KR20170103903A - 전하 캐리어를 안내하는 장치 및 그 용도 - Google Patents
전하 캐리어를 안내하는 장치 및 그 용도 Download PDFInfo
- Publication number
- KR20170103903A KR20170103903A KR1020177022110A KR20177022110A KR20170103903A KR 20170103903 A KR20170103903 A KR 20170103903A KR 1020177022110 A KR1020177022110 A KR 1020177022110A KR 20177022110 A KR20177022110 A KR 20177022110A KR 20170103903 A KR20170103903 A KR 20170103903A
- Authority
- KR
- South Korea
- Prior art keywords
- carrier
- guide
- moving zone
- field
- main path
- Prior art date
Links
- 239000002800 charge carrier Substances 0.000 title claims description 19
- 230000005533 two-dimensional electron gas Effects 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims description 14
- 239000002887 superconductor Substances 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 230000000704 physical effect Effects 0.000 claims description 6
- 230000005670 electromagnetic radiation Effects 0.000 claims description 5
- 108091006149 Electron carriers Proteins 0.000 abstract description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- 239000010409 thin film Substances 0.000 description 10
- 239000000969 carrier Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005672 electromagnetic field Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005288 electromagnetic effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- H01L43/02—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/035—Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/08—Deviation, concentration or focusing of the beam by electric or magnetic means
- G21K1/093—Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/201—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
- H01L29/205—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/82—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
-
- H01L39/143—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
- H02N11/002—Generators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
- H05H13/005—Cyclotrons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/20—Permanent superconducting devices
- H10N60/203—Permanent superconducting devices comprising high-Tc ceramic materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Measuring Magnetic Variables (AREA)
- Particle Accelerators (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Hall/Mr Elements (AREA)
- Measurement Of Radiation (AREA)
Abstract
본 발명은 전하 및/또는 자기 모멘트를 갖는 전하나 전자 캐리어를 안내하는 장치와 그 용도에 관한 것으로, 가이드가 이동구역을 형성하기 위한 2차원 전자기체 또는 얇은 초전도층을 갖고; 및/또는 가이드 및/또는 이동구역 및/또는 메인경로가 평면이나 폐쇄표면에서 곡선형 및/또는 꺾어진 형상으로 뻗는다.
Description
본 발명은 전하 및/또는 자기 모멘트를 갖는 전하나 전자 캐리어를 안내하는 장치와 그 용도에 관한 것이다.
실제 세계에서 움직이는 입자(예; 기체의 분자나 고체의 전자)는 소위 에르고드 정리의 적용을 받는바, 이론적으로는 충분한 시간동안 관찰했을 때 시스템의 위상공간(공간적인 모멘텀 좌포)내의 가능한 모든 점이 같은 주파수로 도착된다. 열역학의 1, 2 법칙을 에르고드계에 적용할 수 있다.
비에르고드계는 대부분 이론적으로만 알려져있다. 예를 들어, 벽면이 이상적으로 평행하고 공이 마찰없이 구르는 당구대가 이런 비에르고드계이다. 이 경우 당구대 중앙에서 공을 한쪽 벽에 수직으로 치면 수직으로 반사되어, 2개의 이상적으로 평행한 벽들을 연결하는 선을 따라서만 공이 앞뒤로 구르고 당구대의 다른 부분으로는 구르지 않는다.
비에르고드계의 존재 조건은 정확히 말해 이상적으로 경계 벽의 형상이 평행하고, 입자(공)의 경로가 직선이며, 공의 반사각은 수직이고 운동방향도 벽에 수직이어야 하고 경게 벽들과의 접촉이 없이 경로 변화도 없어야만 한다. 이런 조건들은 현실적으로 거의 달성할 수 없다.
DE 39 03 919 A1은 고체내에서 전자들을 안내하는 장치와 방법을 소개하고 있는데, 여기서는 반도체 박막을 전기절연체의 구형곡면에 붙인다. 자기장에 의해, 이 박막에서의 전자의 이동경로의 곡률이 박막의 곡률과 같거나 비슷해진다. 곡면 박막상의 2군데 떨어진 지점들 사이에 전위차가 생긴다. 반도체 박막의 두께는 반도체 박막내의 전자의 평균 자유행로 길이의 범위 안에 있어야 하고, 이 길이는 균질한 반도체 박막에서 아주 작아 구현하기가 어렵다.
1995년 1월 1일자 Semicond 1131-1138 페이지의 "Quantum bound state in a ballistic quantum channel with a multiple double-bend discontinuity"와 Applied Physics Vol. 77, no. 6의 2564~2571 페이지의 "Quantum bound state in a double-bend quantum channel"은 외부 필드의 영향이 없고 방향의존성 도전율의 검사도 없이 양쪽으로 이중으로 휘어진 불연속성을 갖는 좁은 채널에서 전자기체의 양자상태를 다루고 있다. 또, 채널의 폭은 원하는 양자-기계적 거동을 얻기 위해 전자의 드브로이 파장보다 크게 작아야 한다.
본 발명의 목적은 전하 및/또는 자기 모멘트를 갖는 전자와 같은 캐리어를 안내하는 장치와 이런 장치의 용도를 제공하는데 있다.
본 발명의 이런 목적은 제1항에 따른 장치나, 제11항 내지 제15항에 따른 장치의 용도에 의해 달성된다. 본 발명의 다른 장점들은 종속항들에 기재된 바와 같다.
본 발명의 장치는 캐리어의 이동구역을 형성하기 위한 2차원 전자기체 또는 얇은 초전도층을 갖는 가이드를 포함한다. 이런 2차원 전자기체나 초전도층들에 ㅂ비교적 큰 평균행로길이가 존재한다. 이때문에 아주 간단하게 원하는 이동구역을 얻을 수 있다. 이동 구역의 폭과 곡률은 평균자유행로 길이의 크기 범위에 있으며 이동구역내의 캐리어나 전자의 드브로이 파장보다 위에 있다. 이런 크기는 원하는 비에르고드계를 형성하기에 유리하다.
캐리어들은 열에너지에 좌우되는 평균속도로 가이드와 이동구역에서 움직인다.
