TW201043570A - Ozone generator - Google Patents

Ozone generator Download PDF

Info

Publication number
TW201043570A
TW201043570A TW98118140A TW98118140A TW201043570A TW 201043570 A TW201043570 A TW 201043570A TW 98118140 A TW98118140 A TW 98118140A TW 98118140 A TW98118140 A TW 98118140A TW 201043570 A TW201043570 A TW 201043570A
Authority
TW
Taiwan
Prior art keywords
electrode
ozone generating
ozone
carbon nanotubes
generating device
Prior art date
Application number
TW98118140A
Other languages
Chinese (zh)
Other versions
TWI476145B (en
Inventor
Yuan-Chao Yang
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098118140A priority Critical patent/TWI476145B/en
Publication of TW201043570A publication Critical patent/TW201043570A/en
Application granted granted Critical
Publication of TWI476145B publication Critical patent/TWI476145B/en

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention relates to an ozone generator. The ozone generator includes a first electrode and a second electrode. The first electrode and the second electrode are located apart from each other, and are at least partially face to face. The ozone generator is used for converting oxygen between the first electrode and the second electrode to ozone. At least one discharge element is disposed on one side of the first electrode adjacent to the second electrode. The discharge element includes at least one carbon nanotube wire extended from the first electrode to the second electrode. A carbon nanotube extends from one end of the carbon nanotube wire. The end is adjacent to the second electrode. The discharge element of the ozone generator includes a discharge end with a diameter less than 100 nanometers, so that the ozone generator can have a higher corona current.

Description

201043570 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種臭氧發生裝置,尤其涉及一種基於電暈 放電原理之臭氧發生裴置。 【先前技術】 [0002] 臭氧係一種強氧化劑,於已知之幾種氧化劑中,臭氧之 氧化性僅次於氟’因此能氧化水及空氣中之污染物,如 細菌或病毒等,被廣泛應用到水質、空氣及環境之淨化 。尤其係在水處理方面,臭氧之氧化消毒效果比傳統之 氯化劑高幾十倍,且無二次污染。 [0003] 臭氧於自然界中係由紫外線照射咸閃電擊中空氣中之氧 氣而形成。目前,人工產生臭氧之方法主要有電解法、 紫外光照法、電暈放電法等幾種。電暈放電係氣體介質 在由一電暈電壓產生之不均勻電場中所產生之局部自持 放電’所謂自持放電即不侮賴外界電離條件,僅由電暈 ?: 電壓作用即可維持之一種氣體放電爲秦,該放電現象較 為穩定。利用電^碑電原理製造之臭氧發生裝置由於臭 氧產生效率高,可控性好及能夠製備高濃度臭氧而於工 業上應用最為廣泛。 [0004] 該臭氧發生裝置一般包括一第一電極及相對設置之一第 二電極,該第一電極靠近第二電極之表面具有複數放電 單元,該放電單元為尖端或突起,該第二電極靠近第一 電極之表面為平面或曲面。當給該第一電極及第二電極 施加外部電壓時,該第一電極中各個放電單元之末端聚 集大量電荷,從而使該第一電極中之各個放電單元及放 098118140 表單編號A0101 第4頁/共19頁 0982030788-0 201043570 電單元之間之空間產生不均勻電場。當該外部電壓達到 該電暈電壓時,該尖端附近之氣體被電離並產生電暈電 流。而臭氧之生成過程主要分為三個步驟:一、電暈電 流提供自由電子;二、該自由電子與氧氣中之氧分子碰 撞,產生自由氧原子;三、該氧原子與氧分子於中間氣 體之作用下,結合生成臭氧分子。 [0005] Ο ❹ [0006] [0007] 在該臭氧產生過程中,電暈電流之大小極大影響著該臭 氧之產率和產量,電暈電流越大,該臭氧之產率和產量 越高。有文獻指出於同等電壓下,通過減小該第一電極 上尖端之直徑可增大電暈電流,請參見陳海豐等人於 2007年10曰發表之“多針電極結構雙極電暈放電伏安特 性”。在先前之臭氧發生裝置中,該放電單元一般為細 長金屬,該細長金屬之末端即為放電單元之放電端。然 金屬材料之特性決定於現有工藝下很難將該細長金屬末 端之直徑加工到微米級甚至奈米級以下。因此在先前之 之臭氧發生裝置中細長金屬末端之直徑一般都在毫米級 ,使該臭氧發生裝置所產生之電暈電流較小。 【發明内容】 有鑒於此,提供具有較大電暈電流之臭氧發生裝置實為 必要。 一種臭氧發生裝置,其包括間隔設置之一第一電極及一 第二電極,該第一電極及第二電極至少部分相對設置。 該臭氧發生裝置用於將注入到該第一及第二電極之間之 氧氣轉換為臭氧。該第一電極靠近該第二電極之一側設 置有至少一放電單元,該放電單元包括至少一奈米碳管 098118140 表單編號Α0101 第5頁/共19頁 0982030788-0 201043570 線自第一電極往第二電極方向延伸,該奈米碳管線靠近 該第二電極之一端伸出至少一奈米碳管。 [0008] 一種臭氧發生裝置,其包括間隔設置之一第一電極及一 第二電極,該第一電極及第二電極為相互平行且間隔設 置之板狀電極。該第一電極靠近該第二電極之一側間隔 設置有複數放電單元,該複數放電單元以陣列方式排列 。該臭氧發生裝置用於將注入到該第一電極及第二電極 之間之氧氣轉換為臭氧。每個放電單元包括至少一奈米 碳管線自第一電極往第二電極方向延伸,該奈米碳管線 靠近該第二電極之一端伸出至少一奈米碳管。該伸出之 奈米碳管表面設置有一金屬碳化物層或設置有複數金屬 碳化物顆粒。 [0009] 相較於先前技術,本發明提供之臭氧發生裝置,其放電 單元包括至少一奈米碳管線,該奈米碳管線之放電端為 直徑於奈米級之奈米碳管,因此該臭氧發生裝置具有較 大電暈電流。 【實施方式】 [0010] 以下將結合附圖詳細說明本發明實施例提供之臭氧發生 裝置。 [0011] 請參閱圖1,本發明實施例提供之一種臭氧發生裝置100 ,其包括相對且間隔設置之一第一電極110及一第二電極 120,一介電體130設置於該第二電極120靠近該第一電 極110之一侧,至少一放電單元140設置於該第一電極 110靠近該介電體130之一側。該第一電極110及第二電 098118140 極120電連接於一電源200。 表單編號A0101 第6頁/共19頁 0982030788-0 201043570 [0012] Ο [0013] 該電源200為直流電源,其具有一正極21〇與一負極22〇 ,該正極210與該第二電極12〇電連接,該負極22〇與該 第一電極110電連接,使該第一電極11〇具有一負電壓並 由該負電壓產生電暈電流,此時,該第—電極11〇為負極 電暈放電。可以理解,§玄電源2〇〇與第—電極I〗。及第二 電極120之連接方式並不局限於上述連接方式。該負極 220還可與第二電極12〇電連接,而該正極21〇與該第一 電極110電連接,使該第一電極11〇具有一正電壓並由該 正電壓產生電暈電流,此時,該第一電極11〇為正極電暈 放電。可以理解,該電源2〇〇還可為交流電源,此時該第 一電極110交替產生負極電暈放電與正極電暈放電。 β亥第一電極110及弟二電極120為兩個相互平行設置之板 狀電極,該第一電極110及第二電極丨20至少部分相對設 置,以保證該第一電極110與第二電極12〇相對之部分能 夠產生不均勻電場,形成電暈電流。當然;該第一及第 ί i’V!,- f 一- 二電極11 0、12 0還可為兩個同心且間隔設置之筒狀電極 J. F ' -V - _ 一 Ο [0014] ,該第一電極11 0套設於該第二電極120中。 、W έ ! I :::: 該介電體130設置於該第二電極120靠近該第一電極11〇 之一侧,且該介電體130與放電單元14〇之間具有一定間 隙。該介電體13 0由陶瓷或其他耐熱絕緣材料製成,且該 介電體130覆盖第一電極120面向第一電極110之表面。 從而於當載入於該第一電極11〇與第二電極12〇之間之電 壓大於電暈電壓時,確保該第一電極與第二電極120 之間難以形成通路電流,達到促進電暈放電之效果。該 介電體130還可為玻璃或塑膠等絕緣體。可以理解,該介 098118140 表單編號Α0101 第7頁/共19頁 0982030788-0 201043570 電體130為該臭氧發生裝置100中之可選元件,即該臭氧 發生裝置100也可不包括介電體130,此時,載入於該第 一電極11 0電壓應小於該放電單元14 0到第一電極12 0之 擊穿電壓,使該第一電極110與第二電極120之間不形成 通路電流,以綠保該放電早元140為電軍放電。 [0015] 該放電單元140通過嵌接或導電膠黏接等方式固定於該第 一電極110。當該放電單元140為複數時,複數放電單元 140間隔設置,優選地,該複數放電單元140以陣列方式 排列。每一放電單元140包括至少一奈米碳管線自第一電 極110往第二電極120方向延伸,該放電單元140也可為 由複數奈米碳管線平行併排設置或纏繞成線狀結構。 [0016] 請參閱圖2及圖3,該奈米碳管線包括複數奈米碳管沿其 軸向扭轉或平行排列。該複數奈米碳管首尾相連且基本 沿奈米碳管線軸向排列,相鄰之奈米碳管通過凡德瓦爾 力連接。該奈米碳管線長度不限,其直徑為0. 5奈米〜100 微米。具體地,該奈米碳管線可通過對從一奈米碳管陣 列拉出之一奈米碳管拉膜進行機械力扭轉或有機溶劑處 理而獲得,該通過機械力扭轉而獲得之扭轉之奈米碳管 線中之複數奈米碳管繞奈米碳管線軸向螺旋排列。該通 過有機溶劑處理而獲得之非扭轉之奈米碳管線中之複數 奈米碳管大致平行排列。該通過有機溶劑處理獲得之奈 米碳管線及其製備方法請參見Shou-Shan Fan等人於 2006年10月26日申請之,於2007年7月19日公開之第 US2007/01 66223 A1號美國公開專利申請。為節省篇幅 ,僅引用於此,但該申請所有技術揭露也應視為本發明 098118140 表單編號A0101 第8頁/共19頁 0982030788-0 201043570 [0017] [0018] Ο ❹ [0019] 申晴技術揭露之一部分。 該奈米碳管線靠近第二電極120之端部伸出至少一奈米碳 官作為該放電單元14〇之放寧端,該奈米碳管之直徑為 〇. 4奈米〜50奈米。即該放電端之直徑達到奈米級。因此 ’包括該奈米碳管線之放電單元140 ’其臭氧產生裝置 100具有較大之電暈電流。同時,每一奈米碳管線可包括 複數放電端,從而增加該電暈電流之密度。 請參見圖4及圖5,在本實施例中,該奈米碳管線靠近該 第二電極120之—端還可具有複數尖端。該尖端包括複數 奈米碳管通過凡德瓦爾力緊密結合並基木相互平行,且 該尖端罪近該第二電極120之一端,即該尖端之頂部往第 二電極120方向延伸出一奈米碳管,該奈米碳管即為該奈 米碳管線之放電端。複數尖端之間具有一定間隙,避免 各個尖端之間之電場屏蔽,同時該突出之奈米碳管被其 他周圍之奈米碳管通過凡德瓦爾力牢牢固定,因此該突 出之奈米碳管可承受較大之放:電電壓。該尖端可通過對 該奈米碳管線通電熔斷、對該,奈考參管線用鐳射燒斷或 者對該奈米碳管線用電子束掃描而形成。 該放電單元140之表面還可進一步形成有一耐離子衝擊之 金屬碳化物層或設置有複數金屬碳化物顆粒,該金屬碳 化物層或複數金屬碳化物顆粒至少設置於放電端之表面 ,優選地,該金屬碳化物層或金屬碳化物顆粒設置於放 電單元140中每個奈米碳管之外表面。該金屬碳化物層或 金屬碳化物顆粒能夠使該放電單元14〇於放電過程中電離 氣體介質所產生之離子不直接衝擊奈米碳管,從而使該 098118140 表單編號Α0101 第9頁/共19頁 0982030788-0 201043570 放電單元140更耐離子衝擊,延長該放電單元140之使用 壽命。該金屬碳化物可為碳化铪、碳化鈦、碳化鈮及碳 化鍅中之一種,優選地,該金屬碳化物選擇碳化铪。 [0020] 該臭氧發生裝置100工作時,當該第一電極110與介電體 130之間隙内注入乾燥且含有氧氣之混合氣體時,給該第 一電極110與第二電極120供電。該放電單元140之末端 聚集空間電荷,並使該尖端附近之電場增強,當該尖端 附近之電場大於第一電極110與第二電極120之間之電場 時產生放電,釋放之電子轟擊該混合氣體中之氧分子, 使該氧分子分解成兩個氧原子;該氧原子與氧分子於中 間氣體之作用下,結合生成臭氧分子。由上述臭氧分子 之產生過程可知,該臭氧分子產生之數量很大程度上取 決於被釋放之電子之多寡,即電暈電流之大小。該電暈 電流隨著放電單元末端之直徑之減小而增大,而在本實 施例中,該放電單元140之末端為單根或多根間隔之直徑 於奈米級之奈米碳管,因此於同等條件下,可使該放電 單元140產生較大之電暈電流強度。且當每一放電單元 140包括複數奈米碳管線時,每個放電單元140之末端都 包括複數奈米碳管,因此於同一放電單元140可包含複數 放電端,大大提高了電暈電流之密度。 [0021] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 098118140 表單編號A0101 第10頁/共19頁 0982030788-0 201043570 【圖式簡單說明】 [0022] 圖1係本發明實施例所提供之臭氧發生裝置之結構示意圖 [0023] 圖2係本發明實施例所提供之臭氧發生裝置中作為放電單 元之非扭轉奈米碳管線之掃描電鏡照片。 [0024] 圖3係本發明實施例所提供之臭氧發生裝置中作為放電單 元之扭轉奈米碳管線之掃描電鏡照片。 [0025] 圖4係本發明實施例所提供之臭氧發生裝置中作為放電單 〇 元之奈米碳管線靠近第二電極一端之掃描電鏡照片。 [0026] 圖5係圖4中奈米碳管線中尖端之透射電鏡照片。201043570 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to an ozone generating apparatus, and more particularly to an ozone generating apparatus based on the principle of corona discharge. [Prior Art] [0002] Ozone is a strong oxidant. Among the known oxidants, the oxidation of ozone is second only to fluorine', so it can oxidize water and pollutants in the air, such as bacteria or viruses. To the purification of water, air and the environment. Especially in the water treatment, the ozone oxidation disinfection effect is several times higher than the conventional chlorination agent, and there is no secondary pollution. [0003] Ozone is formed in the natural world by ultraviolet light illuminating salty lightning to hit oxygen in the air. At present, the methods for artificially generating ozone mainly include electrolysis, ultraviolet light, and corona discharge. Corona discharge is a partial self-sustained discharge generated by a non-uniform electric field generated by a corona voltage. The so-called self-sustained discharge is a gas that can be maintained only by corona? The discharge is Qin, and the discharge phenomenon is relatively stable. The ozone generating device manufactured by the electric circuit principle has the widest application efficiency in the industry due to high ozone generating efficiency, good controllability and ability to prepare high concentration ozone. [0004] The ozone generating device generally includes a first electrode and a second electrode disposed oppositely. The first electrode has a plurality of discharge cells near the surface of the second electrode, and the discharge cell is a tip or a protrusion, and the second electrode is adjacent to the second electrode. The surface of the first electrode is a flat surface or a curved surface. When an external voltage is applied to the first electrode and the second electrode, a large amount of charges are accumulated at the ends of the respective discharge cells in the first electrode, thereby causing each discharge cell in the first electrode to be placed on the 119118140 Form No. A0101 page 4 / A total of 19 pages 0982030788-0 201043570 The space between the electrical units produces an uneven electric field. When the external voltage reaches the corona voltage, the gas near the tip is ionized and produces a corona current. The formation process of ozone is mainly divided into three steps: first, the corona current provides free electrons; second, the free electron collides with oxygen molecules in oxygen to generate free oxygen atoms; and third, the oxygen atoms and oxygen molecules are in the middle gas. Under the action of the combination, ozone molecules are formed. [0005] [0006] [0007] In the ozone generation process, the magnitude of the corona current greatly affects the yield and yield of the ozone, and the larger the corona current, the higher the yield and yield of the ozone. It has been pointed out in the literature that the corona current can be increased by reducing the diameter of the tip of the first electrode at the same voltage. Please refer to the multi-needle electrode structure bipolar corona discharge voltammetry published by Chen Haifeng et al. characteristic". In the prior ozone generating apparatus, the discharge cell was generally an elongated metal, and the end of the elongated metal was the discharge end of the discharge cell. However, the characteristics of the metal material are determined by the difficulty in processing the diameter of the end of the elongated metal to the order of micrometers or even nanometers. Therefore, in the prior ozone generating apparatus, the diameter of the elongated metal end is generally on the order of millimeters, so that the corona current generated by the ozone generating device is small. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an ozone generating device having a large corona current. An ozone generating device comprising a first electrode and a second electrode spaced apart, the first electrode and the second electrode being at least partially disposed opposite each other. The ozone generating device is for converting oxygen injected between the first and second electrodes into ozone. The first electrode is disposed adjacent to one side of the second electrode with at least one discharge unit, and the discharge unit includes at least one carbon nanotube 098118140. Form No. 1010101 Page 5/19 pages 0982030788-0 201043570 Line from the first electrode The second electrode extends in a direction, and the nanocarbon pipeline extends at least one carbon nanotube near one end of the second electrode. An ozone generating apparatus includes a first electrode and a second electrode which are spaced apart from each other, and the first electrode and the second electrode are plate electrodes which are disposed in parallel and spaced apart from each other. The first electrode is disposed adjacent to one side of the second electrode with a plurality of discharge cells spaced apart, and the plurality of discharge cells are arranged in an array. The ozone generating device is for converting oxygen injected between the first electrode and the second electrode into ozone. Each of the discharge cells includes at least one nanocarbon line extending from the first electrode toward the second electrode, and the nanocarbon line extends at least one carbon nanotube near one end of the second electrode. The surface of the extended carbon nanotube is provided with a metal carbide layer or a plurality of metal carbide particles. [0009] Compared with the prior art, the ozone generating device provided by the present invention has a discharge unit including at least one nano carbon line, and the discharge end of the nano carbon line is a carbon nanotube having a diameter of a nanometer, so The ozone generating device has a large corona current. [Embodiment] Hereinafter, an ozone generating apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. [0011] Please refer to FIG. 1 , an ozone generating device 100 according to an embodiment of the present invention includes a first electrode 110 and a second electrode 120 disposed opposite to each other, and a dielectric body 130 is disposed on the second electrode. 120 is adjacent to one side of the first electrode 110, and at least one discharge unit 140 is disposed on a side of the first electrode 110 adjacent to the dielectric body 130. The first electrode 110 and the second electrode 119118 are electrically connected to a power source 200. Form No. A0101 Page 6 of 19 0992030788-0 201043570 [0013] The power supply 200 is a DC power supply having a positive electrode 21〇 and a negative electrode 22〇, the positive electrode 210 and the second electrode 12〇 Electrically connected, the negative electrode 22 is electrically connected to the first electrode 110, such that the first electrode 11A has a negative voltage and generates a corona current from the negative voltage. At this time, the first electrode 11 is a negative corona. Discharge. It can be understood that § Xuan power supply 2 〇〇 and the first electrode I 〗. The connection manner of the second electrode 120 is not limited to the above connection method. The anode 220 can also be electrically connected to the second electrode 12 , and the cathode 21 电 is electrically connected to the first electrode 110 such that the first electrode 11 〇 has a positive voltage and generates a corona current from the positive voltage. At the time, the first electrode 11 is a positive corona discharge. It can be understood that the power source 2 can also be an AC power source, and the first electrode 110 alternately generates a negative corona discharge and a positive corona discharge. The first electrode 110 and the second electrode 120 are two plate electrodes arranged in parallel with each other, and the first electrode 110 and the second electrode 20 are at least partially opposite each other to ensure the first electrode 110 and the second electrode 12 The opposite portion of the crucible can generate a non-uniform electric field to form a corona current. Of course, the first and the ith i'V!, -f one-two electrodes 11 0, 120 can also be two concentric and spaced cylindrical electrodes J. F ' -V - _ Ο [0014] The first electrode 110 is sleeved in the second electrode 120. I:::: The dielectric body 130 is disposed on a side of the second electrode 120 adjacent to the first electrode 11A, and has a certain gap between the dielectric body 130 and the discharge cell 14A. The dielectric body 130 is made of ceramic or other heat resistant insulating material, and the dielectric body 130 covers the surface of the first electrode 120 facing the first electrode 110. Therefore, when the voltage between the first electrode 11 〇 and the second electrode 12 大于 is greater than the corona voltage, it is ensured that it is difficult to form a path current between the first electrode and the second electrode 120 to promote corona discharge. The effect. The dielectric body 130 may also be an insulator such as glass or plastic. It can be understood that the medium 098118140 form number Α 0101 page 7 / 19 pages 0982030788-0 201043570 The electric body 130 is an optional component in the ozone generating device 100, that is, the ozone generating device 100 may not include the dielectric body 130, The voltage applied to the first electrode 110 should be less than the breakdown voltage of the discharge cell 14 0 to the first electrode 120, so that no path current is formed between the first electrode 110 and the second electrode 120. Guaranteed to discharge early 140 for the electrician discharge. [0015] The discharge unit 140 is fixed to the first electrode 110 by means of inlay or conductive adhesive bonding. When the discharge cells 140 are plural, the plurality of discharge cells 140 are spaced apart, and preferably, the plurality of discharge cells 140 are arranged in an array. Each of the discharge cells 140 includes at least one nano carbon line extending from the first electrode 110 toward the second electrode 120. The discharge unit 140 may also be arranged side by side or wound into a linear structure by a plurality of carbon nanotubes. Referring to FIGS. 2 and 3, the nanocarbon pipeline includes a plurality of carbon nanotubes that are twisted or aligned in an axial direction thereof. The plurality of carbon nanotubes are connected end to end and are arranged substantially along the axial direction of the nanocarbon pipeline, and the adjacent carbon nanotubes are connected by van der Waals force. 5纳米〜100微米。 The nano carbon pipe length is not limited, its diameter is 0. 5 nanometers ~ 100 microns. Specifically, the nanocarbon pipeline can be obtained by mechanically twisting or organic solvent treatment of pulling a carbon nanotube film from an array of carbon nanotubes, and twisting it by mechanical force torsion The plurality of carbon nanotubes in the carbon carbon pipeline are arranged in an axial spiral around the nano carbon pipeline. The plurality of carbon nanotubes in the non-twisted nanocarbon line obtained by the organic solvent treatment are arranged substantially in parallel. The nanocarbon pipeline obtained by the organic solvent treatment and the preparation method thereof can be found in the US US Patent Application No. 20072007 66223 A1, filed on October 26, 2007, by Shou-Shan Fan et al. Public patent application. In order to save space, only the above is cited, but all the technical disclosures of this application should also be regarded as the present invention 098118140 Form No. A0101 Page 8 / Total 19 Page 0982030788-0 201043570 [0017] [0018] Ο ❹ [0019] Shen Qing Technology Reveal one of the parts. The carbon nanotubes are disposed near the end of the second electrode 120 and protrude from the end of the second electrode 120 as a discharge end of the discharge unit. The diameter of the carbon nanotubes is from 0.4 nm to 50 nm. That is, the diameter of the discharge end reaches the nanometer level. Therefore, the ozone generating device 100 including the discharge unit 140' of the nanocarbon line has a large corona current. At the same time, each nanocarbon line can include a plurality of discharge ends to increase the density of the corona current. Referring to FIG. 4 and FIG. 5, in the embodiment, the nanocarbon pipeline may further have a plurality of tips near the second electrode 120. The tip includes a plurality of carbon nanotubes