TWI476145B - Ozone generator - Google Patents

Ozone generator Download PDF

Info

Publication number
TWI476145B
TWI476145B TW098118140A TW98118140A TWI476145B TW I476145 B TWI476145 B TW I476145B TW 098118140 A TW098118140 A TW 098118140A TW 98118140 A TW98118140 A TW 98118140A TW I476145 B TWI476145 B TW I476145B
Authority
TW
Taiwan
Prior art keywords
electrode
generating device
ozone generating
discharge
ozone
Prior art date
Application number
TW098118140A
Other languages
Chinese (zh)
Other versions
TW201043570A (en
Inventor
Yuan-Chao Yang
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098118140A priority Critical patent/TWI476145B/en
Publication of TW201043570A publication Critical patent/TW201043570A/en
Application granted granted Critical
Publication of TWI476145B publication Critical patent/TWI476145B/en

Links

Description

臭氧發生裝置 Ozone generating device

本發明涉及一種臭氧發生裝置,尤其涉及一種基於電暈放電原理之臭氧發生裝置。 The invention relates to an ozone generating device, in particular to an ozone generating device based on the principle of corona discharge.

臭氧係一種強氧化劑,於已知之幾種氧化劑中,臭氧之氧化性僅次於氟,因此能氧化水及空氣中之污染物,如細菌或病毒等,被廣泛應用到水質、空氣及環境之淨化。尤其係在水處理方面,臭氧之氧化消毒效果比傳統之氯化劑高幾十倍,且無二次污染。 Ozone is a strong oxidant. Among the known oxidants, the oxidation of ozone is second only to fluorine. Therefore, it can oxidize water and air pollutants such as bacteria or viruses, and is widely used in water, air and environment. Purification. Especially in the water treatment, the ozone oxidation disinfection effect is several times higher than the conventional chlorinating agent, and there is no secondary pollution.

臭氧於自然界中係由紫外線照射或閃電擊中空氣中之氧氣而形成。目前,人工產生臭氧之方法主要有電解法、紫外光照法、電暈放電法等幾種。電暈放電係氣體介質在由一電暈電壓產生之不均勻電場中所產生之局部自持放電,所謂自持放電即不依賴外界電離條件,僅由電暈電壓作用即可維持之一種氣體放電現象,該放電現象較為穩定。利用電暈放電原理製造之臭氧發生裝置由於臭氧產生效率高,可控性好及能夠製備高濃度臭氧而於工業上應用最為廣泛。 Ozone is formed in nature by ultraviolet light or lightning strikes oxygen in the air. At present, the methods for artificially generating ozone mainly include electrolysis, ultraviolet light, and corona discharge. Corona discharge is a partial self-sustaining discharge generated by a gas medium in an inhomogeneous electric field generated by a corona voltage. The so-called self-sustaining discharge is a gas discharge phenomenon that can be maintained only by the corona voltage without relying on external ionization conditions. This discharge phenomenon is relatively stable. The ozone generating device manufactured by the corona discharge principle is most widely used in the industry due to high ozone generation efficiency, good controllability, and ability to prepare high concentration ozone.

該臭氧發生裝置一般包括一第一電極及相對設置之一第二電極,該第一電極靠近第二電極之表面具有複數放電單元,該放電單元為尖端或突起,該第二電極靠近第一電極之表面為平面或曲面。當給該第一電極及第二電極施加外部電壓時,該第一電極中各個放電單元之末端聚集大量電荷,從而使該第一電極中之各個放電單元及放 電單元之間之空間產生不均勻電場。當該外部電壓達到該電暈電壓時,該尖端附近之氣體被電離並產生電暈電流。而臭氧之生成過程主要分為三個步驟:一、電暈電流提供自由電子;二、該自由電子與氧氣中之氧分子碰撞,產生自由氧原子;三、該氧原子與氧分子於中間氣體之作用下,結合生成臭氧分子。 The ozone generating device generally includes a first electrode and a second electrode disposed oppositely. The first electrode has a plurality of discharge cells near the surface of the second electrode, the discharge cell is a tip or a protrusion, and the second electrode is adjacent to the first electrode. The surface is flat or curved. When an external voltage is applied to the first electrode and the second electrode, a large amount of charges are accumulated at the ends of the respective discharge cells in the first electrode, thereby causing each discharge cell in the first electrode to be placed The space between the electrical units creates an inhomogeneous electric field. When the external voltage reaches the corona voltage, the gas near the tip is ionized and a corona current is generated. The formation process of ozone is mainly divided into three steps: first, the corona current provides free electrons; second, the free electron collides with oxygen molecules in oxygen to generate free oxygen atoms; and third, the oxygen atoms and oxygen molecules are in the middle gas. Under the action of the combination, ozone molecules are formed.

在該臭氧產生過程中,電暈電流之大小極大影響著該臭氧之產率和產量,電暈電流越大,該臭氧之產率和產量越高。有文獻指出於同等電壓下,通過減小該第一電極上尖端之直徑可增大電暈電流,請參見陳海豐等人於2007年10日發表之“多針電極結構雙極電暈放電伏安特性”。在先前之臭氧發生裝置中,該放電單元一般為細長金屬,該細長金屬之末端即為放電單元之放電端。然金屬材料之特性決定於現有工藝下很難將該細長金屬末端之直徑加工到微米級甚至奈米級以下。因此在先前之之臭氧發生裝置中細長金屬末端之直徑一般都在毫米級,使該臭氧發生裝置所產生之電暈電流較小。 In the ozone generation process, the magnitude of the corona current greatly affects the yield and yield of the ozone, and the larger the corona current, the higher the yield and yield of the ozone. It has been pointed out in the literature that the corona current can be increased by reducing the diameter of the tip of the first electrode at the same voltage. Please refer to the "multi-needle electrode structure bipolar corona discharge voltammetry" published by Chen Haifeng et al. characteristic". In the prior ozone generating apparatus, the discharge unit was generally an elongated metal, and the end of the elongated metal was the discharge end of the discharge unit. However, the characteristics of the metal material are determined by the difficulty in processing the diameter of the elongated metal end to the micron level or even the nano level. Therefore, in the prior ozone generating apparatus, the diameter of the elongated metal end is generally on the order of millimeters, so that the corona current generated by the ozone generating device is small.

有鑒於此,提供具有較大電暈電流之臭氧發生裝置實為必要。 In view of this, it is necessary to provide an ozone generating device having a large corona current.

一種臭氧發生裝置,其包括間隔設置之一第一電極及一第二電極,該第一電極及第二電極至少部分相對設置。該臭氧發生裝置用於將注入到該第一及第二電極之間之氧氣轉換為臭氧。該第一電極靠近該第二電極之一側設置有至少一放電單元,該放電單元包括至少一奈米碳管 線自第一電極往第二電極方向延伸,該奈米碳管線靠近該第二電極之一端伸出至少一奈米碳管。 An ozone generating device includes a first electrode and a second electrode disposed at intervals, and the first electrode and the second electrode are at least partially disposed opposite to each other. The ozone generating device is configured to convert oxygen injected between the first and second electrodes into ozone. The first electrode is disposed adjacent to one side of the second electrode with at least one discharge unit, and the discharge unit includes at least one carbon nanotube The wire extends from the first electrode toward the second electrode, and the nanocarbon pipeline extends at least one carbon nanotube near one end of the second electrode.

一種臭氧發生裝置,其包括間隔設置之一第一電極及一第二電極,該第一電極及第二電極為相互平行且間隔設置之板狀電極。該第一電極靠近該第二電極之一側間隔設置有複數放電單元,該複數放電單元以陣列方式排列。該臭氧發生裝置用於將注入到該第一電極及第二電極之間之氧氣轉換為臭氧。每個放電單元包括至少一奈米碳管線自第一電極往第二電極方向延伸,該奈米碳管線靠近該第二電極之一端伸出至少一奈米碳管。該伸出之奈米碳管表面設置有一金屬碳化物層或設置有複數金屬碳化物顆粒。 An ozone generating device includes a first electrode and a second electrode spaced apart from each other, wherein the first electrode and the second electrode are plate electrodes arranged in parallel and spaced apart from each other. The first electrode is spaced apart from one side of the second electrode to be provided with a plurality of discharge cells, and the plurality of discharge cells are arranged in an array. The ozone generating device is configured to convert oxygen injected between the first electrode and the second electrode into ozone. Each of the discharge cells includes at least one nanocarbon line extending from the first electrode toward the second electrode, and the nanocarbon line extends at least one carbon nanotube near one end of the second electrode. The surface of the extended carbon nanotube is provided with a metal carbide layer or a plurality of metal carbide particles.

相較於先前技術,本發明提供之臭氧發生裝置,其放電單元包括至少一奈米碳管線,該奈米碳管線之放電端為直徑於奈米級之奈米碳管,因此該臭氧發生裝置具有較大電暈電流。 Compared with the prior art, the present invention provides an ozone generating device, wherein the discharge unit comprises at least one nano carbon line, and the discharge end of the nano carbon line is a carbon nanotube having a diameter of a nanometer, and thus the ozone generating device Has a large corona current.

以下將結合附圖詳細說明本發明實施例提供之臭氧發生裝置。 Hereinafter, an ozone generating apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

請參閱圖1,本發明實施例提供之一種臭氧發生裝置100,其包括相對且間隔設置之一第一電極110及一第二電極120,一介電體130設置於該第二電極120靠近該第一電極110之一側,至少一放電單元140設置於該第一電極110靠近該介電體130之一側。該第一電極110及第二電極120電連接於一電源200。 Referring to FIG. 1 , an ozone generating apparatus 100 according to an embodiment of the present invention includes a first electrode 110 and a second electrode 120 disposed opposite to each other. A dielectric body 130 is disposed adjacent to the second electrode 120. On one side of the first electrode 110, at least one discharge unit 140 is disposed on a side of the first electrode 110 adjacent to the dielectric body 130. The first electrode 110 and the second electrode 120 are electrically connected to a power source 200.

該電源200為直流電源,其具有一正極210與一負極220,該正極210與該第二電極120電連接,該負極220與該第一電極110電連接,使該第一電極110具有一負電壓並由該負電壓產生電暈電流,此時,該第一電極110為負極電暈放電。可以理解,該電源200與第一電極110及第二電極120之連接方式並不局限於上述連接方式。該負極220還可與第二電極120電連接,而該正極210與該第一電極110電連接,使該第一電極110具有一正電壓並由該正電壓產生電暈電流,此時,該第一電極110為正極電暈放電。可以理解,該電源200還可為交流電源,此時該第一電極110交替產生負極電暈放電與正極電暈放電。 The power source 200 is a DC power source, and has a positive electrode 210 and a negative electrode 220. The positive electrode 210 is electrically connected to the second electrode 120. The negative electrode 220 is electrically connected to the first electrode 110, so that the first electrode 110 has a negative The voltage generates a corona current from the negative voltage. At this time, the first electrode 110 is a negative corona discharge. It can be understood that the connection manner between the power source 200 and the first electrode 110 and the second electrode 120 is not limited to the above connection manner. The anode 220 can also be electrically connected to the second electrode 120, and the cathode 210 is electrically connected to the first electrode 110, so that the first electrode 110 has a positive voltage and generates a corona current from the positive voltage. The first electrode 110 is a positive corona discharge. It can be understood that the power source 200 can also be an AC power source, and the first electrode 110 alternately generates a negative corona discharge and a positive corona discharge.

該第一電極110及第二電極120為兩個相互平行設置之板狀電極,該第一電極110及第二電極120至少部分相對設置,以保證該第一電極110與第二電極120相對之部分能夠產生不均勻電場,形成電暈電流。當然,該第一及第二電極110、120還可為兩個同心且間隔設置之筒狀電極,該第一電極110套設於該第二電極120中。 The first electrode 110 and the second electrode 120 are two plate electrodes arranged in parallel with each other. The first electrode 110 and the second electrode 120 are at least partially opposite each other to ensure that the first electrode 110 and the second electrode 120 are opposite to each other. Some can generate a non-uniform electric field to form a corona current. Of course, the first and second electrodes 110 and 120 can also be two concentric and spaced apart cylindrical electrodes. The first electrode 110 is sleeved in the second electrode 120.

該介電體130設置於該第二電極120靠近該第一電極110之一側,且該介電體130與放電單元140之間具有一定間隙。該介電體130由陶瓷或其他耐熱絕緣材料製成,且該介電體130覆蓋第二電極120面向第一電極110之表面。從而於當載入於該第一電極110與第二電極120之間之電壓大於電暈電壓時,確保該第一電極110與第二電極120之間難以形成通路電流,達到促進電暈放電之效果。該介電體130還可為玻璃或塑膠等絕緣體。可以理解,該介 電體130為該臭氧發生裝置100中之可選元件,即該臭氧發生裝置100也可不包括介電體130,此時,載入於該第一電極110電壓應小於該放電單元140到第一電極120之擊穿電壓,使該第一電極110與第二電極120之間不形成通路電流,以確保該放電單元140為電暈放電。 The dielectric body 130 is disposed on a side of the second electrode 120 adjacent to the first electrode 110, and has a certain gap between the dielectric body 130 and the discharge unit 140. The dielectric body 130 is made of ceramic or other heat resistant insulating material, and the dielectric body 130 covers the surface of the second electrode 120 facing the first electrode 110. Therefore, when the voltage between the first electrode 110 and the second electrode 120 is greater than the corona voltage, it is ensured that it is difficult to form a path current between the first electrode 110 and the second electrode 120 to promote corona discharge. effect. The dielectric body 130 can also be an insulator such as glass or plastic. Understandably, the media The electric body 130 is an optional component in the ozone generating device 100. The ozone generating device 100 may not include the dielectric body 130. In this case, the voltage applied to the first electrode 110 should be smaller than the discharging unit 140 to the first. The breakdown voltage of the electrode 120 is such that no path current is formed between the first electrode 110 and the second electrode 120 to ensure that the discharge unit 140 is corona discharge.

該放電單元140通過嵌接或導電膠黏接等方式固定於該第一電極110。當該放電單元140為複數時,複數放電單元140間隔設置,優選地,該複數放電單元140以陣列方式排列。每一放電單元140包括至少一奈米碳管線自第一電極110往第二電極120方向延伸,該放電單元140也可為由複數奈米碳管線平行併排設置或纏繞成線狀結構。 The discharge unit 140 is fixed to the first electrode 110 by means of inlay or conductive adhesive bonding. When the discharge cells 140 are plural, the plurality of discharge cells 140 are spaced apart, and preferably, the plurality of discharge cells 140 are arranged in an array. Each of the discharge cells 140 includes at least one nano carbon line extending from the first electrode 110 toward the second electrode 120. The discharge unit 140 may also be arranged side by side or wound into a linear structure by a plurality of carbon nanotubes.

請參閱圖2及圖3,該奈米碳管線包括複數奈米碳管沿其軸向扭轉或平行排列。該複數奈米碳管首尾相連且基本沿奈米碳管線軸向排列,相鄰之奈米碳管通過凡德瓦爾力連接。該奈米碳管線長度不限,其直徑為0.5奈米~100微米。具體地,該奈米碳管線可通過對從一奈米碳管陣列拉出之一奈米碳管拉膜進行機械力扭轉或有機溶劑處理而獲得,該通過機械力扭轉而獲得之扭轉之奈米碳管線中之複數奈米碳管繞奈米碳管線軸向螺旋排列。該通過有機溶劑處理而獲得之非扭轉之奈米碳管線中之複數奈米碳管大致平行排列。該通過有機溶劑處理獲得之奈米碳管線及其製備方法請參見Shou-Shan Fan等人於2006年10月26日申請之,於2007年7月19日公開之第US2007/0166223 A1號美國公開專利申請。為節省篇幅,僅引用於此,但該申請所有技術揭露也應視為本發明 申請技術揭露之一部分。 Referring to Figures 2 and 3, the nanocarbon pipeline includes a plurality of carbon nanotubes that are twisted or aligned in an axial direction thereof. The plurality of carbon nanotubes are connected end to end and are arranged substantially along the axial direction of the carbon nanotubes, and the adjacent carbon nanotubes are connected by van der Waals force. The nano carbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. Specifically, the nanocarbon pipeline can be obtained by mechanically twisting or organic solvent treatment of pulling a carbon nanotube film from an array of carbon nanotubes, and twisting it by mechanical force torsion The plurality of carbon nanotubes in the carbon carbon pipeline are arranged in an axial spiral around the nano carbon pipeline. The plurality of carbon nanotubes in the non-twisted nanocarbon line obtained by the organic solvent treatment are arranged substantially in parallel. The nanocarbon pipeline obtained by the organic solvent treatment and the preparation method thereof are disclosed in the US Patent No. US2007/0166223 A1, which was filed on October 26, 2007, to Shou-Shan Fan et al. patent application. In order to save space, only this is cited, but all technical disclosures of this application should also be regarded as the present invention. Apply for a part of the technical disclosure.

該奈米碳管線靠近第二電極120之端部伸出至少一奈米碳管作為該放電單元140之放電端,該奈米碳管之直徑為0.4奈米~50奈米。即該放電端之直徑達到奈米級。因此,包括該奈米碳管線之放電單元140,其臭氧產生裝置100具有較大之電暈電流。同時,每一奈米碳管線可包括複數放電端,從而增加該電暈電流之密度。 The nanocarbon pipeline extends at least one carbon nanotube near the end of the second electrode 120 as a discharge end of the discharge unit 140, and the diameter of the carbon nanotube is 0.4 nm to 50 nm. That is, the diameter of the discharge end reaches the nanometer level. Therefore, the discharge unit 140 including the nanocarbon line has an ozone generating device 100 having a large corona current. At the same time, each nanocarbon line can include a plurality of discharge ends to increase the density of the corona current.

請參見圖4及圖5,在本實施例中,該奈米碳管線靠近該第二電極120之一端還可具有複數尖端。該尖端包括複數奈米碳管通過凡德瓦爾力緊密結合並基本相互平行,且該尖端靠近該第二電極120之一端,即該尖端之頂部往第二電極120方向延伸出一奈米碳管,該奈米碳管即為該奈米碳管線之放電端。複數尖端之間具有一定間隙,避免各個尖端之間之電場屏蔽,同時該突出之奈米碳管被其他周圍之奈米碳管通過凡德瓦爾力牢牢固定,因此該突出之奈米碳管可承受較大之放電電壓。該尖端可通過對該奈米碳管線通電熔斷、對該奈米碳管線用鐳射燒斷或者對該奈米碳管線用電子束掃描而形成。 Referring to FIG. 4 and FIG. 5, in the embodiment, the nanocarbon pipeline may have a plurality of tips near one end of the second electrode 120. The tip includes a plurality of carbon nanotubes tightly coupled by Van der Waals force and substantially parallel to each other, and the tip is adjacent to one end of the second electrode 120, that is, a tip of the tip extends toward the second electrode 120 to form a carbon nanotube The carbon nanotube is the discharge end of the nanocarbon pipeline. There is a certain gap between the complex tips to avoid electric field shielding between the respective tips, and the protruding carbon nanotubes are firmly fixed by the other surrounding carbon nanotubes through the van der Waals force, so the protruding carbon nanotubes Can withstand large discharge voltages. The tip can be formed by energizing the nanocarbon line, by laser burning the nanocarbon line, or by scanning the nanocarbon line with an electron beam.

該放電單元140之表面還可進一步形成有一耐離子衝擊之金屬碳化物層或設置有複數金屬碳化物顆粒,該金屬碳化物層或複數金屬碳化物顆粒至少設置於放電端之表面,優選地,該金屬碳化物層或金屬碳化物顆粒設置於放電單元140中每個奈米碳管之外表面。該金屬碳化物層或金屬碳化物顆粒能夠使該放電單元140於放電過程中電離氣體介質所產生之離子不直接衝擊奈米碳管,從而使該 放電單元140更耐離子衝擊,延長該放電單元140之使用壽命。該金屬碳化物可為碳化鉿、碳化鈦、碳化鈮及碳化鋯中之一種,優選地,該金屬碳化物選擇碳化鉿。 The surface of the discharge unit 140 may further be formed with an ion-resistant metal carbide layer or a plurality of metal carbide particles, and the metal carbide layer or the plurality of metal carbide particles are disposed at least on the surface of the discharge end, preferably, The metal carbide layer or metal carbide particles are disposed on the outer surface of each of the carbon nanotubes in the discharge unit 140. The metal carbide layer or the metal carbide particles can cause the ions generated by the discharge unit 140 to ionize the gas medium during the discharge process without directly impacting the carbon nanotubes, thereby The discharge unit 140 is more resistant to ion shock and prolongs the service life of the discharge unit 140. The metal carbide may be one of tantalum carbide, titanium carbide, tantalum carbide, and zirconium carbide. Preferably, the metal carbide is selected from tantalum carbide.

該臭氧發生裝置100工作時,當該第一電極110與介電體130之間隙內注入乾燥且含有氧氣之混合氣體時,給該第一電極110與第二電極120供電。該放電單元140之末端聚集空間電荷,並使該尖端附近之電場增強,當該尖端附近之電場大於第一電極110與第二電極120之間之電場時產生放電,釋放之電子轟擊該混合氣體中之氧分子,使該氧分子分解成兩個氧原子;該氧原子與氧分子於中間氣體之作用下,結合生成臭氧分子。由上述臭氧分子之產生過程可知,該臭氧分子產生之數量很大程度上取決於被釋放之電子之多寡,即電暈電流之大小。該電暈電流隨著放電單元末端之直徑之減小而增大,而在本實施例中,該放電單元140之末端為單根或多根間隔之直徑於奈米級之奈米碳管,因此於同等條件下,可使該放電單元140產生較大之電暈電流強度。且當每一放電單元140包括複數奈米碳管線時,每個放電單元140之末端都包括複數奈米碳管,因此於同一放電單元140可包含複數放電端,大大提高了電暈電流之密度。 When the ozone generating device 100 is in operation, when the mixed gas containing oxygen is injected into the gap between the first electrode 110 and the dielectric body 130, the first electrode 110 and the second electrode 120 are supplied with power. The end of the discharge unit 140 collects space charge and enhances the electric field near the tip. When the electric field near the tip is larger than the electric field between the first electrode 110 and the second electrode 120, a discharge is generated, and the released electrons bombard the mixed gas. The oxygen molecule breaks down the oxygen molecule into two oxygen atoms; the oxygen atom and the oxygen molecule combine to form an ozone molecule under the action of an intermediate gas. It can be known from the above process of the production of ozone molecules that the amount of ozone molecules produced depends largely on the amount of electrons released, that is, the magnitude of the corona current. The corona current increases as the diameter of the end of the discharge unit decreases. In the present embodiment, the end of the discharge unit 140 is a single or a plurality of carbon nanotubes having a diameter of a diameter of a nanometer. Therefore, under the same conditions, the discharge unit 140 can be made to generate a large corona current intensity. And when each of the discharge cells 140 includes a plurality of carbon nanotubes, each of the discharge cells 140 includes a plurality of carbon nanotubes at the end, so that the same discharge cell 140 can include a plurality of discharge ends, thereby greatly increasing the density of the corona current. .

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

100‧‧‧臭氧發生裝置 100‧‧‧Ozone generating device

110‧‧‧第一電極 110‧‧‧First electrode

120‧‧‧第二電極 120‧‧‧second electrode

130‧‧‧介電體 130‧‧‧ dielectric

140‧‧‧放電單元 140‧‧‧discharge unit

200‧‧‧電源 200‧‧‧Power supply

210‧‧‧正極 210‧‧‧ positive

220‧‧‧負極 220‧‧‧negative

圖1係本發明實施例所提供之臭氧發生裝置之結構示意圖。 FIG. 1 is a schematic structural view of an ozone generating apparatus according to an embodiment of the present invention.

圖2係本發明實施例所提供之臭氧發生裝置中作為放電單元之非扭轉奈米碳管線之掃描電鏡照片。 2 is a scanning electron micrograph of a non-twisted nanocarbon line as a discharge cell in an ozone generating apparatus according to an embodiment of the present invention.

圖3係本發明實施例所提供之臭氧發生裝置中作為放電單元之扭轉奈米碳管線之掃描電鏡照片。 3 is a scanning electron micrograph of a twisted nanocarbon line as a discharge cell in an ozone generating apparatus according to an embodiment of the present invention.

圖4係本發明實施例所提供之臭氧發生裝置中作為放電單元之奈米碳管線靠近第二電極一端之掃描電鏡照片。 4 is a scanning electron micrograph of a nanocarbon line as a discharge unit in the ozone generating apparatus according to the embodiment of the present invention, which is close to the end of the second electrode.

圖5係圖4中奈米碳管線中尖端之透射電鏡照片。 Figure 5 is a transmission electron micrograph of the tip of the nanocarbon line of Figure 4.

100‧‧‧臭氧發生裝置 100‧‧‧Ozone generating device

110‧‧‧第一電極 110‧‧‧First electrode

120‧‧‧第二電極 120‧‧‧second electrode

130‧‧‧介電體 130‧‧‧ dielectric

140‧‧‧放電單元 140‧‧‧discharge unit

200‧‧‧電源 200‧‧‧Power supply

210‧‧‧正極 210‧‧‧ positive

220‧‧‧負極 220‧‧‧negative

Claims (17)

一種臭氧發生裝置,其包括間隔設置之一第一電極及一第二電極,該第一電極及第二電極至少部分相對設置,該第一電極靠近該第二電極之一側設置有至少一放電單元,該臭氧發生裝置用於將注入到該第一電極及第二電極之間之氧氣轉換為臭氧,其改進在於,該放電單元包括至少一奈米碳管線自第一電極往第二電極方向延伸,該奈米碳管線靠近該第二電極之一端伸出至少一奈米碳管,該臭氧發生裝置進一步包括一介電體,該介電體設置於該第二電極靠近該第一電極之一側。 An ozone generating device includes a first electrode and a second electrode spaced apart from each other, wherein the first electrode and the second electrode are at least partially disposed oppositely, and the first electrode is provided with at least one discharge adjacent to one side of the second electrode a unit for converting oxygen injected between the first electrode and the second electrode into ozone, wherein the discharge unit comprises at least one nanocarbon line from the first electrode to the second electrode Extendingly, the nanocarbon pipeline extends at least one carbon nanotube near one end of the second electrode, the ozone generating device further comprising a dielectric body disposed on the second electrode adjacent to the first electrode One side. 如申請專利範圍第1項所述之臭氧發生裝置,其中,該奈米碳管之直徑為0.4奈米~50奈米。 The ozone generating device according to claim 1, wherein the carbon nanotube has a diameter of 0.4 nm to 50 nm. 如申請專利範圍第1項所述之臭氧發生裝置,其中,該介電體材料為陶瓷、玻璃或塑膠。 The ozone generating device according to claim 1, wherein the dielectric material is ceramic, glass or plastic. 如申請專利範圍第1項所述之臭氧發生裝置,其中,該介電體覆蓋住該第二電極面向第一電極之表面。 The ozone generating device of claim 1, wherein the dielectric body covers a surface of the second electrode facing the first electrode. 如申請專利範圍第1項所述之臭氧發生裝置,其中,該第一電極及第二電極為兩個同心且間隔設置之筒狀電極,且該第一電極套設於該第二電極中。 The ozone generating device of claim 1, wherein the first electrode and the second electrode are two concentric and spaced cylindrical electrodes, and the first electrode is sleeved in the second electrode. 如申請專利範圍第1項所述之臭氧發生裝置,其中,該奈米碳管線包括複數奈米碳管首尾相連且基本沿奈米碳管線軸向排列,相鄰之奈米碳管通過凡德瓦爾力連接。 The ozone generating device according to claim 1, wherein the nano carbon pipeline comprises a plurality of carbon nanotubes connected end to end and arranged substantially along an axial direction of the nanocarbon pipeline, and the adjacent carbon nanotubes pass through the van der Waals. Valli connection. 如申請專利範圍第6項所述之臭氧發生裝置,其中,該複數奈米碳管大致相互平行。 The ozone generating device of claim 6, wherein the plurality of carbon nanotubes are substantially parallel to each other. 如申請專利範圍第6項所述之臭氧發生裝置,其中,該複 數奈米碳管繞奈米碳管線軸向螺旋排列。 An ozone generating device according to claim 6, wherein the complex A number of nano carbon tubes are arranged in an axial spiral around the nano carbon line. 如申請專利範圍第7項或第8項所述之臭氧發生裝置,其中,該奈米碳管線之直徑為0.5奈米~100微米。 The ozone generating device according to claim 7 or 8, wherein the nano carbon line has a diameter of 0.5 nm to 100 μm. 如申請專利範圍第1項所述之臭氧發生裝置,其中,該放電單元還包括複數奈米碳管線平行排列或纏繞成線狀結構。 The ozone generating device of claim 1, wherein the discharge unit further comprises a plurality of carbon nanotubes arranged in parallel or wound into a linear structure. 如申請專利範圍第1項所述之臭氧發生裝置,其中,該奈米碳管線靠近該第二電極之一端具有複數尖端,每個尖端包括複數奈米碳管通過凡德瓦爾力結合並基本相互平行。 The ozone generating device of claim 1, wherein the nanocarbon line has a plurality of tips near one end of the second electrode, and each tip comprises a plurality of carbon nanotubes combined by van der Waals force and substantially mutually parallel. 如申請專利範圍第11項所述之臭氧發生裝置,其中,該複數尖端間隔設置。 The ozone generating device of claim 11, wherein the plurality of tips are spaced apart. 如申請專利範圍第12項所述之臭氧發生裝置,其中,每個尖端之頂部往第二電極方向延伸出一奈米碳管。 The ozone generating device according to claim 12, wherein a top of each tip extends a carbon nanotube in the direction of the second electrode. 如申請專利範圍第1項所述之臭氧發生裝置,其中,該奈米碳管線之表面設置有一金屬碳化物層或設置有複數金屬碳化物顆粒,該金屬碳化物為碳化鉿、碳化鈦、碳化鈮及碳化鋯中之一種。 The ozone generating device according to claim 1, wherein the surface of the nanocarbon pipeline is provided with a metal carbide layer or a plurality of metal carbide particles, the metal carbide being tantalum carbide, titanium carbide, carbonization. One of niobium and zirconium carbide. 一種臭氧發生裝置,其包括間隔設置之一第一電極及一第二電極,該第一電極及第二電極為相互平行且間隔設置之板狀電極,該第一電極靠近該第二電極之一側間隔設置有複數放電單元,該複數放電單元以陣列方式排列,該臭氧發生裝置用於將注入到該第一電極及第二電極之間之氧氧轉換為臭氧,其改進在於,每個放電單元包括至少一奈米碳管線自第一電極往第二電極方向延伸,該奈米碳管線靠近該第二電極之一端伸出至少一奈米碳管,該奈米碳管線包括複數奈米碳管首尾相連且基本沿奈米碳管線軸向排列 。 An ozone generating device includes a first electrode and a second electrode spaced apart from each other, wherein the first electrode and the second electrode are plate electrodes arranged in parallel and spaced apart from each other, the first electrode being adjacent to one of the second electrodes The side spacing is provided with a plurality of discharge cells arranged in an array, the ozone generating device is configured to convert oxygen oxygen injected between the first electrode and the second electrode into ozone, and the improvement is that each discharge The unit includes at least one nanocarbon pipeline extending from the first electrode toward the second electrode, and the nanocarbon pipeline extends at least one carbon nanotube near one end of the second electrode, the nanocarbon pipeline including a plurality of carbon nanotubes The tubes are connected end to end and are arranged axially along the nanocarbon line. . 如申請專利範圍第15項所述之臭氧發生裝置,其中,所述伸出之奈米碳管表面設置有一金屬碳化物層或設置有複數金屬碳化物顆粒,該金屬碳化物為碳化鉿、碳化鈦、碳化鈮及碳化鋯中之一種。 The ozone generating device according to claim 15, wherein the surface of the protruding carbon nanotube is provided with a metal carbide layer or a plurality of metal carbide particles, and the metal carbide is tantalum carbide and carbonized. One of titanium, tantalum carbide and zirconium carbide. 如申請專利範圍第15項所述之臭氧發生裝置,其中,所述臭氧發生裝置進一步包括一介電體,該介電體設置於該第二電極靠近該第一電極之一側。 The ozone generating device of claim 15, wherein the ozone generating device further comprises a dielectric body disposed on a side of the second electrode adjacent to the first electrode.
TW098118140A 2009-06-02 2009-06-02 Ozone generator TWI476145B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098118140A TWI476145B (en) 2009-06-02 2009-06-02 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098118140A TWI476145B (en) 2009-06-02 2009-06-02 Ozone generator

Publications (2)

Publication Number Publication Date
TW201043570A TW201043570A (en) 2010-12-16
TWI476145B true TWI476145B (en) 2015-03-11

Family

ID=45000999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118140A TWI476145B (en) 2009-06-02 2009-06-02 Ozone generator

Country Status (1)

Country Link
TW (1) TWI476145B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515170B (en) * 2012-06-28 2016-04-27 清华大学 The preparation method of field emission body of Nano carbon tube
JP6374902B2 (en) * 2016-03-25 2018-08-15 住友精密工業株式会社 Ozone gas generator and method for manufacturing ozone gas generator
CN109415206B (en) * 2016-07-14 2022-03-11 株式会社村田制作所 Ozone generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200616888A (en) * 2004-11-18 2006-06-01 Chien Hui Chuan Ozone generator
US20080287030A1 (en) * 2004-02-25 2008-11-20 Dong-Wook Kim Method of fabricating carbide and nitride nano electron emitters
TW200921738A (en) * 2007-11-09 2009-05-16 Hon Hai Prec Ind Co Ltd Field emission electron source and method for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080287030A1 (en) * 2004-02-25 2008-11-20 Dong-Wook Kim Method of fabricating carbide and nitride nano electron emitters
TW200616888A (en) * 2004-11-18 2006-06-01 Chien Hui Chuan Ozone generator
TW200921738A (en) * 2007-11-09 2009-05-16 Hon Hai Prec Ind Co Ltd Field emission electron source and method for making the same

Also Published As

Publication number Publication date
TW201043570A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5646208B2 (en) Ozone generator
JP5032827B2 (en) Static eliminator
KR102557832B1 (en) Energy Efficient Plasma Processes That Produce Free Charges, Ozone and Light
CN102024635B (en) Electron emitter and electron emission component
TWI476145B (en) Ozone generator
CN1830573A (en) Air purification device
US20230258113A1 (en) Apparatus and method for electron irradiation scrubbing
Lee et al. Synthesis of double-walled carbon nanotubes by catalytic chemical vapor deposition and their field emission properties
Yamatake et al. Water purification by atmospheric DC/pulsed plasmas inside bubbles in water
CN116598895A (en) Modified discharge electrode of ion wind generating device, modification method and application thereof
CN102024636B (en) Electron emitter and electron emitting element
TWI740192B (en) Field emission neutralizer
TWI309428B (en) Emission source having carbon nanotube
KR100556757B1 (en) Ion generator using carbon nano tip and menufacturing method thereof
JP4396308B2 (en) Manufacturing method of fuel cell separator
KR101121639B1 (en) Cathode structure of electron emitting device
JP2008044828A (en) Carbon nanotube forming device and carbon nanotube forming method
JP2015118853A (en) Electron emission element and electron emission device
CN113747646B (en) Double-spiral curled microcavity plasma device structure and preparation method thereof
CN213965932U (en) Plasma and ultraviolet photolysis integrated gas treatment device
CN215580950U (en) Superaudio high-voltage power supply capable of generating light quantum beams
RU150155U1 (en) CROWNED IONIZATION SOURCE
JP2015125922A (en) Electron emitting element and electron emitting device
CN214544891U (en) Low-temperature plasma electrode structure, sterilization device and air purification device
TWI441227B (en) Electron emitter and displaying device using the same