이동구역은 캐리어를 위한 곡선형이나 꺾어진 형상의 메인경로를 형성한다. 필드생성수단을 이용해, 캐리어들을 메인경로를 따라 안내하기 위한 자기장을 포함한 필드가 생성된다. 따라서, 캐리어들이 메인경로의 방향으로 충돌이 없거나 최소화한채 자유롭게 움직일 수 있다. 그러나, 반대방향으로는, 캐리어들이 이동구역의 측면의 방향으로 휘어진다. 그 결과, 반대 방향에서는 경계면에서 상당히 많은 충돌과 방사가 일어난다. 또, 적어도 부분적으로는 엄격하게 반사되지 않고 확산 산란되는 벽 충돌의 존재 때문에, 캐리어들이 불균일하게 분산되어, 메인경로의 시작부분과 끝 부분에서의 캐리어들의 확률밀도/존재밀도나 존재확률이 다르다. 특히, 방향에 따라 도전율이 다르게 생성되고, 메인경로에서의 도전율은 반대 방향에서의 도전율보다 커진다.
메인경로는 충돌을 무시하고 작용하는 필드를 고려해 이동구역의 메인 연장방향 및/또는 이상적인 경우의 이동구역에서의 캐리어의 이동경로를 따라간다. 따라서, 메인경로는 이동구역의 메인 평면상에 있고 이동구역 안에 있으며, 바람직하게는 이동구역의 휘어진 중심선을 따라 있다.
캐리어 각각은 전하나 전자나 정공을 운반한다. 따라서, 메인경로를 따라 적절히 배열된 전기 연결부들에 의해 캐리어의 확률밀도/존재밀도나 존재확률이 다른 것에 의거하여 전압, 전류 및/또는 전력이 생성될 수 있다.
원칙적으로 캐리어 각각은 자기모멘트를 갖고 전기장 및/또는 자기장과 작용한다.
본 발명에 의하면, 가이드 및/또는 이동구역이 폐쇄된 평탄면이나 구면이나 평면을 따라 뻗으면서 곡선형이나 꺾어진 형태로 된다. 이때문에, 평면형 층에 의해 비교적 간단하게 본 발명의 장치를 구성하고 제조할 수 있으면서, 메인경로의 평균 곡률도 200nm 미만이고 및/또는 가이드나 이동구역의 평균 폭이 2000nm 미만이다.
본 발명의 장치는 전하 캐리어의 열에너지로부터 및/또는 전자기 내재/주변 잡음으로부터 및/또는 연결부를 통한 전압이나 전력의 출력에 의한 전자기 영향이나 복사로부터 전압, 특히 직류 전압과 전력을 생성하는데 사용될 수 있다.
바람직하게, 전하 캐리어를 안내하기 위한 필드나 전자기장은 일정하게 유지된다. 한편, 필드나 전자기장을 조절해 출력된 전압이나 전력을 목표 값이나 최소값으로 유지할 수도 있다.
본 발명의 장치는 연결부를 통한 전력의 출력에 의한 전하 캐리어로부터의 열에너지의 제거를 통한 냉각에도 사용할 수 있다. 이런 기능은 아주 쉽게 구현되고 원칙적으로 다양한 목적에 사용될 수 있다.
전하 캐리어를 안내하기 위한 필드나 자기장은 거의 일정하게 유지된다. 한편, 필드나 전자기장을 조절해 출력된 전압이나 전력을 목표 값이나 최소값으로 유지할 수도 있다.
또, 본 발명의 장치를 연결부를 통한 전압 측정에 의해 전자기장의 복사나 전하 캐리어의 전자기 내재/주변 잡음을 측정하거나 감지하는데도 사용할 수 있다. 전압의 측정을 통해 잡음이나 전자기 복사를 감지하거나 결정할 수 있다.
특히, 필드나 자기장이나 작용하는 자기장 강도를 전술한 측정 동안 일정하게 유지한다. 적당한 보정을 통해, 잡음이나 작용하는 전자기 복사를 아주 쉽게 감지하고 결정할 수 있다. 그러나, 원칙적으로 캐리어를 안내하기 위한 필드나 자기장은 변할 수 있다.
본 발명의 장치를 연결부를 통한 전압 측정에 의해 전하 캐리어의 산랑니아 궤도를 측정하거나 감지하는데도 사용할 수 있다. 측정된 전압은 가이드나 이동 공간의 상태에 관한 정보를 제공할 수 있다.
일반적으로, 본 발명의 장치는 1차원이나 2차원 전자기체나 초전도체내의 물리적 특성을 측정하거나 결정하는데 사용될 수 있다.
산란, 궤도 및/또는 물리적 특성을 측정하거나 결정할 때, 전하 캐리어를 안내하는 필드나 자기장은 필요한대로 일정하거나 공간 및/또는 시간에 걸쳐 변할 수 있다.
또, 연결부를 통한 전압의 측정으로 가이드에 작용하는 전자기장 강도를 측정하는데 필드생성수단이 없는 장치를 이용할 수 있다. 미리 보정을 하면, 자기장 강도의 측정이 가능하다.
도 1은 필드생성수단이 없는 본 발명의 장치의 제1 실시예의 사시도;
도 2는 필드생성수단을 갖춘 장치의 측면도;
도 3은 필드생성수단이 없는 장치의 평면도;
도 4는 본 발명의 장치의 제2 실시예의 사시도;
도 5는 본 발명의 장치의 제3 실시예의 평면도;
도 6은 제3 실시예의 장치에서 측정한 전압 그래프;
도 7은 제3 실시예의 장치에서 측정한 전류 그래프;
도 8은 측정된 전류/전압 특성 그래프;
도 9는 여러 전류 특성들의 그래프;
도 10은 도 1의 실시예에 대응하는 제5 실시예의 사시도.
도 2는 필드생성수단을 갖춘 장치의 측면도;
도 3은 필드생성수단이 없는 장치의 평면도;
도 4는 본 발명의 장치의 제2 실시예의 사시도;
도 5는 본 발명의 장치의 제3 실시예의 평면도;
도 6은 제3 실시예의 장치에서 측정한 전압 그래프;
도 7은 제3 실시예의 장치에서 측정한 전류 그래프;
도 8은 측정된 전류/전압 특성 그래프;
도 9는 여러 전류 특성들의 그래프;
도 10은 도 1의 실시예에 대응하는 제5 실시예의 사시도.
도 1은 본 발명의 제1 실시예의 장치(1)의 사시도, 도 2는 관련 필드생성 수단(10)이 있을 경우의 측면도, 도 3은 도 1의 장치에서 필드생성 수단(10)이 없는 상태의 평면도이다.
이 장치(1)는 도 2에 도시된 캐리어(2)를 안내하는데 사용되고, 캐리어 각각은 전하 및/또는 자기 모멘트를 갖는다. 캐리어(2)는 전하 캐리어이고, 바람직하기로는 전자 캐리어이지만, 정공일 수도 있다.
이 장치(1)는 캐리어(2)를 안내하는 가이드(3)를 갖고, 가이드(3)는 속이 찬 고체이다. 캐리어(2)는 따라서 고체 안에서 움직일 수 있다.
캐리어(2)는 도 2에 도시된 것처럼 평탄한 층상 이동구역(B) 안에서만 움직일 수 있다.
장치(1)나 가이드(3)에 전기 연결부(4,5)가 있다(도 1, 3 참조).
장치(1)나 가이드(3)는 제1 고체인 반도체 층(6)과 제2 고체인 반도체 층(7)으로 이루어지고, 이들 층은 적층되어 공통의 경계면(8)을 갖는다.
2개의 반도체(6,7)의 경계면(8)이나 이동구역(B)은 평평하거나 폐쇄면(평면이나 구면) 및/또는 평면(E)을 따라 뻗는다.
위아래로 겹쳐있는 고체 층들(6,7)은 캐리어(2)를 위한 2차원 전자기체를 형성한다. 고체상태 물리학 견지에서, 전자기체는 도전밴드내의 전자나 정공 형태의 자유이동 캐리어(2)로 이루어지고, 그 평균자유행로 길이는 100nm 이상이지만 200nm 이상이 더 바람직하다. 이런 도전구역을 경계면(8)의 양쪽에만 형성되고, 구체적으로는 캐리어(2)의 이동구역(B)을 형성하는 아주 얇은 층 형태로 형성된다.
전설한 바와 같이, 이동구역(B)내에 큰 평균자유행로 길이를 갖는 전하로서 전자가 아닌 정공이 움직일 수도 있다.
가이드(3) 및/또는 이동구역(B)은 캐리어(2)를 위한 곡선형이거나 꺾인 형상의 메인경로(H)를 형성하는 것이 바람직하고, 도 3에는 메인경로(H)가 여러개 나란하게 표시되어 있다.
가이드(3) 및/또는 이동구역(B) 및/또는 메인경로(H)는 반원형으로 곡선형인 것이 바람직하지만, 한번이나 여러번 꺾인 형상일 수도 있다.
특히, 가이드(3) 및/또는 이동구역(B) 및/또는 메인경로(H)가 경계면(8)의 평면(E)에 있으면서 곡선형이거나 꺾인 형상인 것이 바람직하다. 이런 형상은 규정된 두께의 박막층들의 관점에서 실행하고 제조하기가 아주 쉽다.
연결부(4,5)는 메인경로(H)에서, 구체적으로는 가이드(3)나 이동구역(B)의 아치의 양단부에 서로 떨어져 있는 것이 좋다.
이동구역(B)은 층상 구조이고 이동구역(B)이나 각 층의 평균두께(D)는 500nm 이하, 바람직하게는 300nm 이하, 더 바람직하게는 200nm 이하이다.
이동구역(B)의 평균 폭(W)과 메인경로(H)의 곡률(R)은 이동구역(B)내 캐리어(2)의 평균자유행로 길이와 같거나 작은 것이 바람직하다.
가이드(3) 및/또는 이동구역(B) 및/또는 메인경로(H)의 평균 곡률(R)은 100nm 이상이 좋지만, 200nm 이상이면 더 좋고 2000nm 이하이지만 1600nm 이하인 것이 더 좋다.
이동구역(B)의 평균 폭(W)은 80nm 이상, 바람직하게는 100nm 이상이고 평균 곡률(R)보다 작다.
이동구역(B)의 경계면은 캐리어(2)가 반사되도록 구성되는데, 원칙적으로는 (입사각과 같은) 거울각으로 반사되거나 비거울각으로, 특히 확산되어 산란되도록 구성된다.
캐리어(2)는 이동구역(B)의 측면(9)에서 반사되는 것이 특히 바람직하고, 이때 측면 일부에서 확산 산란되거나 적어도 일부는 비거울각으로 반사된다.
장치(1)의 필드생성수단(10)이나 여기서 생긴 필드(F)는 장치(1)와만 관련되거나 장치(1)나 가이드(3)나 이동구역(B)과만 작용한다.
필드생성수단(10)은 적어도 메인경로(H)를 따라 캐리어(2)를 안내하도록 필드(F)를 생성하거나 제어하는데 사용되고, 특히 연결부(4,5) 및/또는 메인경로(H)의 양단부 부근에서 캐리어(2)의 확률밀도/존재밀도가 다르게 생성되도록 한다. 필드(F)는 도 2~3에서 볼 수 있다.
필드(F)는 자기필드이다. 필드생성수단(10)은 따라서 자기필드를 생성하도록 디자인된다. 원칙적으로, 이 목적으로는 영구자석을 사용하지만, 캐리어(2)를 안내하는 필드(F)로 전자기장이 필요할 경우에는 전자석을 사용할 수 있다.
캐리어(2)를 안내하기 위한 필드(F)가 이동구역(B) 및/또는 가이드(3)의 휘어진 부분에만 작용하도록 및/또는 이 구역에만 있는 곡선경로로 캐리어(2)가 휘어지도록 필드생성수단(10)을 구현한다.
평균속도, 구체적으로는 평균 운동에너지나 열에너지의 함수로 시작하는 캐리어(2)가 곡선 메인경로(H)를 따라 또는 가이드(3)나 이동구역(B)so 평균 곡을 갖는 부분을 따라 필드(F)를 통해 (도 3에 도시된 회전반경 Z에서의 로렌즈힘에 의해) 안내되도록 필드(F) 및/또는 필드생성수단(10)을 셋업하거나 조절할 수 있다. 전술한 바와 같이, 이 힘은 메인경로(H)를 따른 운동방향으로만 작용하고 반대방향으로는 작용하지 않는다. 이런 비대칭은 이동구역(B)이나 메인경로(H)에서의 캐리어(2)의 불균일 분산에 중요하다.
필드생성수단(10) 및/또는 필드(F)에 의한 회전반경(Z)는 가이드(3)나 이동구역(B)의 평균 곡률(R)과 비교해, 5배 이상 크거나 작은 것이 좋지만, 2배 정도만 크거나 작은 것이 바람직하다. 특히 회전반경(Z)은 곡률(R)과 같을 수도 있다.
메인경로(H) 양단부에서의 캐리어(2)의 존재확률이 달라, 전압, 특히 전류와 전력이 이 부분에 배치된 연결부(4,5)를 통해 방출된다.
도시된 실시예에서는, 연결부(4,5)가 이동구역(B) 및/또는 메인경로(H) 및/또는 가이드(3)의 양단부에 배열되어 있다.
필요하다면 여러개의 가이드(3)나 이동구역(B)을 평면이 윗쪽으로 오도록 배열할 수도 있다. 이들은 동일한 필드(F)의 영향하에 놓이고, 특히 연결부(4,5)나 다른 연결부에 직렬이나 병렬로 연결될 수 있다.
이 장치(1)는 전하 캐리어(2)의 열에너지로부터 및/또는 전자기 내재/주변 잡음으로부터 및/또는 연결부(4,5)를 통한 전압이나 전력을 이용한 전자기 영향이나 복사로부터 전압이나 전력을 생성하는데 이용된다. 필드(F)는 일정하게 유지하는 것이 좋지만, 소정의 값에 도달하거나 넘거나 이용된 전류나 전압의 최대값에 이르도록 조절될 수도 있다.
한편, 연결부(4,5)를 통해 전력을 이용해 캐리어(2)로부터 열에너지를 제거하는 냉각에 장치(1)를 사용할 수도 있다. 따라서, 장치(1) 자체를 냉각할 수 있어, 자체 냉장 효과를 내는데 이용할 수 있다.
냉각하는 동안, 필드(F)는 일정하게 유지되는 것이 좋지만, 소정의 값에 도달하거나 넘거나, 이용된 전압이나 전력의 최대치에 도달하도록 조절될 수도 있다.
또, 연결부(4,5)에서의 전압을 측정해 전하 캐리어(2)의 산란이나 궤도를 측정하거나 결정하는데에도 장치(1)를 이용할 수 있다. 특히, 측정된 전압의 최대값을 확인하여 전하 캐리어(2)의 산란이나 궤도에 맞게 작용 필드(F)를 바꿀 수 있다.
일반적으로, 이동구역(B)이 1차원이나 2차원 전자기체나 초전도체에 형성되면 이런 전자기체나 초전도체 내의 물리적 특성들을 측정하거나 결정하는데에 이런 원리를 이용할 수 있다. 따라서, 해당 연결부(4,5)에 존재하는 전압은 필드(F)나 자기장의 함수로서 물리적 특성들에 관한 정보를 제공한다.
연결부(4,5)에서의 전압을 측정해 가이드(3)에 작용하는 자기장이나 필드(F)의 강도를 측정하거나 확인하는데에도 이런 원리를 이용할 수 있다. 즉, 세번째 실시예에서 더 자세히 설명하는 것처럼, 이런 원리는 작용하는 필드(F)에 좌우된다. 특히, 적절한 보정에 의해, 필드(F)의 자기장 강도를 측정된 전압에서 결정할 수 있다.
본 발명의 장치(1)에 대해 다른 도면들을 참조하여 더 자세히 설명한다.
도 4는 본 발명의 장치(1)의 두번째 실시예의 사시도로서, 이동구역(B)을 형성하는데 전자기체 대신에 박막 초전도층(11)을 사용하는 점에서 차이가 있다. 초전도층(11)은 2개의 고체 층들(6,7) 사이에 배치된다.
이 이동구역(B)이나 초전도층(11)의 치수는 첫번째 실시예의 이동구역(B)에 대응한다.
캐리어(2)는 전자나 정공으로 초전도층(11)에 존재한다.
소위 타입 II의 초전도체 재료를 초전도층(11)에 사용하면, 높은 자기장 강도의 경우, 자속선 형태의 자기장 라인이 초전도체에 침투하고, 자속선이 가능한 높은 임계값까지 유지되는 곳에서 소위 단단한 초전도체 재료가 사용되어 높은 자속유동저항을 갖게된다.
도 5는 본 발명의 장치(1)의 세번째 실시예를 보여준다.
고체 층(7)인 하부층에 층(6)을 붙여 층상 시스템이나 패키지를 구성한다.
이 층(6)은 아래와 같은 실험장치에 따라 구성된다.
GaAs와 같은 제1 반도체 재료로 된 층과, Al0 . 33Ga0 . 67As와 같은 제2 반도체 재료로 된 층을 겹쳐놓되, 10회나 20회 이상, 바람직하게는 20회 내지 100회, 더 바람직하기는 50회 교대로 여러번 적층하여 층상 패키지를 형성한다.
각 층의 두께(D)는 50nm 이하, 바람직하게는 25nm 이하, 더 바람직하게는 10nm 이하, 가장 바람직하게는 5nm 이하이다.
이런 층 패키지는 옵션사항이고 GaAs로 된 베이스 층이나 중간층 위에 배치되고, 두께 100nm 이상이거나, 250nm 이상이거나 500nm 이상이다.
두께 500nm 이상이거나 750nm 이상이거나 1000nm 이상이고 GaAs로 된 커버층이나 제1 층을 층 패키지나 다른 기판에 부착하는 것이 좋다.
또, 두께 10~50nm이거나 35nm 정도이고 Al0 . 33Ga0 . 67As로 된 다른 제2 층을 GaAs 층에 붙이는 것이 바람직하다. Al0 . 33Ga0 . 67As로 된 또다른 층인 제1 커버층을 그 위에 붙이는 것이 좋은데, 이 층은 실리콘 도핑량이 1.5x1018/㎤이고 두께는 25nm 이상, 바람직하게는 45nm 이상이다.
결과적으로, 두께 10nm 이상이고 15nm 이상이며 GaAs로 된 또다른 커버층을 붙일 수 있다.
GaAs로 된 1000nm 두께의 제1층과 Al0 . 33Ga0 . 67As로 되고 두께 35nm의 제2 층 사이의 경계구역에 2차원 전자기체의 얇은 이동구역(B)이 형성된다.
이런 층 시스템은 하부층 시스템인 하부 고체 층(7)에 부착된다. 실험장치에서는, 이런 고체 층(7)이 반도체 GaAs 기판으로 이루어지는 것이 좋다.
즉, 아래와 같은 층 시스템이 실험장치에서 사용된다:
명칭 | 조성 | 두께 | |
다른 커버층 | GaAs | 15nm | |
제1 커버층 | Al0 . 33Ga0 . 67As: Si 1.5x1018/㎤ | 45nm | |
제2 층 | Al0 . 33Ga0 . 67As | 35nm | |
제1 층 | GaAs | 1000nm | |
다수중첩된 박막층들 |
GaAs | 5nm | |
Al0 . 33Ga0 . 67As | 5nm | ||
중간층 | GaAs | 500nm | |
하부층/기판 | S-1 GaAs | >500nm |
따라서, 층(6)은 전술한 실시예에서 설명한 전자기체와 이동구역을 형성한다. 첫번째 실시예에서의 설명이 비슷하게 적용된다.
도 5에 의하면, 이동구역(B)의 평면(E)이나 경계면(8)이 층(6) 안에 있다.
가이드(3) 및/또는 층(6) 및/또는 층 시스템이 2개의 벌어지는 다리(12)를 형성하고, 이 다리는 연결부(4,5)로 이어진다.
층(6)은 특히 한번이나 여러번, 바람직하게는 2번 꺾어진 행태의 가이드(3)를 형성하여, 위어서 보아 이동구역(B)의 평면이나 메인경로(H)가 U형 형태를 갖는다.
이동구역(B)이나 가이드(3)는 메인경로(H)로 표시된 구역인 층(6)의 상부 U형 구역에 한정된다.
U형 이동구역(B)의 평균 폭 W는 20nm 이상, 바람직하게는 500nm 이상이고 9000nm 이하, 바람직하게는 7000nm 이하이다.
실험장치에서, 600~650nm의 평균 폭(W)이 구해졌다. 2개의 연결부(4,5) 사이의 간격은 평균 폭(W)와 같거나 작은 것이 바람직하다.
이런 배열을 포토리소그래피 수단에 의해서나 적당한 에칭에 의해서나 레이저처리나 레이저연마법으로 비교적 간단하게 형성할 수 있다.
층 시스템에 다른 반도체 재료를 사용할 수도 있다.
실험장치에서, 층(6)에 전술한 반도체 재료들을 사용했고 600nm 정도의 평균자유행로 길이를 얻었다.
자기장이나 필드(F)는 도 5의 도면 평면이나 (도시되지 않은) 평면(E)에 거의 직각으로 뻗는다.
지시된 실험장치에서, 다리(12)나 연결부(4,5)에서 전압과 전류를 자기장이나 자속밀도의 함수로 측정했고, 그 결과를 도 6~7의 그래프로 보여준다.
도 6~7에서 알 수 있듯이, ±0.2T에서 최대값과 최대값이 되고, 이 값은 600nm의 평균 곡률(R)에서의 이론적 계산값과 일치한다. 측정은 온도 20K 밑에서 했다.
계산된 그래프 곡선이 자기장(더 정확하게는 자속밀도) 0.0 지점을 중심으로 대칭이고, 0.2T 밑의 자속말도에서는 전하 캐리어들이 메인경로(H)를 따라, 즉 원하는 이동구역(B) 및/또는 가이드(3) 안에서 자기장 방향과 다른 방향으로 안내되어, 전압과 전류에 대해 0.2T와 -0.2T에서 반대 극성들을 얻게된다.
한편, 도 6~7의 그래프의 오리지널 측정데이터에서 알 수 있는 차이는 정전효과나 펠티에 효과로 설명할 수 있지만, 이것은 자기장과는 무관하다.
도 8은 이상 설명한 실험장치나 장치(1)를 이용해 측정한 전류/전압 특성 그래프로서, 본 발명의 장치로부터 전력을 생산해 이용할 수 있다.
따라서, 실험장치나 장치(1)를 통해 전압이나 전력을 이용할 수 있고, 전하 캐리어(2)나 장치(1)나 가이드(3)의 열에너지로부터 및/또는 전자기 내재/주변 잡음으로부터 또는 전자기 영향이나 복사로부터 이런 전압이나 전력을 구할 수 있다. 즉, 연결부(4,5)를 통한 전기적 이용으로 전기에너지나 전력을 공급하는데 본 발명의 장치(1)를 이용할 수 있다.
한편, 본 발명의 장치(1)를 냉각에도 사용할 수 있다. 정확히 말해, 연결부(4,5)를 통해 전력이 이용되면, 전하 캐리어(2)나 장치(1)나 가이드(3)로부터 열에너지가 끌려와, 냉각효과를 얻을 수 있다.
특히, 캐리어(2)를 안내하기 위한 필드생성수단(10)이나 필드(F)를 조절하여 원하는 전압이나 전력 값에 도달하거나 초과하도록 또는 전압이나 전력의 최대값에 도달하도록 할 수 있다.
전술한 바와 같이, 본 발명의 장치(1)와 원리는 범용으로 적용할 수 있다.
특히, 연결부(4,5)에서 생긴 전압을 이용해 전하 캐리어(2)의 산란이나 궤도를 측정하거나 결정할 수 있는데, 이때 필드(F)와 같은 각각의 조건들을 보정하거나 적절히 변형한다.
또, 연결부(4,5)의 전압의 측정과 분석을 통해 가이드(3) 및/또는 이동구역(B) 및/또는 캐리어(2)의 물리적 특성들을 측정하거나 결정할 수도 있다. 특히, 가이드(3)나 이동구역(B)이나 (도전)층(11)으로 1차원이나 2차원 전자기체나 초전도체를 사용할 경우가 그렇다.
또, 필드생성수단(10)이 없는 장치(1)는 연결부(4,5)의 전압을 측정해 가이드(3)에 작용하는 자기장 강도나 자속밀도를 측정하는데 사용될 수 있다. 이때, 적당한 보정에 의해, 작용하는 자속밀도를 아주 쉽게 결정하거나 확인할 수 있다. 필드생성수단(10)이 없는 장치(1)는 자기센서로 사용될 수 있다.