tightly coupled by a van der Waals force and the base trees are parallel to each other, and the tip is close to one end of the second electrode 120, that is, the top of the tip extends a nanometer toward the second electrode 120. The carbon tube, which is the discharge end of the nano carbon line. There is a certain gap between the complex tips to avoid electric field shielding between the respective tips, and the protruding carbon nanotubes are firmly fixed by the other surrounding carbon nanotubes through the van der Waals force, so the protruding carbon nanotubes Can withstand larger discharge: electric voltage. The tip can be formed by energizing and melting the nanocarbon line, by laser burning the naconxine line or by scanning the nanocarbon line with an electron beam. The surface of the discharge unit 140 may further be formed with an ion-resistant metal carbide layer or a plurality of metal carbide particles, and the metal carbide layer or the plurality of metal carbide particles are disposed at least on the surface of the discharge end, preferably, The metal carbide layer or metal carbide particles are disposed on the outer surface of each of the carbon nanotubes in the discharge unit 140. The metal carbide layer or the metal carbide particles can cause the discharge unit 14 to ignite the ions generated by the ionized gas medium during the discharge process without directly impacting the carbon nanotubes, thereby making the 098118140 form number Α0101, page 9 of 19 0982030788-0 201043570 The discharge unit 140 is more resistant to ion shock and prolongs the service life of the discharge unit 140. The metal carbide may be one of tantalum carbide, titanium carbide, tantalum carbide, and tantalum carbide. Preferably, the metal carbide is selected from tantalum carbide. [0020] When the ozone generating device 100 is in operation, when the mixed gas containing oxygen is injected into the gap between the first electrode 110 and the dielectric body 130, the first electrode 110 and the second electrode 120 are supplied with power. The end of the discharge unit 140 collects space charge and enhances the electric field near the tip. When the electric field near the tip is larger than the electric field between the first electrode 110 and the second electrode 120, a discharge is generated, and the released electrons bombard the mixed gas. The oxygen molecule breaks down the oxygen molecule into two oxygen atoms; the oxygen atom and the oxygen molecule combine to form an ozone molecule under the action of an intermediate gas. It is known from the above process of the production of ozone molecules that the amount of ozone molecules produced depends largely on the amount of electrons released, i.e., the magnitude of the corona current. The corona current increases as the diameter of the end of the discharge unit decreases. In the present embodiment, the end of the discharge unit 140 is a single or a plurality of carbon nanotubes having a diameter of a diameter of a nanometer. Therefore, under the same conditions, the discharge unit 140 can be made to generate a large corona current intensity. And when each of the discharge cells 140 includes a plurality of carbon nanotubes, each of the discharge cells 140 includes a plurality of carbon nanotubes at the end, so that the same discharge cell 140 can include a plurality of discharge ends, thereby greatly increasing the density of the corona current. . [0021] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. 098118140 Form No. A0101 Page 10/19 Page 0992030788-0 201043570 [Simplified Schematic] [0022] FIG. 1 is a schematic structural view of an ozone generating apparatus according to an embodiment of the present invention. [0023] FIG. 2 is an embodiment of the present invention. A scanning electron micrograph of a non-twisted nanocarbon line as a discharge cell in the ozone generating apparatus provided. 3 is a scanning electron micrograph of a torsion nanocarbon line as a discharge unit in an ozone generating apparatus according to an embodiment of the present invention. 4 is a scanning electron micrograph of a nanocarbon line as a discharge unit in the ozone generating apparatus according to the embodiment of the present invention, which is close to the end of the second electrode. 5 is a transmission electron micrograph of the tip of the carbon nanotube line of FIG. 4.

【主要元件符號說明】 [0027] 臭氧發生裝置 100 第一電極 110 第二電極 420 介電體 130 放電單元 140 電源 200 正極 210 負極 220 098118140 表單編號A0101 第11頁/共19頁 0982030788-0[Main component symbol description] [0027] Ozone generating device 100 First electrode 110 Second electrode 420 Dielectric body 130 Discharge unit 140 Power supply 200 Positive electrode 210 Negative electrode 220 098118140 Form No. A0101 Page 11 of 19 0982030788-0

Claims (1)

201043570 七、申請專利範圍: 1 ·=臭乳發生1置’其包括間隔設置之—第—電極及—第 該第電極及第二電極至少部分相對設置,該第 電極罪近該第二電極之_側設置有至少—放電單元該 2氧發生裝置用於將注人到該第—電極及第二電極之間之 氧氣轉換為臭氧,其改進在於,該放電單元包括至少一奈 2碳S線自帛電極往第二電極方向延伸,該奈米碳管線 Λ近該第二電極之一端伸出至少一奈米碳管。 2 ·如申喷專利範圍第W所述之臭氧發生裝置,其中,該奈 米碳管之直徑為0.4奈米〜5〇奈米。 3.如申請專利範圍第1項所述之臭氧發生裝置,其中’該臭 氧發生裝置進-步包括—介電艘設置於該第二電極靠近該 第一電極之一側,且該介電體與放電單元之間具有一定間 隙。 4 ‘如申請專利範圍第3項所述之臭氧發生裝置,其中,該介 電體材料為陶瓷、玻璃或塑膠。 5 .如申請專利範圍第3項所述之臭氧發生裝置,其中,該介 電體覆蓋住該第二電極面向第一電極之表面。 6 .如申請專利範圍第1項所述之臭氧發生裝置,其中,該第 電極及第二電極為兩個同心且間隔設置之筒狀電極,且 該第一電極套設於該第二電極中。 7 .如申請專利範圍第1項所述之臭氧發生裝置,其中,該奈 米碳管線包括複數奈米碳管首尾相連且基本沿奈米碳管線 轴向排列,相鄰之奈米碳管通過凡德瓦爾力連接。 8 .如申請專利範圍第7項所述之臭氧發生裝置,其中,該複 098118140 表單編號Α0101 第12頁/共19頁 0982030788-0 201043570 數奈米碳管大致相互平行。 9 .如申請專利範圍第7項所述之臭氧發生裝置,其中,該複 數奈米碳管繞奈米礙管線轴向螺旋排列。 10 .如申請專利範圍第8項或第9項所述之臭氧發生裝置,其中 ,該奈米碳管線之直徑為0. 5奈米〜100微米。 11 .如申請專利範圍第1項所述之臭氧發生裝置,其中,該放 電單元還包括複數奈米碳管線平行排列或纏繞成線狀結構 〇 12 .如申請專利範圍第1項所述之臭氧發生裝置,其中,該奈 〇 米碳管線靠近該第二電極之一端具有複數尖端,每個尖端 包括複數奈米碳管通過凡德瓦爾力結合並基本相互平行。 13 .如申請專利範圍第12項所述之臭氧發生裝置,其中,該複 數尖端間隔設置。 14 .如申請專利範圍第13項所述之臭氧發生裝置,其中,每個 尖端之頂部往第二電極方向延伸出一奈米碳管。 15 .如申請專利範圍第1項所述之臭氧發生裝置,其中,該奈 米碳管線之表面設置有一金屬碳化物層或設置有複數金屬 W 碳化物顆粒。 ……W 16 . —種臭氧發生裝置,其包括間隔設置之一第一電極及一第 二電極,該第一電極及第二電極為相互平行且間隔設置之 板狀電極,該第一電極靠近該第二電極之一侧間隔設置有 複數放電單元,該複數放電單元以陣列方式排列,該臭氧 發生裝置用於將注入到該第一電極及第二電極之間之氧氣 轉換為臭氧,其改進在於,每個放電單元包括至少一奈米 碳管線自第一電極往第二電極方向延伸,該奈米碳管線靠 近該第二電極之一端伸出至少一奈米碳管,該伸出之奈米 098118140 表單編號A0101 第13頁/共19頁 0982030788-0 201043570 碳管表面設置有一金屬碳化物層或設置有複數金屬碳化物 顆粒。 098118140 表單編號A0101 第14頁/共19頁201043570 VII. Patent application scope: 1 ·=Smell-producing 1 setting 'which includes interval setting----- and the first electrode and second electrode are at least partially oppositely disposed, the first electrode is close to the second electrode The _ side is provided with at least a discharge unit. The 2 oxygen generating device is configured to convert oxygen injected between the first electrode and the second electrode into ozone, and the improvement is that the discharge unit includes at least one nano 2 S-line. The self-deuterium electrode extends toward the second electrode, and the nanocarbon line protrudes from at least one carbon nanotube near one end of the second electrode. 2) The ozone generating device according to the patent application scope of the invention, wherein the carbon nanotube has a diameter of 0.4 nm to 5 Å. 3. The ozone generating apparatus according to claim 1, wherein the ozone generating device further comprises: a dielectric boat disposed on a side of the second electrode adjacent to the first electrode, and the dielectric body There is a certain gap between the discharge unit and the discharge unit. 4 ‘Ozone generating device according to claim 3, wherein the dielectric material is ceramic, glass or plastic. 5. The ozone generating apparatus of claim 3, wherein the dielectric covers a surface of the second electrode facing the first electrode. The ozone generating device of claim 1, wherein the first electrode and the second electrode are two concentric and spaced cylindrical electrodes, and the first electrode is sleeved in the second electrode . 7. The ozone generating apparatus according to claim 1, wherein the nanocarbon pipeline comprises a plurality of carbon nanotubes connected end to end and arranged substantially along an axial direction of the carbon nanotubes, and adjacent carbon nanotubes pass through. Van der Valli is connected. 8. The ozone generating apparatus according to item 7 of the patent application, wherein the complex 098118140 Form No. Α0101 Page 12/19 pages 0982030788-0 201043570 The number of carbon nanotubes are substantially parallel to each other. 9. The ozone generating apparatus according to claim 7, wherein the plurality of carbon nanotubes are helically arranged in the axial direction around the nanotube line. The nanometer carbon nanotubes have a diameter of 0.5 nm to 100 μm, as described in claim 8 or claim 9. 11. The ozone generating apparatus according to claim 1, wherein the discharge unit further comprises a plurality of carbon nanotubes arranged in parallel or wound into a linear structure 〇12. The ozone according to claim 1 The generating device, wherein the naphtha carbon line has a plurality of tips near one end of the second electrode, each tip comprising a plurality of carbon nanotubes bonded by Van der Waals force and substantially parallel to each other. The ozone generating device of claim 12, wherein the plurality of tips are spaced apart. 14. The ozone generating apparatus according to claim 13, wherein a carbon nanotube extends from the top of each tip toward the second electrode. The ozone generating apparatus according to claim 1, wherein the surface of the carbon nanotube is provided with a metal carbide layer or a plurality of metal W carbide particles. An ozone generating device includes a first electrode and a second electrode spaced apart from each other, wherein the first electrode and the second electrode are plate electrodes arranged in parallel and spaced apart from each other, the first electrode being close to One side of the second electrode is spaced apart from each other, and the plurality of discharge cells are arranged in an array, and the ozone generating device is configured to convert oxygen injected between the first electrode and the second electrode into ozone, which is improved. In that each of the discharge cells includes at least one nanocarbon line extending from the first electrode toward the second electrode, and the nanocarbon line extends at least one of the carbon nanotubes near one end of the second electrode. M 098118140 Form No. A0101 Page 13 of 19 0982030788-0 201043570 The surface of the carbon tube is provided with a metal carbide layer or with a plurality of metal carbide particles. 098118140 Form No. A0101 Page 14 of 19 0982030788-00982030788-0
TW098118140A 2009-06-02 2009-06-02 Ozone generator TWI476145B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098118140A TWI476145B (en) 2009-06-02 2009-06-02 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098118140A TWI476145B (en) 2009-06-02 2009-06-02 Ozone generator

Publications (2)

Publication Number Publication Date
TW201043570A true TW201043570A (en) 2010-12-16
TWI476145B TWI476145B (en) 2015-03-11

Family

ID=45000999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118140A TWI476145B (en) 2009-06-02 2009-06-02 Ozone generator

Country Status (1)

Country Link
TW (1) TWI476145B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481547B (en) * 2012-06-28 2015-04-21 Hon Hai Prec Ind Co Ltd Method for making carbon nanotube field emitter
CN109415206A (en) * 2016-07-14 2019-03-01 株式会社村田制作所 Ozone generating apparatus
TWI731950B (en) * 2016-03-25 2021-07-01 日商住友精密工業股份有限公司 Apparatus for generating gas and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465210B2 (en) * 2004-02-25 2008-12-16 The Regents Of The University Of California Method of fabricating carbide and nitride nano electron emitters
TW200616888A (en) * 2004-11-18 2006-06-01 Chien Hui Chuan Ozone generator
TWI362675B (en) * 2007-11-09 2012-04-21 Hon Hai Prec Ind Co Ltd Field emission electron source and method for making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481547B (en) * 2012-06-28 2015-04-21 Hon Hai Prec Ind Co Ltd Method for making carbon nanotube field emitter
US9171689B2 (en) 2012-06-28 2015-10-27 Tsinghua University Method for making carbon nanotube field emitter
TWI731950B (en) * 2016-03-25 2021-07-01 日商住友精密工業股份有限公司 Apparatus for generating gas and method for manufacturing the same
CN109415206A (en) * 2016-07-14 2019-03-01 株式会社村田制作所 Ozone generating apparatus
CN109415206B (en) * 2016-07-14 2022-03-11 株式会社村田制作所 Ozone generator

Also Published As

Publication number Publication date
TWI476145B (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5646208B2 (en) Ozone generator
Bo et al. Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission
CN102024635B (en) Electron emitter and electron emission component
KR20020005392A (en) Electron emitter, manufacturing method thereof and electron beam device
CN101425438B (en) Producing method for field emission type electron source
Jeong et al. Flexible field emission from thermally welded chemically doped graphene thin films
TW201043570A (en) Ozone generator
JP4849265B2 (en) Method for manufacturing electrode for electric double layer capacitor and electric double layer capacitor
Ha et al. Highly stable carbon nanotube field emitters on small metal tips against electrical arcing
Jeong et al. Arrays of vertically aligned tubular-structured graphene for flexible field emitters
Lee et al. Synthesis of double-walled carbon nanotubes by catalytic chemical vapor deposition and their field emission properties
CN102024636B (en) Electron emitter and electron emitting element
JP2008078081A (en) Field emission electron source and its manufacturing method
TWI309428B (en) Emission source having carbon nanotube
CN102024639B (en) Method for manufacturing electron emitter
TWI740192B (en) Field emission neutralizer
JP6324057B2 (en) Electron emitting device and electron emitting device
KR100556757B1 (en) Ion generator using carbon nano tip and menufacturing method thereof
JP2015125922A (en) Electron emitting element and electron emitting device
Krivenko et al. Electrochemical behavior of electrodes containing nanostructured carbon of various morphology in the cathodic region of potentials
TWI362675B (en) Field emission electron source and method for making the same
TWI441227B (en) Electron emitter and displaying device using the same
Sharma et al. Effect of baking, humidity and UV radiation on hexagonal boron nitride modified c-MWCNT nanohybrid electrodes
KR20100020368A (en) Electrode for fuel cell and method of manufacturing the same
TWI661602B (en) a fuel cell electrode and a fuel cell using the same