위는 사람 또는 동물 개체의 피부 또는 코어(core) 온도에 대응할 수 있다.
다양한 실시예에서, 롤러(1000) 및 표면 텍스처 또는 패턴(1001)은 열 고정, 라미네이션, 접착, 또는 중합체 용접의 온도에서 바이모프(100E)의 제어된 곡률을 제공하여 온도가 바이모프 시트(100E)가 평탄한 구조물을 실현할 수 있는 주위 또는 피부 온도로 감소되도록 구성될 수 있다.
일부 실시예에서, 바이모프(100)의 패턴화 스케일은 밀리미터 범위, 서브 밀리미터 범위 또는 다른 원하는 크기일 수 있다. 추가적으로, 이러한 패턴화는 약 1㎛, 10㎛, 100㎛, 100㎛ 등을 포함하는 다양한 두께일 수 있는 기재의 한 면 또는 두 면을 덮을 수 있다. 다양한 실시예에서, 바이모프(100)의 각 면은 다른 면에 정합될 수 있다. 일부 실시예에서, 잉크젯 프린팅, 스크린 프린팅 및 유사한 습식 기술이 바이모프(100)에 사용될 수 있다.
다른 실시예에서, 제1 및 제2 재료(110, 120)(예를 들어, 중합체)는 함께 라미네이팅될 수 있다. 라미네이팅된 바이모프(100)는 제2 재료(120)의 중심 연속 시트, 및 제2 재료(120)의 일측 또는 양측에 평행한 일련의 좁은 리본으로 제1 재료(110)를 포함할 수 있다. 예를 들어, 이러한 구조물은 도 9a 및 도 9b(제2 재료(120)의 양측에 제1 재료(110)의 스트립이 있음)에 도시되고 및 도 11(제2 재료(120)의 일측에 제1 재료(110)의 스트립이 있음)에 도시된다.
일부 실시예에서, 제1 및 제2 재료(110, 120) 중 하나 또는 둘 모두는 이산 리본 또는 스트립 대신에 특정 영역에 천공을 갖는 연속 시트를 포함하거나 이 연속 시트로부터 생성될 수 있다. 이러한 실시예는 복수의 이산 스트립 또는 리본과 달리 제조를 단순화할 수 있기 때문에 바람직할 수 있다.
본 명세서에서 논의된 바와 같이, 복수의 바이모프(100)를 층상화함으로써 바이모프(100)의 구조물을 생성하는 것이 바람직할 수 있다. 일부 실시예에서, 각각의 층들은 물리적으로 결합되거나 연결되지 않을 수 있다.
예를 들어, 일 실시예에서, 다양한 실시예에 따른 바이모프(100) 시트들은 직교하게 적층될 수 있으며, 그 주름(corrugation)은 상이한 방향으로 이어질 수 있다. 이것은 바람직한 두께 또는 상승의 변화를 가진 구조물을 생성할 수 있다. 이러한 실시예에서, 층간 연결 또는 정합이 존재하거나 존재하지 않을 수 있다.
온도 변화로 인해 재료들이 동적으로 변하는 것으로 인해, 중립 또는 평탄한 온도(바이모프가 평탄한 상태에 있는 온도)가 재료 및 제조 공정에 따라 제어하기가 어려울 수 있기 때문에 바이모프 제조가 어려울 수 있다. 예를 들어, 재료의 열 용접은 용접부의 온도에서 평탄한 온도를 초래할 수 있고, 이는 일부 실시예에서는 바람직하지 않을 수 있다. 따라서, 일부 실시예에서, 파형 표면 패턴(1001)을 갖는 롤러(1000)(도 10, 도 11)의 사용은 리본, 스트립 또는 시트를 라미네이팅하기에 바람직할 수 있고, 재료가 냉각될 때, 재료가 평탄해져서 원하는 중립 또는 평탄한 온도를 제공하도 재료에 만곡 또는 구부러짐을 갖는 제조 방식을 제공할 수 있다.
따라서, 바이모프를 건축하거나 또는 처리하는 레벨에서, 스트립, 리본, 천공된 시트, 관통된 시트, 텍스타일 등을 롤-대-롤 처리하거나 또는 라미네이션하도록 형성된 또는 패턴화된 롤러(1000)를 사용하는 것이 바이모프, 바이모프 시트 또는 이층 구조물의 평탄한 또는 중립 온도를 제어하는데 바람직할 수 있다. 추가적으로, 일부 실시예에서, 천공된 시트 또는 관통된 시트를 사용하면, 중합체 박막 등의 바람직한 배향 방향들이 바이모프(100) 또는 시트의 임계 치수(critical dimension)에서 정렬되어 있는 바이모프(100) 또는 바이모프 시트를 롤-투-롤 처리할 수 있다. 이러한 방향은 이방성 특성(예를 들어, CTE, 모듈러스, 강도 등)으로 인해 바람직할 수 있다. 이러한 바이모프 시트는 또한 제1 및 제2 재료(110, 120)의 열 용접 또는 접착 동안 제어된 온도, 장력, 곡률 및 압력 접촉 면적을 통해 평탄한 온도 또는 중립 온도를 갖도록 설정될 수 있다.
도 11은 대향하는 파동 표면(1001)을 각각 갖는 상부 롤러 및 하부 롤러(1000A, 1000B)에 의해 생성된 바이모프(100E)를 도시한다. 이 예에서, 바이모프(100E)는 바이모프(100E)의 상부 측에 대해 오목 부분(1010) 및 볼록 부분(1015)을 포함하는 제2 재료(120)를 포함한다. 바이모프(100E)의 상부 측에 제1 재료(110)는 제2 재료(120)의 오목 부분(1010)에 배치된다.
도 11의 예에서, 상부 롤러 및 하부 롤러(1000A, 1000B)는, 바이모프(100E)에서 오목 부분 및 볼록 부분(1010, 1015)을 생성할 수 있고 및/또는 제1 및 제2 재료(110, 120)를 결합시킬 수 있는 열 및/또는 압력을 제공할 수 있다.
열 팽창 계수(CTE)의 차이는 바이모프(100)의 움직임 범위 또는 편향 범위를 나타낼 수 있는 용어이다. 일부 재료에서 ΔCTE 항은 100-200 ㎛/m/K일 수 있으며, 이는 일부 실시예에서는 바람직하지 않을 수 있다. 따라서, 바이모프의 다양한 실시예는 일부 실시예에서 1000 ㎛/m/K 이상의 유효 CTE 값을 가질 수 있는 고도로 꼬인 중합체 코일형 액추에이터(1210)(예를 들어, 도 12a, 도 12b, 도 13a, 도 13b 등)를 포함할 수 있다. 이러한 CTE 값은 바람직한 편향 또는 굽힘 특성을 갖는 바이모프 및 이층 구조물에서 사용될 수 있다. 특히 큰 CTE 값을 갖는 임의의 재료는 단지 꼬인 중합체 코일형 액추에이터가 아니라 이러한 방식으로 사용될 수 있다.
다양한 실시예에서, 코일형 액추에이터(1210)는 열 반응 인장 액추에이터(직선 운동) 및/또는 비틀림 액추에이터(회전 운동)로서 기능할 수 있다. 추가적인 실시예에서, 상보적인 재료의 사용을 통해, 본 명세서에 설명된 구조물은 코일형 액추에이터(1210)의 직선 운동을 직교 방향으로의 운동으로 변환시킨다. 이러한 실시예는 저온에 노출시 두꺼워지는 의복 및 다른 물품을 포함할 수 있는 열 반응성 원사, 충전재, 펠트, 직물 등에 사용하기에 바람직할 수 있다.
다양한 실시예에서, 2개의 쌍을 이루는 재료들의 CTE 값들 사이의 차이가 큰 재료를 쌍을 이루게 하는 것이 바람직할 수 있다. 따라서, 큰 CTE 값들을 갖는 코일형 액추에이터(1210)는 바이모프(100)에 사용하고 바이모프(100)를 포함하는 구조물에 사용하기에 바람직할 수 있다. 일부 실시예에서, 코일형 액추에이터(1210)는 양의 CTE 특성(예를 들어, 온도 증가에 따라 팽창하는 특성, 꼬인 방향 및 코일 방향이 반대인 헤테로-키랄 코일), 또는 큰 음의 CTE 특성(예를 들어, 온도 증가에 따라 수축하는 특성, 꼬인 방향 및 코일 방향이 동일한 호모-키랄 코일)을 가질 수 있다. 다양한 실시예에서 그리고 본 명세서에서 설명된 바와 같이, 동일한 필라멘트 재료를 포함하는 대향하는 코일형 액추에이터(1210)들을 함께 쌍을 이루게 하는 것이 더 큰 ΔCTE를 생성할 수 있다.
다양한 실시예에서, 바이모프(100)는, 온도 변화로 인한 액추에이터의 선형 변위가 바이모프(100)가 평면 외 또는 직교 편향을 유도하여 바이모프(100)의 높이 또는 두께의 효과적인 변화를 초래하는 꼬인 코일형 액추에이터(1220)를 포함할 수 있다.
도 12a 및 도 12b는 제1 및 제2 단부(1230, 1240)에서 결합된 코일형 액추에이터(1210) 및 필라멘트(1220)를 포함하는 예시적인 바이모프(100F)를 도시한다. 코일형 액추에이터(1210) 및 필라멘트(1220)는 제1 및 제2 단부(1230, 1240)에서만 결합될 수 있고 및/또는 길이의 일부를 따라 결합될 수 있다.
다양한 실시예에서, 코일형 액추에이터(1210)는 온도 변화에 반응하여 길이 방향으로 팽창 또는 수축할 수 있다. 예를 들어, 코일형 액추에이터(1210)는 냉각시 수축(헤테로-키랄 섬유 액추에이터, 꼬인 방향 및 코일 방향이 반대임)하거나 또는 냉각시 팽창(호모-키랄 섬유 액추에이터, 꼬인 방향 및 코일 방향이 동일함)할 수 있다. 다양한 실시예에서, 필라멘트(1220)는 팽창하거나, 수축하거나 또는 길이 방향으로 실질적인 변화를 나타내지 않을 수 있다.
도 12a는 좌측의 제1 온도의 평탄한 형태, 및 온도 변화에 의해 야기된, 우측의 제1 수축된 형태의 바이모프(100F)를 도시한다. 도 12b는, 좌측의 제1 온도에서의 평탄한 형태, 및 도 12a에 도시된 온도 변화와 반대의 온도 변화에 의해 야기된, 우측의 제2 수축된 형태의 도 12a의 바이모프(100F)를 도시한다. 예를 들어, 도 12a는 음의 온도 변화에 기초한 형태의 변화를 나타낼 수 있고, 도 12b는 양의 온도 변화에 기초한 형태의 변화를 나타낼 수 있다.
다양한 실시예에서, 코일형 액추에이터(1210) 및 필라멘트(1220)는 도 12a 및 도 12b의 예시적인 실시예에 도시된 바와 같이 구부러지도록 구성될 수 있고 여기서 코일형 액추에이터(1210) 및 필라멘트(1220)의 길이는 구부러진 형태 및 직선 형태 모두에서 접해 있다. 추가적인 실시예에서, 코일형 액추에이터(1210) 및 필라멘트(1220)는 상이한 방식으로 구부러지도록 구성될 수 있고, 코일형 액추에이터(1210) 및 필라멘트(1220)는 평탄한 형태 및/또는 구부러진 형태에서 인접하지 않을 수 있다.
예를 들어, 도 13a는 코일형 액추에이터(1210) 및 필라멘트(1320)를 갖는 바이모프(100G)의 예시적인 실시예를 도시하고, 여기서 바이모프(100)가 평탄한 형태(좌측) 및 구부러진 형태(오른쪽)에 있을 때 코일형 액추에이터(1210)는 선형 형태를 유지하고 있다. 이러한 예에서, 코일형 액추에이터(1210)는 온도 변화로 인해 수축하고 이에 의해 필라멘트(1320)는 코일형 액추에이터(1210)로부터 멀어지는 방향으로 구부러진 것으로 도시된다.
유사하게, 도 13b는 제1 및 제2 필라멘트(1320A, 1320B) 사이에 코일형 액추에이터(1210)를 갖는 제1 및 제2 필라멘트(1320A, 1320B)를 포함하는 바이모프(100H)를 도시한다. 이러한 예에서, 바이모프(100H)는 온도 변화로 인해 수축하고 이에 의해 필라멘트(1320A, 1320B)는 선형 형태를 유지하는 코일형 액추에이터(1210)로부터 멀어지는 방향으로 구부러지진 것으로 도시된다.
도 14a 및 도 14b는 제1 및 제2 단부(1230, 1240)에서 결합된 제1 및 제2 코일형 액추에이터(1210A, 1210B)를 포함하는 예시적인 바이모프(100I, 100J)를 도시한다. 일부 실시예에서, 코일형 액추에이터(1210A, 1210B)는 그 길이의 일부를 따라 결합될 수 있다. 도 14a는 코일형 액추에이터(1210A, 1210B)가 반대되는 열 반응을 갖고 평탄한 형태(좌측) 및 구부러진 형태(우측)에서 인접하게 유지되는 예시적인 실시예를 도시한다. 이와 달리, 도 14b는 코일형 액추에이터(1210A, 1210B)가 평탄한 형태(좌측)에 인접하고 구부러진 형태(우측)에서는 분리될 수 있는 예시적인 실시예를 도시한다.
도 15는 코일형 액추에이터(1210) 및 필라멘트(1220)를 갖는 바이모프(100K)의 예시적인 실시예를 도시하고, 여기서 바이모프(100)가 평탄한 형태(좌측) 및 구부러진 형태(우측)에 있을 때 필라멘트(1220)는 선형 형태를 유지하고 있다. 이러한 예에서, 코일형 액추에이터(1210)는 온도 변화로 인해 팽창하고 이에 의해 코일형 액추에이터(1210)는 필라멘트(1220)로부터 멀어지는 방향으로 구부러진 것으로 도시된다.
다양한 실시예에서, 하나 이상의 강성의 카운터 필라멘트(1220)와 결합된 하나 이상의 꼬인 코일형 액추에이터(1210)는 움직일 수 없는 구조물로서 작용하여, 팽창하는 코일(1210)은 이 코일형 액추에이터에 대해 직교 방향으로 변위되면서 그 유효 두께를 여전히 변화시키는 선형 팽창은 최소로 갖는 구조물을 생성할 수 있다. 도 15는 이러한 구조물의 일례를 도시한다.
바람직한 유효 CTE 값들에 더하여, 코일형 액추에이터(1210)는 본 명세서에 논의된 바와 같이 시트 구조물에 이용 가능하지 않은 기계적 연결 루트 및 동일한 길이의 재료로부터 양 및 음의 CTE 코일을 생성하는 장점과 같은 일부 처리 또는 제조 장점을 제공할 수 있다. 코일형 액추에이터(1210)의 유효 CTE 값들은 재료 길이가 맨드럴 둘레에 감길 때 코일형 액추에이터(1210)에 대한 스프링 상수가 커질 때 최대화되어, 코일의 중심에 개방된 공간을 남길 수 있다. 코일형 액추에이터(1210)는 또한 이러한 구조물에 존재할 수 있는 다공성, 밀도 및 통기성 등으로 인해 바람직할 수 있다.
도 16은, 반대 방식으로 온도 변화에 반응할 수 있는 교번하는 헤테로-키랄 및 호모-키랄 구역(1610, 1620)을 갖는 코일형 액추에이터(1210)를 생산하는 이중 맨드럴 구조물(1600)을 도시하고 이에 의해 측방향 왜곡 용량 및 유효 두께의 변화를 유지하면서 최소 선형 왜곡을 갖는 코일형 액추에이터(1210)를 생성할 수 있다. 구조물(1600)은 코일형 액추에이터(1210)가 각각의 맨드럴(1610A, 1610B.1) 주위에 반대 방향으로 감겨 있는 제1 및 제2 맨드럴(1610A, 1610B)을 포함하는 것으로 도시된다.
동일한 섬유 액추에이터 내에서 교번하는 헤테로-키랄 및 호모-키랄 구역은 또한 두 단부를 장력 하에 유지하면서 그 중심에 있는 섬유를 강하게 꼬는 것에 의해, 반대 방향의 꼬임을 갖는 섬유의 구획들을 생성함으로써 생산될 수 있다. 이후 이 섬유를 단일 맨드럴 주위에 감는 것에 의해 최종 코일은 헤테로-키랄 및 호모-키랄 영역을 모두 가져서, 수축 세그먼트와 팽창 세그먼트가 교번하는 일정 길이의 재료를 생성한다.
다양한 실시예에서, 큰 편향 및 작은 선형 왜곡을 갖는 재료는 원사 내에 (또는 독립형 요소로서) 동일한 소섬유(fibril) 내에 수축 세그먼트와 팽창 세그먼트가 교번하는 것을 통해 생산될 수 있다. 예를 들어, 도 16에 도시된 코일형 액추에이터(1600)는 직물, 원사 또는 다른 재료에 포함될 수 있다. 대안적으로, 일부는 팽창하고 일부는 수축하는 스테이플 섬유를 사용하면 선형 왜곡이 작은 재료를 생성할 수 있다.
다양한 실시예에서, 코일형 액추에이터(1210)는, 본 명세서에서 보다 상세히 설명된 바와 같이, 바이모프 시트 구조물을 생성하기 위해 직물 또는 박막을 통해 직조되거나 또는 스티칭되어, 큰 유효 ΔCTE 값들 및 대응하는 큰 편향을 생성 수 있다. 추가적인 실시예에서, 코일형 액추에이터(1210)는 시트에 스티칭되거나 접합되어 바이모프 시트를 생성할 수 있다. 일부 실시예에서, (예를 들어, 도 16에 도시된 바와 같이) 반대 방향의 키랄성(chirality)의 교번하는 팽창 세그먼트 및 수축 세그먼트를 갖는 교번하는 코일 세그먼트들을 갖는 코일형 액추에이터(1600)는 시트 또는 직물의 표면에 스티칭되거나 접합될 수 있다. 교번하는-키랄성 코일형 액추에이터(1600) 내 양 및 음의 열 반응 구역으로 인해 온도가 변함에 따라 시트 또는 리본이 정현파 프로파일을 취하는 시트 구조물이 형성될 수 있다. 교번하는-키랄성 코일형 액추에이터(1600)의 실시예는 다양한 분야에서 응용될 수 있다. 예를 들어, 다양한 실시예가 교번하는 키랄성 코일을 전통적인 로크 스티치(lockstitch)에 사용하여 직물의 표면에 양 및 음의 CTE 영역들을 교대로 형성하여 온도 변화에 따라 직물에 파형을 유도할 수 있는 열 적응성 의복을 제조하도록 구성될 수 있다. 일부 실시예에서, 로크 스티치 내의 제2 원사 또는 섬유는 큰 CTE 또는 꼬인 코일 액추에이터 재료일 필요는 없다.
일부 실시예에서, 복수의 코일형 액추에이터(1210)는 나란히 배치되고 직조되거나 또는 함께 스티칭되어 하나의 방향으로 바람직한 CTE를 갖는 시트 또는 층을 생성할 수 있다. 또 다른 실시예에서, 상이한 CTE를 갖는 이러한 시트들(예를 들어, 큰 양의 CTE를 갖는 시트 및 큰 음의 CTE를 갖는 시트)은 열 팽창의 바람직한 차이 및 바람직한 곡률 반경을 갖는 평탄한 바이모프 시트를 생성하도록 쌍을 이루게 형성될 수 있다.
추가적인 실시예에서, 코일형 액추에이터(1210)는 박막, 멤브레인 또는 직물 상에 스티칭되어, 이러한 박막, 멤브레인 또는 직물에 열적으로 반응하는 성질을 부여할 수 있다. 따라서, 다양한 실시예는 선택된 재료를 절연 재료 또는 직물과 더 깊이 통합시킬 필요성을 제거할 수 있다. 이러한 실시예에서 열 감응 재료는 추가적으로 직조물의 일부일 수 있거나, 이 재료는 절연물의 기초 몸체일 수 있거나, 이 재료는 기재일 수 있거나, 또는 이 재료는 접착제 또는 열 접합을 통해 다른 재료에 접착될 수 있다.
추가적인 실시예에서, 합이 제로(net-zero)인 CTE 재료들은 양 및 음의 CTE 구역들의 합의 전체 변화량이 0이 되도록 이러한 교번하는-키랄성 코일형 액추에이터(1600)로 구성될 수 있다.
추가적으로, 코일형 액추에이터(1210)는 거위털(goose down)의 것과 유사한 분지형 구조물을 생성하는데 사용될 수 있다. 예를 들어, 일부 실시예에서, 감는 공정 동안 얇은 섬유 층을 통해 꼬인 섬유를 드래그(drag)함으로써, 얇은 섬유가 코일 내에 캡처되거나 포획될 수 있어, 가변 절연물의 더 큰 맥락에서 양호한 절연성, 촉각적 및 구조적 특성을 갖는 분지형 구조물을 형성할 수 있다.
코일형 액추에이터(1210)는 선형 또는 비틀림 액추에이터로서 기능할 수 있다. 본 명세서에서 논의된 다양한 실시예에서, 2개의 상이한 재료를 쌍을 이루게 하면 평면 외 또는 직교 운동이 발생할 수 있다. 일부 실시예에서, 상이한 CTE 특성들을 갖는 꼬인 코일들을 상반적으로 쌍을 이루게 하는 직조된 또는 편조된 구조물은 열 반응성 바이모프(100)를 포함할 수 있다. 일부 실시예에서, 복수의 재료는 다양한 적절한 방법으로 함께 직조되어 온도에 반응하여 변하는 직조된 전체 물리적 구조물을 생성할 수 있다. 이러한 직조된 구조물은, 온도에 반응하여 형태 또는 길이가 변하는, 코일형 액추에이터(1210) 또는 다른 적절한 재료 또는 구조물을 포함할 수 있다.
다양한 실시예에서, 직조된 또는 편조된 구조물은, 전체 움직임이 응집되어, 열 적응성 재료에 바람직할 수 있는, 이종(disparate) 섬유 군이 랜덤하게 개별적으로 꼬인 것에 의해 특징지어지지 않도록 섬유를 정렬시키고 그 편향 또는 유효 두께의 변화를 최대화시킴으로써 제약으로서 작용할 수 있다.
추가적인 실시예에서, 온도 감응성 구조물은 활성 재료가 작용하는 섬유, 원사 또는 직물과 같은 비-적응성 제약 조건을 포함할 수 있으며, 여기서 비-적응성 재료는 선형, 직선형 또는 평탄한 상태로 유지되고, 활성 재료는 팽창으로 인해 상승되고 또는 활성 재료는 선형, 직선형 또는 평탄한 상태로 유지되고, 비-적응성 재료는 활성 재료의 수축으로 인해 상승된다. 직조, 편조 또는 접착제의 사용을 통한 적절한 제약 조건은 이러한 구조물에서 원하는 온도 반응을 생성할 수 있다. 일부 실시예에서, 재료의 움직임 범위를 제한하는 제약 조건을 사용하는 것이 유리할 수 있다.
추가적으로, 본 명세서에서 논의된 바와 같이, 바이모프(100)를 생성하는데 사용되는 재료는 습도 및/또는 액체에의 노출(예를 들어, 액체에 의한 포화)을 포함하는 하나 이상의 적절한 환경 조건에 반응할 수 있다. 예를 들어, 일부 실시예에서는, 의복 내 적응성 절연물이 온도 변화 및 (예를 들어, 사용자의 습도 및/또는 땀에 기초하여) 수분 변화에 모두 반응하는 것이 바람직할 수 있다. 따라서, 다양한 바이모프 구조물에서의 수분 감응성 중합체 및 다른 적절한 재료의 사용은 온도 및 수분에 모두 반응하는 것으로 구성될 수 있다. 이러한 재료는 주로 수분 또는 화학적 자극에 반응할 수 있다.
도 17은 열 적응성 직조 구조물(1700)의 일 예시적인 실시예를 도시한다. 이 예에서 구조물(1700)은, 상이한 열 팽창 특성들을 갖는 섬유를 구속하여 기하학적 변화가 직물의 평면 내에 있지 않고 대신 이에 수직이어서 직물의 두께가 효과적으로 변하는, 열 반응성 텍스타일을 생성하도록 구성될 수 있다.
상이한 열 팽창 계수들을 가질 수 있는 제1 및 제2 섬유(1710, 1720)를 포함하는 구조물(1700)이 도시되어 있다. 보다 구체적으로는, 제1 섬유(1710)는 평행하게 이어지는 제2 섬유(1720)에 대해 상이한 열 팽창 계수를 가질 수 있으며, 이는 교번하는 바이모프 구조물을 생성할 수 있다. 상부 및 하부 교차 섬유(또는 원사)(1730, 1740)는, 구조물(1700)의 형상을 유지하고 및/또는 제1 및 제2 섬유(1710, 1720)를 구속하는 것을 돕는다. 교차 섬유(1730, 1740)는 일부 실시예에 따라 온도 변화에 반응하여 형상과 길이가 변할 수도 있고 또는 변하지 않을 수도 있다. 다양한 실시예에서, 구조물(1700)은 도 2 및 도 3에서와 같이 교번하는 바이모프 구조물로서 거동하고, 온도 변화시, 평행한 및 반대 방향의 제1 및 제2 섬유(1710, 1720)의 길이를 따라 상이한 팽창 또는 수축이 유도되므로 파형 구조물(예를 들어, 주름진 시트와 같은 것)을 취할 수 있다. 교차로 이어지는 섬유들은 임의의 특별한 열 특성을 가질 필요는 없으나, 외부 자극에 반응하여 전체 기하학적 왜곡을 주로 나타내는 평행한 및 반대 방향의 섬유들을 구속하는 역할을 하는 것이 중요하다.
도 18a 및 도 18b는 온도의 증가에 반응하여 상승을 나타내는 파우치 또는 퀼팅에서 열적으로 반응하는 직조 구조물(1800)을 도시한다. 도 18a는 약 25 ℃에서의 구조물을 도시하고, 도 18b는 약 65 ℃에서의 구조물을 도시한다. 이 예에서, 가열은 구조물(1800)의 상승을 생성하지만, 추가적인 실시예에서, 본 명세서에서 논의된 바와 같이 구조물(1800)은 온도의 감소에 반응하여 상승하도록 구성될 수 있다.
도 19a 및 도 19b는 온도의 감소에 반응하여 상승을 나타내는 열 반응성 직조 구조물을 도시한다. 도 19a는 30 ℃에서 실질적으로 평탄한 텍스타일 구조물을 도시하고, 도 19b는 7 ℃에서 상승된 구조물을 도시한다.
본 명세서에 설명된 직조 또는 편조 구조물의 실시예는 기존 인프라 구조 및 제조 방법을 이용할 수 있기 때문에 유리할 수 있다. 추가적인 실시예는 바람직하게는, 중량을 추가하거나, 물리적 왜곡을 유도하거나, 또는 일부 실시예의 재료의 특성을 변화시킬 수 있는 접착제 및/또는 열 접합 기술의 사용을 회피할 수 있다. 추가적으로, 본 명세서에서 논의된 직조 또는 편조 구조물의 실시예는 또한 수분 관리를 위한 위킹을 위한 섬유, 내마모성을 위한 섬유, 터치 또는 촉감을 위한 섬유 등과 같은 적응성 텍스타일에 장점을 제공할 수 있는 추가적인 파트너 섬유의 도입을 허용할 수 있다.
설명된 실시예는 다양한 수정 및 대안적인 형태가 가능하며, 그 특정 예는 도면에 예로서 도시되고 본 명세서에서 상세히 설명된다. 그러나, 설명된 실시예는 개시된 특정 형태 또는 방법으로 제한되지 않고, 반대로, 본 발명은 모든 수정, 등가물 및 대안을 포함하는 것으로 이해되어야 한다.

Claims (20)

  1. 사용자의 신체 상에 착용되어 상기 신체를 둘러싸도록 구성된 열 적응성 의복(thermally adaptive garment)으로서, 상기 열 적응성 의복은,
    열 적응성 직물(fabric)에 의해 형성된 의복 몸체를 포함하되, 상기 열 적응성 직물은,
    착용하는 사용자의 상기 신체를 향하도록 구성된 내부 면;
    상기 착용하는 사용자의 외부 환경을 향하도록 구성된 외부 면;
    상기 외부 면의 적어도 일부를 형성하는 제1 직물 층;
    상기 내부 면의 적어도 일부를 형성하고 하나 이상의 결합 솔기(coupling seam)에서 상기 제1 직물 층에 결합된 제2 직물 층; 및
    상기 제1 및 제2 직물 층 및 상기 하나 이상의 결합 솔기에 의해 획정되고 상기 제1 및 제2 직물 층 및 상기 하나 이상의 결합 솔기 내에 배치된 복수의 공동(cavity)을 포함하고;
    상기 제1 직물 층은, 제1 환경 온도 범위에 반응하여, 상기 제1 직물 층이 제1 평균 거리만큼 상기 제2 직물 층으로부터 분리된 상태에 있는 기본 형태(base configuration)를 취하도록 구성되며;
    상기 제1 직물 층은, 상기 제1 환경 온도 범위와는 상이한 제2 환경 온도 범위에 반응하여, 상기 제1 직물 층이 상기 제2 직물 층으로부터 상기 제1 평균 거리보다 더 큰 제2 평균 거리만큼 분리된 상태에 있는 상승된 형태(lofted configuration)를 취하도록 구성된, 열 적응성 의복.
  2. 제1항에 있어서, 상기 제1 층과 상기 제2 층 사이의 상기 평균 거리는, 상기 환경 온도가 상기 제1 환경 온도 범위와의 차이가 증가함에 따라, 상기 제2 온도 범위 내의 온도에 반응하여 증가하는, 열 적응성 의복.
  3. 제2항에 있어서, 상기 의복 몸체는, 상기 제2 환경 온도 범위에 인접하고 상기 제1 환경 온도 범위와는 상이한 제3 환경 온도 범위를 기계적으로 한정하고, 상기 제1 층과 상기 제2 층 사이의 증가하는 상기 평균 거리는 상기 의복 몸체의 물리적 형태에 의한 최대 거리에 구속(constrained)되는, 열 적응성 의복.
  4. 제1항에 있어서, 상기 제2 환경 온도 범위의 온도는 상기 제1 환경 온도 범위의 온도보다 더 낮은, 열 적응성 의복.
  5. 제1항에 있어서, 상기 제1 직물 층은 제1 길이를 획정하는 제1 재료를 포함하고, 상기 제1 재료는 제1 열 팽창 계수에 따라 상기 제2 환경 온도 범위 내의 온도 변화에 반응하여 상기 제1 길이를 따라 점점 팽창하도록 구성된, 열 적응성 의복.
  6. 제5항에 있어서, 상기 제1 직물 층은 상기 제1 길이와 평행한 제2 길이를 획정하는 제2 재료를 포함하고, 상기 제2 재료는 상기 제1 열 팽창 계수와는 상이한 제2 열 팽창 계수에 따라 상기 제2 환경 온도 범위 내의 온도 변화에 반응하여 상기 제2 길이를 따라 점점 팽창하도록 구성된, 열 적응성 의복.
  7. 제6항에 있어서, 상기 제1 재료 및 상기 제2 재료는 실질적으로 평면이고 결합 평면을 따라 함께 결합되는, 열 적응성 의복.
  8. 제6항에 있어서, 상기 제1 재료 및 상기 제2 재료는 상기 제1 길이 및 상기 제2 길이에 수직인 각각의 제1 폭 및 제2 폭을 형성하고, 상기 제1 폭 및 상기 제2 폭은 상기 제2 환경 온도 범위 내의 온도 변화에 반응하여 실질적으로 동일하게 유지되는, 열 적응성 의복.
  9. 열 적응성 직물로서,
    제1 길이를 획정하는 직물 층으로서, 제1 온도 범위에 반응하여 평탄한 기본 형태를 취하고, 제2 온도 범위에 반응하여, 상기 기본 형태에 비해, 상기 직물 층이 상기 제1 길이를 따라 컬링(curled)된 상태에 있는 상승된 형태를 취하도록 구성된, 상기 직물 층을 포함하되, 상기 직물 층은,
    제2 길이를 획정하고 제1 열 팽창 계수를 갖는 제1 재료로서, 상기 제2 환경 온도 범위 내의 온도 변화에 반응하여 상기 제2 길이를 따라 길이가 점차로 변하도록 구성된, 상기 제1 재료, 및
    제3 길이를 획정하고 상기 제1 열 팽창 계수와는 상이한 제2 열 팽창 계수를 갖는 제2 재료를 포함하는, 열 적응성 직물.
  10. 제9항에 있어서, 상기 제1 재료는 온도 변화에 반대 방식으로 각각 반응하도록 구성된 교번하는 헤테로-키랄(hetero-chiral) 부분 및 호모-키랄(homo-chiral) 부분을 포함하는 적어도 하나의 코일형 액추에이터(coiled actuator)를 포함하는, 열 적응성 직물.
  11. 제9항에 있어서, 상기 제1 직물 층은 10℃의 온도 변화에 반응하여 5% 이하의 면적 변화를 나타내도록 구성된, 열 적응성 직물.
  12. 제9항에 있어서, 상기 제1 재료 및 상기 제2 재료는 복수의 상호 직조된(interwoven) 각각의 제1 섬유 및 제2 섬유를 형성하는, 열 적응성 직물.
  13. 제9항에 있어서, 상기 제1 재료는 상기 제1 길이를 따라 수축 또는 팽창하도록 구성된 열 적응성 코일을 포함하는, 열 적응성 직물.
  14. 제9항에 있어서, 상기 제1 재료는 평면 시트(planar sheet)를 포함하는, 열 적응성 직물.
  15. 적응성 시트로서,
    제1 길이를 획정하는 층을 포함하되, 제1 층은, 제1 환경 조건에 반응하여 기본 형태를 취하고, 제2 환경 조건에 반응하여, 상기 기본 형태에 비해, 상기 제1 층이 상기 제1 길이를 따라 컬링된 상태에 있는 상승된 형태를 취하도록 구성되고, 상기 제1 층은,
    제2 길이를 획정하고 제1 팽창 계수를 갖는 제1 재료로서, 상기 제1 재료는 상기 제2 환경 조건에 반응하여 상기 제2 길이를 따라 길이가 변하도록 구성된, 상기 제1 재료, 및
    제3 길이를 획정하고 상기 제1 팽창 계수와는 상이한 제2 팽창 계수를 갖는 제2 재료를 포함하는, 적응성 시트.
  16. 제15항에 있어서, 상기 제1 환경 조건은 제1 온도 범위를 포함하고, 상기 제2 환경 조건은, 상기 제1 온도 범위와는 상이하고 상기 제1 온도 범위보다 더 낮은 온도를 포함하는 제2 온도 범위를 포함하는, 적응성 시트.
  17. 제15항에 있어서, 상기 제1 환경 조건은 제1 수분 범위를 포함하고, 상기 제2 환경 조건은 상기 제1 수분 범위와는 상이한 제2 수분 범위를 포함하는, 적응성 시트.
  18. 제15항에 있어서, 상기 제1 직물 층은 적어도 제1 방향으로 배치된 제1 복수의 와이어(wire)를 포함하고, 상기 제2 직물 층은 상기 제1 방향과 평행하지 않은 적어도 제2 방향으로 배치된 제2 복수의 와이어를 포함하고, 상기 제1 및 제2 복수의 와이어는, 분리된 형태에서 상기 제1 및 제2 복수의 와이어의 반사율 및 흡수율 특성과는 상이한 적외선 반사율 및 흡수율 특성을 갖는 와이어 메쉬(wire mesh)를 형성하도록 상기 기본 형태에서 결합하도록 구성된, 열 적응성 직물.
  19. 제15항에 있어서, 적응성인 상기 제1 및 제2 재료는 직조된 직물(woven fabric)의 일부를 형성하는, 적응성 시트.
  20. 제15항에 있어서, 적응성인 상기 제1 및 제2 재료는 편조된 직물(knit fabric)의 일부를 형성하는, 적응성 시트.
KR1020177036923A 2015-05-21 2016-05-20 열 적응성 재료를 위한 시스템 및 방법 KR102409006B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562164740P 2015-05-21 2015-05-21
US62/164,740 2015-05-21
US201562257126P 2015-11-18 2015-11-18
US62/257,126 2015-11-18
PCT/US2016/033545 WO2016187547A1 (en) 2015-05-21 2016-05-20 System and method for thermally adaptive materials

Publications (2)

Publication Number Publication Date
KR20180022689A true KR20180022689A (ko) 2018-03-06
KR102409006B1 KR102409006B1 (ko) 2022-06-15

Family

ID=57320918

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177036923A KR102409006B1 (ko) 2015-05-21 2016-05-20 열 적응성 재료를 위한 시스템 및 방법

Country Status (7)

Country Link
US (3) US10793981B2 (ko)
EP (1) EP3297471A4 (ko)
JP (1) JP7020919B2 (ko)
KR (1) KR102409006B1 (ko)
CN (1) CN108135296B (ko)
CA (1) CA2986043A1 (ko)
WO (1) WO2016187547A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015084422A1 (en) 2013-12-05 2015-06-11 Massachusetts Institute Of Technology Object of additive manufacture with encoded predicted shape change
WO2016187598A1 (en) 2015-05-20 2016-11-24 Other Lab, Llc Membrane heat exchanger system and method
JP7020919B2 (ja) 2015-05-21 2022-02-16 アザー ラブ リミテッド ライアビリティ カンパニー 熱適応性材料のためのシステム及び方法
CN109154282B (zh) * 2016-03-21 2021-03-19 得克萨斯州大学系统董事会 含有聚合物纤维肌肉的致动纺织品
US11052597B2 (en) 2016-05-16 2021-07-06 Massachusetts Institute Of Technology Additive manufacturing of viscoelastic materials
US10258895B2 (en) 2016-09-13 2019-04-16 Universal City Studios Llc Systems and methods for incorporating pneumatic robotic systems into inflatable objects
EP3551132A1 (en) * 2016-12-08 2019-10-16 Lintec Of America, Inc. Improvements in artificial muscle actuators
US10633772B2 (en) 2017-01-12 2020-04-28 Massachusetts Institute Of Technology Active woven materials
US10549505B2 (en) 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
JP2020512943A (ja) 2017-04-04 2020-04-30 マサチューセッツ インスティテュート オブ テクノロジー ゲル支持環境における付加製造
US10793979B2 (en) * 2017-04-10 2020-10-06 Other Lab, Llc Coiled actuator system and method
US11280031B2 (en) 2017-07-14 2022-03-22 Regents Of The University Of Minnesota Active knit compression garments, devices and related methods
US20190269188A1 (en) * 2018-03-05 2019-09-05 Other Lab, Llc Thermally adaptive fabrics and methods of making same
US11889877B2 (en) * 2018-05-31 2024-02-06 Nike, Inc. Garment with adaptive ventilation
US11122846B2 (en) * 2018-10-25 2021-09-21 Cornell University Breathable fabrics with smart pores
CN113301819A (zh) * 2019-01-24 2021-08-24 美山有限公司 含填充棉防寒物品
US20220338577A1 (en) * 2019-09-13 2022-10-27 Regents Of The University Of Minnesota Topographically conforming garments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184238A1 (en) * 2006-02-06 2007-08-09 Energy Related Devices, Inc. Laminate actuators and valves
JP2011510180A (ja) * 2008-01-03 2011-03-31 ザ・ボーイング・カンパニー 断熱材料及びその形成に関連する方法
US20130078415A1 (en) * 2006-06-09 2013-03-28 Mmi-Ipco, Llc Temperature Responsive Smart Textile
WO2014138049A2 (en) * 2013-03-04 2014-09-12 Syracuse University Reversible shape memory polymers exhibiting ambient actuation triggering

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2387320A (en) 1944-08-05 1945-10-23 Us Rubber Co Highly stretchable yarn
US3429758A (en) 1966-01-24 1969-02-25 Edwin C Young Method of making filament wound structural columns
US3451305A (en) 1967-03-28 1969-06-24 Berkley & Co Inc Braided steel leader construction
US3600259A (en) 1969-01-14 1971-08-17 Johnson & Johnson Heat fusible backing fabrics and laminated fabrics made therefrom
US3607591A (en) 1969-04-22 1971-09-21 Stevens & Co Inc J P Temperature adaptable fabrics
SE453860B (sv) 1984-12-17 1988-03-07 Komatsu Mfg Co Ltd Flexibel manovreringsanordning av korrugerad tryckslang
US5127783A (en) 1989-05-25 1992-07-07 The B.F. Goodrich Company Carbon/carbon composite fasteners
US5150476A (en) 1991-03-22 1992-09-29 Southern Mills, Inc. Insulating fabric and method of producing same
GB9106317D0 (en) 1991-03-25 1991-05-08 Nat Res Dev Material having a passage therethrough
US5212258A (en) 1991-10-29 1993-05-18 E. I Du Pont De Nemours And Company Aramid block copolymers
JPH0711535A (ja) 1993-06-21 1995-01-13 Takamura Seni Kk 潜在的伸縮性を具えた柔軟な複合糸及びそれを用いた伸縮性刺繍物の製造方法
US5628172A (en) 1994-08-31 1997-05-13 Nathaniel H. Kolmes Composite yarns for protective garments
GB2312644B (en) * 1996-05-02 2000-07-26 Secr Defence Brit Thermally insulating textile
WO1999005926A1 (en) * 1997-08-01 1999-02-11 Gore Enterprise Holdings, Inc. Adaptive thermal insulation material
US6458231B1 (en) 1999-03-17 2002-10-01 The United States Of America As Represented By The Secretary Of The Air Force Method of making microtubes with axially variable geometries
US6770579B1 (en) 1999-05-10 2004-08-03 The Secretary Of State For Defense Smart porous film or material
JP3190314B2 (ja) 1999-05-19 2001-07-23 福島県 絹加工糸、その製造方法および絹織物の製造方法
DE19923575C1 (de) 1999-05-21 2001-03-22 Deotexis Inc Flächiges Textilmaterial
GB0100560D0 (en) 2001-01-09 2001-02-21 Lamination Technologies Ltd Clothing
US20020190451A1 (en) 2001-06-01 2002-12-19 The University Of Akron Fiber-reinforced composite springs
US6964288B2 (en) 2001-07-06 2005-11-15 Ksaria Corporation Apparatus and method for automated preparation of an optical fiber
FR2831771B1 (fr) 2001-11-07 2004-08-27 Kermel Materiau complexe multicouches en feuille utilisable pour la realisation de vetements de protection notamment pour sapeurs-pompiers
JP4130122B2 (ja) 2002-12-18 2008-08-06 帝人テクノプロダクツ株式会社 耐熱性布帛及びその製造方法、並びにそれからなる耐熱性防護服
US7291389B1 (en) 2003-02-13 2007-11-06 Landec Corporation Article having temperature-dependent shape
US20050208857A1 (en) 2004-03-19 2005-09-22 Nike, Inc. Article of apparel incorporating a modifiable textile structure
US7437774B2 (en) 2004-03-19 2008-10-21 Nike, Inc. Article of apparel incorporating a zoned modifiable textile structure
US20050251900A1 (en) * 2004-05-17 2005-11-17 Harlacker John A Hazardous duty garments
US7428772B2 (en) * 2005-05-19 2008-09-30 Mmi-Ipco, Llc Engineered fabric articles
US8187984B2 (en) 2006-06-09 2012-05-29 Malden Mills Industries, Inc. Temperature responsive smart textile
JP2008057099A (ja) 2006-08-29 2008-03-13 Mmi-Ipco Llc 感温性スマートテキスタイル
US8389100B2 (en) 2006-08-29 2013-03-05 Mmi-Ipco, Llc Temperature responsive smart textile
US7976924B2 (en) 2007-02-03 2011-07-12 Raytheon Company Active garment materials
CN101956271B (zh) 2010-09-03 2014-02-26 江苏箭鹿毛纺股份有限公司 用于制备具有捆扎结构织物的纱线及其制备方法
US8789394B2 (en) 2010-12-22 2014-07-29 Du Pont-Toray Company, Ltd. Resin-coated glove
US20140087104A1 (en) 2011-01-28 2014-03-27 W. L. Gore & Associates, Gmbh Laminar Structure Providing Adaptive Thermal Insulation
CA2824068C (en) 2011-01-28 2016-03-29 W.L. Gore & Associates Gmbh Laminar structure providing adaptive thermal insulation
US9163334B1 (en) 2011-11-23 2015-10-20 The United States Of America As Represented By The Secretary Of The Army Actuators based on unbalanced moments of inertia
US8695317B2 (en) 2012-01-23 2014-04-15 Hampidjan Hf Method for forming a high strength synthetic rope
US9090998B2 (en) * 2012-06-22 2015-07-28 Nike, Inc. Environmentally responsive fibers and garments
JP5918081B2 (ja) 2012-06-27 2016-05-18 株式会社finetrack 生地の積層体および衣類、寝具
US9903350B2 (en) 2012-08-01 2018-02-27 The Board Of Regents, The University Of Texas System Coiled and non-coiled twisted polymer fiber torsional and tensile actuators
CA2878659C (en) 2012-08-27 2020-02-25 Nike Innovate C.V. Dynamic materials intergrated into articles for adjustable physical dimensional characteristics
US9609901B2 (en) 2013-04-12 2017-04-04 Nike, Inc. Adaptive planar shift garment material
US20170314539A1 (en) 2014-10-22 2017-11-02 Industry-University Cooperation Foundation Hanyang University Rotation-type actuator actuated by temperature fluctuation or temperature gradient and energy harvesting device using same
JP6489422B2 (ja) 2015-01-28 2019-03-27 パナソニックIpマネジメント株式会社 アシストウェア、アシストウェアの作動方法、及び、制御プログラム
JP7020919B2 (ja) 2015-05-21 2022-02-16 アザー ラブ リミテッド ライアビリティ カンパニー 熱適応性材料のためのシステム及び方法
KR20180016595A (ko) 2015-06-15 2018-02-14 토탈 리서치 앤드 테크놀로지 펠루이 폴리올레핀 섬유의 제조 프로세스
WO2017058339A2 (en) 2015-07-16 2017-04-06 Board Of Regents, The University Of Texas System Sheath-core fibers for superelastic electronics, sensors, and muscles
WO2017096044A1 (en) 2015-12-01 2017-06-08 The Regents Of The University Of California Adaptive smart textiles, method of producing them, and applications thereof
CN109154282B (zh) 2016-03-21 2021-03-19 得克萨斯州大学系统董事会 含有聚合物纤维肌肉的致动纺织品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184238A1 (en) * 2006-02-06 2007-08-09 Energy Related Devices, Inc. Laminate actuators and valves
US20130078415A1 (en) * 2006-06-09 2013-03-28 Mmi-Ipco, Llc Temperature Responsive Smart Textile
JP2011510180A (ja) * 2008-01-03 2011-03-31 ザ・ボーイング・カンパニー 断熱材料及びその形成に関連する方法
WO2014138049A2 (en) * 2013-03-04 2014-09-12 Syracuse University Reversible shape memory polymers exhibiting ambient actuation triggering

Also Published As

Publication number Publication date
JP7020919B2 (ja) 2022-02-16
CN108135296A (zh) 2018-06-08
US11686024B2 (en) 2023-06-27
WO2016187547A1 (en) 2016-11-24
EP3297471A1 (en) 2018-03-28
EP3297471A4 (en) 2019-05-01
US10793981B2 (en) 2020-10-06
KR102409006B1 (ko) 2022-06-15
JP2018522144A (ja) 2018-08-09
US20160340814A1 (en) 2016-11-24
US20210025091A1 (en) 2021-01-28
CN108135296B (zh) 2021-01-12
US20230357970A1 (en) 2023-11-09
CA2986043A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US11686024B2 (en) System and method for thermally adaptive materials
JP7216054B2 (ja) 物品に調整可能な物理的透過性を与える動的材料
US20230052973A1 (en) Thermally adaptive fabrics and methods of making same
US11773516B2 (en) Actuating textiles containing polymer fiber muscles
US8187984B2 (en) Temperature responsive smart textile
US20170280799A1 (en) Insulated Composite Fabric
JP5746097B2 (ja) 3層構造を有する3次元立体形状織物
US20180195213A1 (en) Active Woven Materials
EP3247485B1 (en) Enthalpy exchanger element, enthalpy exchanger comprising such elements and method for their production
JP2008519918A5 (ko)
EP3276292A1 (en) Enthalpy exchanger element, enthalpy exchanger comprising such elements and method for their production
JP2015037855A (ja) スタンピング成形用シートおよびそれを用いたスタンピング成形品
JP2500529Y2 (ja) 不織布積層体
JP3831729B2 (ja) パイル平織物及びその製造方法
Tan et al. Geometric control of thermoformable knitted textiles using raster images
CA1147502A (en) Insulation
KR200480590Y1 (ko) 공기층을 구비하는 편물
JP2020029625A (ja) 嵩高蜂巣織物とその製造方法
De Araujo et al. The designing of multifunctional fibrous structures for technical applications
CZ2015315A3 (cs) Trojrozměrná textilie, způsob jejího použití a její výroby
JPS6350617B2 (ko)

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right