한편, 본 발명의 장치(1)를 (캐리어(2)의) 전자기 내재/주변 잡음이나 및/또는 전자기 영향이나 복사를 감지하거나 측정하는데 사용할 수도 있다.
도 9는 본 발명에 관한 실험장치에서 실행되고 연결부(4,5)에서 측정된 전류 측정치 그래프로서, 같지 않은 도전율의 영향이 자기장의 방향에 좌우되는 2 방향으로 얼머나 큰지를 보여준다. 이 실험에서, 외부로부터의 추가 교류전압을 인가해 MHz 범위의 여기현상을 일으켰더니 인가된 전압이 0V에서 1V 범위로 변했다. 10K 정도의 온도에서 측정을 했다.
자기장 B=0T에서, 외부 자기장의 영향은 배제하지만 (전기화학적 접촉이나 열전 전압의 결과로 생긴 전류와 같은) 다른 모든 간섭의 영향은 포함하는 전류를 보여주는 중립 곡선이 형성되었다. 자기장 B=+0.15T에서, 전체 주파수에 걸쳐 전류가 인가된 교류전압에 비례하여 양의 방향을 향한다. B=-0.25T에서는, 전체 여기주파수에 걸쳐 전류가 인가된 교류전압에 비례하여 음의 방향을 향한다. 외부 여기가 없을 경우(V=0)에도, B=0.15T, B=-0.25%의 전류가 자기장이 엇는 경우로부터 출발함을 알 수 있다. 이는 연속적인 전기적 출력이 본 발명의 장치(1)에서부터 방출되고, (전기화학적 접촉이나 열전 전압에서 생기는 전류와 같은) 다른 기능한 간섭원의 영향으로부터 시작하지 않고 오히려 전자제품의 전자기 내재/주변 잡음이나 열에너지로부터만 시작한다는 증거이다.
도 10은 본 발명의 장치(1)의 다섯번째 실시예로서, 다수의 이동구역(B)이나 전자기체들이 위아래로 적층되어 있다.
다수의 이동구역(B)은 공통 가이드(3)에 형성되고, 병렬로 연결되면서 및/또는 공통 연결부(4,5)을 통해 연결된다.
이동구역들(B)이나 전자기체들 사이에 필요한만큼 다른 중간층이나 공핍층들이 배치될 수 있다.
일반적으로, 본 발명의 장치(1)와 이 장치에 따른 방법에 의하면, 비대칭이나 방향의존성 도전이 이루어져, 전류, 전압 및/또는 전력을 구하고 이용할 수 있다. 특히, 운동에너지나 열에너지를 간단하고 효율적이면서도 직접적으로 전기에너지로 변환할 수 있다.
Claims (15)
- 전하 및/또는 자기 모멘트를 갖는 전하나 전자 캐리어(2)를 안내하고, 곡선형이거나 꺾어진 메인경로(H)로 이동구역(B)에서 캐리어(2)를 안내하는 가이드(3)와, 메인경로(H)를 따라 배치된 전기적 연결부(4,5)와, 전기적 연결부(4,5)에서 전압이나 전력이 배출되도록 하고 캐리어(2)가 전기 연결부(4,5)에서 각각 다른 확률밀도/존재밀도를 갖도록 메인경로(H)를 따라 캐리어(2)를 안내하는 필드(H)를 생성하는 필드생성수단(10)을 갖는 장치(1)에 있어서:
상기 가이드(3)가 이동구역(B)을 형성하기 위한 2차원 전자기체 또는 얇은 초전도층(11)을 갖고; 및/또는
상기 가이드(3) 및/또는 이동구역(B) 및/또는 메인경로(H)가 평면(E)이나 폐쇄표면에서 곡선형 및/또는 꺾어진 형상으로 뻗는 것을 특징으로 하는 장치. - 제1항에 있어서, 상기 가이드(3)가 서로 겹쳐져 놓이고 페르미레벨이 서로 다른 2개의 고체 층(6,7)을 갖고, 이동구역(B) 및/또는 2차원 전자기체가 2개의 고체 층 사이의 경계면(8)을 따라 형성되는 것을 특징으로 하는 장치.
- 제1항 또는 제2항에 있어서, 상기 가이드(3)가 서로 겹쳐 놓이는 다수의 이동구역(B) 및/또는 전자기체 및/또는 초전도 층(11)을 갖는 것을 특징으로 하는 장치.
- 제1항 내지 제3항 중의 어느 하나에 있어서, 캐리어(2)를 위한 이동구역(B)의 측면(9)이 적어도 부분적으로 확산 산란시키도록 및/또는 전체가 거울각으로 반사하지는 않도록 형성되는 것을 특징으로 하는 장치.
- 제1항 내지 제4항 중의 어느 하나에 있어서, 이동구역(B)의 평균 폭(W)과 메인경로(H)의 곡률(R)이 이동구역(B)내의 캐리어(2)의 평균자유행로와 일치하거나 작은 것을 특징으로 하는 장치.
- 제1항 내지 제5항 중의 어느 하나에 있어서, 상기 가이드(3) 및/또는 이동구역(B)이 한번이나 여러번 꺾어지고 및/또는 일부가 아치형이나 반원형인 것을 특징으로 하는 장치.
- 제1항 내지 제6항 중의 어느 하나에 있어서, 상기 가이드(3) 및/또는 이동구역(B)의 곡률(R)이 100nm보다 크고, 바람직하게는 200nm보다 크며, 및/또는 2000nm보다 작고, 바람직하게는 1600nm보다 작은 것을 특징으로 하는 장치.
- 제1항 내지 제7항 중의 어느 하나에 있어서, 상기 메인경로(H)의 곡률(R)이100nm보다 크고, 바람직하게는 200nm보다 크며, 및/또는 2000nm보다 작고, 바람직하게는 1600nm보다 작은 것을 특징으로 하는 장치.
- 제1항 내지 제8항 중의 어느 하나에 있어서, 자기장을 포함한 필드(F)를 생성하는 필드생성수단(10)을 더 포함하는 것을 특징으로 하는 장치.
- 제1항 내지 제10항 중의 어느 하나에 있어서, 캐리어(2)가 메인경로(H) 및/또는 이동구역(B) 및/또는 가이드(3)의 곡률(R)과 같은 곡률반경을 갖는 궤도로 안내되도록 캐리어(2)를 안내하기 위한 필드(F)나 필드생성수단(10)이 캐리어(2)의 평균 속도를 고려해 설정되는 것을 특징으로 하는 장치.
- 제1항 내지 제10항 중의 어느 하나에 따른 장치의 용도에 있어서:
필드(F)를 일정하게 유지한채 연결부(4,5)를 통해 출력되는 전압이나 전력으로 캐리어(2)의 열에너지 및/또는 캐리어(2)의 전자기 내재/주변 잡음으로부터 전압이나 전력을 생성하는 것을 특징으로 하는 용도. - 제1항 내지 제10항 중의 어느 하나에 따른 장치의 용도에 있어서:
필드(F)를 일정하게 유지한채 연결부(4,5)를 통해 전력을 출력하여 전하 캐리어(2)의 열에너지를 제거하여 냉각하는 것을 특징으로 하는 용도. - 제1항 내지 제10항 중의 어느 하나에 따른 장치의 용도에 있어서:
필드(F)를 일정하게 유지한채, 연결부(4,5)를 통해 전류를 측정하여 전하 캐리어(2)의 산란이나 궤도를 측정하거나 결정하고 및/또는 전자기 복사를 측정하거나 결정하는 것을 특징으로 하는 용도. - 제1항 내지 제10항 중의 어느 하나에 따른 장치의 용도에 있어서:
1차원이나 2차원 전자기체나 초전도체 내부의 물리적 특성을 측정하거나 결정하는 것을 특징으로 하는 용도. - 곡선형이거나 꺾어진 형상의 메인경로(H)를 따라 전기적 연결부(4,5)가 배치되어 있고, 전하 캐리어(2)를 안내하는 기이드(3)를 갖춘 장치(1)의 용도에 있어서:
상기 가이드(3)가 이동구역(B)을 형성하기 위한 2차원 전자기체나 초전도 층(11)을 갖고; 및/또는
상기 가이드(3) 및/또는 이동구역(B)이 평면(E)이나 폐쇄표면에서 곡선형 및/또는 꺾어진 형상으로 뻗으며;
가이드(3)에 작용하는 자기장 강도가 연결부(4,5)를 통한 전압의 측정과 이로부터의 자기장 강도의 결정에 의해 감지되거나 측정되는 것을 특징으로 하는 용도.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15000040 | 2015-01-12 | ||
DE15000040.4 | 2015-01-12 | ||
PCT/EP2016/025000 WO2016113141A1 (de) | 2015-01-12 | 2016-01-11 | Vorrichtung zur führung von ladungsträgern und deren verwendung |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170103903A true KR20170103903A (ko) | 2017-09-13 |
KR102560442B1 KR102560442B1 (ko) | 2023-07-28 |
Family
ID=52394073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177022110A KR102560442B1 (ko) | 2015-01-12 | 2016-01-11 | 전하 캐리어를 안내하는 장치 및 그 용도 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11063200B2 (ko) |
EP (2) | EP3751621B1 (ko) |
JP (1) | JP6892392B2 (ko) |
KR (1) | KR102560442B1 (ko) |
CN (2) | CN111896897B (ko) |
CA (1) | CA2972678C (ko) |
WO (1) | WO2016113141A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111896897B (zh) * | 2015-01-12 | 2024-02-09 | 赫尔穆特.惠得利 | 用于引导载流子的设备和其应用 |
CN111630675A (zh) * | 2018-01-19 | 2020-09-04 | 赫尔穆特.惠得利 | 用于导引电荷载流子的装置及其用途 |
US11101215B2 (en) * | 2018-09-19 | 2021-08-24 | PsiQuantum Corp. | Tapered connectors for superconductor circuits |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010080958A (ja) * | 2008-09-23 | 2010-04-08 | Hitachi Ltd | 磁界センサ |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2520157B1 (fr) * | 1982-01-18 | 1985-09-13 | Labo Electronique Physique | Dispositif semi-conducteur du genre transistor a heterojonction(s) |
JPS61248561A (ja) * | 1985-04-25 | 1986-11-05 | インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション | 半導体構造体 |
CN1013330B (zh) * | 1986-03-17 | 1991-07-24 | 能源转换信托公司 | 能量转换设备 |
JPH0687509B2 (ja) * | 1988-03-28 | 1994-11-02 | 工業技術院長 | ヘテロ接合磁気センサ |
DE3903919A1 (de) | 1989-02-10 | 1990-08-16 | Helmut Dr Weidlich | Verfahren zur nutzbarmachung der kinetischen energie von elektronen |
GB2362505A (en) * | 2000-05-19 | 2001-11-21 | Secr Defence | Magnetic Field Sensor |
US6919579B2 (en) * | 2000-12-22 | 2005-07-19 | D-Wave Systems, Inc. | Quantum bit with a multi-terminal junction and loop with a phase shift |
CN1714458A (zh) * | 2002-05-07 | 2005-12-28 | 加利福尼亚技术学院 | 用于gaas nems的二维电子气激励和传导的装置和方法 |
CA2385911A1 (en) * | 2002-05-10 | 2003-11-10 | Nanometrix Inc. | Method and apparatus for two dimensional assembly of particles |
US7633718B2 (en) * | 2005-06-27 | 2009-12-15 | Hitachi Global Storage Technologies Netherlands, B.V. | Lead contact structure for EMR elements |
CN100492023C (zh) * | 2006-11-24 | 2009-05-27 | 中国计量科学研究院 | 一种涡流屏滤波器及其设计方法 |
KR100938254B1 (ko) | 2007-12-13 | 2010-01-22 | 한국과학기술연구원 | 에피택셜 성장 강자성체-반도체 접합을 이용한 스핀트랜지스터 |
DE102008015118A1 (de) * | 2008-03-10 | 2009-09-24 | Ohnesorge, Frank, Dr. | Raumtemperatur-Quantendraht-(array)-Feldeffekt-(Leistungs-) Transistor "QFET", insbesondere magnetisch "MQFET", aber auch elektrisch oder optisch gesteuert |
US8000062B2 (en) * | 2008-12-30 | 2011-08-16 | Hitachi Global Storage Technologies Netherlands B.V. | Enhanced magnetoresistance and localized sensitivity by gating in lorentz magnetoresistors |
WO2010136834A1 (en) * | 2009-05-26 | 2010-12-02 | Vyacheslav Andreevich Vdovenkov | Method of realization of hyperconductivity and super thermal conductivity |
DE102009025716A1 (de) * | 2009-06-20 | 2010-12-30 | Forschungszentrum Jülich GmbH | Messinstrument, elektrische Widerstandselemente und Messsystem zur Messung zeitveränderlicher magnetischer Felder oder Feldgradienten |
DE102009041642A1 (de) * | 2009-09-17 | 2011-03-31 | Ohnesorge, Frank, Dr. | Quantendrahtarray-Feldeffekt-(Leistungs-)-Transistor QFET (insbesondere magnetisch - MQFET, aber auch elektrisch oder optisch angesteuert) bei Raumtemperatur, basierend auf Polyacetylen-artige Moleküle |
US20110169520A1 (en) * | 2010-01-14 | 2011-07-14 | Mks Instruments, Inc. | Apparatus for measuring minority carrier lifetime and method for using the same |
CN201927252U (zh) * | 2010-10-27 | 2011-08-10 | 中国人民解放军防化指挥工程学院 | 一种定时保护霍尔效应实验装置 |
US9024415B2 (en) * | 2010-12-07 | 2015-05-05 | The Board Of Trustees Of The Leland Stanford Junior University | Electrical and optical devices incorporating topological materials including topological insulators |
CN102520377B (zh) * | 2011-12-31 | 2013-11-06 | 中国科学院半导体研究所 | 增强型半导体-金属复合结构磁场传感器及其制备方法 |
CN111896897B (zh) * | 2015-01-12 | 2024-02-09 | 赫尔穆特.惠得利 | 用于引导载流子的设备和其应用 |
CN111630675A (zh) * | 2018-01-19 | 2020-09-04 | 赫尔穆特.惠得利 | 用于导引电荷载流子的装置及其用途 |
-
2016
- 2016-01-11 CN CN202010609602.2A patent/CN111896897B/zh active Active
- 2016-01-11 KR KR1020177022110A patent/KR102560442B1/ko active IP Right Grant
- 2016-01-11 JP JP2017554644A patent/JP6892392B2/ja active Active
- 2016-01-11 US US15/542,616 patent/US11063200B2/en active Active
- 2016-01-11 CN CN201680004735.9A patent/CN107209232B/zh active Active
- 2016-01-11 CA CA2972678A patent/CA2972678C/en active Active
- 2016-01-11 EP EP20174565.0A patent/EP3751621B1/de active Active
- 2016-01-11 WO PCT/EP2016/025000 patent/WO2016113141A1/de active Application Filing
- 2016-01-11 EP EP16701091.7A patent/EP3245675B1/de active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010080958A (ja) * | 2008-09-23 | 2010-04-08 | Hitachi Ltd | 磁界センサ |
Also Published As
Publication number | Publication date |
---|---|
US11063200B2 (en) | 2021-07-13 |
WO2016113141A1 (de) | 2016-07-21 |
JP2018511182A (ja) | 2018-04-19 |
CN107209232B (zh) | 2020-07-07 |
CN111896897A (zh) | 2020-11-06 |
CN111896897B (zh) | 2024-02-09 |
CA2972678C (en) | 2022-07-26 |
US20180269373A1 (en) | 2018-09-20 |
KR102560442B1 (ko) | 2023-07-28 |
EP3751621B1 (de) | 2023-06-07 |
EP3245675A1 (de) | 2017-11-22 |
JP6892392B2 (ja) | 2021-06-23 |
EP3245675B1 (de) | 2020-05-20 |
CN107209232A (zh) | 2017-09-26 |
EP3751621C0 (de) | 2023-06-07 |
EP3751621A1 (de) | 2020-12-16 |
CA2972678A1 (en) | 2016-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9735345B2 (en) | Vertical hall effect sensor | |
Gershenson et al. | Crossover from weak to strong localization in quasi-one-dimensional conductors | |
KR20170103903A (ko) | 전하 캐리어를 안내하는 장치 및 그 용도 | |
Kunze | Tunnel spectroscopy of electron sub-bands on Si surfaces | |
Tavkhelidze et al. | Negative magnetoresistance in Si nanograting layers | |
US10141501B2 (en) | Magnetoresistive element | |
JP7376485B2 (ja) | 電荷キャリアガイド装置およびその用途 | |
WO2016026996A1 (es) | Dispositivo de medida de temperatura, método de fabricación del dispositivo y sistema de medida de punto de impacto que incorpora el dispositivo | |
US20190296229A1 (en) | Magnetoresistive element and magnetic sensor | |
Nagaev | Sign reversal of nonlocal response due to electron collisions | |
Leonov et al. | Features of electron mobility in a thin silicon layer in an insulator-silicon-insulator structure | |
Borisov et al. | Investigations of electron beam induced conductivity in silicon oxide thin films | |
Kolasiński et al. | Conductance measurement of spin-orbit coupling in two-dimensional electron systems with an in-plane magnetic field | |
Bagraev et al. | Charge carrier interference in one-dimensional semiconductor rings | |
Lozanova et al. | A Hall effect device with enhanced sensitivity | |
Volkov et al. | Magnetic-field-driven electron transport in ferromagnetic/insulator/semiconductor hybrid structures | |
Tanaka et al. | Temperature dependence of collapse of quantized Hall resistance | |
Ming | High magnetic field studies of 2DEG in graphene on SiC and at the LaAlO³/SrTiO³ interface | |
Ivanov et al. | Hot-hole lateral transport in a two-dimensional GaAs/Al 0.3 Ga 0.7 As structure | |
JPH03200084A (ja) | 磁気センサ | |
Tanous et al. | Investigation of temperature effect on electrical characteristics of the double barrier metal-oxide-semiconductor structure | |
Nikolaenko et al. | The carrying of the surface electrons in quasi-one-dimensional system over superfluid helium in conditions of the negatively charged substrate | |
Gadzhialiev | Thermo-emf of InSb in a transverse quantizing magnetic field | |
JPH01181483A (ja) | 磁気検出装置 | |
RO130593A2 (ro) | Metodă şi dispozitiv pentru măsurarea densităţii gazului bidimensional de electroni într-un mosc-hemt şi un fet mod acumulare prin aplicarea unui câmp magnetic transversal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |