KR20170027319A - 화학적 화합물 및 근육 질을 개선시키기 위한 그의 용도 - Google Patents

화학적 화합물 및 근육 질을 개선시키기 위한 그의 용도 Download PDF

Info

Publication number
KR20170027319A
KR20170027319A KR1020167035614A KR20167035614A KR20170027319A KR 20170027319 A KR20170027319 A KR 20170027319A KR 1020167035614 A KR1020167035614 A KR 1020167035614A KR 20167035614 A KR20167035614 A KR 20167035614A KR 20170027319 A KR20170027319 A KR 20170027319A
Authority
KR
South Korea
Prior art keywords
group
phenanthrene
cyclopenta
trihydroxy
decahydro
Prior art date
Application number
KR1020167035614A
Other languages
English (en)
Other versions
KR102506149B1 (ko
Inventor
레네 라퐁
웰리 디오
소피 네이날
스타니슬라스 베일렛
프랑크 르피프레
장-데니스 뒤랑
Original Assignee
바이오파이티스
유니베르시테 피에르 에 마리에 쿠리에 (파리 6)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바이오파이티스, 유니베르시테 피에르 에 마리에 쿠리에 (파리 6) filed Critical 바이오파이티스
Publication of KR20170027319A publication Critical patent/KR20170027319A/ko
Application granted granted Critical
Publication of KR102506149B1 publication Critical patent/KR102506149B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/005Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of only two carbon atoms, e.g. pregnane derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/06Anabolic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F3/00Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
    • B60F3/0007Arrangement of propulsion or steering means on amphibious vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C13/00Equipment forming part of or attachable to vessels facilitating transport over land
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J17/00Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J31/00Normal steroids containing one or more sulfur atoms not belonging to a hetero ring
    • C07J31/006Normal steroids containing one or more sulfur atoms not belonging to a hetero ring not covered by C07J31/003
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0005Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring the nitrogen atom being directly linked to the cyclopenta(a)hydro phenanthrene skeleton
    • C07J41/0016Oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0055Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J43/003Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J5/00Normal steroids containing carbon, hydrogen, halogen or oxygen, substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane and substituted in position 21 by only one singly bound oxygen atom, i.e. only one oxygen bound to position 21 by a single bond
    • C07J5/0007Normal steroids containing carbon, hydrogen, halogen or oxygen, substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane and substituted in position 21 by only one singly bound oxygen atom, i.e. only one oxygen bound to position 21 by a single bond not substituted in position 17 alfa
    • C07J5/0015Normal steroids containing carbon, hydrogen, halogen or oxygen, substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane and substituted in position 21 by only one singly bound oxygen atom, i.e. only one oxygen bound to position 21 by a single bond not substituted in position 17 alfa not substituted in position 16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B29/00Accommodation for crew or passengers not otherwise provided for
    • B63B29/02Cabins or other living spaces; Construction or arrangement thereof
    • B63B2029/022Bathing platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers

Abstract

본 발명은 화학적 화합물 및 특히 포유동물에서 근육 질을 개선시키기 위한 그의 치료 용도에 관한 것이다. 보다 특히, 본 발명은 근육감소증 포유동물에서 근육 질의 개선, 및 근육감소증 및 특히 근육감소형 비만 및 그와 연관된 합병증 및/또는 병리상태, 예컨대 강도, 근육 질량, 수행능, 및 신체 및 이동 능력의 감소의 치료 및/또는 예방을 가능하게 한다. 본 발명은 또한 비만 포유동물에서 근육 질의 개선, 및 비만 및 연관된 합병증 및/또는 병리상태, 유리하게는 제2형 당뇨병 및 대사 증후군의 치료 및/또는 예방을 가능하게 한다.

