KR20170114263A - 탄소섬유 제조장치 및 제조방법 - Google Patents

탄소섬유 제조장치 및 제조방법 Download PDF

Info

Publication number
KR20170114263A
KR20170114263A KR1020170079133A KR20170079133A KR20170114263A KR 20170114263 A KR20170114263 A KR 20170114263A KR 1020170079133 A KR1020170079133 A KR 1020170079133A KR 20170079133 A KR20170079133 A KR 20170079133A KR 20170114263 A KR20170114263 A KR 20170114263A
Authority
KR
South Korea
Prior art keywords
precursor
carbon fiber
electrode
unit
wire electrode
Prior art date
Application number
KR1020170079133A
Other languages
English (en)
Inventor
송석균
김병연
정만기
김성인
Original Assignee
재단법인 철원플라즈마 산업기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 철원플라즈마 산업기술연구원 filed Critical 재단법인 철원플라즈마 산업기술연구원
Priority to KR1020170079133A priority Critical patent/KR20170114263A/ko
Publication of KR20170114263A publication Critical patent/KR20170114263A/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/155Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from petroleum pitch
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명의 일 실시예에 따른 탄소섬유 제조장치는, 탄소섬유 전구체에 산소 라디칼을 공급하여 상기 탄소섬유 전구체를 구성하는 고분자의 산화안정화를 유도함으로써, 상기 탄소섬유 전구체로부터 탄소섬유를 제조하는 장치이다.

Description

탄소섬유 제조장치 및 제조방법{Apparatus and Method manufacturing carbon fiber}
본 발명은 탄소섬유 제조장치 및 제조방법에 관한 것으로, 비선형 전기장에 의한 코로나 플라즈마 발생으로 고효율 산소 라디칼을 발생시켜 탄소섬유 전구체를 산화 안정화시키는 탄소섬유 제조장치 및 제조방법에 관한 것이다.
탄소섬유 제조에 있어 기존의 고온 열풍에 의한 제조는, 공정 중 가장 에너지 비용이 많이 드는 산화안정화 공정의 경우 2 시간이 넘는 고온(200 ~ 300 ℃)에 탄소섬유 전구체를 노출 시켜야 함으로서, 장시간의 공정 과정과 고 에너지 소비에 따른 제조 단가가 상승하여 현재 탄소섬유의 가격이 고가이며, 이로 인해 항공기, 스포츠 용품 등의 고가격대의 응용 분야에만 한정 되어 사용되고 있다.
그러므로, 향후 자동차, 건축 자재 등의 다양한 대량 소비를 위하여서는 탄소섬유 제조 가격의 하락이 필수적이다.
상용 탄소섬유의 90% 이상은 PAN 전구체로부터 얻어지는데 air 분위기하에 180 ~ 300 ℃에서 이루어지는 산화 안정화, 불활성기체분위기하에 1600 ℃이하에서 이루어지는 탄화과정을 거친다.
PAN 고분자는 안정화 과정에서 산화, 탈수소화, 고리화 반응 등을 통해 내열성을 갖는 사다리 구조를 형성한다. 이 과정은 탄소섬유 제조에 있어서 고성능을 가지게 하는 중요한 단계이나 반응이 매우 느려 시간 및 에너지 소모가 큰 단계이다.
구체적으로, 산화안정화 공정은 탄화수소가 도입된 산소에 의하여 축합이 일어나는 과정이며, 도입된 산소에 의해서 연소가 발생하지 않도록 느린 승온 속도와 오랜 시간의 안정화로 충분하게 안정화를 시켜야 기계적 특성이 우수한 탄소섬유를 제조할 수 있다. 이 산화안정화는 탄소섬유 제조공정에서 가장 시간이 지체되는 단계이기 때문에 생산성을 높이기 위해서 기술적으로 최적화가 필수적이다.
종래의 탄소섬유 제조장치(한국등록특허 제10-1296719호)는, RF플라즈마를 이용하여 탄소섬유를 제조하나, RF 플라즈마의 경우 실질적으로 진공 공정으로 진행되어야 하므로, 장치 비용이 증가하며, 또한 RF ICP 방식으로는 대기압에서 플라즈마 발생이 어려워 공정의 비용이 대폭 증가하는 문제점이 있었다.
본 발명에서는 비선형 전기장에 의한 저 에너지 소비의 플라즈마 장치 및 공정을 탄소섬유 제조에 적용하여 공정 시간 및 에너지 소비를 상당 절감하는 탄소섬유 제조장치 및 제조방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 탄소섬유 제조장치는, 탄소섬유 전구체에 산소 라디칼을 공급하여 상기 탄소섬유 전구체를 구성하는 고분자의 산화안정화를 유도함으로써, 상기 탄소섬유 전구체로부터 탄소섬유를 제조하는 장치이다.
본 발명에 따르면 열풍 구조와 플라즈마의 복합 공정을 통하여 보다 낮은 온도의 열풍을 적용할 수 있도록 하여 에너지를 절약할 수 있다.
또한, 비선형 전기장에 의한 코로나 플라즈마에 의해 공정이 진행되도록 하여 공정 시간을 단축할 수 있다.
또한, 탄소섬유 전구체의 상태에 따라 그 산화안정화 공정의 단계를 조절하여 우수한 품질의 탄소섬유를 제조할 수 있다.
또한, 탄소섬유 전구체의 산화안정화에 의해 생성된 가스의 배출이 용이하도록 하여, 공정 시간을 단축함과 동시에 공정의 효율을 높일 수 있다.
도 1은 본 발명의 일 실시예에 따른 탄소섬유 제조장치를 도시한 개략사시도.
도 2는 본 발명의 일 실시예에 따른 탄소섬유 제조장치를 도시한 평면도.
도 3은 본 발명의 일 실시예에 따른 탄소섬유 제조장치의 플라즈마 생성부를 도시한 개략 사시도.
도 4는 본 발명의 일 실시예에 따른 탄소섬유 제조장치의 플라즈마 생성부를 도시한 측면도.
도 5는 본 발명의 일 실시예에 따른 전열부를 설명하기 위한 개략도.
도 6 내지 도 9는 본 발명의 일 실시예에 따른 탄소섬유 제조장치를 이용하여 탄소섬유를 제조하는 방법을 설명하기 위한 개략도.
도 10은 본 발명의 다른 실시예에 따른 탄소섬유 제조장치를 도시한 개략 사시도.
도 11은 본 발명의 다른 실시예에 따른 탄소섬유 제조장치를 도시한 평면도.
도 12는 본 발명의 다른 실시예에 따른 탄소섬유 제조장치의 플라즈마 생성부를 도시한 측면도.
도 13은 본 발명의 다른 실시예에 따른 탄소섬유 제조장치의 플라즈마 생성부를 도시한 개략 사시도.
도 14는 본 발명의 일 실시예에 따른 탄소섬유 제조방법을 설명하기 위한 순서도.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다.
또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 탄소섬유 제조장치를 도시한 개략사시도이고, 도 2는 본 발명의 일 실시예에 따른 탄소섬유 제조장치를 도시한 평면도이다.
또한, 도 3은 본 발명의 일 실시예에 따른 탄소섬유 제조장치의 플라즈마 생성부를 도시한 개략 사시도이며, 도 4는 본 발명의 일 실시예에 따른 탄소섬유 제조장치의 플라즈마 생성부를 도시한 측면도이고, 도 5는 본 발명의 일 실시예에 따른 전열부를 설명하기 위한 개략도이다.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 탄소섬유 제조장치(1)는, 탄소섬유 전구체(P)에 산소 라디칼을 공급하여 상기 탄소섬유 전구체(P)를 구성하는 고분자의 산화안정화를 유도함으로써, 상기 탄소섬유 전구체(P)로부터 탄소섬유를 제조하는 장치일 수 있다.
상기 탄소섬유 전구체(P, 이하 전구체)란, 섬유형태의 유기 전구체물질(Precursor)로, 산화안정화 및 탄화공정에 의해 탄소섬유가 되기 전 단계의 유기물일 수 있다.
구체적으로, 상기 전구체(P)는, 폴리아크릴로니트릴(Polyacrylonitrile, 이하 PAN), 석유계 · 석탄계 탄화수소 잔류물인 피치(Pitch, 아스팔트) 또는 레이온으로부터 제조될 수 있으며, 에어(air) 분위기 하에서 200 ~ 300 ℃에서 이루어지는 산화안정화, 불활성기체분위기하에서 1600 ℃이하에서 이루어지는 탄화과정을 거쳐 탄소섬유로 제조될 수 있다.
상기 산화안정화란, 상기 전구체(P)를 형성하는 고분자가 도입된 산소에 의해 산화, 탈수소화, 고리화 반응 등을 통해 내열성을 갖는 사다리 구조를 형성하는 공정을 의미할 수 있다.
또한, 상기 산소 라디칼이란, 일반적인 산소(안정한 상태)보다 활성이 크고 불안정하며 높은 에너지를 갖고 있는 산소를 의미하며, 대표적인 예로는 초과산화물(Superoxide, O2-), 과산화수소(H2O2), 히드록시라디칼(OH*) 등이 있다.
즉, 상기 산소 라디칼에 의해, 상기 전구체(P)의 산화안정화가 빠르고 안정적으로 진행될 수 있다.
본 발명의 탄소섬유 제조장치(1)는, 상기 전구체(P)의 산화안정화에 필요한 열(200 ~ 300 ℃)과 산소 라디칼을 제공하여 탄소섬유를 용이하게 제조하기 위한 장치이다.
상기 탄소섬유 제조장치(1)는, 상기 전구체(P)의 산화안정화에 필요한 열을 공급하는 가열부(10) 및 공기 중의 산소를 산소 라디칼 상태로 변화시켜, 상기 전구체(P)가 상기 산소 라디칼에 의해 산화안정화되어 상기 탄소섬유가 되도록 하는 플라즈마 생성부(20)를 포함할 수 있다.
또한, 상기 탄소섬유 제조장치(1)는, 상기 가열부(10)를 수용하는 제1 수용부(30), 상기 플라즈마 생성부(20)를 수용하는 제2 수용부(40) 및 상기 제1 수용부(30)와 상기 제2 수용부(40)를 연통하는 연통부(50)를 포함할 수 있다.
상기 제1 수용부(30) 및 제2 수용부(40)는, 상기 가열부(10)와 상기 플라즈마 생성부(20)를 분리수용하기 위한 일종의 챔버(chamber)일 수 있으며, 상기 연통부(50)는 상기 가열부(10)로부터 공급된 열 에너지가 상기 플라즈마 생성부(20)로 제공되거나 또는 상기 플라즈마 생성부(20)로 공급된 열 에너지가 소모된 채, 다시 상기 가열부(10)로 재공급되도록 하는 통로를 제공할 수 있다.
구체적으로, 상기 연통부(50)는 이하 설명할 가열부(10)의 열공급부(16)에 의해 상기 플라즈마 생성부(20)로 공급되는 상기 열 에너지가 이동되는 통로를 제공하는 제1 통로부(52) 및 상기 제1 통로부(52)로 공급된 상기 열 에너지가 상기 플라즈마 생성부(20)에 의해 소모되어 상기 가열부(10)로 이동되도록 하는 제2 통로부(54)를 구비할 수 있다.
여기서, 상기 제1 통로부(52) 또는 제2 통로부(54)는 상기 제1 수용부(30)와 상기 제2 수용부(40) 사이에 복수개 형성될 수 있다.
정리하면, 상기 가열부(10)에 의해 생성된 열 에너지는 상기 연통부(50)를 통해 상기 제1 수용부(30)와 제2 수용부(40)를 순환하며, 상기 가열부(10) 또는 상기 플라즈마 생성부(20)와 열 교환함으로써, 상기 제2 수용부(40)에 수용된 상기 플라즈마 생성부(20)에 의해 산화안정화되는 상기 전구체(P)가 일정 범위의 온도 즉, 200 ~ 300 ℃의 온도 환경하에서 산화안정화 되도록 할 수 있다.
한편, 상기 가열부(10)는, 전기 에너지를 열 에너지로 전환하는 열생성부(14), 상기 열생성부(14)로부터 발생된 상기 열 에너지를 상기 플라즈마 생성부(20)로 공급하는 열공급부(16) 및 상기 열공급부(16)를 구동할 수 있는 구동모터(12)를 구비할 수 있다.
상기 열생성부(14)는, 공급된 전기 에너지를 열 에너지로 전환하는 일종의 전열기이며, 상기 열공급부(16)는 상기 열생성부(14)에 의해 가열된 공기를 상기 제1 수용부(30)로부터 상기 제2 수용부(40)로 상기 제1 통로부(52)를 통해 이동되도록 할 수 있다.
즉, 상기 열공급부(16)는 공급된 전기 에너지를 동력 에너지로 전환하는 일종의 송풍기일 수 있으며, 상기 열공급부(16)를 작동시키는 구동 에너지는 상기 구동모터(12)로부터 공급될 수 있다.
상기 플라즈마 생성부(20)는, 인가된 전압에 의해 비선형 전기장을 발생시키는 와이어 전극부(22) 및 상기 와이어 전극부(22)로부터 일방향으로 이격되어 배치되는 접지전극부(24)를 구비할 수 있으며, 상기 와이어 전극부(22)에 공급되는 전압은 별도로 구비된 전원장치(미도시)에 의해 공급될 수 있다.
상기 와이어 전극부(22)는, 가상의 평면(D, 도 3 및 도 4 참조) 상에서 교차하도록 배치되어 상기 평면이 복수의 평면으로 분할되도록 하는 복수의 와이어를 구비할 수 있다.
즉, 상기 복수의 와이어를 구성하는 단수의 와이어들이 상기 가상의 평면(D) 상에서 지그재그 식으로 교차되거나 다각형 형상이 반복되도록 형성되어, 상기 평면이 복수의 평면으로 분할되도록 할 수 있다.
또한, 상기 복수의 와이어는, 인가된 전압에 의해 상기 접지전극부(24)와의 사이에서 비선형 전기장을 발생시켜, 상기 발생된 비선형 전기장에 의해 생성된 코로나 플라즈마에 의해 상기 공기 중의 산소를 산소 라디칼로 변화시킬 수 있다. 여기서, 상기 접지전극부(24)는 지면과 연결된 바닥면에 접지될 수 있다.
상기 와이어 전극부(22)에 음의 전압, 양의 전압 또는 교류 전압이 인가되면, 공기 중의 자유전자가 상기 와이어 전극부(22) 주변의 강한 전기장에 의해 가속되어 상기 공기 중의 산소와 충돌하여 산소 플라즈마가 생성되도록 할 수 있다.
구체적으로, 상기 복수의 와이어를 구성하는 각각의 단수의 와이어는 그 작은 직경 주위에 비선형의 높은 전기장 형성으로 와이어 주변에 높은 표면전하밀도로 생성된 코로나 방전에 주변의 공기 중에 포함되어 있는 물분자 또는 산소분자를 초과산화물(Superoxide, O2-), 과산화수소(H2O2), 히드록시라디칼(OH*) 등의 산소 라디칼 즉, 활성 라디칼(radical) 상태로 변화시킬 수 있다.
이러한 활성 라디칼은 일반적인 분자반응에 비하여 약 1000배 이상의 강한 산화 반응력을 가지므로, 탄소(C) 및 수소(H) 등으로 구성된 상기 전구체(P)와 반응하여 산화시킬 수 있다.
이 때, 상기 와이어 전극부(22)는, 상기 인가된 전압의 종류에 따라 상기 비선형 전기장의 방향이 상기 일방향 또는 상기 일방향의 반대 방향인 타방향으로 형성되도록 할 수 있다.
구체적으로, 상기 와이어 전극부(22)에 양의 전압이 인가된 경우, 상기 비선형 전기장은 상기 와이어 전극부(22)로부터 상기 접지전극부(24)를 향한 일방향으로 형성되도록 하며, 상기 와이어 전극부(22)에 음의 전압이 인가된 경우, 상기 비선형 전기장이 상기 접지전극부(24)로부터 상기 와이어 전극부(22)를 향한 상기 타방향으로 형성되도록 할 수 있다.
또한, 상기 와이어 전극부(22)에 교류 전압이 인가되어 상기 비선형 전기장이 일방향 또는 타방향을 향해 교번적으로 형성될 수도 있다.
여기서, 상기 와이어 전극부(22)에 상기 음의 전압이 인가된 경우, 상기 와이어 전극부(22)로부터 상기 접지전극부(24)를 향해 방출된 전자에 의해 상기 전구체(P)를 형성하는 고분자의 결합 구조가 변화되도록 할 수 있다.
구체적으로, 상기 와이어 전극부(22)에 음의 고전압을 인가하면 상기 와이어 전극부(22)로부터 방출된 전자가 상기 접지전극부(24)에 의해 가속되어 상기 전구체(P)에 조사될 수 있다. 이 때, 상기 전자가 10keV일 경우에는 15~25μm의 침투 깊이로, 상기 전자가 100keV일 경우에는 수백 μm의 침투 깊이로, 상기 전자가 1000keV일 경우에는 수 mm의 침투깊이로 상기 전구체(P)에 침투될 수 있다.
여기서, 상기 전구체(P)의 직경은 10~20μm 이내이므로, 상기 와이어 전극부(22)로부터 방출된 전자에 의해 충분한 침투 깊이를 확보할 수 있다.
또한, 상기 전구체(P)를 구성하는 고분자는 침투된 상기 전자에 의해 결합 구조가 바뀌어 산화안정화 공정의 시간이 단축될 수 있다.
상술한 상기 와이어 전극부(22)에 음의 전압이 인가된 경우에 발생하는 효과는 상기 전구체(P)가 상기 와이어 전극부(22) 및 상기 접지전극부(24) 사이에 배치되었을 경우에 발생하는 효과이며, 상기 전구체(P)는 상기 와이어 전극부(22) 및 상기 접지전극부(24)와의 사이에만 배치되는 것이 아닌, 상기 접지전극부(24)로부터 멀어지는 방향의 상기 와이어 전극부(22) 일측에도 배치될 수 있는 바, 이하 도 6 내지 도 9를 참조로 상기 전구체(P)의 산화안정화 정도가 상기 와이어 전극부(22) 및 상기 접지전극부(24)와의 상대적 위치에 따라 상이하게 유도된다는 점에 관하여 상세히 설명하기로 한다.
한편, 상기 플라즈마 생성부(20)는, 상기 와이어 전극부(22)와 상기 접지전극부(24) 사이에 개재되어 상기 와이어 전극부(22)와 상기 접지전극부(24)의 이격 거리를 결정하는 절연부(26) 및 상기 절연부(26)와 상기 와이어 전극부(22)를 연결하며 상기 복수의 와이어가 상기 가상의 평면(D)을 따라 긴장된 상태를 유지하도록 상기 복수의 와이어에 장력을 제공하는 텐션부(28)를 구비할 수 있다.
상기 절연부(26)는, 상기 와이어 전극부(22) 및 상기 접지전극부(24)를 연결하며, 상기 와이어 전극부(22)에 인가된 전압에 영향을 받지 않도록 부도체로 형성될 수 있다. 또한, 상기 와이어 전극부(22) 및 상기 접지전극부(24) 사이에 상기 전구체(P)가 위치할 수 있는 공간이 형성되도록, 상기 와이어 전극부(22)와 상기 접지전극부(24)를 이격시킬 수 있다.
상기 텐션부(28)는, 일종의 스프링으로 상기 복수의 와이어가 온도, 습도 등에 의해 변할 수 있는 길이에 대응하여 긴장이 유지되도록 장력을 제공할 수 있다.
또한, 본 발명의 일 실시예에 따른 탄소섬유 제조장치(1)는, 상기 와이어 전극부(22)와 연결되어 상기 와이어 전극부(22)가 고전압으로 플로팅된 상태에서 열이 발생하도록 하는 전원부(60)를 더 포함할 수 있다.
상기 전원부(60)는, 상기 와이어 전극부(22)에 전원을 공급하는 제1 전원부(61), 상기 제1 전원부(61)를 고전압으로 플로팅하는 제2 전원부(62) 및 상기 제1 전원부(61)와 상기 와이어 전극부(22)를 연결하는 연결부(66)를 구비할 수 있다.
여기서, 상기 제1 전원부(61)에 의해 히팅된 상기 와이어 전극부(22)는 전자의 방출이 용이할 수 있으며, 상기 전구체(P)의 산화안정화에 요구되는 일정 범위의 온도(200 ~ 300℃)를 유지하는데 이용될 수도 있다.
이 때, 상기 플라즈마 생성부(20)는, 상기 가상의 평면(D) 상에서 교차되는 상기 복수의 와이어 각각이 접촉되지 않도록, 교차되는 상기 복수의 와이어 사이에 배치되는 절연튜브(29)를 더 구비할 수 있다.
상기 절연튜브(29)는, 교차된 상기 복수의 와이어 각각이 쇼트되는 것을 방지할 수 있다.
도 6 내지 도 9는 본 발명의 일 실시예에 따른 탄소섬유 제조장치를 이용하여 탄소섬유를 제조하는 방법을 설명하기 위한 개략도이다.
도 6 내지 도 9를 참조하면, 상기 플라즈마 생성부(20)는, 상기 전구체(P)의 산화안정화 정도가, 상기 전구체(P)의 상기 와이어 전극부(22) 및 상기 접지전극부(24)와의 상대적 위치에 따라 상이하게 유도되도록 할 수 있다.
이하, 상기 전구체(P)의 상기 와이어 전극부(22) 및 상기 접지전극부(24)와의 상대적 위치에 따른 산화안정화 정도를 설명하되, 상기 전구체(P)의 산화안정화 진행 정도에 따라 상기 와이어 전극부(22) 및 상기 접지전극부(24)와의 상대적 위치를 달리하여 상기 전구체(P)의 표면 손상 없이 산화안정화가 진행되도록 함으로써 우수한 품질의 탄소섬유가 제조되도록 할 수 있다.
우선, 도 6을 참조하면, 상기 전구체(P)가 상기 와이어 전극부(22)와 상기 접지전극부(24) 사이에 배치되되, 상기 와이어 전극부(22) 보다 상기 접지전극부(24)에 가까이 위치하도록 배치(A1)되어 상기 전구체(P)가 상기 비선형 전기장에 의해 생성된 코로나 플라즈마에 의해 표면이 손상되지 않은 채, 산화안정화가 진행될 수 있다.
여기서, 상기 와이어 전극부(22)에 음의 고전압을 인가되도록 할 수 있으며, 인가된 음의 고전압에 의해 상기 와이어 전극부(22)로부터 방출된 전자가 상기 접지전극부(24)에 의해 가속되어 상기 전구체(P)에 조사될 수 있다. 이 때, 상기 전자가 10keV일 경우에는 15~25μm의 침투 깊이로, 상기 전자가 100keV일 경우에는 수백 μm의 침투 깊이로, 상기 전자가 1000keV일 경우에는 수 mm의 침투깊이로 상기 전구체(P)에 침투될 수 있다.
상기 전구체(P)의 직경은 10~20μm 이내이므로, 상기 와이어 전극부(22)로부터 방출된 전자에 의해 충분한 침투 깊이를 확보할 수 있으며, 침투된 상기 전자에 의해 상기 전구체(P)를 구성하는 고분자의 결합 구조가 바뀌어 산화안정화 공정의 시간이 단축될 수 있다.
그리고, 도 7을 참조하면, 상기 전구체(P)와 상기 접지전극부(24) 사이에 상기 와이어 전극부(22)가 위치하도록 상기 전구체(P)를 배치할 수 있다. 즉, 상기 전구체(P)가 상기 접지전극부(24)와 멀어지는 방향으로 상기 와이어 전극부(22)의 일측 상에 배치(A2)될 수 있다.
이 때, 상기 전구체(P)는 상기 와이어 전극부(22)에 의해 생성된 코로나 플라즈마에 직접 노출이 안되는 Remote 플라즈마에 의해 발생되어 확산된 산소 라디칼과 반응함으로써, 초기의 상기 전구체(P)의 약한 표면이 급격한 산화안정화로 손상되지 않도록 공정을 진행할 수 있다.
또한, 도 8을 참조하면, 상기 전구체(P)가 상기 와이어 전극부(22)와 상기 접지전극부(24) 사이에 배치되되, 상기 접지전극부(24)보다 상기 와이어 전극부(22)에 가까이 위치하도록 배치(A3)되어 상기 비선형 전기장에 의해 생성된 코로나 플라즈마에 직접 노출되어 산화안정화가 진행될 수 있다.
상기 와이어 전극부(22)에 가까이 위치하도록 배치된 상기 전구체(P)는 상기 코로나 플라즈마의 이온 에너지에 의해 표면이 손상될 수 있으므로, 상기 도 6 또는 상기 도 7을 참조로 설명한 위치에 배치된 채, 산화안정화가 일부 진행된 전구체(P) 즉, 표면 손상에 내성이 생긴 전구체(P)를 위치시켜 추가적인 산화안정화 공정이 진행되도록 할 수 있다.
또한, 상기 전구체(P)가 상기 와이어 전극부(22)를 구성하는 복수의 와이어와 이격되어 배치되되, 상기 복수의 와이어가 형성된 가상의 평면(D)을 기준으로 분할된 제1 공간(S1) 및 제2 공간(S2)에 순차적으로 출현하도록 배치(A4)되어 산화안정화가 진행되도록 할 수 있다.
구체적으로, 도 9를 참조하면, 상기 와이어 전극부(22)는, 가상의 평면(D) 상에서 교차하도록 배치되어 상기 평면이 복수의 평면으로 분할되도록 하는 복수의 와이어를 구비할 수 있으며, 상기 전구체(P)는 상기 복수의 평면을 통과하되, 상기 제1 공간(S1) 및 제2 공간(S2)에 순차적으로 출현하도록 굴곡되어 배치될 수 있다.
여기서, 상기 코로나 플라즈마의 이온 에너지는 상기 복수의 와이어와 가까울수록 그 세기가 세지므로, 상기 와이어 전극부(22)의 가상의 평면(D) 상에서 교차하도록 배치되는 전구체(P)는 상기 도 6 내지 도 8을 참조로 설명한 위치에 배치(A1, A2, A3)되어 산화안정화가 어느 정도 진행된 전구체(P)를 사용하는 것이 바람직하다.
도 10은 본 발명의 다른 실시예에 따른 탄소섬유 제조장치를 도시한 개략 사시도이며, 도 11은 본 발명의 다른 실시예에 따른 탄소섬유 제조장치를 도시한 평면도이다.
또한, 도 12는 본 발명의 다른 실시예에 따른 탄소섬유 제조장치의 플라즈마 생성부를 도시한 측면도이며, 도 13은 본 발명의 다른 실시예에 따른 탄소섬유 제조장치의 플라즈마 생성부를 도시한 개략 사시도이다.
도 10 내지 도 13을 참조하면, 본 발명의 다른 실시예에 따른 탄소섬유 제조장치는, 플라즈마 생성부를 제외하고는 도 1 내지 도 9를 참조로 설명한 본 발명의 일 실시예에 따른 탄소섬유 제조장치와 구성 및 효과가 동일하므로, 상기 플라즈마 생성부 이외의 설명은 생략하기로 한다.
본 발명의 다른 실시예에 따른 플라즈마 생성부(120)는, 인가된 전압에 의해 전기장을 발생시키는 제1 전극(121), 상기 제1 전극(121)과 이격되어 배치되며 상기 제1 전극(121)과의 이격된 공간에 위치한 산소를 산소 라디칼로 변화시키는 제2 전극(122) 및 상기 제1 전극(121)에 접촉된 채, 상기 제1 전극(121)과 상기 제2 전극(122) 사이에 배치되는 유전체부(125)를 구비할 수 있다.
상기 제1 전극(121) 및 제2 전극(122)은 금속 전극으로 구성될 수 있으며, 상기 제1 전극(121)에는 상기 유전체부(125)로 덮여있을 수 있다. 여기서, 상기 유전체부(125)는 절연체일 수 있으며, 이로 인해 상기 제1 전극(121)과 상기 제2 전극(122)을 통한 전류의 흐름이 가능하도록 상기 제1 전극(121)에 인가된 전압은 교류 전압이 되도록 한다.
여기서, 상기 제1 전극(121)과 상기 제2 전극(122) 사이의 안정적인 산소 라디칼 발생을 위하여 상기 제1 전극(121)과 상기 제2 전극(122)은 수 밀리미터로 형성되도록 한다.
상기 유전체부(125)는, 상기 제1 전극(121)과 상기 제2 전극(122) 사이의 반전 전류를 차단하고, 아크로의 전이를 피할 수 있게 하여 연속적인 기 교류 전압 모드에서 안정적으로 산소 라디칼이 생성되도록 하며, 상기 유전체부(125) 표면에 전자가 축적되어 상기 표면에 무작위로 스트리머를 배분되도록 하여 균일한 플라즈마 발생을 유도하는 것이다.
상기 제2 전극(122)은, 상기 제1 전극(121)과의 사이에 배치된 상기 전구체(P)와 산소 라디칼의 반응에 의해 생성된 부산 가스가 통과되도록 복수의 관통홀(H)이 형성될 수 있다. 즉, 상기 제2 전극(122)은 메쉬(Mesh) 형상일 수 있다.
구체적으로, 상기 전구체(P)와 산소 라디칼의 산화반응은, 상기 전구체(P)를 구성하는 고분자의 지방족 곁 사슬에서 먼저 발생하고, 주로 수소를 동반한 산소의 방출로 방향화와 가교결합이 진행되면서 H2, H2O, CO, CO2, CH4, 타르 등과 같은 다양한 부산 가스가 생성된다.
여기서, 상기 전구체(P)는 상기 제1 전극(121)과 상기 제2 전극(122) 사이에 배치된 채, 산소 라디칼에 의해 산화안정화가 진행될 수 있으므로, 상기 제1 전극(121)과 상기 제2 전극(122) 사이에서 방출된 다양한 부산 가스가 상기 제2 전극(122)의 복수의 관통홀(H)을 통해 이동되도록 하여, 상기 제1 전극(121)과 상기 제2 전극(122) 사이에 누적된 부산 가스에 의한 산화안정화 공정의 장애를 예방할 수 있다.
또한, 가열부(110)에 의해 제공된 열 에너지 즉, 상기 가열부(110)에 의해 가열된 공기가 연통부의 제1 통로(152) 또는 제2 통로(154)를 통해 상기 플라즈마 생성부(120)로 유입되면, 상기 제2 전극(122)의 복수의 관통홀(H)을 통해 순환되어, 상기 전구체(P)의 산화안정화에 요구되는 일정 범위의 온도(200 ~ 300 ℃)가 유지될 수 있다.
즉, 상기 제2 전극(122)의 복수의 관통홀(H)은 상기 가열부(110)에 의한 열풍의 이동을 자유롭게 함과 동시에 상기 전구체(P)와 산소 라디칼의 산화안정화 반응에 의한 부산 가스의 배출이 용이하게 하는 역할을 수행할 수 있다.
한편, 상기 전구체(P)는 상기 제1 전극(121) 및 상기 제2 전극(122)과의 상대적 위치에 따라 산화안정화 정도가 상이할 수 있다.
구체적으로, 도 12를 참조하면, 상기 전구체(P)는 상기 제2 전극(122)이 상기 전구체(P)와 상기 제1 전극(121) 사이에 위치하도록 배치(B1)될 수 있다. 즉, 상기 전구체(P)가 상기 제1 전극(121)으로부터 멀어지는 방향으로 상기 제2 전극(122)의 일측 상에 배치되어 산화안정화가 진행될 수 있다.
이 때, 상기 전구체(P)는 상기 제1 전극(121)과 상기 제2 전극(122) 사이에 형성되는 플라즈마에 직접 노출되는 것이 아닌, Remote 플라즈마에 의해 발생된 플라즈마의 산소 라디칼의 확산에 의해 산화안정화가 진행됨으로써, 초기의 상기 전구체(P)의 약한 표면이 급격한 산화안정화로 손상되지 않도록 공정이 진행되도록 할 수 있다.
여기서, 상기 제2 전극(122)부의 복수의 관통홀(H)은 상기 제1 전극(121)과 상기 제2 전극(122) 사이에 발생된 산소 라디칼이 상기 전구체(P)로의 확산이 용이하도록 하여 상기 전구체(P)의 산화안정화가 안정적으로 진행되도록 할 수 있다.
또한, 상기 전구체(P)는 상기 제1 전극(121)과 상기 제2 전극(122) 사이에 배치(B2)되어 산화안정화가 진행될 수 있다. 이 때, 상기 전구체(P)는 상기 제1 전극(121)과 상기 제2 전극(122) 사이에 형성된 플라즈마에 직접 노출되어 산화안정화가 진행될 수 있다.
상기 제1 전극(121)과 상기 제2 전극(122) 사이에 배치된 상기 전구체(P)는 상기 플라즈마의 이온 에너지에 표면이 손상될 수 있으므로, 상술한 B1의 위치에서 산화안정화가 어느 정도 진행되어 표면 손상의 내성이 생긴 전구체(P)를 위치시켜 추가적인 산화안정화 공정이 진행되도록 하는 것이 바람직하다.
이 때, 상기 제2 전극(122)의 복수의 관통홀(H)은 상기 가열부(110)에 의해 제공된 열풍의 순환 및 상기 전구체(P)와 상기 산소 라디칼에 산화반응에 의한 부산 가스의 배출로로 이동되어 상기 전구체(P)의 효율적인 산화안정화를 도와 우수한 품질의 탄소섬유가 제조되도록 할 수 있다.
도 14는 본 발명의 일 실시예에 따른 탄소섬유 제조방법을 설명하기 위한 순서도이다.
도 14를 참조하면, 본 발명의 일 실시예에 따른 탄소섬유 제조방법은, 탄소섬유 전구체(P)에 산소 라디칼을 공급하여 상기 탄소섬유 전구체(P)를 구성하는 고분자의 산화안정화를 유도함으로써, 상기 탄소섬유 전구체(P)로부터 탄소섬유를 제조하는 탄소섬유 제조장치를 이용하여 탄소섬유를 제조하는 방법일 수 있다.
여기서, 상기 탄소섬유 제조장치는, 상기 도 1 내지 도 9를 참조로 설명한 탄소섬유 제조장치(1)일 수 있다.
간략히, 상기 탄소섬유 제조장치(1)는, 상기 전구체(P)의 산화안정화에 필요한 열을 공급하고, 인가된 전압에 의해 비선형 전기장을 발생시키며, 상기 비선형 전기장에 의해 생성된 코로나 플라즈마에 의해 공기 중의 산소를 산소 라디칼 상태로 변화시켜, 상기 전구체(P)가 상기 산소 라디칼에 의해 산화안정화되어 탄소섬유를 제조하는 장치일 수 있다.
상기 탄소섬유 제조방법은, 제1 단계(S1) 내지 제5 단계(S5)를 포함할 수 있다.
상기 제1 단계(S1)는, 상기 전구체(P)를 획득하는 단계로, 획득된 전구체(P)는, 폴리아크릴로니트릴(Polyacrylonitrile, 이하 PAN), 석유계 · 석탄계 탄화수소 잔류물인 피치(Pitch, 아스팔트) 또는 레이온으로부터 제조된 물질일 수 있다.
다음, 상기 전구체(P)가, 인가된 전압에 의해 비선형 전기장을 발생시키는 와이어 전극부(22, 도 1참조)와 상기 와이어 전극부(22)로부터 일방향으로 이격되어 배치되는 접지전극부(24, 도 1 참조)의 사이에 배치되되, 상기 와이어 전극부(22)보다 상기 접지전극부(24)에 가까이 위치하도록 배치(A1, 도 6참조)하여 상기 탄소섬유 전구체가 상기 비선형 전기장에 의해 생성된 코로나 플라즈마에 의해 표면이 손상되지 않은 채, 상기 산화안정화가 진행되는 제2 단계(S2)를 포함할 수 있다.
상기 제2 단계(S2)는, 상기 와이어 전극부(22)에 음의 고전압을 인가되도록 하여, 인가된 음의 고전압에 의해 상기 와이어 전극부(22)로부터 방출된 전자가 상기 접지전극부(24)에 의해 가속되어 상기 전구체(P)에 조사되도록 할 수 있다. 이 때, 상기 전자가 10keV일 경우에는 15~25μm의 침투 깊이로, 상기 전자가 100keV일 경우에는 수백 μm의 침투 깊이로, 상기 전자가 1000keV일 경우에는 수 mm의 침투깊이로 상기 전구체(P)에 침투될 수 있다.
상기 전구체(P)의 직경은 10~20μm 이내이므로, 상기 와이어 전극부(22)로부터 방출된 전자에 의해 충분한 침투 깊이를 확보할 수 있으며, 침투된 상기 전자에 의해 상기 전구체(P)를 구성하는 고분자의 결합 구조가 바뀌어 산화안정화 공정의 시간이 단축될 수 있다.
상기 제3 단계(S3)는, 상기 전구체(P)와 상기 접지전극부(24) 사이에 상기 와이어 전극부(22)가 위치하도록 상기 전구체(P)를 배치(A2, 도 7 참조)하여, 상기 비선형 전기장에 의해 생성된 코로나 플라즈마에 상기 전구체(P)가 직접 노출되지 않도록 할 수 있다.
이 때, 상기 전구체(P)는 상기 와이어 전극부(22)에 의해 생성된 코로나 플라즈마에 직접 노출이 안되는 Remote 플라즈마에 의해 발생되어 확산된 산소 라디칼과 반응함으로써, 초기의 상기 전구체(P)의 약한 표면이 급격한 산화안정화로 손상되지 않도록 공정을 진행할 수 있다.
상기 제4 단계(S4)는, 상기 전구체(P)가 상기 와이어 전극부(22)와 상기 접지전극부(24) 사이에 배치되되, 상기 접지전극부(24)보다 상기 와이어 전극부(22)에 가까이 위치하도록 배치(A3, 도 8 참조)되어 상기 비선형 전기장에 의해 생성된 코로나 플라즈마에 직접 노출되어 상기 산화안정화가 진행될 수 있다.
상기 제4 단계(S4)는, 상기 제2 단계(S2) 또는/및 상기 제3 단계(S3)를 거친 전구체 즉, 표면 손상에 내성이 생긴 전구체를 위치시켜 추가적인 산화안정화가 진행되도록 하는 단계일 수 있다.
즉, 상기 제4 단계(S4)의 전구체는 상기 비선형 전기장에 의해 생성된 코로나 플라즈마에 직접 노출되어 산화안정화가 진행되며, 이 때 상기 코로나 플라즈마의 이온 에너지에 의해서도 표면이 손상되지 않고 산화안정화가 진행될 수 있다.
상기 제5 단계(S5)는, 상기 전구체(P)가 상기 복수의 와이어와 이격되어 배치되되, 상기 가상의 평면(D, 도 3 및 도 4 참조)으로 분할된 제1 공간(S1, 도 3 및 도 4 참조) 및 제2 공간(S2, 도 3 및 도 4 참조)에 순차적으로 출현하도록 배치된 채, 상기 산화안정화가 진행되는 단계일 수 있다.
구체적으로, 상기 전구체(P)는 상기 복수의 와이어에 의해 형성된 복수의 평면을 통과하되, 상기 제1 공간(S1) 및 제2 공간(S2)에 순차적으로 출현하도록 굴곡되어 배치될 수 있으며, 여기서, 상기 코로나 플라즈마의 이온 에너지는 상기 복수의 와이어와 가까울수록 그 세기가 세지므로, 상기 와이어 전극부(22)의 가상의 평면 상에서 교차하도록 배치되는 전구체(P)는 상기 위치에서 산화안정화가 수행될 수 있다.
상술한 본 발명의 일 실시예에 따른 탄소섬유 제조방법은, 각 단계가 가감되거나 반복적으로 진행되어 상기 전구체(P)의 산화안정화 공정을 진행할 수 있다.
즉, 상기 제1 단계 내지 제5 단계는, 각 단계의 진행에 있어서, 특정 단계가 반복적으로 사용될 수 있으며, 또한 상기 전구체(P)의 산화안정화 진행 정도에 따라 어느 특정 단계를 진행하지 않을 수도 있다.
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.
P: 탄소섬유 전구체
1: 탄소섬유 제조장치
10: 가열부
20: 플라즈마 생성부
30: 제1 수용부
40: 제2 수용부
50: 연통부
60: 전원부

Claims (1)

  1. 탄소섬유 전구체에 산소 라디칼을 공급하여 상기 탄소섬유 전구체를 구성하는 고분자의 산화안정화를 유도함으로써, 상기 탄소섬유 전구체로부터 탄소섬유를 제조하는 탄소섬유 제조장치.
KR1020170079133A 2017-06-22 2017-06-22 탄소섬유 제조장치 및 제조방법 KR20170114263A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170079133A KR20170114263A (ko) 2017-06-22 2017-06-22 탄소섬유 제조장치 및 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170079133A KR20170114263A (ko) 2017-06-22 2017-06-22 탄소섬유 제조장치 및 제조방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160039220A Division KR101752092B1 (ko) 2016-03-31 2016-03-31 탄소섬유 제조장치 및 제조방법

Publications (1)

Publication Number Publication Date
KR20170114263A true KR20170114263A (ko) 2017-10-13

Family

ID=60139461

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170079133A KR20170114263A (ko) 2017-06-22 2017-06-22 탄소섬유 제조장치 및 제조방법

Country Status (1)

Country Link
KR (1) KR20170114263A (ko)

Similar Documents

Publication Publication Date Title
JP3962420B2 (ja) カーボンナノウォールの製造方法、カーボンナノウォールおよび製造装置
TW201820938A (zh) 微波化學處理
US9447205B2 (en) Atmospheric pressure plasma processing of polymeric materials utilizing close proximity indirect exposure
TWI518733B (zh) 離子源、離子植入系統與產生多個電荷離子於離子源內的方法
KR101752092B1 (ko) 탄소섬유 제조장치 및 제조방법
CN102549338A (zh) 具有增强性能的辐射燃烧器以及用于改进辐射燃烧器性能的方法
Zhao et al. Field emission from screen-printed carbon nanotubes irradiated by tunable ultraviolet laser in different atmospheres
JP5646208B2 (ja) オゾン発生装置
WO2009119052A1 (ja) カーボンナノウォール及びその製造方法
KR101364655B1 (ko) 플라즈마 발생 장치 및 이것을 이용한 성막방법
KR20170114263A (ko) 탄소섬유 제조장치 및 제조방법
JP2014003022A (ja) 炭素注入中のイオン源寿命を延長し、イオン源性能を向上するための方法
JP2005307352A (ja) 炭素膜の製造装置およびその製造方法
US11245120B2 (en) Fuel cell manufacturing method and processing device
TW505938B (en) Method of providing uniform emission current
KR101352496B1 (ko) 플라즈마 발생 장치 및 플라즈마 발생 방법
JP4955265B2 (ja) 半導体装置の製造方法および装置
JPH0881205A (ja) オゾン発生装置
KR101236199B1 (ko) 탄소섬유 가공장치
TW201043570A (en) Ozone generator
KR101121639B1 (ko) 전자 방출 장치의 음극부 구조
JP2002022899A (ja) 電子線照射装置
KR101582315B1 (ko) 오존 발생기
Chen et al. Fabrication and characterization of carbon nanotube arrays using sandwich catalyst stacks
CN113451104A (zh) 一种进样电离源及其形成方法和工作方法、检测装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right