Description

화학적 화합물 및 근육 질을 개선시키기 위한 그의 용도 {CHEMICAL COMPOUNDS AND USE THEREOF FOR IMPROVING MUSCULAR QUALITY}
본 발명은 화학적 화합물 및 특히 포유동물에서 근육 질을 개선시키기 위한 그의 치료 용도에 관한 것이다.
보다 특히, 본 발명은 비만 포유동물에서 근육 질을 개선시키는 것을 가능하게 한다.
본 발명은 또한 근육감소증 포유동물의 근육 질을 개선시키는 것을 가능하게 한다.
본 발명은 또한 포유동물에서의 비만의 치료 및/또는 예방에 있어서 이들 화학적 화합물의 용도에 관한 것이다.
근육 위축은 다음의 여러 상이한 원인으로부터 유발될 수 있다: 영양부족, 근육의 비-사용 (예를 들어 골절 후의 부동상태), 악액질을 유도하는 암 또는 다른 심각한 질환 (심부전 또는 신부전), 또는 개체의 노화로부터 자연적으로 유발 (근육감소증). 이러한 위축은 단백질 합성의 감소 및/또는 단백질분해의 증가로부터 유발될 수 있고, 적절한 경우에 섬유증 및/또는 지방 조직에 의한 침윤을 동반한다. 따라서, 근육 단백질 합성 및 근육 단백질분해를 제어하는 인자 및 메카니즘의 확인은 이들 병리학적 상태에 대한 적절한 치료를 설계하기 위한 전제조건을 나타낸다.
선행 기술의 일부인 도 1은 근육에서 단백질 합성 및 단백질분해의 주요 경로를 제시한다 (문헌 [Zhao et al., 2008 및 Little et al., 2009]에 따라 재구성됨).
근육 단백질 합성은 본질적이고, 번역 수준에서 본질적으로 제어된다. 이에는 물론 아미노산의 적절한 영양적 흡수가 요구된다. 이는 신체 활동에 의해 자극되고, 수많은 인자에 의해 조절되며, 인자의 선두에는 IGF-1 및 안드로겐이 있다 (Little et al., 2009).
<표 1> 근육에서 단백질 합성 및 단백질분해에 작용하는 인자 및 분자
Figure pct00001
근원섬유 단백질분해는 프로테아솜을 통해 수행되고, 반면에 미토콘드리아는 자가포식에 의해 파괴된다 (Zhao et al., 2008). 위성 세포 아폽토시스 메카니즘이 또한 기재되어 있다 (Murphy et al., 2010).
근육 스스로 자가분비 방식으로 생성되는 미오스타틴은 단백질분해의 자극 및 단백질 합성의 억제 둘 다에 의해 작용하기 때문에 특히 중요한 인자를 대표한다. 이는 또한 섬유증을 자극한다 (Li et al., 2008).
노화는 다음의 다양한 조절 인자의 변형을 동반한다 (Walston et al., 2012): 신체 활동은 종종 감소되고, 단백질/비타민 영양은 불충분할 수 있으며, 식후에 단백질 합성을 자극하도록 증가가 요구되는 순환 아미노산의 함량은 내장 분리증으로 기인할 수 있는 감소된 증가를 나타낸다 (Boirie et al., 1997). 더욱이, 노화는 다음의 상당한 호르몬 변형을 동반한다: 미오스타틴의 증가 (Leger et al., 2008), 안드로겐의 감소 (Seidman, 2007) 및 성장 호르몬의 감소 (Macell et al., 2001; Sattler, 2013), 및 또한 염증 마커의 증가 (IL-6, TNF-α 등, 문헌 [Schaap et al., 2009; Verghese et al., 2011])가 특히 주목될 것이다. 이들 다양한 변형은 단백질 합성을 위해서는 바람직하지 않고, 반면에 이들은 단백질분해를 촉진하여, 근육 크기의 점진적 감소 (근육감소증)를 촉진한다. 이는 또한 근섬유 유형의 분포의 변형을 야기하여 급속 섬유의 손상을 가져오며, 이는 근육 강도의 감소 (근력감소증)로 반영된다. 최종적으로, 근육 내 결합 조직의 발생 (섬유증)이 목격된다.
비만 상황에서, 상황은 다음의 여러 추가의 이유로 악화된다: 근육에의 지방 침윤은 염증성 상황을 악화시키고, 인슐린 저항성은 이동성이 과다 체중에 의해 감소되는 것인지를 고려할 것 없이 단백질 합성에 대한 IGF-1의 효과를 감소시킨다 (Stenholm et al., 2009).
선행 기술의 일부인 도 2는 비만 상황에서 근육감소증의 악화를 도시한다 (문헌 [Quillot et al., 2013]에 따름).
어느 경우이든, 치료의 부재 하에서, 근육감소증은 이동성의 총 상실까지 단지 악화될 수 있을 뿐인 과정이다. 그러나, 근육감소증이 골격근 위축을 유발하는 유일한 과정은 아니다. 위축은 또한 부동상태 (예를 들어 골절 후) 동안, 장기 공복 (또는 감량 식이) 동안, 또는 악액질을 야기하는 심각한 병리학적 상태 (예를 들어 암, AIDS) 동안 발생한다. 또한 유전적 기원의 다양한 근육 이영양증이 언급될 수 있다. 이들 다양한 상황은 근육감소증과 공통되는 특정 수의 특징을 갖지만, 이때 각각의 비중은 촉발 인자에 따라 상이하다 (Tisdale, 2007; Saini et al., 2009).
공지된 가능한 치료
따라서, 근육감소증을 예방/치료하기 위한 다양한 방법이 구상되고 시험되었다. 이는 무엇보다도 먼저 신체 운동이며, 그의 유효성은 확립되어 있다 (Bonnefoy et al., 2000; Bonnefoy, 2008; Ryan et al., 2013). 따라서, 8주의 기간에 걸쳐 수행된 운동 후에, 근육 강도의 180% 증가 및 근육 질량의 11% 증가가 관찰되었다 (Fiatarone et al., 1990). 그러나, 최적 유효성을 위해서는 1일에 수시간의 신체 운동이 요구될 것이며, 이는 장기간에 걸쳐 계획하기에는 곤란하다.
단백질 합성 기질의 증가된 흡수는, 최적화된 시기에 따라 신속하게 소화되는 단백질을 제공하는 것에 의하든지 (Coeffier et al., 2009; Aussel et al., 2013), 또한 특정 아미노산 또는 그의 대사물 (류신, HMB [β-히드록시-β-메틸부티레이트], 시트룰린, 오르니틴)의 보충에 의하든지 간에, 근육 단백질 합성을 증가시킬 수 있다 (Li & Heber, 2011).
다양한 제약 치료는 노화와 연관된 호르몬 상황의 변형을 교정하는 것을 목표로 한다 (Crenn, 2013). 이는 다음을 포함한다:
- 성 호르몬, 예컨대 테스토스테론 (White et al., 2013) 또는 그의 변이체, SARM (선택적 안드로겐 수용체 조정제), 또는 무성 호르몬, 예컨대 성장 호르몬 (Liu et al., 2003) 및 IGF-1, 그렐린 또는 프로그래뉼린, 또는 심지어 비타민 D;
- 미오스타틴 억제제 (미오스타틴 분자 또는 그의 수용체, 또는 미오스타틴 전구체 펩티드에 대해 지시된 항체) (Murphy et al., 2010; Han & Mitch, 2011);
- 레닌-안지오텐신 시스템을 표적화하는 분자, 예컨대 ACE 또는 안지오텐신 1-7의 억제제 (Dalla Libera et al., 2001; Shiuchi et al., 2004; Kalupahana & Moustaid-Moussa, 2012; Allen et al., 2013);
- β-아드레날린성 수용체 효능제 (Ryall et al., 2004, 2007);
- 다양한 천연 물질, 또는 심지어 식물 기원의 보다 복잡한 추출물 (예를 들어, 이소플라본: 문헌 [Aubertin-Leheudre et al., 2007]; 올리브 오일 추출물: 문헌 [Pierno et al., 2014]; 레스베라트롤: 문헌 [Shadfar et al., 2011; Bennett et al., 2013]).
이들 치료의 큰 다양성은 촉발 인자가 총체적으로 확인되지 않은 다인성 병리학적 상태를 치료하는데 있어서의 곤란함을 증명한다. 게다가, 여러 후보 분자는 부작용을 가지고 있거나 (예를 들어, 성 호르몬, SARM 또는 β-효능제의 경우에), 또는 아직까지 단지 동물 모델에서만 연구되었다. 모든 이들 요소가 시장에서 입수가능한 의약의 부족을 설명해준다.
지금까지, 조사 연구는 보다 특히, 예를 들어 항-미오스타틴 항체 또는 항-수용체 항체를 사용하여 미오스타틴의 작용을 억제하는 것에 의해 미오스타틴을 표적화한다 (Dumonceaux et al., 2010; Greenberg, 2012; Sakuma & Yamaguchi, 2012; Arounleut et al., 2013; Buehring & Binkley, 2013; Collins-Hooper et al., 2014; White & Le Brasseur, 2014).
피토엑디손 및 보다 특히 20-히드록시엑디손 (20E)은 일본에서 시작하여 우즈베키스탄으로 이어진 후 다양한 다른 국가에서 전개된 수많은 약리학적 연구의 대상이었다.
이들 연구는 이러한 분자의 항당뇨병제 및 동화 특성을 밝혀냈다. 근육에서의 단백질 합성에 대한 그의 자극 효과는 래트에서 생체내 관찰되고 (Syrov, 2000; Toth et al., 2008; Lawrence, 2012) 및 C2C12 뮤린 근관에서 시험관내 관찰된다 (Gorelick-Feldman et al., 2008). 이는 번역 수준에서의 효과로서, IGF-1에 의해 또한 사용되는 경로인 Akt/PkB 단백질 키나제 수반 캐스케이드의 말기에서 p70S6K 리보솜 단백질의 인산화를 수반하여 단백질 합성을 자극한다.
더욱이 문헌 [Zubeldia et al. (2012)]은, 동일한 C2C12 세포를 사용하여, 피토엑디손 (20-히드록시엑디손 및 투르크에스테론)이 풍부한 아주가 투르케스타니카(Ajuga turkestanica) 추출물이 미오스타틴 및 카스파제 3 (아폽토시스 과정에 수반되는 단백질)의 전사를 억제한다는 것을 제시하였다.
더욱이, 20-히드록시엑디손은 항섬유화 특성을 가지며, 이는 근육에 대해서는 입증되지 않았지만 섬유증 메카니즘이 매우 유사하게 일어나는 신장에서는 입증되었다 (Hung et al., 2012). 따라서, 미오스타틴과 유사한 단백질인 TGFβ의 효과, 특히 이러한 물질에 의해 야기되는 Smad 2,3의 자극에 반대한다. 따라서, 20-히드록시엑디손은 근육 (또는 심장)에 대해 유사한 효과를 가질 수 있는 것으로 간주될 수 있다.
20-히드록시엑디손은 지방-풍부 식이가 공급된 마우스에서 체지방을 감소시키거나 (Kizelsztein et al., 2009; Foucault et al., 2012) 또는 폐경기 모델인 난소절제 암컷 래트에서 체지방을 감소시킨다 (Seidlova-Wuttke et al., 2010).
동물 모델에서의 상기 기재된 효과 중 일부는 임상 연구 (수적으로 훨씬 더 적음)에서 밝혀졌다. 따라서, 20-히드록시엑디손은 신체 능력을 증가시키고 (Azizov et al., 1995; Gadhzieva et al., 1995), 근육 질량을 증가시키며 (Simakin et al., 1988), 비만 및 과체중 지원자에서 복부 지방 질량의 감소를 야기한다 (Wuttke et al., 2013; Foucault et al., 2014; PCT 특허 출원 WO 2013/068704).
그러나, 20E 및 그의 대사물은 마우스에서 (Dzhukharova et al., 1987; Hikino et al., 1972), 래트에서 (Kapur et al., 2010 및 Seidlova-Wuttke et al., 2010) 및 인간에서 (Brandt 2003; Bolduc, 2006) 불량한 생체이용률을 갖는다. 그의 전체 성능은 근육 질 개선 용도와 관련하여 전적으로는 아니지만 여러 면에서 만족스럽다.
여러 연구는 20E로부터 유래된 대사물인 투르크에스테론 (11α,20-디히드록시엑디손)이 생체내에서 20E의 활성보다 더 큰 활성을 나타낸다는 것을 제시하였다 (Syrov et al., 2001: Bathori et al., 2008). 비만 포유동물 및 근육감소증 포유동물 둘 다에서의 근육 질의 개선을 표적화하는 치료 용도를 위해, 보다 특히 높은 혈장 노출 계수의 관점에서 표현되는 우수한 생체이용률을 가지면서, 동시에 근육 질 개선에 대해 20E의 활성보다 더 큰 전체 활성 (이러한 전체 활성은 포유동물에서 미오스타틴 유전자 발현의 억제와 조합하여 증가된 단백질 합성과 관련된 성능의 관점에서 표현됨)을 갖는 신규 화합물에 대한 필요성이 오늘날 여전히 존재한다.
본 발명자들은 본 발명에 이르러, 예상외로 전적으로, 20E 및 그의 대사물과 구조가 상이한 특정한 화학식에 상응하는 스테로이드 패밀리의 특정 화합물이 상기 20E의 경우보다 더 높은 혈장 노출 계수, 및 미오스타틴의 억제 및 S6K1 단백질의 인산화를 통한 단백질 합성의 자극에 관하여 20-히드록시엑디손 (20E)의 경우보다 더 크거나 동일한 효과를 갖는다는 것을 발견하였다. 이들 효과는 근육감소증 포유동물 및 근육감소형 비만 포유동물에서 근육 질 및/또는 강도를 개선시키는 것을 가능하게 한다.
본 발명의 화합물은 성별에 따른 스테로이드 핵 수용체 (안드로겐 수용체 및 에스트로겐 수용체)와 상호작용하지 않는다. 이는 혈장 및 마이크로솜에서 우수한 화학적 안정성을 나타낸다. 최종적으로, 이 중 여럿은 20-히드록시엑디손과 비교하여 훨씬 개선된 약동학적 프로파일을 갖는다. 이는 또한 미오스타틴 유전자 발현의 보다 우수한 억제 및 단백질 합성의 보다 우수한 개선을 유도한다.
따라서 본 발명은 거울상이성질체, 부분입체이성질체, 수화물, 용매화물, 호변이성질체, 라세미 혼합물 또는 제약상 허용되는 염의 형태인 하기 화학식 I의 화합물을 제공한다:
<화학식 I>
Figure pct00002
여기서
V-U는 탄소-탄소 단일 결합이고 Y는 히드록실 기 또는 수소이거나, 또는 V-U는 C=C 에틸렌 결합이고;
X는 산소; N-OR5 기로부터 선택되고,
여기서 R5는 수소; 쇄 상에 불포화를 임의로 갖는 C1-C6 알킬 기; (C1-C6)CO2R6 기 (여기서 R6은 가능하게는 수소 또는 C1-C6 기임); (C1-C6)OR7 기 (여기서 R7은 알킬 또는 알콕실 기, CF3, Cl로 임의로 일치환 또는 다치환된 방향족 또는 헤테로방향족 고리임); (C1-C6)NR8R9 기 (여기서 R8 및 R9는 C1-C6 기 또는 (C1-C6)N(C1-C6) 기 또는 (C1-C6)N(C1-C6)OR6 기 (여기서 R6은 상기 정의된 바와 같음)이고, NR8R9는 또한 헤테로사이클일 수 있음)로부터 선택되고;
Figure pct00003
Q는 카르보닐 기이고,
이때 R1은 (C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)CO2(C1-C6) 기; (C1-C6)A 기 (여기서 A는 유형 OH, OMe, (C1-C6), N(C1-C6) 또는 CO2(C1-C6)의 기로 임의로 치환된 헤테로사이클을 나타냄); CH2Br 기로부터 선택되고,
여기서 W는 N, O 및 S로부터 선택된 헤테로원자이거나; 또는
Figure pct00004
Q는 CHOH 기이고,
이때 R1은 (C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)CO2(C1-C6) 기로부터 선택되고,
여기서 W는 N 및 S로부터 선택된 헤테로원자이거나; 또는
Figure pct00005
Q는 C=NOR5 기 (여기서 R5는 상기와 같이 정의됨); CHNR2R3 기로부터 선택되고,
이때 R1은 (C1-C6) 알킬 기이고,
상기 R2 및 R3은 동일하거나 상이할 수 있으며, 각각 수소 원자; (C1-C6) 알킬 기; (C1-C6)W(C1-C6) 기; 시클로알킬 기; (C1-C6)CHF2 기; (C1-C6)A 기 (여기서 A는 상기와 같이 정의된 헤테로사이클을 나타냄); COR4 유형의 기로부터 선택되고,
여기서 R4는 임의로 불포화된 (C1-C6) 알킬 또는 시클로알킬 기; 상기 정의된 바와 같은 A 유형의 헤테로시클릭 기; 유형 OH, OMe, (C1-C6), N(C1-C6), CO2(C1-C6), CF3, OCF3, CN, Cl, F의 기로 임의로 치환된 방향족 또는 헤테로방향족 기; (C1-C6)W(C1-C6) 기로부터 선택되고,
여기서 W는 N, O 및 S로부터 선택된 헤테로원자이다.
본 발명의 또 다른 특정한 형태는 Q가 카르보닐 기를 나타내는 것인 상기 언급된 화학식 I의 화합물을 사용한다.
본 발명의 하나의 특정한 형태는
X가 산소이고;
V-U가 탄소-탄소 단일 결합이고;
Y가 히드록실 기이고;
Q가 카르보닐 기이고;
R1이 (C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)CO2(C1-C6) 기; (C1-C6)A 기 (여기서 A가 유형 OH, OMe, (C1-C6), N(C1-C6) 또는 CO2(C1-C6)의 기로 임의로 치환된 헤테로사이클을 나타냄)로부터 선택되고;
W가 N, O 및 S로부터 선택된 헤테로원자인
화학식 I의 화합물을 사용한다.
본 발명의 또 다른 특정한 형태는 Q가 CHNR2R3 기를 나타내고, 여기서 R2 및 R3이 수소 원자; (C1-C6) 알킬 기; (C1-C6)W(C1-C6) 기; 시클로알킬 기; (C1-C6)CHF2 기; (C1-C6)A 기 (여기서 A가 상기와 같이 정의된 헤테로사이클을 나타냄); COR4 유형의 기로부터 선택되고,
여기서 R4가 임의로 불포화된 (C1-C6) 알킬 또는 시클로알킬 기; 상기 정의된 바와 같은 A 유형의 헤테로시클릭 기; 유형 OH, OMe, (C1-C6), N(C1-C6), CO2(C1-C6), CF3, OCF3, CN, Cl, F의 기로 임의로 치환된 방향족 또는 헤테로방향족 기; (C1-C6)W(C1-C6) 기로부터 선택된 것인 화학식 I의 화합물을 사용한다.
본 발명의 또 다른 특정한 형태는
X가 산소이고;
V-U가 탄소-탄소 단일 결합이고;
Y가 히드록실 기이고;
R1이 메틸 기이고;
Q가 CHNR2R3 기이고;
여기서 R2 및 R3이 수소 원자; (C1-C6) 알킬 기; (C1-C6)W(C1-C6) 기; 시클로알킬 기; (C1-C6)CHF2 기; (C1-C6)A 기 (여기서 A가 상기와 같이 정의된 헤테로사이클을 나타냄); COR4 유형의 기로부터 선택되고,
여기서 R4가 임의로 불포화된 (C1-C6) 알킬 또는 시클로알킬 기; 상기 정의된 바와 같은 A 유형의 헤테로시클릭 기; 유형 OH, OMe, (C1-C6), N(C1-C6), CO2(C1-C6), CF3, OCF3, CN, Cl, F의 기로 임의로 치환된 방향족 또는 헤테로방향족 기; (C1-C6)W(C1-C6) 기로부터 선택되고;
W가 N, O 및 S로부터 선택된 헤테로원자인
화학식 I의 화합물을 사용한다.
본 발명의 또 다른 특정한 형태는 Q가 C=NOR5 기를 나타내고, 여기서 R5가 상기와 같이 정의된 것인 화학식 I의 화합물을 사용한다.
본 발명의 또 다른 특정한 형태는
X가 산소이고;
V-U가 탄소-탄소 단일 결합이고;
Y가 히드록실 기이고;
R1이 메틸 기이고;
Q가 C=NOR5 기이고, 여기서 R5가 상기와 같이 정의된 것인
화학식 I의 화합물을 사용한다.
본 발명의 또 다른 특정한 형태는 V-U가 C=C 에틸렌 결합인 화학식 I의 화합물을 사용한다.
본 발명의 또 다른 특정한 형태는 X가 N-OR5 기이고, 여기서 R5가 상기와 같이 정의된 것인 화학식 I의 화합물을 사용한다.
본 발명의 또 다른 특정한 형태는 하기 화합물로부터 선택된 화학식 I의 화합물을 사용한다:
- 번호 28: (2S,3R,5R,10R,13R,14S,17S)-17-(N-부트-3-에녹시-C-메틸-카본이미도일)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 32: (2S,3R,5R,10R,13R,14S,17S)-17-(N-(2-디에틸아미노에톡시)-C-메틸-카본이미도일)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 41: 2-메톡시-N-(2-메톡시에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]아세트아미드
- 번호 42: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 43: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-[1-(3-피리딜메틸아미노)에틸]-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 46: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-[1-(테트라히드로푸란-2-일메틸아미노)에틸]-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 51: 2-에틸-N-(2-메톡시에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]부탄아미드
- 번호 62: 2-메톡시-N-(테트라히드로푸란-2-일메틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]아세트아미드
- 번호 63: N-(테트라테트라히드로푸란-2-일메틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]푸란-2-카르복스아미드
- 번호 67: N-(2,2-디플루오로에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]푸란-2-카르복스아미드
- 번호 76: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸(메틸)아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 81: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-(2-모르폴리노아세틸)-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 86: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-(3-히드록시피롤리딘-1-일)아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 88: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-(4-히드록시-1-피페리딜)아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 89: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-[4-(2-히드록시에틸)-1-피페리딜]아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 91: (2S,3R,5R,10R,13R,14S,17S)-17-[2-(3-디메틸아미노프로필(메틸)아미노)아세틸]-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로-펜타[a]페난트렌-6-온
- 번호 92: 2-[2-옥소-2-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]술파닐아세테이트 에틸
- 번호 93: (2S,3R,5R,10R,13R,14S,17S)-17-(2-에틸술파닐아세틸)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
- 번호 94: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-(2-히드록시에틸술파닐)아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온.
본 발명의 또 다른 대상은 특히 제약상 허용되는 담체 중의 의약으로서의 화학식 I의 화합물의 용도에 관한 것이다.
본 발명의 또 다른 대상은 포유동물에서 근육감소증 및 근육감소형 비만, 및 그와 연관된 합병증 및/또는 병리학적 상태, 예컨대 강도, 근육 질량, 신체 수행능 및 능력, 및 이동성의 감소의 치료 및/또는 예방에 사용하기 위한 화학식 I의 화합물을 사용한다. 신체 수행능 및 능력은 보행 시험 및 신체 노력 시험에 의해 특징화될 수 있다.
본 발명의 또 다른 대상은 포유동물에서 비만 및 그의 합병증 및/또는 연관된 병리학적 상태, 유리하게는 제2형 당뇨병 또는 대사 증후군의 치료 및/또는 예방에 사용하기 위한 화학식 I의 화합물을 사용한다.
Figure pct00006
선행 기술의 일부인 도 1은 근육에서 단백질 합성 및 단백질분해의 주요 경로를 도시한다 (문헌 [Zhao et al., 2008 및 Little et al., 2009]에 따라 구성됨).
Figure pct00007
선행 기술의 일부인 도 2는 비만 상황에서 근육감소증의 악화를 도시한다 (문헌 [Quillot et al., 2013]에 따름).
Figure pct00008
도 3A는 6주 동안 고-지방 식이를 받은 C57BL/6 마우스의 체중에 대한 20E (비교 화합물) 및 본 발명에 따른 화합물 번호 51 및 93의 효과를 도시한다.
Figure pct00009
도 3B는 6주 동안 고-지방 식이를 받은 C57BL/6 마우스의 가자미근의 단백질의 양에 대한 20E (비교 화합물) 및 본 발명에 따른 화합물 번호 51 및 93의 효과를 도시한다.
Figure pct00010
도 4는 6주 동안 고-지방 식이를 받은 C57BL/6 마우스의 가자미근의 미오스타틴 전사체에 대한 20E (비교 화합물) 및 본 발명에 따른 화합물 번호 51 및 93의 효과를 도시한다.
Figure pct00011
도 5A는 6주 동안 고-지방 식이를 받은 C57BL/6 마우스의 MyoD 전사체에 대한 20E (비교 화합물) 및 본 발명에 따른 화합물 번호 51 및 93의 효과를 도시한다.
Figure pct00012
도 5B는 6주 동안 고-지방 식이를 받은 C57BL/6 마우스의 미오게닌 전사체에 대한 20E (비교 화합물) 및 본 발명에 따른 화합물 번호 51 및 93의 효과를 도시한다.
Figure pct00013
도 6은 미오스타틴 유전자 발현 및 단백질 합성을 분석한 실험 동안에 본 발명의 화합물에 대해 수득된 결과를 표 형태로 도시한다.
본 발명의 목적은 포유동물에서 비만 및/또는 근육감소증의 치료 및/또는 예방을 위한 치료 용도와 관련하여, 특히 상기 언급된 목적을 충족하는 신규 화학적 화합물을 개발하는 것이다. 그러한 화합물은 화학적 데이터베이스에 존재하지 않기 때문에 신규하다. 이는 유리하게는 산업화가능한 방법, 즉 최소 수의 합성 단계 및 최적 수율을 갖는 방법에 따라 합성될 수 있다. 이는 미오스타틴의 억제 및 S6K1 단백질의 인산화를 통한 단백질 합성의 자극의 관점에서 20E의 효과보다 더 큰 효과를 갖는다. 이는 혈장 및 마이크로솜에서 우수한 화학적 안정성을 나타낸다. 이는 개선된 약동학적 프로파일 및 한정된 투여 요법을 갖는다. 이는 C2C12 세포에서 근육 동화작용을 자극하고, 항고혈당 효과를 나타낸다.
본 발명의 문맥에서, 용어 "아릴 기"는 5 내지 8개의 탄소 원자를 갖는 방향족 고리 또는 5 내지 14개의 탄소 원자를 갖는 여러 융합된 방향족 고리를 의미하도록 의도된다. 특히, 아릴 기는 모노시클릭 또는 비시클릭 기, 바람직하게는 페닐 또는 나프틸일 수 있다. 유리하게는, 페닐 기 (Ph)이다.
본 발명의 문맥에서, 용어 "헤테로아릴 기"는 1개 이상의 헤테로원자, 예컨대 예를 들어 황, 질소 또는 산소 원자를 함유하는 3 내지 9개의 원자의 임의의 탄화수소계 방향족 기를 의미하도록 의도된다. 본 발명에 따른 헤테로아릴은 1개 이상의 융합된 고리로 이루어질 수 있다. 헤테로아릴 기의 예는 푸릴, 이속사질, 피리딜, 티아졸릴, 피리미딜, 벤즈이미다졸, 벤족사졸 및 벤조티아졸 기이다. 유리하게는, 헤테로아릴 기는 푸릴, 피리딜 및 티아졸릴 군으로부터 선택된다. 유리하게는, 푸릴 기이다.
본 발명의 문맥에서, 용어 "할로겐 원자"는 유리하게는 Cl, Br, I 또는 F로부터 선택된, 특히 F, Cl 또는 Br, 특히 F 또는 Cl로부터 선택된 임의의 할로겐 원자를 의미하도록 의도된다.
본 발명의 문맥에서, 용어 "C1-C6 알킬 기"는 1 내지 6개의 탄소 원자를 갖는 임의의 선형 또는 분지형 알킬 기, 특히 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, t-부틸, n-펜틸 또는 n-헥실 기를 의미하도록 의도된다. 유리하게는, 메틸, 에틸, 이소프로필 또는 t-부틸 기, 특히 메틸 또는 에틸 기, 보다 특히 메틸 기이다.
본 발명의 문맥에서, 용어 "C3-C6 시클로알킬 기"는 3 내지 6개의 탄소 원자를 포함하는 임의의 포화 및 탄화수소계 고리, 특히 시클로프로필, 시클로부틸, 시클로펜틸 또는 시클로헥실 기를 의미하도록 의도된다. 유리하게는, 시클로프로필 또는 시클로헥실 기이다.
본 발명의 문맥에서, 용어 "(C1-C6 알킬 기) 아릴"은 상기 정의된 바와 같은 C1-C6 알킬 기에 의해 결합된 상기 정의된 바와 같은 임의의 아릴 기를 의미하도록 의도된다. 특히, (C1-C6 알킬 기) 아릴의 예는 벤질 또는 -(CH2)2 페닐 기이다.
본 발명의 문맥에서, 용어 "제약상 허용되는"은 일반적으로 안전하고, 비독성이고, 생물학적으로 바람직하지 않거나 또 다른 방식으로 바람직하지 않은 것이 아니고, 수의학적 용도 및 인간 제약 용도 둘 다에 허용되는, 제약 조성물의 제조에서 사용되는 것을 의미하도록 의도된다.
본 발명의 문맥에서, 용어 "화합물의 제약상 허용되는 염"은 본원에 정의된 바와 같이 제약상 허용되며 모 화합물의 목적하는 약리학적 활성을 갖는 염을 의미하도록 의도된다. 이러한 염은 다음을 포함한다:
(1) 무기 산, 예컨대 염산, 브로민화수소산, 황산, 질산, 인산 등을 사용하여 형성되거나; 또는 유기 산, 예컨대 아세트산, 벤젠술폰산, 벤조산, 캄포르술폰산, 시트르산, 에탄술폰산, 푸마르산, 글루코헵톤산, 글루콘산, 글루탐산, 글리콜산, 히드록시나프토산, 2-히드록시에탄술폰산, 락트산, 말레산, 말산, 만델산, 메탄술폰산, 뮤콘산, 2-나프탈렌술폰산, 프로피온산, 살리실산, 숙신산, 디벤조일-L-타르타르산, 타르타르산, p-톨루엔술폰산, 트리메틸아세트산, 트리플루오로아세트산 등을 사용하여 형성된 산 부가염; 또는
(2) 모 화합물에 존재하는 산 양성자가 금속 이온, 예를 들어 알칼리 금속 이온, 알칼리 토금속 이온 또는 알루미늄 이온으로 대체되거나; 또는 유기 또는 무기 염기와 배위되는 경우에 형성되는 염. 허용되는 유기 염기는 디에탄올아민, 에탄올아민, N-메틸글루카민, 트리에탄올아민, 트로메타민 등을 포함한다. 허용되는 무기 염기는 수산화알루미늄, 수산화칼슘, 수산화칼륨, 탄산나트륨 및 수산화나트륨을 포함한다.
본 발명의 문맥에서, 용어 "화합물의 용매화물"은 본 발명에 따른 화합물에 불활성 용매 분자를 첨가하여 수득된 임의의 화합물로서, 이들의 상호 인력 힘으로 인해 용매화물이 형성되는 것을 의미하도록 의도된다. 용매화물은, 예를 들어 화합물의 알콕시드이다. 수화물은 사용된 불활성 용매가 물인 용매화물이다. 이는 1-, 2- 또는 3수화물일 수 있다.
본 발명의 문맥에서, 용어 "호변이성질체"는 호변이성질체화로 공지된 가역적 화학 반응에 의해 상호전환가능한 본 발명에 따른 화합물의 임의의 구조 이성질체를 의미하도록 의도된다. 대부분의 경우에, 반응은 이중 결합 위치에서의 변화를 동반한 수소 원자의 이동에 의해 발생한다. 호변이성질체화가 가능한 화합물의 용액에서, 2종의 호변이성질체 사이에 평형이 생성된다. 이어서, 호변이성질체 사이의 비는 용매, 온도 및 pH에 좌우된다. 따라서, 호변이성질현상은 통상적으로 수소 원자 및 π 결합 (이중 또는 삼중 결합)의 동반 이동에 의한 하나의 관능기에서 또 다른 관능기로의 전환이다. 통상의 호변이성질체는, 예를 들어 하기 쌍이다: 알데히드/케톤 - 알콜 또는 보다 특히 엔올; 아미드 - 이미드산; 락탐 - 락팀; 이민 - 엔아민; 엔아민 - 엔아민. 특히, 양성자의 이동이 개방 구조에서 고리로의 전환을 동반하는 경우에 일어나는 고리-쇄 호변이성질현상을 포함할 수 있다.
일반적 합성 및 반응식의 설명
화학식 I의 화합물은 관련 기술분야의 통상의 기술자에게 그 자체로 공지되어 있고/거나 관련 기술분야의 범주 내에 있는 임의의 방법, 특히 문헌 [Larock (1989)]에 기재된 방법을 적용하거나 적합화시킴으로써, 또는 하기하는 절차에 기재된 방법을 적용하거나 적합화시킴으로써 제조될 수 있다.
다양한 기는 상기에 주어진 정의를 지칭한다.
반응식 A:
20-히드록시엑디손 A1은 문헌 [Zhu et al.(2002)]에 기재된 바와 같이 아세트산 중 아연의 작용에 의해 화합물 A2로 환원될 수 있다. 이러한 화합물 A2는 피리딘 중 PCC의 반응에 의해 쇄의 C20-C22에서 산화성 절단을 겪어 화합물 A3이 생성될 수 있다. R5ONH2 유형의 알킬옥심은 C20에서 카르보닐과 반응하여 상응하는 이민 A4가 생성되고 또한 C20 및 C6에서의 이중 반응으로부터 화합물 A5가 생성된다.
Figure pct00014
반응식 B:
R5ONH2 유형의 알킬옥심은 화합물 A1의 C6에서 카르보닐과 반응하여 옥심 B1이 생성되고, 또한 임의로, C14-C15에서 히드록실의 제거로부터 화합물 B2 (Z 이형태체) 및 B'2 (E 이형태체)가 생성된다. 이들 3종의 화합물은 반응식 A에 기재된 바와 같이 쇄 절단을 겪어 화합물 B3 및 B4가 생성될 수 있으며, 이때 (Z)-옥심 화합물 B'3이 부산물로서 생성된다. R5ONH2 유형의 알킬옥심은 화합물 B3 또는 B4의 C6에서 카르보닐과 반응하여 화합물 B5 및 B6이 생성된다.
Figure pct00015
반응식 C:
화합물 A1은 반응식 A 상에 기재된 바와 같이 산화성 절단을 겪어 화합물 C1이 생성될 수 있다. 문헌에서 포스트스테론으로 불리는 이러한 화합물은 C20에서의 카르보닐 상에서 R5ONH2 유형의 알콕심의 작용을 받을 수 있으며, 그로 인해 화합물 C2, C6 및 C20에서의 이중 반응으로부터 화합물 C3, 및 C14-C15에서의 히드록실의 제거로부터 화합물 C4가 수득될 수 있다.
Figure pct00016
반응식 D:
반응식 B로부터 유래된 (E) 및 (Z) 이형태체 B3 및 B'3의 혼합물은 염화티타늄과 반응하며, 그의 작용은 (Z) 화합물 B'3을 탈수시켜 D1이 수득되도록 하는 것이다. 이전 단계에서 단리된 화합물 B3의 C17에서의 카르보닐은 시아노보로히드라이드의 존재 하에 R3NH2에 의해 환원성 아미노화를 겪어 화합물 D2가 생성되고, 이는 산 클로라이드 R4COCl에 의해 아실화되어 화합물 D3이 수득될 수 있다.
Figure pct00017
반응식 E:
포스트스테론 C1은 반응식 D에 기재된 바와 같은 동일한 유형의 환원성 아미노화 및 이어서 아실화를 겪어 화합물 E1 및 이어서 E2가 수득될 수 있다.
Figure pct00018
반응식 F:
반응식 F로부터 유래된 화합물 E1의 2급 아민은 브로모알킬 화합물에 의해 알킬화되어 3급 아민 F2가 생성된다.
Figure pct00019
반응식 G:
포스트스테론 C1은 C21에서 브로민을 사용하여 브로민화되어 브로민화 화합물 G1이 생성될 수 있으며, 이는 친핵체 WR (여기서 W는 가능하게는 아민 또는 티올임)에 의해 알킬화되어 화합물 G2가 생성될 수 있다.
Figure pct00020
반응식 H:
반응식 G에서 수득된 브로민화 화합물 G1은 OR 유형의 알콕시드 화합물과 반응하여 에테르성 화합물 H1이 수득될 수 있다.
Figure pct00021
반응식 I:
반응식 G로부터 유래된 화합물 G2는 C20에서 수소화붕소나트륨을 사용하여 카르보닐의 환원을 겪어 알콜 I2가 생성될 수 있다.
Figure pct00022
반응식 J:
반응식 G로부터 유래된 화합물 G2는 반응식 C에 기재된 바와 같이 C20에서 R5ONH2 유형의 알콕사민과 반응을 겪어 화합물 J1이 수득될 수 있다.
Figure pct00023
실시예:
물질 및 방법
양성자 (1H) 핵자기 공명 (NMR) 스펙트럼을 브루커 아반스(Bruker Avance) DPX300 장치 (300.16 MHz) 상에서 수행하였다. 화학적 이동 (δ)을 백만분율 (ppm) 단위로 측정하였다. 스펙트럼을 사용된 중수소화 용매의 화학적 이동에 대해 계산하였다. 커플링 상수 (J)를 헤르츠 (Hz) 단위로 표현하고, 다중도를 하기 방식으로 나타내었다: 단일선 (s), 이중선 (d), 이중선의 이중선 (dd), 삼중선 (t), 이중선의 삼중선 (td), 사중선 (q), 다중선 (m). 질량 스펙트럼 (MS)을 애질런트 테크놀로지스(Agilent Technologies) MSD, 유형 G1946A, 분광계에 의해 수행하고, 샘플을 "대기압 화학적 이온화" (APCI) 소스에 의해 이온화시켰다.
약어
TBAF 테트라부틸암모늄 플루오라이드
THF 테트라히드로푸란
DMF 디메틸포름아미드
CDCl3 중수소화 클로로포름
CD3OD 중수소화 메탄올
DMSO-d6 중수소화 디메틸 술폭시드
PyBop (벤조트리아졸-1-일옥시)트리피롤리디노포스포늄 헥사플루오로포스페이트
Boc tert-부틸옥시카르보닐
mmol 밀리몰
μM 마이크로몰
mL 밀리리터
g 그램
M mol/리터
N 노르말
nm 나노미터
min 분
h 시간
d 일
a.t. 주위 온도
UV 자외선
ctrl 대조군
MW 분자량
MS 질량 분광측정법
본 발명의 예시적인 실시예에 의해, 표 2에 나타내어진 화합물을 합성하였다.
<표 2> 합성이 예시되어 있는 화합물의 목록
Figure pct00024
Figure pct00025
Figure pct00026
Figure pct00027
Figure pct00028
Figure pct00029
Figure pct00030
Figure pct00031
Figure pct00032
Figure pct00033
Figure pct00034
Figure pct00035
Figure pct00036
Figure pct00037
Figure pct00038
실시예 1: 반응식 A;
화합물 번호 1 및 번호 2의 제조:
(2S,3R,5R,10R,13S,14S,17S)-17-(N-부트-3-에녹시-C-메틸카본이미도일)-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온 및 (2S,3R,5R,10R,13S,14R,17S)-17-(N-부트-3-에녹시-C-메틸카본이미도일)-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온
Figure pct00039
단계 1: (2S,3R,5R,10R,13S,17S)-2,3-디히드록시-10,13-디메틸-17-[(1R,2R)-1,2,5-트리히드록시-1,5-디메틸헥실]-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온의 제조
Figure pct00040
20-히드록시엑디손 (상업적으로 입수가능함) 20 g (41.6 mmol)을 아세트산 280 ml 중에 용해시키고, 용액을 67℃로 가열하였다. 아연 분말 27.2 g (416 mmol)을 조금씩 첨가하고, 반응 매질을 67℃에서 18시간 동안 가열하였다. 이어서, 용액을 20℃에서 셀라이트 케이크를 통해 여과하고, 이를 메탄올 50 ml로 세척하였다. 여과물을 증발시켜 갈색 오일 33.7 g을 수득하였으며, 이를 실리카 겔 카트리지 상에서 플래쉬 크로마토그래피 (90/10 디클로로메탄/메탄올)에 의해 정제하여 (2S,3R,5R,10R,13S,17S)-2,3-디히드록시-10,13-디메틸-17-[(1R,2R)-1,2,5-트리히드록시-1,5-디메틸헥실]-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온의 황색 분말 9.52 g (수율: 49%)을 수득하였다.
LC-MS: m/z = 465.3 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6)δ 5.72-5.43 (m, 1H(C7)), 4.42-4.32 (m, 2H), 4.13 (s, 1H), 3.76-2.62 (m, 2H), 3.2-3.1 (m, 2H), 2.21-2.14 (m, 2H), 1.90-1.02 (m, 28H), 1.03-0.77 (m, 6H).
단계 2: (2S,3R,5R,10R,13S,17S)-17-아세틸-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온의 제조
Figure pct00041
(2S,3R,5R,10R,13S,17S)-2,3-디히드록시-10,13-디메틸-17-[(1R,2R)-1,2,5-트리히드록시-1,5-디메틸헥실]-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온 9.52 g (20.28 mmol)을 피리딘 46 ml 및 디클로로메탄 276 ml 중에 용해시켰다. 피리디늄 클로로크로메이트 6.69 g (30.4 mmol)을 10분의 과정에 걸쳐 조금씩 첨가하고, 반응 매질을 20℃에서 2시간 30분 동안 교반하였다. 이어서, 피리딘 및 디클로로메탄을 진공 하에 증발시키고, 잔류물을 실리카 겔 카트리지 상에서 플래쉬 크로마토그래피 (95/5 디클로로메탄/메탄올)에 의해 정제하여 (2S,3R,5R,10R,13S,17S)-17-아세틸-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온의 베이지색 분말 4 g (수율: 56%)을 수득하였다.
LC-MS: m/z = 347.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) δ 5.68-5.46 (m, 1H(C7)), 4.41-4.37 (m, 2H), 3.76-3.55 (m, 2H), 2.83-2.54 (m, 2H), 2.33-1.95 (m, 6H), 1.90-1.30 (m, 10H), 1.28-1.18 (m, 1H), 0.88-0.42 (m, 6H).
단계 3: 에피머 (2S,3R,5R,10R,13S,14S,17S)-17-(N-부트-3-에녹시-C-메틸카본이미도일)-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온 및 (2S,3R,5R,10R,13S,14R,17S)-17-(N-부트-3-에녹시-C-메틸카본이미도일)-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온의 제조
Figure pct00042
단계 2에서 제조된 (2S,3R,5R,10R,13S,17S)-17-아세틸-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온 (14-데옥시포스트스테론) 328 mg (0.947 mmol)을 에탄올 1.2 ml 중에 용해시키고, 부트-3-엔옥시암모늄 2,2,2-트리플루오로아세테이트 200 mg (0.994 mmol)을 조금씩 첨가하였다. 반응 매질을 20시간 동안 환류하였다. 용매를 증발시키고, 잔류물을 C18 칼럼 상에서 정제용 크로마토그래피 (60/40 아세토니트릴/물)에 의해 정제하여 화합물 번호 1 (2S,3R,5R,10R,13S,14S,17S)-17-(N-부트-3-에녹시-C-메틸카본이미도일)-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온의 베이지색 분말 24 mg (수율: 6%) 및 화합물 번호 2 (2S,3R,5R,10R,13S,14R,17S)-17-(N-부트-3-에녹시-C-메틸카본이미도일)-2,3-디히드록시-10,13-디메틸-1,2,3,4,5,9,11,12,14,15,16,17-도데카히드로시클로펜타[a]페난트렌-6-온의 베이지색 분말 57 mg (수율: 14%)을 수득하였다.
화합물 번호 1:
LC-MS: m/z = 416.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) - C14 베타 에피머 - δ 5.83-5.72 (m, 1H), 5.70 (s, 1H(C7)), 5.1-5 (m, 2H), 4.40-4.36 (m, 2H), 4 (t, 2H), 3.77-3.71 (m, 2H), 2.80-2.60 (m, 1H), 2.40-1.20 (m, 20H), 0.82-0.74 (m, 6H).
화합물 번호 2:
LC-MS: m/z = 416.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-D6) - C14 알파 에피머- δ 5.87-5.72 (m, 1H), 5.48 (s, 1H(C7)), 5.1-4.9 (m, 2H), 4.40-4.36 (m, 2H), 4 (t, 2H), 3.77-3.71 (m, 2H), 2.80-2.60 (m, 1H), 2.44-1.23 (m, 20H), 0.83 (s, 3H), 0.47 (s, 3H).
화합물 번호 3 내지 6을 동일한 반응식에 따라 C14 알파 및 C14 베타 에피머의 형태로 제조하였다.
Figure pct00043
1LCMS 순도, 254 nm에서의 UV
실시예 2: 반응식 B;
화합물 번호 7: [1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-디히드록시-6-메톡시이미노-10,13-디메틸-1,2,3,4,5,9,11,12,16,17-데카히드로시클로펜타[a]페난트렌-17-일]에타논 옥심] 및 화합물 번호 19: [(2S,3R,5R,6E,10R,13R,14S,17S)-17-(N-(2-메톡시에톡시)-C-메틸카본이미도일)-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올]의 제조
Figure pct00044
화합물 번호 7의 제조
단계 1: 화합물 (a) [(2S,3R,5R,6E,10R,13R,14S,17S)-6-메톡시이미노-10,13-디메틸-17-[(1R,2R)-1,2,5-트리히드록시-1,5-디메틸헥실]-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올] 및 화합물 (b) [(2R,3R)-2-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-디히드록시-6-메톡시이미노-10,13-디메틸-1,2,3,4,5,9,11,12,16,17-데카히드로시클로펜타[a]페난트렌-17-일]-6-메틸헵탄-2,3,6-트리올]의 제조
Figure pct00045
반응식 A의 단계 3에 기재된 것과 동일한 절차에 따라, 20-히드록시엑디손 및 O-메틸히드록실아민 히드로클로라이드로부터 화합물 (a) [(2S,3R,5R,6E,10R,13R,14S,17S)-6-메톡시이미노-10,13-디메틸-17-[(1R,2R)-1,2,5-트리히드록시-1,5-디메틸헥실]-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올]의 베이지색 분말 788 mg (수율: 37%)을 제조하였다. 제거 화합물 (b) [(2R,3R)-2-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-디히드록시-6-메톡시이미노-10,13-디메틸-1,2,3,4,5,9,11,12,16,17-데카히드로시클로펜타[a]페난트렌-17-일]-6-메틸헵탄-2,3,6-트리올] 667 mg (수율: 32%)을 또한 단리할 수 있었고, 또한 제거 화합물 (c) [(2R,3R)-2-[(2S,3R,5R,6E,10R,13R,17S)-2,3-디히드록시-6-메톡시이미노-10,13-디메틸-1,2,3,4,5,9,11,12,16,17-데카히드로시클로펜타[a]페난트렌-17-일]-6-메틸헵탄-2,3,6-트리올] 34 mg (수율: 2%)을 마찬가지로 또한 단리할 수 있었다.
화합물 (a):
LC-MS: m/z = 510.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6)δ 6.25 (s, 1H(C7)), 4.45-4.35 (m, 3H), 4.31-4.29 (m, 1H), 4.14 (s, 1H), 3.74-3.69 (m, 4H), 3.6-3.5 (m, 1H), 3.17-3.08 (m, 1H), 2.87-2.75 (m, 1H), 2.26-2.20 (m, 2H), 2.05-1.1 (m, 15H), 1.1-0.98 (m, 11H), 0.73 (s, 6H).
화합물 (b):
LC-MS: m/z = 492.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) δ 6.04 (s, 1H), 5.77 (s, 1H), 4.45-4.30 (m, 2H), 4.25 (s, 1H), 4.11 (s, 1H), 3.75-3.65 (m, 5H), 3.63-3.55 (m, 1H), 3.20-3.08 (m, 2H), 2.17-1.90 (m, 3H), 1.70-1.20 (m, 11H), 1.15-0.93 (m, 14H), 0.74 (s, 3H).
화합물 (c):
LC-MS: m/z = 492.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6)δ 6.55 (s, 1H), 5.81 (s, 1H), 4.44-4.26 (m, 3H), 4.09 (s, 1H), 3.79-3.67 (m, 5H), 3.62-3.54 (m, 1H), 3.16-3.08 (m, 1H), 2.30-1.90 (m, 4H), 1.70-1.20 (m, 11H), 1.15-0.92 (m, 14H), 0.73 (s, 3H).
단리된 화합물 (b)로부터 출발함:
단계 2a: 화합물 (d): [1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-디히드록시-6-메톡시이미노-10,13-디메틸-1,2,3,4,5,9,11,12,16,17-데카히드로시클로펜타[a]페난트렌-17-일]에타논]의 제조
Figure pct00046
반응식 A의 단계 2에 기재된 것과 동일한 절차에 따라, 화합물 (b)로부터 화합물 (d) [1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-디히드록시-6-메톡시이미노-10,13-디메틸-1,2,3,4,5,9,11,12,16,17-데카히드로시클로펜타[a]페난트렌-17-일]에타논]의 베이지색 분말 267 mg (수율: 55%)을 제조하였다.
화합물 (d):
LC-MS: m/z = 374.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) δ 6.09 (s, 1H), 5.81-5.75 (m, 1H), 4.39-4.37 (m, 1H), 4.30-4.26 (m, 1H), 3.76 (s, 3H), 3.72-3.68 (m, 1H), 3.65-3.55 (m, 1H), 3.2-3 (m, 2H), 2.75-2.60 (m, 1H), 2.29-2.10 (m, 5H), 1.74-1.23 (m, 8H), 0.74-0.70 (m, 6H).
단계 3a: 화합물 번호 7: [1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-디히드록시-6-메톡시이미노-10,13-디메틸-1,2,3,4,5,9,11,12,16,17-데카히드로시클로펜타[a]페난트렌-17-일]에타논 옥심]의 제조
Figure pct00047
반응식 A의 단계 3에 기재된 것과 동일한 절차에 따라, 화합물 (d)로부터 1-[(2S,3R,5R,6Z,10R,13R,17S)-2,3-디히드록시-6-메톡시이미노-10,13-디메틸-1,2,3,4,5,9,11,12,16,17-데카히드로시클로펜타[a]페난트렌-17-일]에타논 옥심의 백색 분말 81 mg (수율: 71%)을 제조하였다.
화합물 번호 7:
LC-MS: m/z = 389.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) δ 10.53 (s, 1H), 6.09 (s, 1H), 5.04 (s, 1H), 4.37 (d, 1H), 4.30-4.26 (m, 1H), 3.77-3.67 (m, 4H), 3.65-3.55 (m, 1H), 3.15-3.03 (m, 1H), 2.80-2.65 (m, 2H), 2.25-2.12 (m, 1H), 2.05-1.99 (m, 1H), 1.79 (s, 3H), 1.74-1.20 (m, 8H), 0.76-0.66 (m, 6H).
단리된 화합물 (a) (2S,3R,5R,6E,10R,13R,14S,17S)-6-메톡시이미노-10,13-디메틸-17-[(1R,2R)-1,2,5-트리히드록시-1,5-디메틸헥실]-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올로부터 출발한 화합물 번호 19의 제조:
단계 2b: 화합물 (e): [1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-트리히드록시-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에타논] 및 (f): [1-[(2S,3R,5R,6Z,10R,13R,14S,17S)-2,3,14-트리히드록시-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에타논]의 제조
Figure pct00048
반응식 A의 단계 2에 기재된 것과 동일한 절차에 따라, 단리된 화합물 (a) [2S,3R,5R,6E,10R,13R,14S,17S)-6-메톡시이미노-10,13-디메틸-17-[(1R,2R)-1,2,5-트리히드록시-1,5-디메틸헥실]-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올] 3.5 g으로부터, 화합물 (e) [1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-트리히드록시-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에타논]의 베이지색 분말 891 mg (수율: 36%)을 단리하고, 또한 화합물 (f): [1-[(2S,3R,5R,6Z,10R,13R,14S,17S)-2,3,14-트리히드록시-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에타논] 23 mg (수율: 0.9%)을 단리하였다.
화합물 (e):
LC-MS: m/z = 392.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6)δ 6.28 (s, 1H(C7)), 4.74 (s, 1H), 4.42-4.36 (m, 1H), 4.32-4.28 (m, 1H), 3.76-3.70 (m, 4H), 3.68-3.52 (m, 1H), 3.20-3.12 (m, 1H), 2.90-2.76 (m, 1H), 2.30-2.00 (m, 5H), 1.90-1.50 (m, 8H), 1.49-1.24 (m, 3H), 0.72 (s, 3H), 0.45 (s, 3H).
화합물 (f):
LC-MS: m/z = 392.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) δ 5.71 (s, 1H(C7)), 4.45 (s, 1H), 4.45-4.41 (m, 1H), 4.26-4.23 (m, 1H), 3.76-3.70 (m, 4H), 3.65-3.55 (m, 1H), 3.18-3.09 (m, 1H), 2.90-2.80 (m, 1H), 2.22-2.00 (m, 5H), 1.88-1.22 (m, 11H), 0.73 (s, 3H), 0.47 (s, 3H).
단계 3b: 화합물 번호 19: [(2S,3R,5R,6E,10R,13R,14S,17S)-17-(N-(2-메톡시에톡시)-C-메틸카본이미도일)-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올]의 제조
Figure pct00049
반응식 A의 단계 3에 기재된 것과 동일한 절차에 따라, 화합물 (e) 233 mg으로부터 화합물 번호 19 [(2S,3R,5R,6E,10R,13R,14S,17S)-17-(N-(2-메톡시에톡시)-C-메틸카본이미도일)-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a] 페난트렌-2,3,14-트리올]의 백색 분말 46 mg (수율: 48%)을 제조하였다.
화합물 번호 19:
LC-MS: m/z = 465.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) δ 6.28 (s, 1H(C7)), 4.66 (s, 1H), 4.44-4.38 (m, 1H), 4.34-4.28 (m, 1H), 4.10-4.01 (m, 2H), 3.75-3.70 (m, 4H), 3.65-3.45 (m, 3H), 3.24 (s, 3H), 2.98-2.76 (m, 2H), 2.30-1.90 (m, 4H), 1.80-1.24 (m, 12H), 0.73 (s, 3H), 0.49 (s, 3H).
화합물 번호 21을 동일한 반응식에 따라 제조하였다.
Figure pct00050
1 LCMS 순도, 254 nm에서의 UV
실시예 3: 반응식 C;
화합물 번호 23의 제조:
(2S,3R,5R,10R,13R,14S,17S)-17-(N-에톡시-C-메틸-카본이미도일)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
Figure pct00051
반응식 A의 단계 3에 기재된 것과 동일한 절차에 따라, 포스트스테론 (반응식 B의 단계 2에 기재된 것과 동일한 절차에 따라 20-히드록시엑디손의 쇄의 산화성 절단에 의해 수득됨)으로부터 (2S,3R,5R,10R,13R,14S,17S)-17-(N-에톡시-C-메틸-카본이미도일)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온의 백색 분말 64 mg (수율: 22%)을 제조하였다.
화합물 번호 23:
LC-MS: m/z = 406.2 (MH+) 254 nm에서의 UV 순도 = 93%.
1H NMR (300 MHz, CD3OD) δ 5.82 (s, 1H(C7)), 4.04 (q, 2H), 3.97-3.92 (m, 1H), 3.89-3.80 (m, 1H), 3.22-3.10 (m, 1H), 3.04 (t, 1H), 2.43-1.55 (m, 15H), 1.45-1.37 (m, 1H), 1.21 (t, 3H), 0.96 (s, 3H), 0.64 (s, 3H).
화합물 번호 24 내지 36을 동일한 반응식에 따라 제조하였다.
Figure pct00052
Figure pct00053
1 LCMS 순도, 254 nm에서의 UV
실시예 4: 반응식 D;
화합물 번호 37의 제조:
N-(2,2-디플루오로에틸)-N-[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-트리히드록시-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]푸란-2-카르복스아미드
Figure pct00054
단계 1: 화합물 번호 39: [(2S,3R,5R,6E,10R,13R,14S,17S)-17-[1-(2,2-디플루오로에틸아미노)에틸]-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올]의 제조
Figure pct00055
방법 B의 단계 2b에서 수득된 화합물 (e) [1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-트리히드록시-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에타논] 180 mg (0.46 mmol)을 메탄올 5 ml 중에 용해시키고, 2,2-디플루오로에탄아민 0.21 ml (2.76 mmol)를 반응 매질에 첨가하였다. 용액의 pH를 충분한 양의 진한 아세트산을 사용하여 6으로 조정하였다. 이어서, 소듐 시아노보로히드라이드 31.8 mg (0.506 mmol)을 조금씩 첨가하고, 수득된 현탁액을 20시간 동안 환류하였다. 용매를 증발시키고, 수득된 잔류물을 물 20 ml에 녹이고, pH를 포화 중탄산나트륨 용액을 사용하여 8로 조정하였다. 이 수성 상을 부탄올 15 ml로 2회 추출하고, 부탄올 상을 용매화물 상에서 건조시키고, 여과하고, 증발시켜 황색 고체를 수득하였으며, 이를 이소프로필 에테르 30 ml에 녹이고, 여과하고, 건조시킨 후, 화합물 번호 39 (2S,3R,5R,6E,10R,13R,14S,17S)-17-[1-(2,2-디플루오로에틸아미노)에틸]-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올 134 mg (수율: 62%)을 황색 분말의 형태로 수득하였다.
화합물 번호 39:
LC-MS: m/z = 457.4 (MH+) 254 nm에서의 UV 순도 = 97%.
1H NMR (300 MHz, DMSO-d6) δ 6.30-6.23 (m, 1H), 5.95-5.70 (m, 1H), 4.43-4.25 (m, 3H), 3.72 (s, 3H), 3.65-3.55 (m, 1H), 3.42-3.32 (m, 1H), 2.88-2.76 (m, 2H), 2.29-2.23 (m, 1H), 1.99-1.15 (m, 16H), 1.05-0.82 (m, 3H), 0.73 (s, 3H), 0.61-0.53 (m, 3H).
단계 2: 화합물 번호 37: N-(2,2-디플루오로에틸)-N-[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-트리히드록시-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]푸란-2-카르복스아미드의 제조
Figure pct00056
화합물 번호 39 [(2S,3R,5R,6E,10R,13R,14S,17S)-17-[1-(2,2-디플루오로에틸아미노)에틸]-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올] 134 mg (0.285 mmol)을 THF 2 ml 중에 용해시키고, 중탄산나트륨 52 mg (0.854 mmol)을 아르곤 분위기 하에 반응 매질에 첨가하였다. 푸로일 클로라이드 30 μL (0.299 mmol)를 첨가하고, 반응 매질을 20℃에서 20시간 동안 교반하였다. 이어서, 용액을 물 5 ml에 붓고, 부탄올 10 ml로 2회 추출하였다. 부탄올 상을 증발시켜 고체 118 mg을 수득하고, 실리카 겔 카트리지 상에서 플래쉬 크로마토그래피 (95/5 디클로로메탄/MeOH)에 의해 정제하여 화합물 번호 37: N-(2,2-디플루오로에틸)-N-[1-[(2S,3R,5R,6E,10R,13R,14S,17S)-2,3,14-트리히드록시-6-메톡시이미노-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]푸란-2-카르복스아미드의 백색 분말 100 mg (수율: 60%)을 수득하였다.
화합물 번호 37:
LC-MS: m/z = 551.3 (MH+) 254 nm에서의 UV 순도 = 93%.
1H NMR (300 MHz, DMSO-d6) δ 7.87 (s, 1H), 7.03 (s, 1H), 6.64 (s, 1H), 6.25 (s, 1H), 4.58 (d, 1H), 4.43-4.27 (m, 3H), 3.95-3.83 (m, 1H), 3.75-3.65 (m, 4H), 3.63-3.49 (m, 2H), 2.85-2.68 (m, 1H), 2.31-2.18 (m, 1H), 2.01-1 (m, 17H), 0.73-0.15 (m, 6H).
화합물 번호 38 및 40을 동일한 반응식에 따라 제조하였다.
Figure pct00057
1 LCMS 순도, 254 nm에서의 UV
실시예 5: 반응식 E;
화합물 번호 41의 제조:
2-메톡시-N-(2-메톡시에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]아세트아미드
Figure pct00058
단계 1: 화합물 번호 42의 제조:
(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
포스트스테론 (반응식 B의 단계 2에 기재된 것과 동일한 절차에 따라 20-히드록시엑디손의 쇄의 산화성 절단에 의해 수득됨) 5 g (13.8 mmol)을 메탄올 250 ml 중에 용해시키고, 2-메톡시에틸아민 7.2 ml (83 mmol)를 적가하였다. 이어서, 용액의 pH를 진한 아세트산을 첨가함으로써 pH 6으로 만들고, THF 250 ml를 첨가하였다. 소듐 시아노보로히드라이드 0.954 g을 조금씩 첨가하고, 반응 매질을 20시간 동안 환류하였다. 용매를 증발시키고, 수득된 조 생성물을 물 100 ml에 녹이고, pH를 포화 중탄산나트륨 용액을 첨가하여 8로 조정하였다. 매질을 부탄올 80 ml로 3회 추출하고, 부탄올 상을 증발시켜 갈색 발포체를 수득하였으며, 이를 에틸 아세테이트 5 ml에 녹이고, 여과 및 건조시킨 후, 화합물 번호 42: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온 3.32 g (수율: 57%)을 회색 분말의 형태로 수득하였다.
화합물 번호 42:
LC-MS: m/z = 422.2 (MH+) 254 nm에서의 UV 순도 = 95%.
1H NMR (300 MHz, DMSO-d6) δ 5.70-5.60 (m, 1H(C7)), 4.80-4.62 (m, 1H), 4.55-4.47 (m, 1H), 4.43-4.35 (m, 1H), 3.78-3.70 (m, 2H), 3.68-3.50 (m, 3H), 3.30-3.18 (m, 5H), 3.10-2.91 (m, 1H), 2.30-0.9 (m, 18H), 0.82 (s, 3H), 0.59 (s, 3H).
13C NMR (75 MHz, DMSO-d6) δ 202.9 (C6), 120.5, 82.9, 66.7, 58.1, 46.2, 37.8, 30.5, 23.9, 6.2.
단계 2: 화합물 번호 41의 제조:
2-메톡시-N-(2-메톡시에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]아세트아미드
Figure pct00060
실시예 5의 단계 2와 동일한 절차에 따라, 화합물 번호 42로부터 화합물 번호 41 [2-메톡시-N-(2-메톡시에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]아세트아미드] 89 mg (수율:58%)을 오렌지색 분말의 형태로 수득하였다.
화합물 번호 41:
LC-MS: m/z = 494.4 (MH+) 254 nm에서의 UV 순도 = 94%.
1H NMR (300 MHz, DMSO-d6) δ 5.63 (s, 1H(C7)), 4.88-4.7 (m, 1H), 4.5-4.35 (m, 2H), 4.2-3.9 (m, 2H), 3.76 (s, 1H), 3.68-3.52 (m, 1H), 3.5-3.3 (m, 4H), 3.28-3.18 (m, 6H), 3.08-2.9 (m, 1H), 2.3-0.95 (m, 18H), 0.88-0.75 (m, 3H), 0.7-0.42 (m, 3H).
화합물 번호 43 내지 75를 동일한 반응식에 따라 제조하였다.
Figure pct00061
Figure pct00062
Figure pct00063
Figure pct00064
1 LCMS 순도, 254 nm에서의 UV
실시예 6: 반응식 F;
화합물 번호 76의 제조:
(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸(메틸)아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
Figure pct00065
실시예 5의 단계 1에 기재된 기술에 따라 제조된 화합물 번호 42 [(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온] 155 mg (0.368 mmol)을 DMF 2.5 ml 중에 용해시키고, 중탄산나트륨 61.8 mg (0.735 mmol)을 아이오도메탄 0.034 ml (0.552 mmol)와 함께 반응 매질에 첨가하였다. 수득된 현탁액을 20℃에서 20시간 동안 교반하였다. 이어서, 용액을 물 15 ml에 붓고, 부탄올 15 ml로 3회 추출하였다. 부탄올 상을 증발시켜 분말 220 mg을 수득하고, 실리카 겔 카트리지 상에서 플래쉬 크로마토그래피 (95/5 디클로로메탄/MeOH)에 의해 정제하여 화합물 번호 76: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸(메틸)아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온의 백색 분말 40 mg (수율:25%)을 백색 분말의 형태로 수득하였다.
화합물 번호 76:
LC-MS: m/z = 436.3 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6)δ 5.61 (s, 1H(C7)), 4.64 (s, 1H), 4.47-4.34 (m, 2H), 3.75 (s, 1H), 3.67-3.50 (m, 1H), 3.25-3.16 (m, 5H), 3.05-2.85 (m, 1H), 2.27-1.15 (m, 20H), 0.90-0.70 (m, 6H), 0.59 (s, 3H).
화합물 번호 77 내지 80을 동일한 반응식에 따라 제조하였다.
Figure pct00066
1 LCMS 순도, 254 nm에서의 UV
실시예 7: 반응식 G;
화합물 번호 81의 제조:
(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-(2-모르폴리노아세틸)-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
Figure pct00067
단계 1: 화합물 번호 102: (2S,3R,5R,10R,13R,14S,17S)-17-(2-브로모아세틸)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온의 제조
Figure pct00068
포스트스테론 (반응식 B의 단계 2에 기재된 것과 동일한 절차에 따라 20-히드록시엑디손의 쇄의 산화성 절단에 의해 수득됨) 1 g (2.76 mmol)을 메탄올 20 ml 중에 용해시켰다. 용액을 0℃로 냉각시키고, 브로민 0.284 ml (5.52 mmol)를 적가하고, 반응 매질을 이 온도에서 1시간 동안 교반한 다음, 주위 온도에서 16시간 동안 두었다. 반응 매질을 포화 중탄산나트륨 용액 50 ml에 붓고, 에틸 아세테이트 100 ml로 3회 추출하였다. 유기 상을 50 ml의 포화 중탄산나트륨 용액에 이어서 염수로 세척하고, 황산나트륨 상에서 건조시키고, 여과하고, 용매를 증발시켜 분말 833 mg을 수득하였으며, 이를 디클로로메탄 30 ml에 녹이고, 여과 및 데시케이션 후, 화합물 번호 102: 2S,3R,5R,10R,13R,14S,17S)-17-(2-브로모아세틸)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온 412 mg (수율: 31%)을 황색 분말의 형태로 수득하였다.
화합물 번호 102:
LC-MS: m/z = 443.1 (MH+) 254 nm에서의 UV 순도 = 91%.
1H NMR (300 MHz,DMSO-d6) δ 5.69-5.63 (m,1H(C7)), 5.08 (s, 1H), 4.42-4.35 (m, 3H), 4.33-4.22 (m, 1H), 3.77 (s, 1H), 3.66-3.58 (m, 1H), 3.39 (t, 1H), 3.10-2.95 (m, 1H), 2.25-1.20 (m, 13H), 0.83 (s, 3H), 0.51 (s, 3H).
단계 2: 화합물 번호 81: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-(2-모르폴리노아세틸)-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온의 제조
Figure pct00069
화합물 번호 102 [(2S,3R,5R,10R,13R,14S,17S)-17-(2-브로모아세틸)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온] 50 mg (0.103 mmol)을 DMF 1 ml 중에 용해시키고, 탄산칼륨 42.7 mg을 모르폴린 10.78 μl (0.124 mmol)와 함께 첨가하였다. 20℃에서 18시간 동안 교반한 후, 반응 매질을 물 10 ml에 붓고, 이 수성 상을 부탄올 15 ml로 2회 추출하였다. 유기 상을 증발시켜 분말 71 mg을 수득하고, 실리카 겔 카트리지 상에서 플래쉬 크로마토그래피 (90/10 디클로로메탄/MeOH)에 의해 정제하여 화합물 번호 81: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-(2-모르폴리노아세틸)-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온 28 mg (수율: 60%)을 백색 분말의 형태로 수득하였다.
화합물 번호 81:
LC-MS: m/z = 448.4 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz,DMSO-d6) δ 5.65 (s, 1H(C7)), 5.02 (s, 1H), 4.45 (d, 1H), 4.40-4.37 (m, 1H), 3.77 (s, 1H), 3.68-3.53 (m, 5H), 3.34-3.24 (m, 4H), 3.08-2.95 (m, 1H), 2.45-1.17 (m, 16H), 0.82 (s, 3H), 0.48 (s, 3H).
화합물 번호 82 내지 94를 동일한 반응식에 따라 제조하였다.
Figure pct00070
Figure pct00071
1 LCMS 순도, 254 nm에서의 UV
실시예 8: 반응식 H;
화합물 번호 95의 제조:
(2S,3R,5R,10R,13R,14S,17S)-17-(2-에톡시아세틸)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
Figure pct00072
실시예 7의 단계 1에서 제조된 화합물 번호 102 [2S,3R,5R,10R,13R,14S,17S)-17-(2-브로모아세틸)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온] 100 mg (0.227 mmol)을 에탄올 2 ml 중에 용해시키고, 에탄올 1 ml 중에 희석된, 에탄올 중 소듐 에톡시드의 21% 용액 0.102 ml (0.272 mmol)를 적가하고, 수득된 용액을 30분 동안 환류하였다. 20℃로 냉각시킨 반응 매질을 물 25 ml에 붓고, 부탄올 20 ml로 2회 추출하였다. 유기 상을 증발시켜 오일 30 mg을 수득하고, 실리카 겔 카트리지 상에서 플래쉬 크로마토그래피 (95/5 디클로로메탄/MeOH)에 의해 정제하여 화합물 번호 95: (2S,3R,5R,10R,13R,14S,17S)-17-(2-에톡시아세틸)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온 13.5 mg (수율: 14%)을 황색 오일의 형태로 수득하였다.
화합물 번호 95:
LC-MS: m/z = 407.2 (MH+) 254 nm에서의 UV 순도 = 93%.
1H NMR (300 MHz,DMSO-d6)δ 5.65-5.59 (m, 1H(C7)), 4.96 (s, 1H), 4.46 (d, 1H), 4.41-4.36 (m, 1H), 4.03 (q, 2H), 3.77 (s, 1H), 3.68-3.55 (m, 1H), 3.08-2.90 (m, 1H), 2.75-2.62 (m, 1H), 2.3-2.15 (m, 2H), 1.92-1.42 (m, 13H), 1.18 (t, 3H), 0.83 (s, 3H), 0.58-0.49 (m, 3H).
화합물 번호 96을 동일한 반응식에 따라 제조하였다.
Figure pct00073
1 LCMS 순도, 254 nm에서의 UV
실시예 9: 반응식 I;
화합물 번호 97의 제조:
(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-히드록시-2-(2-히드록시에틸(메틸)아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
Figure pct00074
실시예 7의 단계 2의 방법에 따라 수득된 화합물 번호 87 [(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-(2-히드록시에틸(메틸)아미노)아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온] 157 mg (0.360 mmol)을 에탄올 7.5 ml 중에 용해시키고, 수소화붕소나트륨 21.14 mg (0.559 mmol)을 조금씩 첨가하였다. 20℃에서 16시간 동안 교반한 후, 반응 매질을 물 20 ml에 붓고, 부탄올 15 ml로 3회 추출하였다. 유기 상을 증발시켜 분말을 수득하고, 실리카 겔 카트리지 상에서 플래쉬 크로마토그래피 (85/14/1 디클로로메탄/MeOH/NH4OH)에 의해 정제하여 화합물 번호 97: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-히드록시-2-(2-히드록시에틸(메틸)아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온 96 mg (수율: 60%)을 백색 분말의 형태로 수득하였다.
화합물 번호 97:
LC-MS: m/z = 438.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) δ 5.6 (s, 1H(C7)), 5.32-5.2 (m, 2H), 4.77 (s, 1H), 4.47 (d, 1H), 4.42-4.38 (m, 1H), 3.92-3.57 (m, 4H), 3.3-2.95 (m, 4H), 2.82 (s, 3H), 2.31-1.18 (m, 16H), 0.85 (s, 3H), 0.69 (s, 3H).
13C NMR (75 MHz, DMSO-d6)δ 203.2, 164.9, 121.0, 82.8, 66.9, 59.0, 55.6, 50.6, 46.9, 40.7, 37, 34, 31.9, 31.1, 30.3, 24.5, 23.2, 20.4, 16.3.
화합물 번호 98 내지 100을 동일한 반응식에 따라 제조하였다.
Figure pct00075
1 LCMS 순도, 254 nm에서의 UV
실시예 10: 반응식 J;
화합물 번호 101의 제조:
(2S,3R,5R,6E,10R,13R,14S,17S)-6-메톡시이미노-17-(N-메톡시-C-(모르폴리노메틸)카본이미도일)-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올
Figure pct00076
메톡실아민 히드로클로라이드 30 μl (0.301 mmol)를 피리딘 0.6 ml 중에 용해시키고, 실시예 7의 단계 2에서 제조된 화합물 번호 81 [(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-(2-모르폴리노아세틸)-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온] 136 mg (0.301 mmol)을 조금씩 첨가하였다. 20℃에서 36시간 동안 교반한 후, 반응 매질을 디클로로메탄 10 ml에 녹이고, 이 용액을 염수로 2회 세척하고, 황산나트륨 상에서 건조시키고, 여과하고, 증발시켜 분말을 수득하고, 실리카 겔 카트리지 상에서 플래쉬 크로마토그래피 (90/10 디클로로메탄/MeOH)에 의해 정제하여 화합물 번호 101: (2S,3R,5R,6E,10R,13R,14S,17S)-6-메톡시이미노-17-(N-메톡시-C-(모르폴리노메틸)카본이미도일)-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-2,3,14-트리올 81 mg (수율: 53%)을 황색 분말의 형태로 수득하였다.
화합물 번호 101:
LC-MS: m/z = 506.2 (MH+) 254 nm에서의 UV 순도 = 99%.
1H NMR (300 MHz, DMSO-d6) δ C6 (Z) 및 (E) 이형태체의 혼합물: 6.28 (s,0.45H (C7-이형태체 E), 5.72 (s,0.55H (C7-이형태체 Z), 4.62 (s,0.45H-이형태체 E), 4.53 (s,0.55H-이형태체 Z), 4.47-4.35 (m,1H), 4.33-4.21(m,1H), 3.77-3.70 (m,7H), 3.60-3.48 (m,5H), 3.16-3.06 (m,1H), 2.90-2.70 (m,2H), 2.45-1.20 (m,18H), 0.72 (s,3H), 0.64-0.57 (m,3H).
20-히드록시엑디손 유도체의 생물학적 효과의 스크리닝 및 특징화를 위한 캐스케이드
스크리닝 검사의 개발을 문헌에서의 연구에 기초하여 시작하였으며, 근육감소증의 병리상태의 특징에 기초하였다. 생리병리학적 수준에서, 이 질환은 단백질 합성의 감소 및 단백질분해의 증가를 특징으로 한다. 따라서 향후 의약의 개발은 이들 2가지 현상과 관련된 분자 인자에 대해 스크리닝되어야 한다.
C2C12 뮤린 세포주로부터 유래된 근육 세포의 배양물 상에서, 세포 수준에서, 문헌 [Gorelick-Feldman et al. (2008)]은 피토엑디손으로의 처리가 단백질 합성을 평균적으로 + 20% 증가시킨다는 것을 보여주었다. 첫번째 개발 연구는 참조 생성물 (IGF-1 및 20-히드록시엑디손 또는 20E)의 존재 하에 고렐릭-펠드만(Gorelick-Feldman)에 의해 기재된 배양 및 처리 조건에 기초하였다. 이들 세포로의 삼중수소화 류신 혼입의 측정을 신생 단백질 합성을 평가하기 위해 수행하였다. 이들 첫번째 결과로부터 단백질 합성에 대한 피토엑디손의 효과를 관찰하기 위한 최적의 순서가 5일 동안 세포를 분화시킨 다음 삼중수소화 류신을 2시간 30분 동안 IGF-1 또는 20E의 존재 하에 첨가하는 것임을 결정할 수 있었다.
문헌의 분석은 IGF-1과 같은 분자가 단백질 합성을 단지 20%만 증가시켰으나 동시에 이 신호 전달 경로의 표적을 약 200%의 자극에 도달할 수 있는 보다 지속적인 방식으로 활성화시켰다는 것을 보여주었다 [Kazi et al., 2010]. 이들 표적은 Akt 또는 S6 키나제와 같은 단백질을 활성화시키는 인산화를 포함한다. 또한, 동일한 C2C12 세포 시스템에서, 문헌 [Zubeldia et al. (2012)]에서는 아폽토시스 및 단백질분해의 현상을 분석하였다. 그들의 연구에서, 그들은 특히 피토엑디손, 예컨대 투르크에스테론 또는 20E를 함유한 식물 추출물이 분화된 C2C12 세포의 처리 24시간 후에 미오스타틴 및 카스파제 3 유전자 발현을 각각 4배 및 2배로 억제할 수 있었다고 보고하였다 [Zubeldia et al., 2012].
근관으로 분화된 C2C12 세포를 IGF-1 또는 20E의 존재 하에 2시간 30분 또는 6시간 동안 인큐베이션하는 수회의 실험 후에, 두 스크리닝 검사가 개발되었다. 따라서, S6 단백질 키나제의 인산화 및 미오스타틴 유전자의 발현을 성장 호르몬 또는 엑디손에 의한 그의 조정을 결정하고 이들 조정을 통계적 관점에서 특징화하기 위해 연구하였다.
프로토콜
C2C12 세포에서의 미오스타틴 발현의 억제:
C2C12 근모세포 (ATCC CRL-1772)를 웰당 30000개 세포의 밀도로 24-웰 플레이트에 시딩하고, 글루코스를 4.5 g/l의 비율로 함유하고 소 태아 혈청 (10%) 및 항생제 (페니실린 및 스트렙토마이신)가 보충된 DMEM 배지에서 배양하였다. 48시간 후에, 근모세포를 5일 동안 부분적 혈청 고갈 (10% 대신 2%)에 의해 분화되도록 유도한다. 이어서 세포를 시험 분자 또는 참조물 (100 ng/ml IGF-1 또는 10 μM 20E)의 존재 하에 글루코스-고갈 (1 g/l의 글루코스를 함유하는 DMEM) 및 혈청-무함유 배지에 6시간 동안 둔다. 실험 종료시에, 메신저 RNA (mRNA)를 페놀 및 클로로포름에 기초한 통상적인 방법을 사용하여 추출한다. 간략하게, 세포를 강산 및 페놀을 함유하는 트리졸 용액 (시그마(Sigma) T9424)에서 용해시킨다. mRNA를 클로로포름의 첨가에 이어 원심분리에 의해 단백질로부터 분리한다. 이어서 이들을 이소프로판올로 침전시킨 다음 RNAse-무함유 및 DNAse-무함유 초순수 물에 1 μg/μl의 농도로 현탁시킨다. 이어서 1 μg의 mRNA를 공급업체 (어플라이드 바이오시스템즈(Applied Biosystems) 4368814)에 의해 제공된 프로토콜에 따라 프라이머 및 뉴클레오티드 혼합물의 존재 하에 AMV 효소에 의해 상보적 DNA로 역전사시킴으로써 전환시킨다. 유전자 발현을 폴리머라제 효소에 의해 개시되는 연쇄 반응이며, 정량적 조건 하의 PCR로서, 이에 따라 구체적 명칭 qPCR로 통상적으로 지칭되는 연쇄 반응에 의해 연구한다. qPCR은 7900HT 신속 실시간 PCR 검출 시스템 (어플라이드 바이오시스템즈) 상에서 수행한다. 프로그래밍 조건은 표준이며, 15분 동안 95℃에서 1 사이클, 이어서 15초 동안 95℃에서 및 1분 동안 60℃에서 40 사이클로 이루어지고, 프로그램은 60℃ 내지 95℃의 용융 곡선 단계로 종료된다. 분석된 샘플은 모두 100 ng의 cDNA, 효소, 올리고뉴클레오티드 혼합물 및 삽입제 (사이버그린(sybergreen) 또는 SYBR그린(SYBRgreen))를 포함하는 qPCR 완충제, 및 연구된 유전자에 특이적이고 2개의 엑손 서열 사이에서 전략적으로 선택된 200 nM의 최종 농도의 프라이머 쌍을 함유한다. 형광 프로브는 이중-가닥 DNA에 결합하고, 오직 DNA에 결합할 때에 형광이다. 형광 역치는 기계 프로그램에 의해 확립된다. DNA 양이 형광 프로브가 이 역치를 넘도록 허용하는 경우에, "Ct" 또는 "사이클 역치"로 불리는 PCR 사이클 수가 얻어진다. 이 값은 DNA를 상대적으로 정량화하기 위한 계산의 기초를 형성하는 것이다. R 비는 샘플과 처리되지 않은 대조군의 출발 DNA의 양 사이에서 확립되고 (즉, R = 2-(Ct 샘플 - Ct 대조군)), 이 측정값은 처리에 의해 조정되지 않을 것으로 알려진 하우스키핑 유전자와 비교될 것이다 (즉, R = 2-ΔΔCt).
사용된 프라이머는 하기 표에 보고된다:
<표 3> 유전자 발현 변형을 평가하는데 사용된 프라이머
Figure pct00077
S6 키나제의 인산화:
C2C12 근모세포 (ATCC CRL-1772)를 웰당 170000개 세포의 밀도로 6-웰 플레이트에 시딩하고, 글루코스를 4.5 g/l의 비율로 함유하고 소 태아 혈청 (10%) 및 항생제 (페니실린 및 스트렙토마이신)이 보충된 DMEM 배지에서 배양하였다. 48시간 후에, 근모세포를 5일 동안 부분적 혈청 고갈 (10% 대신 2%)에 의해 분화되도록 유도한다. 이어서 세포를 시험 분자 또는 참조물 (100 ng/ml IGF-1 또는 10 μM 20E)의 존재 하에 글루코스-고갈 (1 g/l의 글루코스를 함유하는 DMEM) 및 혈청-무함유 배지에 2시간 동안 둔다. 실험 종료시에, 세포를 항-프로테아제의 상업용 혼합물 (로슈(Roche) 05056489001)이 보충된 상업용 용해 완충제 (인비트로젠(Invitrogen) FNN0011)에서 용해시킨다. 원심분리 후에, 가용성 단백질을 함유하는 세포질 분획을 유지하고, 단백질 농도를 상업용 키트 (바이오라드(Biorad) 500-0114)를 사용하여 결정하며, 그 원리는 로우리 방법에 의해 검정하는 것으로 구성된다. S6 키나제 인산화의 검정은 상업용 ELISA (Enzyme Linked ImmunoSorbent Assay: 효소 연결 면역흡착 검정) 키트 (셀 시그널링(Cell signaling) 7063)를 사용하여 수행한다. 간략하게, 50 μg의 단백질 용해물을 96-웰 마이크로플레이트의 웰에 침착시키고, 밤새 4℃에서 pS6 키나제 트레오닌 389 항체에 특이적인 항원의 용액과 함께 인큐베이션한다. 항원을 웰의 바닥에 정전기적으로 결합시킨다. 이어서 검정될 항체 (pS6K T389) 용액을 웰 중에서 2시간 동안 37℃에서 인큐베이션한다. 항체가 항원에 특이적으로 결합한다. 이어서 남아있는 검정될 항원-특이적 1차 항체를 제거하기 위해 웰을 세척 완충제로 세척한다. 세번째 단계는 검출 항체를 결합시키는 것이다. 검출 항체의 용액을 웰 중에서 1시간 동안 37℃에서 인큐베이션한다. 이어서 남아있는 검출 항체를 제거하기 위해 웰을 세척한다. 검출 항체가 그의 기질의 존재시에 그를 착색의 출현에 의해 검출 및 측정될 수 있는 반응 생성물로 전환시키는 효소에 커플링되는 것에 유의해야 한다. 최종 단계는 결합된 항체를 노출시키는 것이다. 효소에 대한 기질을 함유하는 노출 용액, 이 경우에는 TMB (3,3',5,5'-테트라메틸벤지딘)를 암실에서 30분 동안 37℃에서 인큐베이션한다. 기질 내의 청색 착색의 출현은 검정될 항체의 존재를 나타낸다. 임의의 포화 현상을 방지하기 위해, 정지 용액 (일반적으로 수산화나트륨 함유)을 첨가하여 청색에서 황색으로 진행되는 착색 변화를 일으킨다. 그의 강도는 존재하는 효소의 양에 비례하고, 이에 따라 조사된 항체의 농도에 비례한다. 신호의 강도는 450 nm의 파장에서 분광광도측정법을 사용하여 측정한다.
고-지방 식이를 받은 마우스의 모델에서의 분자의 효과의 평가
비교 화합물로서의 20E 및 본 발명에 따른 화합물 (번호 51 및 93)을 5 mg/kg 체중의 용량으로 6주 동안 고-지방 식이를 받은 12주령 C57BL/6J 마우스에게 경구로 투여하였다. 가자미근의 단백질 및 또한 근발생에 관여하는 유전자의 전사체의 중량 및 양에 대한 화합물의 효과를 평가하였다.
근육 조직을 형성하기 위한 과정인 근발생은 신호전달 캐스케이드의 최종 이펙터로서 작용하고 다양한 발생 단계에 관여하는 전사체를 생산하는 여러 근형성 전사 인자에 의해 제어된다. 전사 인자의 역할은 다양한 학술지 (Sabourin and Rudnicki 2000 및 Le Grand and Rudnicki 2007)에 기재된 바 있다. Pax7 단백질 (페어드-박스(Paired-box) 단백질 7)은 휴지 중인 위성 세포의 개체수를 유지하고, Myf5 (근형성 인자 5)와 함께 활성화된 근모세포의 확장에서 역할을 한다. MyoD 단백질 (근모세포 결정 단백질)은 활성화된 근모세포의 분화 잠재력을 결정하는 것으로 보이며, 미오게닌 및 MEF2 (근세포 인핸서 인자 2) 단백질과 협력하여 분화를 제어 및 발생시킨다. 최종적으로, MRF4 (근육-특이적 조절 인자 4)는 아마 다른 역할을 할 수 있을지라도 비대에 요구된다. 매우 명백하게, 이들 전사 인자는 단독으로 존재하지 않으나, 근발생의 각 단계를 제어하는 복잡한 신호전달 캐스케이드의 맥락에서 존재한다 (Knight and Kothary, 2011).
패스트프렙(FastPrep) 기술을 사용하여 0.1N NaOH 용액 중에서 샘플링된 근육을 먼저 용해시켜 단백질의 양을 결정한다. 단백질은 로우리 방법으로부터 유래된 비색 검정에 의해 정량화한다.
유전자 발현 분석을 수행하기 위해, 근육 조직을 트리졸 용액 (500 μl)에서 균질화시키고, RNA를 페놀/클로로포름 방법을 사용하여 추출 및 정제하였다. 1 pg의 양의 RNA를 프라이머로서의 올리고 (dT) 및 AMV 역전사효소를 공급업체 (어플라이드 바이오시스템즈 4368814)가 설명한 바와 같이 사용하여 제1 cDNA 가닥을 합성하는데 주형으로 사용하였다. 이어서 q-PCR을 PCR에 의한 실시간 검출을 위한 신속 시스템이 장착된 7900HT 기계 (어플라이드 바이오시스템즈) 및 표준 qPCR 프로그램 (15분 동안 95℃에서 1 사이클, 15초 동안 95℃에서 및 1분 동안 60℃에서 40 사이클, 사이버그린 프로브에 대한 60-95℃ 용융 곡선)을 사용하여 수행하였다. 실험은 100 ng cDNA 샘플 및 2개의 상이한 엑손에 결합하는 200 nM의 최종 농도의 프라이머 세트를 함유하는 사이버그린 SYBR 마스터 믹스 (어플라이드 바이오시스템즈)로 수행한다.
처리 사이의 유전자 발현의 상대차는 대조군과 비교하여 사이클 횟수 [Ct]의 증가 또는 감소로서 표현되며, 각 유전자의 [Ct] 값은 베타-액틴 유전자로 표준화된다.
래트에서의 분자의 경구 약동학적 연구
화합물의 약동학을 수컷 위스타(Wistar) 래트 (찰스 리버(Charles River))를 사용하여 경구로 평가하였다. 비교 화합물로서의 20E를 50 mg/kg 체중의 용량으로 투여하였다. 본 발명에 따른 신규 화합물을 4 내지 6개 생성물의 혼합물 형태로 10 mg/kg 체중의 용량으로 투여하였다. 투여 후에, 혈액을 t = 0.25 h, 0.5 h, 1 h, 3 h, 6 h 및 8 h에 꼬리로부터 샘플링하였다. 혈액 샘플을 원심분리하여 혈장을 분리하였다. 혈장 샘플을 분석하여 약동학적 파라미터, 즉 분자 투여 후에 관찰되는 최대 농도에 해당하는 Cmax, 분자 투여 후에 최대 농도에 도달하는데 요구되는 시간인 Tmax, 및 다양한 샘플링 시간에 화합물의 다양한 농도로 구성된 곡선하 면적인 AUC를 결정할 수 있었다.
결과
Figure pct00078
미오스타틴 발현의 효과
<표 4> 미오스타틴 발현에 대한 효과. 결과는 대조군 세포에서의 미오스타틴 유전자 발현에 비한 본 화합물과 접촉한 세포에서의 미오스타틴 유전자 발현 백분율로 표현된다. A는 70% 미만의 백분율을 나타내고, B는 71% 내지 85%의 백분율을 나타낸다. 화합물은 10 μM의 농도에서 시험한다.
Figure pct00079
하기 38개 화합물: 4, 5, 7, 21, 25, 27 내지 29, 31 내지 33, 38, 41, 43, 46, 47, 51 내지 54, 62 내지 65, 67, 68, 71, 75, 76, 79, 81, 86, 89, 92 내지 94, 99 및 101은 근육 세포에서 미오스타틴 발현을 매우 유의하게 억제한다.
하기 15개 화합물: 19, 23, 30, 35 내지 37, 48, 56, 57, 60, 73, 83, 85, 88 및 91은 근육 세포에서 미오스타틴 발현을 유의하게 억제한다.
Figure pct00080
S6K1 인산화를 통한 단백질 합성에 대한 효과
<표 5> 단백질 합성에 대한 효과. 결과는 근육 세포에서의 S6K 인산화의 증가 백분율로 표현된다. A는 130% 초과의 값을 나타내고, B는 110% 내지 129%의 값을 나타낸다. 화합물은 10 μM의 농도에서 시험한다.
Figure pct00081
하기 8개 화합물: 28, 42, 62, 67, 86, 89, 93 및 94는 S6Ka 인산화를 IGF-1과 동등한 수준 (130-140%)으로 매우 유의하게 자극한다.
하기 12개 화합물: 32, 41, 43, 46, 51, 52, 63, 76, 81, 88, 91 및 92는 S6K1 인산화를 20E와 동등한 수준 (120%)으로 유의하게 자극한다.
Figure pct00082
고-지방 식이를 받은 마우스의 모델에서의 분자의 연구
생체내 연구는 6주 동안 고-지방 식이를 받은 C57BL/6 마우스에게 5 mg/kg 체중의 용량으로 경구 투여된 비교 화합물로서의 20E 및 본 발명에 따른 분자 (번호 51 및 93)의 효과를 평가함으로써 수행한다. 가자미근의 단백질 및 또한 근발생에 관여하는 유전자의 전사체의 중량 및 양에 대한 분자의 효과를 평가하였다.
근육의 중량에 대한 비교 화합물로서의 20E 및 본 발명에 따른 화합물 번호 51 및 93의 효과는 도 3A에 도시되고, 가자미근의 단백질의 양에 대한 20E 및 본 화합물 번호 51 및 93의 효과는 도 3B에 도시된다.
5 mg/kg으로 투여된 3개 모두의 20E 및 본 화합물은 대조군과 비교하여 가자미근의 단백질의 중량 및 양을 증가시킨다. 본 발명에 따른 화합물은 20E만큼 높은 유효성을 보여준다. 단백질 함량의 유의한 증가는 화합물 번호 93에서도 나타난다.
가자미근의 미오스타틴 전사체에 대한 비교 화합물로서의 20E 및 투여된 본 발명에 따른 화합물 번호 51 및 번호 93의 효과는 도 4에 도시된다.
20E 및 본 화합물 번호 51 및 93은 가자미근에서 미오스타틴 발현을 대등하게 억제한다. 이들 분자는 또한 상기 표 4에 제시된 바와 같이 C2C12 세포주에서의 시험관내 연구에서 미오스타틴 전사체를 억제하였다.
가자미근 근발생에 관여하는 유전자인 MyoD 및 미오게닌의 전사체에 대한 비교 화합물로서의 20E 및 본 발명에 따른 화합물 번호 51 및 93의 효과는 각각 도 5A 및 5B에 도시된다.
20E 및 본 화합물 번호 51 및 93은 분화 잠재력을 결정하는 MyoD 유전자 및 근세포의 증식에 관여하는 Myf5 유전자의 전사체의 증가를 유도한다. 이들은 또한 근세포의 초기 분화에 관여하는 미오게닌 유전자의 전사체의 증가를 유도한다.
Figure pct00083
래트에서의 분자의 약동학적 연구
20E 및 본 발명에 따른 화합물의 약동학을 래트에서 본 화합물의 경우 10 mg/kg 및 20E의 경우 50 mg/kg의 용량으로 경구 투여하여 평가하였다.
<표 6> 위스타 래트에서 시험된 20E 및 본 화합물의 주요 약동학적 파라미터 (Tmax; Cmax 및 AUC)
Figure pct00084
본 발명에 따른 화합물의 용량 (10 mg/kg)과 비교하여 5배 더 높은 20E 용량 (50 mg/kg)을 고려하여, 노출 계수 Cexp [Cexp = (용량20E x AUC화합물): (용량화합물 x AUC20E)]는 20E와 비교하여 시험된 모든 본 화합물의 약동학적 프로파일의 개선을 입증한다. 따라서, 래트에서의 이러한 연구는 본 화합물 번호 31; 46; 51 및 93이 20E와 비교하여 보다 우수한 혈장 노출을 가짐을 보여준다.
Figure pct00085
개관
도 6에 도시된 표는 미오스타틴 유전자 발현 및 단백질 합성을 분석한 실험 동안 본 발명의 화합물에 대해 얻어진 결과를 보여준다.
미오스타틴 유전자 발현과 관련하여, 결과는 대조군 세포에서의 미오스타틴 유전자 발현에 비한 본 화합물과 접촉한 세포에서의 미오스타틴 유전자 발현 백분율로 표현하였다. A는 70% 미만의 백분율을 나타내고, B는 71% 내지 85%의 백분율을 나타낸다.
단백질 합성 분석과 관련하여, 결과는 근육 세포에서의 S6K 인산화의 증가 백분율로 표현된다. A는 130% 초과의 값을 나타내고, B는 110% 내지 129%의 값을 나타낸다.
<표 7> 도 6에 도시된 결과에 관한 개관
Figure pct00086
가장 매력적인 생성물은 카테고리 AA 또는 AB의 것, 즉 단백질 합성 관점에서의 카테고리 A 또는 B와 결합된 미오스타틴에서의 그의 유전자 발현 관점에서의 카테고리 A의 것이다.
문헌
Figure pct00087
Figure pct00088
Figure pct00089
Figure pct00090
Figure pct00091
Figure pct00092

Claims (13)

  1. 거울상이성질체, 부분입체이성질체, 수화물, 용매화물, 호변이성질체, 라세미 혼합물 또는 제약상 허용되는 염의 형태인 하기 화학식 I의 화합물.
    <화학식 I>
    Figure pct00093

    여기서
    V-U는 탄소-탄소 단일 결합이고 Y는 히드록실 기 또는 수소이거나, 또는 V-U는 C=C 에틸렌 결합이고;
    X는 산소; N-OR5 기로부터 선택되고,
    여기서 R5는 수소; 쇄 상에 불포화를 임의로 갖는 C1-C6 알킬 기; (C1-C6)CO2R6 기 (여기서 R6은 가능하게는 수소 또는 C1-C6 기임); (C1-C6)OR7 기 (여기서 R7은 알킬 또는 알콕실 기, CF3, Cl로 임의로 일치환 또는 다치환된 방향족 또는 헤테로방향족 고리임); (C1-C6)NR8R9 기 (여기서 R8 및 R9는 C1-C6 기 또는 (C1-C6)N(C1-C6) 기 또는 (C1-C6)N(C1-C6)OR6 기 (여기서 R6은 상기 정의된 바와 같음)이고, NR8R9는 또한 헤테로사이클일 수 있음)로부터 선택되고;
    Figure pct00094
    Q는 카르보닐 기이고,
    이때 R1은 (C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)CO2(C1-C6) 기; (C1-C6)A 기 (여기서 A는 유형 OH, OMe, (C1-C6), N(C1-C6) 또는 CO2(C1-C6)의 기로 임의로 치환된 헤테로사이클을 나타냄); CH2Br 기로부터 선택되고,
    여기서 W는 N, O 및 S로부터 선택된 헤테로원자이거나; 또는
    Figure pct00095
    Q는 CHOH 기이고,
    이때 R1은 (C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)CO2(C1-C6) 기로부터 선택되고,
    여기서 W는 N 및 S로부터 선택된 헤테로원자이거나; 또는
    Figure pct00096
    Q는 C=NOR5 기 (여기서 R5는 상기와 같이 정의됨); CHNR2R3 기로부터 선택되고,
    이때 R1은 (C1-C6) 알킬 기이고,
    상기 R2 및 R3은 동일하거나 상이할 수 있으며, 각각 수소 원자; (C1-C6) 알킬 기; (C1-C6)W(C1-C6) 기; 시클로알킬 기; (C1-C6)CHF2 기; (C1-C6)A 기 (여기서 A는 상기와 같이 정의된 헤테로사이클을 나타냄); COR4 유형의 기로부터 선택되고,
    여기서 R4는 임의로 불포화된 (C1-C6) 알킬 또는 시클로알킬 기; 상기 정의된 바와 같은 A 유형의 헤테로시클릭 기; 유형 OH, OMe, (C1-C6), N(C1-C6), CO2(C1-C6), CF3, OCF3, CN, Cl, F의 기로 임의로 치환된 방향족 또는 헤테로방향족 기; (C1-C6)W(C1-C6) 기로부터 선택되고,
    여기서 W는 N, O 및 S로부터 선택된 헤테로원자이다.
  2. 제1항에 있어서, 화학식 I에서, Q가 카르보닐 기를 나타내는 것인 화합물.
  3. 제2항에 있어서, 화학식 I에서,
    X가 산소이고;
    V-U가 탄소-탄소 단일 결합이고;
    Y가 히드록실 기이고;
    R1이 (C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)W(C1-C6) 기; (C1-C6)W(C1-C6)CO2(C1-C6) 기; (C1-C6)A 기 (여기서 A가 유형 OH, OMe, (C1-C6), N(C1-C6) 또는 CO2(C1-C6)의 기로 임의로 치환된 헤테로사이클을 나타냄)로부터 선택되고;
    W가 N, O 및 S로부터 선택된 헤테로원자인
    화합물.
  4. 제1항에 있어서, 화학식 I에서, Q가 C=NOR5 기를 나타내고, 여기서 R5가 상기와 같이 정의된 것인 화합물.
  5. 제4항에 있어서, 화학식 I에서,
    X가 산소이고;
    V-U가 탄소-탄소 단일 결합이고;
    Y가 히드록실 기이고;
    R1이 메틸 기인
    화합물.
  6. 제1항에 있어서, 화학식 I에서, Q가 CHNR2R3 기를 나타내고, 여기서 R2 및 R3이 동일하거나 상이할 수 있으며, 각각 수소 원자; (C1-C6) 알킬 기; (C1-C6)W(C1-C6) 기; 시클로알킬 기; (C1-C6)CHF2 기; (C1-C6)A 기 (여기서 A가 상기와 같이 정의된 헤테로사이클을 나타냄); COR4 유형의 기로부터 선택되고,
    여기서 R4가 임의로 불포화된 (C1-C6) 알킬 또는 시클로알킬 기; 상기 정의된 바와 같은 A 유형의 헤테로시클릭 기; 유형 OH, OMe, (C1-C6), N(C1-C6), CO2(C1-C6), CF3, OCF3, CN, Cl, F의 기로 임의로 치환된 방향족 또는 헤테로방향족 기; (C1-C6)W(C1-C6) 기로부터 선택된 것인
    화합물.
  7. 제6항에 있어서, 화학식 I에서,
    X가 산소이고;
    V-U가 탄소-탄소 단일 결합이고;
    Y가 히드록실 기이고;
    R1이 메틸 기이고;
    W가 N, O 및 S로부터 선택된 헤테로원자인
    화합물.
  8. 제1항에 있어서, 화학식 I에서, V-U가 C=C 에틸렌 결합인 화합물.
  9. 제1항에 있어서, 화학식 I에서, X가 N-OR5 기인 화합물.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 하기 화합물로부터 선택된 화합물:
    - 번호 28: (2S,3R,5R,10R,13R,14S,17S)-17-(N-부트-3-에녹시-C-메틸-카본이미도일)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 32: (2S,3R,5R,10R,13R,14S,17S)-17-(N-(2-디에틸아미노에톡시)-C-메틸-카본이미도일)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 41: 2-메톡시-N-(2-메톡시에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]아세트아미드
    - 번호 42: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 43: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-[1-(3-피리딜메틸아미노)에틸]-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 46: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-[1-(테트라히드로푸란-2-일메틸아미노)에틸]-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 51: 2-에틸-N-(2-메톡시에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]부탄아미드
    - 번호 62: 2-메톡시-N-(테트라히드로푸란-2-일메틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]아세트아미드
    - 번호 63: N-(테트라테트라히드로푸란-2-일메틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]푸란-2-카르복스아미드
    - 번호 67: N-(2,2-디플루오로에틸)-N-[1-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]푸란-2-카르복스아미드
    - 번호 76: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[1-(2-메톡시에틸(메틸)아미노)에틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 81: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-17-(2-모르폴리노아세틸)-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 86: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-(3-히드록시피롤리딘-1-일)아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 88: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-(4-히드록시-1-피페리딜)아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 89: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-[4-(2-히드록시에틸)-1-피페리딜]아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 91: (2S,3R,5R,10R,13R,14S,17S)-17-[2-(3-디메틸아미노프로필(메틸)아미노)아세틸]-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로-펜타[a]페난트렌-6-온
    - 번호 92: 2-[2-옥소-2-[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-10,13-디메틸-6-옥소-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-17-일]에틸]술파닐아세테이트 에틸
    - 번호 93: (2S,3R,5R,10R,13R,14S,17S)-17-(2-에틸술파닐아세틸)-2,3,14-트리히드록시-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온
    - 번호 94: (2S,3R,5R,10R,13R,14S,17S)-2,3,14-트리히드록시-17-[2-(2-히드록시에틸술파닐)아세틸]-10,13-디메틸-2,3,4,5,9,11,12,15,16,17-데카히드로-1H-시클로펜타[a]페난트렌-6-온.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 의약으로서의 화합물.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 포유동물에서 근육감소증 및 특히 근육감소형 비만, 및 그와 연관된 합병증 및/또는 병리학적 상태, 예컨대 강도, 근육 질량, 신체 수행능 및 능력, 및 이동성의 감소의 치료 및/또는 예방에 사용하기 위한 화합물.
  13. 제1항 내지 제11항 중 어느 한 항에 있어서, 포유동물에서 비만 및 그와 연관된 합병증 및/또는 연관된 병리학적 상태, 유리하게는 제2형 당뇨병 또는 대사 증후군의 치료 및/또는 예방에 사용하기 위한 화합물.
KR1020167035614A 2014-05-20 2015-05-20 화학적 화합물 및 근육 질을 개선시키기 위한 그의 용도 KR102506149B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1454538A FR3021318B1 (fr) 2014-05-20 2014-05-20 Produits derives de la 20-hydroxyecdysone et leur utilisation dans la preparation de medicaments
FR1454538 2014-05-20
PCT/FR2015/051332 WO2015177469A1 (fr) 2014-05-20 2015-05-20 Composés chimiques et leur utilisation pour l'amélioration de la qualité musculaire

Publications (2)

Publication Number Publication Date
KR20170027319A true KR20170027319A (ko) 2017-03-09
KR102506149B1 KR102506149B1 (ko) 2023-03-07

Family

ID=51518935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167035614A KR102506149B1 (ko) 2014-05-20 2015-05-20 화학적 화합물 및 근육 질을 개선시키기 위한 그의 용도

Country Status (15)

Country Link
US (2) US9938315B2 (ko)
EP (2) EP3461833A1 (ko)
JP (1) JP6621217B2 (ko)
KR (1) KR102506149B1 (ko)
CN (1) CN106536539B (ko)
AU (1) AU2015263121B2 (ko)
CA (1) CA2949649A1 (ko)
ES (1) ES2732460T3 (ko)
FR (1) FR3021318B1 (ko)
IL (1) IL249062A0 (ko)
PL (1) PL3145942T3 (ko)
PT (1) PT3145942T (ko)
RU (1) RU2724329C2 (ko)
TR (1) TR201909078T4 (ko)
WO (1) WO2015177469A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012871A (ko) * 2017-04-28 2020-02-05 바이오파이티스 근육병증의 치료에서 20-히드록시엑디손 및 그의 유도체의 용도

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3078252B1 (fr) * 2018-02-28 2020-08-14 Biophytis Phytoecdysones pour leur utilisation dans la prevention de la perte de force musculaire lors d’une immobilisation
FR3093640B1 (fr) * 2019-03-15 2021-10-01 Biophytis Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement de maladies neuromusculaires
FR3093641B1 (fr) * 2019-03-15 2023-11-03 Biophytis Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement de l’altération de la fonction respiratoire
FR3108504B1 (fr) 2020-03-30 2023-03-31 Biophytis Phytoecdysones et leurs dérivés pour leur utilisation dans le traitement d’altérations de la fonction respiratoire lors d’une infection virale
WO2022133265A1 (en) * 2020-12-17 2022-06-23 University Of Florida Research Foundation, Incorported Steroidal compound derivatives as therapeutic agents
FR3128873A1 (fr) 2021-11-10 2023-05-12 Biophytis Phytoecdysones et/ou dérivés de 20-hydroxyecdysone en combinaison avec un principe actif visant à restaurer l’expression SMN pour leur utilisation dans le traitement de l’amyotrophie spinale

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006007910A1 (en) * 2004-07-20 2006-01-26 Santhera Pharmaceuticals (Schweiz) Ag Use of non-glucocorticoid steroids for the treatment of muscular dystrophy
WO2007100722A2 (en) * 2006-02-28 2007-09-07 Trustees Of Boston University Methods to identify factors associated with muscle growth and uses thereof
KR20100127828A (ko) * 2008-03-14 2010-12-06 인트렉손 코포레이션 스테로이드성 리간드 및 유전자 스위치 조절에서 이의 용도
WO2013088084A1 (fr) * 2011-12-13 2013-06-20 Institut Biophytis Sas Phytoecdysones pour leur utilisation dans l'amélioration de la qualité musculaire de mammifères obèses et/ou sarcopéniques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982489B1 (fr) 2011-11-10 2013-12-27 Inst Biophytis Sas Phytoecdysones pour leur utilisation dans la stabilisation du poids apres un regime amaigrissant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006007910A1 (en) * 2004-07-20 2006-01-26 Santhera Pharmaceuticals (Schweiz) Ag Use of non-glucocorticoid steroids for the treatment of muscular dystrophy
WO2007100722A2 (en) * 2006-02-28 2007-09-07 Trustees Of Boston University Methods to identify factors associated with muscle growth and uses thereof
KR20100127828A (ko) * 2008-03-14 2010-12-06 인트렉손 코포레이션 스테로이드성 리간드 및 유전자 스위치 조절에서 이의 용도
WO2013088084A1 (fr) * 2011-12-13 2013-06-20 Institut Biophytis Sas Phytoecdysones pour leur utilisation dans l'amélioration de la qualité musculaire de mammifères obèses et/ou sarcopéniques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012871A (ko) * 2017-04-28 2020-02-05 바이오파이티스 근육병증의 치료에서 20-히드록시엑디손 및 그의 유도체의 용도

Also Published As

Publication number Publication date
JP6621217B2 (ja) 2019-12-18
RU2724329C2 (ru) 2020-06-23
JP2017516851A (ja) 2017-06-22
US20170226151A1 (en) 2017-08-10
ES2732460T3 (es) 2019-11-22
KR102506149B1 (ko) 2023-03-07
PL3145942T3 (pl) 2019-10-31
IL249062A0 (en) 2017-01-31
CN106536539A (zh) 2017-03-22
US20180327444A1 (en) 2018-11-15
RU2016149619A (ru) 2018-06-20
PT3145942T (pt) 2019-07-04
WO2015177469A1 (fr) 2015-11-26
CA2949649A1 (fr) 2015-11-26
BR112016027053A8 (pt) 2022-11-29
CN106536539B (zh) 2020-01-07
TR201909078T4 (tr) 2019-07-22
US10316056B2 (en) 2019-06-11
FR3021318B1 (fr) 2017-04-28
AU2015263121A1 (en) 2017-01-12
EP3461833A1 (fr) 2019-04-03
FR3021318A1 (fr) 2015-11-27
EP3145942A1 (fr) 2017-03-29
RU2016149619A3 (ko) 2018-11-19
BR112016027053A2 (pt) 2017-08-15
EP3145942B1 (fr) 2019-04-03
AU2015263121B2 (en) 2018-12-06
US9938315B2 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
KR102506149B1 (ko) 화학적 화합물 및 근육 질을 개선시키기 위한 그의 용도
EP1278763B1 (en) 3-nitrogen-6,7-dioxygen steroids and uses related thereto
KR102101774B1 (ko) 바독솔론 메틸의 2,2-다이플루오로프로피온아미드 유도체, 그의 다형태 및 사용 방법
US10259840B2 (en) Oxysterols and methods of use thereof
JP2023106500A (ja) ラパマイシン誘導体
JP2016531121A (ja) 疾患の治療のためのkdm1a阻害剤
KR20210018555A (ko) 바르독솔론 메틸의 2,2-디플루오로프로피온아미드 유도체, 이의 다형 형태 및 사용 방법
EP3983384B1 (en) N-(phenyl)-indole-3-sulfonamide derivatives and related compounds as gpr17 modulators for treating cns disorders such as multiple sclerosis
WO2017173358A1 (en) Oxysterols and methods of use thereof
CN112110978B (zh) δ-齐墩果酸皂苷类化合物及其医药用途
JP2022514254A (ja) ラパマイシン誘導体
US20230002366A1 (en) Indene derivatives useful in treating pain and inflammation
WO2019104748A1 (zh) 化合物在制备药物中的用途
EP3237430B1 (en) PRODRUGS OF 17ß -HSD1 -INHIBITORS
CN111630047A (zh) 含有羧酸基团的苯并氮杂环类化合物及其制备方法和用途
US20200308144A1 (en) Multimeric piperidine derivatives
NL2031175B1 (en) Dhcr24 inhibitory compounds
BR112016027053B1 (pt) Composto e usos de um composto
KR20240055788A (ko) 신규한 ras 억제제
BR112021015544A2 (pt) Derivados de 1-((2-(2,2,2-trifluoroetoxi)piridin-4-il)metil)ureia como potencializadores de kcnq

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant