KR20170008278A - 알루미노실리케이트 유리 - Google Patents

알루미노실리케이트 유리 Download PDF

Info

Publication number
KR20170008278A
KR20170008278A KR1020167035234A KR20167035234A KR20170008278A KR 20170008278 A KR20170008278 A KR 20170008278A KR 1020167035234 A KR1020167035234 A KR 1020167035234A KR 20167035234 A KR20167035234 A KR 20167035234A KR 20170008278 A KR20170008278 A KR 20170008278A
Authority
KR
South Korea
Prior art keywords
glass
weight percent
temperature
cao
mgo
Prior art date
Application number
KR1020167035234A
Other languages
English (en)
Other versions
KR102279182B1 (ko
Inventor
브레들리 프레데릭 보우덴
아담 제임스 엘리슨
엘렌 앤 킹
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20170008278A publication Critical patent/KR20170008278A/ko
Application granted granted Critical
Publication of KR102279182B1 publication Critical patent/KR102279182B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)

Abstract

능동형 액정 디스플레이 (AMLCDs) 및 능동형 유기 발광 다이오드 디스플레이 (AMOLEDs)와 같은, 평판 디스플레이 장치에서 기판으로 사용하는데 바람직한 물리적 및 화학적 특성을 나타내는 알칼리가-없는, 보로알루미노실리케이트 유리는 여기에 개시된다. 이의 관점들 중 어떤 것에 따르면, 상기 유리는 온도 함수에 따른 우수한 치수 안정성을 보유한다.

Description

알루미노실리케이트 유리 {Aluminosilicate Glasses}
본 출원은 2014년 5월 15일자에 출원된 미국 가 특허출원 제61/993,711호의 우선권을 주장하고, 이의 전체적인 내용은 참조로서 여기에 혼입된다.
본 개시는 알루미노실리케이트 유리에 관한 것이다.
액정 디스플레이, 예를 들어, 능동형 액정 디스플레이 장치 (AMLCDs)의 생산은 매우 복잡하고, 기판 유리의 특성은 매우 중요하다. 다른 무엇보다도, AMLCD 장치의 생산에 사용된 유리 기판은 이들의 물리적 치수가 정확하게 조절되는 것이 필요하다. 다운인발 시트 인발 공정, 특히, 미국 특허 제3,338,696호 및 제3,682,609호에 기재된 퓨전 공정은, 랩핑 (lapping) 및 연마 (polishing)와 같은 값비싼 형성-후 마감 작업을 요구하지 않는 기판으로서 사용될 수 있는 유리 기판을 생산할 수 있다. 불행하게도, 퓨전 공정은, 상대적으로 높은 액상선 점도를 요구하는, 유리 특성에 대한 다소 심각한 제한을 부여한다.
액정 디스플레이 분야에서, AMLCDs에 필요한 박막 트랜지스터 (TFTs)를 생산하는 다양한 방법이 있다. 역사적으로, 패널 제조자는, 무정형-실리콘 (a-Si)계 트랜지스터를 활용하는 대형의, 저 해상도 디스플레이, 또는 다-결정질 (p-Si)계 및 산화물 박막 (Ox)계 트랜지스터를 활용하는 소형의, 고 해상도 디스플레이를 생산해왔다. 한때 a-Si TFTs가 p-Si TFTs에 의해 대체될 것으로 생각되었을지라도, 저 비용, 대형, 고 해상도 디스플레이에 대한 소비자 수요, 및 p-Si TFTs로 이러한 대규모 디스플레이의 제작 비용은, AMLCD 제작자들을 a-Si TFTs가 더 높은 해상도로 이들의 사용을 확장하도록 몰아가고 있다. 이들 해상도 증가는 TFT 제작 공정에 사용된 유리 기판에 대해 치수 안정성에서 엄격한 기준을 필요로 한다. a-Si, 산화물 또는 저온 p-Si TFT 제작 동안, 유리 기판은 350℃ 내지 450℃ 범위의 공정 온도에서 유지되는 동안, 박막 트랜지스터는 생성된다. 이들 온도에서 대부분의 AMLCD 유리 기판은 콤팩션 (compaction)이라 불리는 공정을 겪는다. 열안정성 또는 치수 변화라 또한 언급되는, 콤팩션은, 유리의 가상 온도 (fictive temperature)에서 변화에 기인한 유리 기판에서 비가역적 치수 변화 (수축)이다. "가상 온도"는 유리의 구조적 상태를 나타내는데 사용된 개념이다. 고온으로부터 빠르게 냉각된 유리는, 더 고온 구조에서 "응고되기" 때문에 더 높은 가상 온도를 갖는 것으로 알려져 있다. 좀 더 천천히 냉각되거나, 유리의 어닐링점 근처에서 잠시 동안 유지시켜 어닐링된 유리는, 더 낮은 가상 온도를 갖는 것으로 알려져 있다.
콤팩션의 정도는, 유리가 만들어지는 공정 및 유리의 점탄성 특성 (viscoelastic properties) 모두에 의존한다. 유리로부터 시트 제품을 생산하는 플루오트 공정 (float process)에서, 유리 시트는 용융으로부터 상대적으로 천천히 냉각되고, 따라서 유리로 비교적 저온 구조에서 "응고된다". 퓨전 공정은, 그에 반해서, 용융으로부터 유리 시트의 매우 빠른 퀀칭 (quenching)을 결과하고, 비교적 고온 구조에서 응고된다. 결과적으로, 플루오트 공정에 의해 생산된 유리는, 퓨전 공정에 의해 생산된 유리와 비교한 경우, 덜 콤팩션을 겪을 수 있는데, 이는 콤팩션에 대한 구동력이 콤팩션 동안 유리에 의해 경험된 공정 온도와 가상 온도 사이의 차이이기 때문이다. 따라서, 다운인발 공정에 의해 생산된 유리 기판에서 콤팩션의 수준을 최소화하는 것이 바람직할 것이다.
유리에서 콤팩션을 최소화하는 두 가지 접근법이 있다. 첫 번째는 유리가 TFT 제작 동안 경험할 것과 유사한 가상 온도를 생성하도록 유리를 열적으로 전처리하는 것이다. 이 접근법이 갖는 몇 가지 어려움이 있다. 첫째, TFT 제작 공정 동안 사용된 다중 가열 단계는, 이 전처리에 의해 완전히 보상될 수 없는 유리에서 다소 다른 가상 온도를 생성한다. 둘째, 유리의 열안정성은, 다른 최종-사용자에 대해 다른 전처리를 의미할 수 있는, TFT 제작의 세부 사항과 밀접하게 연결된다. 마지막으로, 전처리는 공정 비용 및 복잡성을 증가시킨다.
또 다른 접근법은 유리의 점도를 증가시켜 공정 온도에서 변형 속도를 천천히 하는 것이다. 이것은 유리의 점도를 상승시켜 달성될 수 있다. 어닐링점은 유리에 대하여 고정 점도에 상응하는 온도를 나타내고, 따라서, 어닐링점의 증가는 고정 온도에서 점도의 증가와 같다. 그러나, 이 접근법이 갖는 문제는, 비용 효율적인 높은 어닐링점 유리의 생산이다. 비용에 영향을 주는 주요인은 결함 및 자산 수명 (asset lifetime)이다. 퓨전 인발 기계에 연결된 - 내화성 선용융 (refractory premelt), 귀금속 청징제 (precious metal finer) 및 귀금속 유리 전달 스템 (glass delivery stem)을 포함하는 최신 연속 유닛 (CU) 용융기에서, 네 가지 타입의 결함은 일반적으로 발생된다: (1) 가스 내포물 (거품 또는 블리스터); (2) 배치 (batch)의 적절한 용융의 실패에서 유래하거나 또는 내화물 유래의 고체 내포물; (3) 주로 백금으로 이루어진 금속성 결함; 및 (4) 낮은 액상선 점도를 결과하는 실투 생산물 (devitrification products) 또는 아이소파이프 (isopipe)의 양 말단에서 과도한 실투. 유리 조성물은, 용융의 속도에 대한, 따라서 가스 또는 고체 결함을 형성하는 유리의 경향에 대한 불균형적인 영향을 갖고, 및 유리의 산화 상태는 백금 결함을 혼입하는 경향에 영향을 미친다. 형성 맨드릴 (forming mandrel), 또는 아이소파이프에 대한 유리의 실투는, 높은 액상선 점도를 갖는 조성물을 선택하여 가장 잘 관리된다.
TFT 제작 공정 동안 유리 기판에 치수 안정성은 또한 탄성 변형율 (elastic strain)에 의해 영향을 받는다. 기판에 의해 경험된 탄성 변형율의 두 개의 주된 원인이 있다. 퓨전 공정 동안, 탄성 변형율, 따라서 응력은, 작은 열적 구배를 통해 냉각 시 유리 시트로 도입될 수 있다. 이들 응력은 TFT 제작 공정 동안 응력 완화 (stress relaxation)을 겪어 치수 불안정성을 결과한다. 이러한 불안정성은, 유리 기판의 어닐링점을 증가시켜 TFT 공정 온도에서 변형 속도의 감소를 통해, 콤팩션와 같은 동일한 방식으로, 최소화될 수 있다. 제2 타입의 탄성 변형율은, 트랜지스터 자체가 유리 표면상에 침착된 경우, 기판에 부과된 응력에 관련된다. 이러한 탄성 변형율은, 기판 표면상에 부과된 응력이 최소량의 변형을 생성하고, 유리 시트에 나타낸 치수 변화를 감소시키도록, 유리의 영률을 증가시켜 최소화된다.
전술된 치수 안정성이 문제점에 부가하여, AMLCD 제작업자는, 대형의 디스플레이 크기에 대한 수요 및 규모의 경제 모두가 각 측면에 대해 2 meters를 초과하는 대형 크기의 유리 조각을 가공해야 한다는 점을 깨닫고 있다. 이것은 몇 가지 우려를 발생시킨다. 첫 번째는 단순히 유리의 중량이다. 대형 크기의 유리 조각으로 가는데 유리 중량의 증가는, 공정 스테이션으로 및 공정 스테이션을 통해 유리를 이동하는데 사용된 로봇 핸들러 (robotic handlers)에 영향을 미친다. 부가적으로, 유리 밀도 및 영률에 의존하는, 탄성 처짐 (elastic sag)은, 대형 시트 크기가 갖는 특히 중요한 문제점이 되어, 공정 스테이션들 사이에서 유리를 수송하는데 사용된 카세트에 유리를 적재하고, 회수하며, 및 간격을 두는 능력에 영향을 준다. 따라서, 콤팩션, 응력 완화 및 탄성 변형율을 최소화하면서, 전술된 결함-제한 속성 (defect-limiting attributes)을 유지하는 것에 부가하여, 처짐과 관련된 문제점을 감소시키는 조성물을 찾는 것이 바람직하다.
본 발명의 관점은, 바람직한 물리적 및 화학적 특성을 나타내는, 알칼리가-없는, 보로알루미노실리케이트 유리의 제작을 위한 화합물, 조성물, 제품, 장치, 및 방법에 관련된다. 하나 이상의 구체 예에서, 상기 유리는 능동형 액정 디스플레이 (AMLCDs) 및 능동형 유기 발광 다이오드 디스플레이 (AMOLEDs)와 같은, 평판 디스플레이 장치에서 기판으로 사용하기에 적절하다. 하나 이상의 구체 예에 따르면, 제공된 유리들은 2.55 g/㎤ 미만의 밀도 및 우수한 치수 안정성 (즉, 저 콤팩션)을 보유한다. 부가적으로, 본 개시된 조성물의 하나 이상의 구체 예는, 퓨전 공정의 열이력 (thermal history)에 적용된 경우, a-Si 박막 트랜지스터 공정에 대해 허용 가능한 열안정성을 갖는, 680℃를 초과하는 변형점을 갖는다.
또한, 무정형 실리콘 및 산화물 TFT 공정에 TFT 백플레인 (backplane) 기판으로 사용하기 위해 높은 어닐링점 및 높은 영률, 따라서 우수한 치수 안정성 (즉, 저 콤팩션, 탄성 변형율 및 응력 완화)을 보유하는 알칼리가 실질적으로 없는 유리는 여기에서 기재된다. 높은 어닐링점 유리는 유리의 제작에 이후에 열 공정 동안 콤팩션/수축 또는 응력 완화에 기인한 패널 뒤틀림 (distortion)을 방지할 수 있다. 본 발명의 유리의 구체 예는 또한 높은 탄성계수 및 상대적 낮은 밀도를 보유하고, 이에 의해 유리의 비탄성계수 (specific modulus)를 증가시키고, 유리 시트에서 탄성 처짐의 위험을 크게 감소시킨다. 부가적으로, 본 발명의 유리는 매우 높은 액상선 점도를 보유하며, 따라서 형성 장치 내에 차가운 장소에서 실투에 대해 위험을 상당히 감소시킨다. 낮은 알칼리 농도가 일반적으로 바람직하지만, 실제로, 알칼리가 완전히 없는 유리를 경제적으로 제작하는 것은 어렵거나 또는 불가능할 수 있다는 점을 이해해야 할 것이다. 논의가 되고 있는 알칼리는, 내화물, 등에서 부성분으로, 원료에서 오염원으로 발생하고, 완전히 제거하는 것은 매우 어려울 수 있다. 따라서, 본 발명의 유리는, 만약 알칼리 성분인 Li2O, Na2O, 및 K2O의 총 농도가 약 0.1 몰 퍼센트 (mol%) 미만이라면, 알칼리가 실질적으로 없는 것으로 고려된다.
본 명세서의 일부를 구성하고 혼입되는 수반되는 도면은, 하기에 기재된 몇몇 관점들을 예시한다.
도 1은 퓨전 인발 공정 (fusion draw process)에서 정밀 시트를 만드는데 사용딘 형성 맨드릴인, 아이소파이프의 개략도이다.
도 2는 절단선 6에 따라 절단된 도 1의 아이소파이프의 단면도이다.
2.55 g/㎤ 미만의 밀도 및 우수한 치수 안정성 (즉, 저 콤팩션, 감소된 응력 완화 및 탄성 변형율)을 보유하는 알칼리가 실질적으로 없는 유리는 여기에 개시된다. 부가적으로, 본 개시된 조성물의 하나 이상의 구체 예는, 퓨전 공정의 열이력에 적용된 경우, a-Si 박막 트랜지스터 공정에 대해 허용 가능한 열안정성을 갖는, 685℃를 초과하는 변형점을 갖는다. 본 발명의 구체 예는 또한 높은 어닐링점을 갖는 유리를 제공한다. 높은 어닐링점 유리는, 유리의 제작에 이후에 열 공정 동안 콤팩션/수축 및 응력 완화에 기인한 패널 뒤틀림을 방지할 수 있다. 낮은 알칼리 농도가 일반적으로 바람직하지만, 실제로, 알칼리가 완전히 없는 유리를 경제적으로 제작하는 것은 어렵거나 또는 불가능할 수 있는 것으로 이해되어야 할 것이다. 논의가 되고 있는 알칼리는, 내화물, 등에서 부성분으로, 원료에 오염원으로 발생하고, 완전히 제거하는 것은 매우 어려울 수 있다. 따라서, 본 개시된 유리는, 만약 알칼리 성분인, Li2O, Na2O, 및 K2O의 총 농도가 약 0.1 중량퍼센트 (mol%) 미만이라면, 알칼리가 실질적으로 없는 것으로 고려된다.
하나 이상의 구체 예에서, 알칼리가 실질적으로-없는 유리는 약 730℃ 초과, 구체적으로 735℃ 초과, 및 좀 더 구체적으로 740℃를 초과하는 어닐링점을 갖는다. 하나 이상의 구체 예에 따르면, 약 10,000 poise (T10k)의 점도에서 개시된 유리의 온도는 약 1300℃ 미만이다. 유리 (Tliq)의 액상선 온도는 유리와 평형상태로 함께 존재할 수 있는 결정질 상 (crystalline phases)이 없는 가장 높은 온도이다. 하나 이상의 구체 예에 따르면, T10k - Tliq > 30℃이다. 플루오트 공정은 3000 내지 10,000 poise의 점도에서 유리를 전달한다. 만약 유리가 이 점도에 상응하는 온도 근처 어디에서 실투한다면, 그 다음 실투 제품은 최종 제품에서 나타날 것이다. 하나 이상의 구체 예에서, 유리는 31를 초과하는 비탄성계수를 나타낸다.
Figure pct00001
로 정의된, 유리의 비탄성계수는, 유리 시트가 공정 동안 경험할 탄성 처짐의 정도를 나타낸다. 이러한 이유 때문에, 31 이상의 비탄성계수를 갖는 유리 조성물은 바람직하다. 개시된 유리는 전술된 개시된 특성 중 하나 이상을 나타낼 수 있는 것으로 이해될 것이다. 따라서, 개시된 유리는, 개시된 어떤 조합에서, 위에서 개시된 특징 중 하나, 위에서 개시된 특징 중 둘, 위에서 개시된 특징 중 셋, 위에서 개시된 특징 중 넷, 위에서 개시된 특징 중 다섯, 위에서 개시된 특징 중 여섯, 및/또는 위에서 개시된 특징 중 일곱을 나타낼 수 있다.
하나의 구체 예에서, 알칼리가 실질적으로-없는 유리는 산화물 기준에 대한 중량 퍼센트로 하기 범위를 포함한다:
SiO2 57-61
Al2O3 17.5-20.5
B2O3 5-8
MgO 1-5
CaO 3-9
SrO 0-6
BaO 0-6.5.
특징 구체 예에서, 유리는 산화물 기준에 대한 중량 퍼센트로 57.5-60.5의 범위에서, SiO2를 포함한다. 또 다른 특정 구체 예에서, 유리는 산화물 기준에 대한 중량 퍼센트로 17.8-20.2의 범위에서, Al2O3를 포함한다. 또 다른 특정 구체 예에서, 유리는 산화물 기준에 대한 중량 퍼센트로 5.5-7.8의 범위에서, B2O3를 포함한다. 또 다른 특정 구체 예에서, 유리는 산화물 기준에 대한 중량 퍼센트로 1-4.5인, MgO를 포함한다. 또 다른 특정 구체 예에서, 유리는 산화물 기준에 대한 중량 퍼센트로 1-4.5인, CaO를 포함한다. 또 다른 특정 구체 예에서, 유리는 산화물 기준에 대한 중량 퍼센트로 1-4.5인, SrO를 포함한다. 또 다른 특정 구체 예에서, 유리는 산화물 기준에 대한 중량 퍼센트로 0-6인, BaO를 포함한다.
다른 특정 구체 예에서, 전술된 유리 중 어느 하나는 다음 특성 중 하나 이상을 가질 수 있다: 730℃ 초과 어닐링점; 31 초과 비탄성계수; T10k - Tliq > 30℃을 만족하는 유리.
또 다른 특정 구체 예에서, 유리는, 산화물 기준에 대한 중량 퍼센트로: SiO2 57-61, Al2O3 17-21, B2O3 5-8, 3 이상 MgO, CaO 2-4.5, 1.5 이상 SrO, BaO 3.5-8을 포함하고, 여기서 SiO2, Al2O3, B2O3, MgO, CaO, SrO 및 BaO는 산화물 성분의 중량 퍼센트로 나타낸다. 특정 구체 예에 따른 유리는, 다음 특성 중 하나 이상을 가질 수 있다: (MgO+CaO+SrO+BaO)/Al2O3 ≥ 1.05, 735℃ 이상의 어닐링점, 60 이상인 T35k - Tliq, 1250℃ 이하의 T35k, 약 39 x 10-7/℃ 미만의 CTE, 77GPa 이상의 영률, 및 2.55 g/㎤ 이하인 밀도.
하나의 관점에서, 개시된 유리는 화학적 청징제 (fining agent)를 포함한다. 이러한 청징제는 SnO2, As2O3, Sb2O3, F, Cl 및 Br을 포함하지만, 이에 제한되지 않으며, 여기서 상기 화학적 청징제의 농도는 0.5 mol% 이하의 수준에서 유지된다. 화학적 청징제는 또한 CeO2, Fe2O3, 및 전이 금속의 다른 산화물, 예를 들어, MnO2를 포함할 수 있다. 이들 산화물은, 유리 내에 이들의 최종 원자 상태에서 가시광선 흡수를 통해 유리에 색상을 도입할 수 있고, 따라서, 이들의 농도는 구체적으로 0.2 mol% 이하의 수준에서 유지된다.
하나의 관점에서, 개시된 유리는 퓨전 공정을 통해 시트로 제작된다. 퓨전 인발 공정은, 높은 해상도 TFT 백플레인 및 컬러 필터에 대한 표면-매개 뒤틀림 (surface-mediated distortion)을 감소시키는, 원래 그대로의, 파이어-폴리싱된 (fire-polished) 유리 표면을 결과한다. 도 1은 형성 맨드릴, 또는 아이소파이프의 위치에서 퓨전 인발 공정의 개략도로서, 그렇게 불리는 이유는 이의 구배 홈통 (gradient trough) 설계가 아이소파이프의 길이에 따른 모든 지점 (좌측에서 우측)에서 동일한 (그러므로 "아이소") 흐름을 생성하기 때문이다. 도 2는 도 1의 위치 6 근처에서 아이소파이프의 개략적인 단면도이다. 주입구 (1)로부터 도입된 유리는, 압축 단부 (compression end, 4)로 웨어 벽 (weir walls, 3)에 의해 형성된 홈통 (2)의 버텀을 따라 흐른다. 유리는 아이소파이프의 양 측면 (도 2 참조)상에 웨어 벽 (4)을 오버플로우하고, 및 두 스트림의 유리는 루트 (6)에서 합쳐지거나 또는 융합된다. 아이소파이프의 양 말단에서 에지 디렉터 (Edge directors, 7)는 유리를 냉각시키고, 비드 (bead)로 불리는 에지에서 더 두꺼운 스트립을 생성하기 위해 제공된다. 상기 비드는 풀링 롤 (pulling rolls)에 의해 아래로 당겨지고, 따라서, 고 점도에서 시트 형성을 가능하게 한다. 시트가 아이소파이프를 벗어나는 속도를 조정하여, 퓨전 인발 공정을 고정된 용융 속도에서 매우 넓은 범위의 두께를 생산하는데 사용하는 것이 가능하다.
다운인발 시트 인발 공정, 특히, 퓨전 공정은 (모두 Dockerty에 의한) 미국 특허 제3,338,696호 및 3,682,609호에 기재되어 있으며, 이의 전체적인 내용은 여기에 혼입될 수 있다. 플로우트 공정과 같은, 다른 형성 공정과 비교하여, 퓨전 공정은 몇 가지 이유에 때문에 바람직하다. 첫째, 퓨전 공정으로부터 만들어진 유리 기판은 연마 (polishing)를 요구하지 않는다. 현재 유리 기판 연마는, 원자력 현미경에 의해 측정된 것으로, 약 0.5 nm (Ra)를 초과하는 평균 표면 거칠기를 갖는 유리 기판을 생산할 수 있다. 퓨전 공정에 의해 생산된 유리 기판은 0.5 nm 미만의 원자력 현미경에 의해 측정된 것으로 평균 표면 거칠기를 갖는다. 기판은 광학 지연 (optical retardation)에 의해 측정된 것으로 150 psi 이하인 평균 내부 응력을 갖는다.
하나의 관점에서, 개시된 유리는 퓨전 공정을 사용하여 시트 형태로 제작된다. 개시된 유리가 퓨전 공정과 양립할 수 있지만, 이들은 또한 수요가 적은 제작 공정을 통해 시트 또는 다른 물건 (ware)으로 제작될 수 있다. 이러한 공정은, 슬롯 인발, 플루오트, 롤링, 및 기술분야의 당업자에게 알려진 다른 시트-형성 공정을 포함한다.
유리의 시트를 생성하기 위한 선택적인 방법에 비하여, 전술된 퓨전 공정은, 원래 그대로의 표면을 갖는 초박형이고, 매우 평평하며, 매우 균일한 시트를 생성할 수 있다. 슬롯 인발은 또한 원래 그대로의 표면을 결과할 수 있지만, 시간에 따라 오리피스 형태 (orifice shape)에서 변화, 오리피스-유리 계면에서 일시적인 잔해 (volatile debris)의 축적, 및 정확히 평평한 유리를 전달하는 오리피스를 생성하는 과제에 기인하여, 슬롯-인발 유리의 치수 균일도 및 표면 품질은 일반적으로 퓨전-인발 유리보다 열등하다. 플로우트 공정은 매우 대형의, 균일한 시트를 전달할 수 있지만, 표면은, 일 측면이 플로우트 욕조와 접촉하고, 및 다른 면에 플로우트 욕조 유래의 축합물 (condensation products)에 노출에 의해 실질적으로 손상된다. 이것은 플로우트 유리가 고성능 디스플레이 적용에 사용하기 위해서 연마되어야 한다는 것을 의미한다.
불행하게도, 플로우트 공정과 달리, 퓨전 공정은 고온으로부터 유리의 빠른 냉각을 결과하고, 이것은 높은 가상 온도 Tf를 결과한다. 가상 온도는 유리의 구조적 상태와 관심의 온도에서 완전히 완화된 경우에 추정될 상태 사이의 불일치를 나타내는 것으로 생각할 수 있다. 본 발명자들은 유리 전이 온도 Tg를 갖는 유리를 공정 온도 Tp로 재가열의 결과가 Tp < Tg ≤ Tf가 되도록 고려하였다. Tp < Tf 때문에, 유리의 구조적 상태는 Tp에서 균형상태 밖이고, 유리는 Tp에서 평형 상태에 있는 구조적 상태 쪽으로 자연스럽게 완화될 것이다. 이 완화의 속도는 Tp에서 유리의 유효 점도로 역으로 조정하여, 고 점도는 느린 속도의 완화를 결과하고, 저 점도는 빠른 속도의 완화를 결과한다. 유효 점도는 유리의 가상 온도에 따라 역으로 변화하여, 낮은 가상 온도는 고 점도를 결과하고, 높은 가상 온도는 비교적으로 저 점도를 결과한다. 따라서, Tp에서 완화의 속도는, 유리의 가상 온도에 따라 직접적으로 조정된다. 높은 가상 온도를 도입하는 공정은, 유리가 Tp에서 재가열된 경우, 비교적 높은 속도의 완화를 결과한다.
Tp에서 완화의 속도를 감소시키는 하나의 수단은 그 온도에서 유리의 점도를 증가시키는 것이다. 유리의 어닐링점은 유리가 1013.2 poise의 점도를 갖는 온도를 나타낸다. 온도가 어닐링점 아래로 감소함에 따라, 과냉각된 용융의 점도는 증가한다. Tg 아래의 고정 온도에서, 더 높은 어닐링점을 갖는 유리는 더 낮은 어닐링점을 갖는 유리보다 더 높은 점도를 갖는다. 따라서, Tp에서 기판 유리의 점도를 증가시키기 위해, 이의 어닐링점을 증가시키는 것을 선택할 수 있다. 불행하게도, 어닐링점을 증가시키는데 필요한 조성물 변화는 또한 모든 다른 온도에서 점도를 증가시키는 경우가 일반적이다. 특히, 유리의 가상 온도는 약 1011-1012 poise의 점도에 상응하는 퓨전 공정에 의해 만들어지고, 그래서 퓨전-호환성 유리에 대한 어닐링점의 증가는 일반적으로 이의 가상 온도를 역시 증가시킨다. 주어진 유리에 대하여, 더 높은 가상 온도는 Tg 아래 온도에서 더 낮은 점도를 결과하고, 따라서 어닐링점을 증가시켜 얻어지는 점도 증가에 반대로 가상 온도를 증가시킨다. Tp에서 완화의 속도에서 실질적인 변화를 이해하기 위해, 일반적으로 어닐링점에 상대적으로 큰 변화를 만드는 것이 필요하다. 개시된 유리의 관점은, 약 730℃ 초과, 좀 더 구체적으로 735℃ 초과, 및 가장 구체 적으로 740℃를 초과하는 어닐링점을 갖는데 있다. 이러한 높은 어닐링점은, 저-온 TFT 공정, 예를 들어, 무정형 실리콘 또는 산화물 TFT 열 사이클 동안 허용 가능한 낮은 속도의 열 완화를 결과한다.
실제로, 원하는 정도의 액상선 점도를 갖는 알칼리가-없는 유리는 많지 않다. 무정형 실리콘 적용에 대해 적절한 유리 기판 (예를 들어, Eagle XG®)에서 경험은, 에지 디렉터가 어떤 알칼리가-없는 유리의 액상선 온도 아래 60℃까지 온도를 연속적으로 유지할 수 있다는 것을 나타낸다. 더 높은 어닐링점을 갖는 유리가 더 높은 형성 온도를 요구할 것이라고 이해되지만, 에지 디렉터가 중심 루트 온도에 비하여 훨씬 더 차가울 것으로 예상할 수 없었다. 이 영향을 기록하기 위한 유용한 측정기준은 아이소파이프 상으로 전달 온도 및 유리의 액상선 온도, Tliq 사이의 차이이다. 퓨전 공정에서, 일반적으로 유리를 약 35,000 poise에서 전달하는 것이 바람직하고, 35,000 poise의 점도에 상응하는 온도는 T35k로 전통적으로 나타낸다. 특정 전달 온도에 대하여, 가능한 한 크게 T35k - Tliq을 만드는 것이 바람직하지만, 무정형 실리콘 기판에 대하여, 확장된 제작 캠페인 (manufacturing campaigns)은, 만약 T35k - Tliq이 약 60℃ 이상이라면, 수행될 수 있다는 것을 확인하였다. 본 발명의 구체 예에서, T10k-Tliq은 30℃를 초과한다.
이 기준에 부가하여, 퓨전 공정은 높은 액상선 점도를 갖는 유리를 활용하여야 한다. 이것은 유리와의 계면에서 실투 제품을 피하고, 최종 유리에 가시광 실투 제품을 최소화하기 위해 필요하다. 특정 시트 크기 및 두께를 위해 퓨전과 호환 가능한 주어진 유리에 대하여, 더 넓은 시트 또는 더 두꺼운 시트를 제조하기 위해 공정을 조정하는 것은, 일반적으로 아이소파이프 (퓨전 공정에 대해 형성 맨드릴)의 양 말단에서 더 낮은 온도를 결과한다. 따라서, 더 높은 액상선 점도를 갖는 개시된 유리는, 퓨전 공정을 통해 제작하는데 더 큰 유연성을 제공한다.
여기에 기재된 유리 조성물에서, SiO2는 기본 유리 형성제로서 제공된다. 어떤 관점에서, 평판 디스플레이 유리 (예를 들어, AMLCD 유리)에 적절한 밀도 및 화학적 내구성, 및 유리가 다운인발 공정 (예를 들어, 퓨전 공정)에 의해 형성되는 것이 가능하게 하는, 액상선 온도 (액상선 점도)를 갖는 유리를 제공하기 위해, SiO2의 농도는 57 중량%를 초과할 수 있다. 상한의 관점에서, 일반적으로, 전통적인, 다량의, 용융 기술, 예를 들어, 내화성 용융기에서 줄 용융 (Joule melting)을 사용하여 배치 물질이 용융되는 것이 가능하게, SiO2 농도는 약 61 중량% 이하일 수 있다. SiO2의 농도가 증가함에 따라, 200 poise 온도 (용융 온도)는 일반적으로 상승한다.
Al2O3는 여기에 기재된 유리를 만드는데 사용된 또 다른 유리 형성제이다. 17.5 중량% 이상의 Al2O3 농도는 낮은 액상선 온도 및 높은 점도를 갖는 유리를 제공하여, 높은 액상선 점도를 결과한다. 적어도 17.5 중량%의 Al2O3의 사용은 또한 유리의 어닐링점 및 모듈러스를 개선시킨다. 하나의 관점에서, Al2O3 농도는 17.5 내지 20.5 중량%의 범위이다.
B2O3는 용융을 돕고, 용융 온도를 낮추는 플럭스 (flux) 및 유리 형성제이다. 액상선 온도에 대한 이의 영향은 적어도 점도에 대한 이의 영향만큼 크고, 그래서 B2O3의 증가는 유리의 액상선 점도를 증가시키기 위해 사용될 수 있다. 이들 효과를 달성하기 위해, 여기에 기재된 유리 조성물은 5 중량% 이상의 B2O3 농도를 갖는다. SiO2에 대하여 전술된 바와 같이, 유리 내구성은 LCD 적용을 위해 매우 중요하다. 내구성은 알칼리토 산화물의 상승된 농도에 의해 다소 조절되고, 상승된 B2O3 함량에 의해 상당히 감소될 수 있다. 어닐링점은 B2O3 증가에 따라 감소하며, 그래서 무정형 실리콘 기판에서 이의 통상적인 농도에 비하여 낮은 B2O3 함량을 유지하는 것이 바람직하다. 따라서, 하나의 관점에서, 여기에 기재된 유리는 5 내지 8 중량%의 범위에서 B2O3 농도를 갖는다.
유리 형성제 (SiO2, Al2O3, 및 B2O3)에 부가하여, 여기에 기재된 유리는 또한 알칼리토 산화물을 포함한다. 하나의 관점에서, 적어도 세 개의 알칼리토 산화물은, 유리 조성물의 일부, 예를 들어, MgO, CaO, 및 BaO, 및 선택적으로, SrO이다. 알칼리토 산화물은 용융, 청징, 형성, 및 최종 용도에 중요한 다양한 특성을 갖는 유리를 제공한다.
본 발명의 어떤 구체 예에 대하여, 알칼리토 산화물은 실제로 어떤 단일 조성적 성분 (single compositional component)에 따라 처리될 수 있다. 이것은 점탄성 특성, 액상선 온도 및 액상선 단계 관계 (liquidus phase relationships)에 대한 이들의 영향이 유리 형성 산화물인 SiO2, Al2O3 및 B2O3에 대해 있는 것보다 서로 질적으로 더욱 유사하기 때문이다. 그러나, 알칼리토 산화물인 CaO, SrO 및 BaO는 장석 광물 (feldspar minerals), 주로 회장석 (CaAl2Si2O8) 및 셀시앤 (celsian) (BaAl2Si2O8) 및 스트론튬-함유 이의 고용체를 형성할 수 있지만, MgO는 의미 있는 정도로 이들 결정에 참여하지 않는다. 따라서, 장석 결정이 이미 액상선 단계인 경우, MgO의 추가는 결정에 비례하여 액체를 안정화하기 위해 제공될 수 있고, 따라서 액상선 온도를 낮춘다. 동시에, 점도 곡선은 통상적으로 더 가파르게 되어, 용융 온도를 감소시키면서 저온 점도에 영향을 미치지 못하거나 거의 영향이 없다. 이런 의미에서, 소량의 MgO의 첨가는, 용융 온도를 감소시켜 용융에 유리하고, 액상선 온도를 감소 및 액상선 점도를 증가시켜 형성에 유리하며, 반면에 높은 어닐링점, 및 따라서, 저 콤팩션을 유지한다.
유리 조성물에 존재하는 산화칼슘은, 낮은 액상선 온도 (높은 액상선 점도), 높은 어닐링점 및 모듈러스, 및 평판 적용, 특히, AMLCD 적용에 대해 가장 바람직한 범위에서 CTE를 생성할 수 있다. 이것은 또한 화학적 내구성에 유리하게 기여하고, 다른 알칼리토 산화물과 비교하여, 배치 물질로서 상대적으로 저렴하다. 그러나, 고농도에서, CaO는 밀도 및 CTE를 증가시킨다. 그러므로, 충분히 낮은 SiO2 농도에서, CaO는 회장석을 안정화할 수 있고, 따라서, 액상선 점도를 감소시킨다. 따라서, 하나의 관점에서, CaO 농도는 4 중량% 이상일 수 있다. 또 다른 관점에서, 유리 조성물의 CaO 농도는 약 3 내지 9 중량%의 범위이다.
SrO 및 BaO는 모두 낮은 액상선 온도 (높은 액상선 점도)에 기여할 수 있고, 따라서, 여기에 기재된 유리는 통상적으로 적어도 이들 산화물 모두를 함유할 것이다. 그러나, 이들 산화물의 선택 및 농도는 CTE 및 밀도의 증가 및 모듈러스 및 어닐링점에서 감소를 피하기 위해 선택된다. SrO 및 BaO의 상대적 비율은, 유리가 다운인발 공정에 의해 형성될 수 있도록 물리적 특성 및 액상선 점도의 적절한 조합을 얻기 위해 균형을 이룰 수 있다.
본 발명의 유리의 중심 성분의 효과/역할을 요약하면, SiO2는 기본 유리 형성제이다. Al2O3 및 B2O3는 또한 유리 형성제이고, 예를 들어, 더 낮은 밀도 및 CTE를 얻기 위해 사용되는 B2O3의 증가 및 Al2O3의 상응하는 감소, 반면에, 어닐링점, 모듈러스, 및 내구성을 증가시키는데 사용되는 Al2O3의 증가 및 B2O3의 상응하는 감소와 같이, 쌍으로 선택될 수 있다.
이들 고려사항 외에, 유리는 다운인발 공정, 예를 들어, 퓨전 공정에 의해 구체적으로 형성가능하고, 이는 유리의 액상선 점도가 상대적으로 높을 필요가 있다는 것을 의미한다. 개별적인 알칼리토는 이러한 의미에서 중요한 역할을 하는데, 이는 이들이 형성될 결정질 상을 불안정하게 만들 수 있기 때문이다. BaO 및 SrO는 액상선 점도를 조절하는데 특히 효과적이고, 적어도 이 목적에 위해 본 발명의 유리에 포함된다. 이하 나타낸 실시 예에서 예시된 바와 같이, 알칼리토의 다양한 조합은 높은 액상선 점도를 갖는 유리를 생산할 것이다.
상기 성분에 부가하여, 여기에 기재된 유리 조성물은 다양한 다른 산화물을 포함할 수 있어, 유리의 다양한 물리적, 용융, 청징, 및 형성 속성을 조정한다. 이러한 다른 산화물의 예로는 TiO2, MnO, Fe2O3, ZnO, Nb2O5, MoO3, Ta2O5, WO3, Y2O3, La2O3 및 CeO2를 포함하지만, 이에 제한되는 것은 아니다. 하나의 관점에서, 이들 산화물의 각각의 양은 1 중량% 이하, 좀 더 구체적으로 0.5 중량% 이하일 수 있고, 이들의 총 조합된 농도는 2 중량% 이하, 좀 더 구체적으로 1 중량% 이하일 수 있다. 여기에 기재된 유리 조성물은 또한, 배치 물질과 연관된 및/또는 유리를 생산하는데 사용된, 용융, 청징, 및 형성 장치에 의해 유리로 도입된 다양한 오염원, 특히 Fe2O2 및 ZrO2를 포함할 수 있다. 유리들은 또한 주석-산화물 전극을 사용한 줄 용융의 결과로서 및/또는 주석 함유 물질, 예를 들어, SnO2, SnO, SnCO3, SnC2O2, 등의 배칭을 통하여 SnO2를 함유할 수 있다.
유리 조성물은 일반적으로 알칼리가 없다; 그러나, 유리는 약간의 알칼리 오염원을 함유할 수 있다. AMLCD 적용의 경우에서, 유리로부터 TFT의 실리콘으로 알칼리 이온의 확산을 통해 박막 트랜지스터 (TFT) 성능에 대해 악영향을 갖는 것을 피하기 위해 0.1 중량% 아래로 알칼리 수준을 유지하는 것이 바람직하다. 여기에 사용된 바와 같은, "알칼리가-없는 유리"는 0.1 중량% 이하인 총 알칼리 농도를 갖는 유리이고, 여기서 총 알칼리 농도는 Na2O, K2O, 및 Li2O 농도의 합이다. 하나의 관점에서, 총 알칼리 농도는 0.1 중량% 이하이다.
하나의 구체 예에서, 산화물 기준으로, 여기에 기재된 유리 조성물은, 하기 조성물적 특징 중 하나 이상 또는 모두를 가질 수 있다: (i) 많아야 0.05 중량%의 As2O3 농도; (ii) 많아야 0.05 중량%의 Sb2O3 농도; (iii) 많아야 0.25 중량%의 SnO2 농도.
As2O3는 AMLCD 유리에 대한 효과적인 고온 청징제이고, 여기에 기재된 몇몇 관점에서, As2O3는 이의 우수한 청징 특성 때문에 청징을 위해 사용된다. 그러나, As2O3는 독성이 있고, 유리 제작 공정 동안 특별한 취급이 요구된다. 따라서, 어떤 관점에서, 청징은 상당한 양의 As2O3를 사용하지 않고 수행되는데, 즉, 청징된 유리는 많아야 0.05 중량%의 As2O3를 갖는다. 하나의 관점에서, 유리의 청징에 의도적으로 사용된 As2O3는 없다. 이러한 경우에서, 최종 유리는 통상적으로 배치 물질을 용융하는데 사용된 장비 및/또는 배치 물질에 존재하는 오염원의 결과로서 많아야 0.005 중량%의 As2O3를 가질 것이다.
비록 As2O3만큼 독성이 없을지라도, Sb2O3는 또한 독성이 있고, 특별한 취급을 요구한다. 부가적으로, Sb2O3는 청징제로서 As2O3 또는 SnO2를 사용하는 유리와 비교하여 밀도를 상승시키고, CTE를 상승시키며, 및 어닐링점을 낮춘다. 따라서, 어떤 관점에서, 청징은 상당한 양의 Sb2O3를 사용하지 않고 수행되는데, 즉, 최종 유리는 많아야 0.05 중량%의 Sb2O3를 갖는다. 또 다른 관점에서, Sb2O3은 유리의 청징에 의도적으로 사용되지 않는다. 이러한 경우에서, 최종 유리는 배치 물질 및/또는 배치 물질을 용융하는데 사용된 장비에 존재하는 오염원의 결과로서 통상적으로 많아야 0.005 중량%의 Sb2O3를 가질 것이다.
As2O3 및 Sb2O3 청징과 비교하면, 주석 청징 (즉, SnO2 청징)은 덜 효과적이지만, SnO2는 알려진 유독성이 없는 흔한 물질이다. 또한, 수년 동안, SnO2는 이러한 유리용 배치 물질의 줄 용융에서 주석 산화물 전극의 사용을 통해 AMLCD 유리의 성분이었다. AMLCD 유리에 SnO2의 존재는 액정 디스플레이의 제작에 이들 유리의 사용에서 어떤 알려진 역효과를 결과하지 않는다. 그러나, 고농도의 SnO2는, 이것이 AMLCD 유리에 결정질 결함의 형성을 결과할 수 있음에 따라 바람직하지 않다. 하나의 관점에서, 최종 유리에서 SnO2의 농도는 0.25 중량% 이하이다.
주석 청징은, 만약 원한다면, 단독 또는 다른 청징 기술과 조합하여 사용될 수 있다. 예를 들어, 주석 청징은 할라이드 청징, 예를 들어, 브롬 청징과 조합될 수 있다. 다른 가능한 조합은, 주석 청징에 더하여 황산염, 아황산염, 산화 세륨, 기계적 버블링, 및/또는 진공 청징을 포함하지만, 이에 제한되는 것은 아니다. 이들 다른 청징 기술은 단독으로도 사용될 수 있는 것으로 고려된다.
여기에 기재된 유리는 기술분야에서 알려진 다양한 기술을 사용하여 제작될 수 있다. 하나의 관점에서, 유리는, 예를 들어, 퓨전 다운인발 공정과 같은, 다운인발 공정을 사용하여 만들어진다. 하나의 관점에서, 시트를 구성하는 유리가 SiO2, Al2O3, B2O3, MgO, CaO 및 BaO를 포함하도록 배치 물질의 선택, 용융 및 청징을 포함하는 다운인발 공정에 의해 알칼리가-없는 유리 시트를 생산하기 위한 방법은 여기에 개시되며, 여기서: (a) 청징은 상당한 양의 비소의 사용 없이 (및, 선택적으로, 상당한 양의 안티몬의 사용없이) 수행되고; 및 (b) 용융된 및 청징된 배치 물질로부터 다운인발 공정에 의해 생산된 50개의 순차적 유리 시트의 집단은, 0.10 가스 내포물/입방 센티미터 미만의 평균 가스 내포물 수준을 가지며, 여기서 상기 집단에서 각 시트는 적어도 500 입방 센티미터의 부피를 갖는다.
실시 예
하기 실시 예는 대표적인 구체 예를 예시하기 위해 이하 서술된다. 이들 실시 예는 여기에 개시된 주제의 모든 구체 예를 포함하는 것으로 의도되지 않으며, 오히려 대표적인 방법 및 방법을 예시한다. 이들 실시 예는 기술분야의 당업자에게 분명한 본 발명의 균등물 및 변형을 배제하는 것으로 의도되지 않는다.
수치 (예를 들어, 양, 온도, 등)에 대하여 정확도를 보장하려고 노력하였으나, 몇몇 에러 및 편차는 있을 수 있다. 별도의 언급이 없는 한, 온도는 ℃ 또는 주변 온도이고, 압력은 대기압 또는 그 근처이다. 조성물 자체는 산화물 기준에 대한 중량 퍼센트로 주어지고 100%로 표준화된다. 반응 조건들, 예를 들어, 성분 농도, 온도, 압력 및 다른 반응 범위, 및 기재된 공정으로부터 얻어진 생산물 순도 및 수율을 최적화하는데 사용될 수 있는 조건들의 수많은 변화 및 조합은 가능하다. 오직 이상적이고 일상적인 실험은 이러한 공정 조건을 최적화하는데 요구될 것이다.
표 1 내지 5에 서술된 유리 특성은 유리 분야에 전통적인 기술에 따라 결정된다. 따라서, 25-300℃ 온도 범위에 걸친 선형 열팽창계수 (CTE)는 x10-7/℃로 표시되고, 어닐링점은 ℃로 표시된다. 이들은 섬유 신장 기술 (각각, ASTM 기준 E228-85 및 C336)로부터 결정된다. grams/㎤의 밀도는 아르키메데스 방법 (ASTM C693)을 통해 측정된다. (유리 용융이 200 poises의 점도를 입증하는 온도로 정의된) ℃로 용융 온도는, 회전 실린더 점도측정계 (rotating cylinders viscometry) (ASTM C965-81)을 통해 측정된 고온 점도 데이터에 적합한 Fulcher 방정식을 사용하여 계산된다.
℃로 유리의 액상선 온도는 ASTM C829-81의 표준 구배 보우트 액상선 방법 (standard gradient boat liquidus method)을 사용하여 측정된다. 이것은 백금 보우트에 으깨진 유리 입자를 놓은 단계, 구배 온도의 영역을 갖는 가열로에 상기 보우트를 놓는 단계, 24시간 동안 적절한 온도 영역에서 상기 보우트를 가열하는 단계, 및 결정이 상기 유리 내부에 나타나는 가장 고온을 현미경 검사 (microscopic examination)의 수단에 의해 결정하는 단계를 포함한다. 좀 더 구체적으로, 유리 샘플은 Pt 보우트로부터 한 조각이 제거되고, 상기 Pt 및 공기 계면에 대해 및 샘플의 내부에서 형성된 결정의 위치 및 성질을 확인하기 위해 편광 현미경 (polarized light microscopy)을 사용하여 검사된다. 가열로의 구배가 매우 잘 알려져 있기 때문에, 온도 대 위치는, 5-10℃ 내에서, 잘 평가될 수 있다. 결정이 샘플의 내부 일부에 관찰된 온도는 (상응하는 시험기간 동안) 유리의 액상선을 나타내는 것을 택한다. 시험은 때때로, 더 느린 성장 상을 관찰하기 위하여, 더 긴 시간에서 (예를 들어, 72시간) 수행된다. 200 poise에 상응하는 온도 및 액상선에서 (poises로) 점도는 Vogel-Fulcher-Tammann 방정식을 사용하여 고점도 데이터에 맞추어 결정되고,
log(η) = A+B/(T-To)
여기서, T는 온도이고, A, B 및 To는 고정 파라미터이다. 액상선 점도를 결정하기 위해, 액상선 온도는 T에 대한 값으로 사용된다. GPa로 영률 값은 ASTM E1875-00e1에 서술된 일반형의 공명 초음파 분광계 기술 (resonant ultrasonic spectroscopy technique)을 사용하여 결정된다.
표 1 내지 5에 알 수 있는 바와 같이, 대표적인 유리는 AMLCD 기판 적용과 같은, 디스플레이 적용, 및 좀 더 구체적으로 저-온 폴리실리콘 및 산화물 박막 트랜지스터 적용을 위한 적절한 유리를 만드는 밀도, CTE, 어닐링점 및 영률을 갖는다. 비록 표 1 내지 5에 나타내지 않았을지라도, 유리는 상업적 AMLCD 기판으로부터 얻어진 것과 유사한 산 및 염기 매체에 내구성을 가지며, 따라서 AMLCD 적용에 대해 적절하다. 대표적인 유리는 다운인발 기술을 사용하여 형성될 수 있고, 특히, 전술된 기준을 통해, 퓨전 공정과 호환 가능하다.
표 1 내지 5의 대표적인 유리는, 실리카 공급원으로 90중량%가 표준 U.S.100 메쉬 체를 통해 통과되도록 분쇄된, 상업용 모래를 사용하여 제조된다. 알루미나는 알루미나 공급원이고, 페리클레이스 (periclase)는 MgO에 대한 공급원이며, 라임스톤은 CaO에 대한 공급원이고, 탄산 스트론튬, 질산 스트론튬 또는 이의 혼합물은 SrO에 대한 공급원이며, 탄산 바륨은 BaO에 대한 공급원이고, 주석 (IV) 산화물은 SnO2에 대한 공급원이다. 원료는 충분히 혼합되고, 탄화규소 글로바 (silicon carbide glowbars)에 의해 가열된 가열로에서 매달린 백금 용기에 적재하며, 균일도를 보장하기 위해 1600 내지 1650℃ 범위의 온도에서 몇 시간동안 용융 및 교반되고, 및 백금 용기의 기저에서 오리피스를 통해 전달된다. 유리의 최종 패티는 어닐링점에 또는 근처에서 어닐링되고, 그 다음 물리적, 점성 및 액상선 속성을 결정하기 위해 다양한 실험적 방법에 적용된다.
이들 방법은 유일하지 않고, 표 1 내지 5의 유리는 기술분야의 당업자에게 잘 알려진 표준 방법을 사용하여 제조될 수 있다. 이러한 방법은 연속적 용융 공정에서 수행될 수 있는 것과 같은, 연속적 용융 공정을 포함하고, 여기서 연속적 용융 공정에 사용된 용융기는 가스에 의해, 전기에 의해, 또는 이의 조합에 의해 가열된다.
개시된 유리를 생산하기 위해 적절한 원료는, SiO2에 대한 공급원으로 상업적으로 이용 가능한 모래; Al2O3에 대한 공급원으로 알루미나, 수산화알루미늄, 알루미나의 수화된 형태, 및 다양한 알루미노실리케이트, 질화물, 및 할라이드; B2O3에 대한 공급원으로 중산, 무수물 붕산 및 산화붕소; MgO에 대한 공급원으로 페리클레이스, 백운석 (또한 CaO의 공급원), 마그네시아, 탄산마그네슘, 수산화마그네슘, 및 다양한 형태의 마그네슘 실리케이트, 알루미노실리케이트, 니트레이트 및 할라이드; CaO에 대한 공급원으로 라임스톤, 아라고나이트, 백운석 (또한 MgO의 공급원), 울라스토나이트 (wolastonite) 및 다양한 형태의 칼슘 실리케이트, 알루미노실리케이트, 니트레이트, 및 할라이드; 및 스트론튬 및 바륨의 산화물, 탄산염, 질산염 및 할라이드를 포함한다. 만약 화학적 청징제가 요구된다면, 주석은, 또 다른 주요 유리 성분 (예를 들어, CaSnO3)으로 혼합 산화물로서, SnO2로, 또는 SnO, 주석 옥살레이트, 주석 할라이드, 또는 기술분야에서 당업자에게 알려진 주석의 다른 성분으로 산화 상태에서, 첨가될 수 있다.
표 1 내지 5에 유리는 청징제로서 SnO2를 함유하지만, 다른 화학적 청징제는 또한 TFT 기판 적용을 위해 충분한 품질의 유리를 얻기 위해 사용될 수 있다. 예를 들어, 개시된 유리는 청징을 용이하게 하기 위해 의도적 첨가로서 As2O3, Sb2O3, CeO2, Fe2O3, 및 할라이드의 어떤 하나 또는 조합을 사용할 수 있고, 이들 중 어떤 하나는 실시 예들에 나타낸 SnO2 화학적 청징제와 함께 사용될 수 있다. 이들 중, As2O3 및 Sb2O3는 일반적으로 유해한 물질로 인지되어 있어, TFT 패널의 공정에서 또는 유리 제작의 과정에서 발생될 수 있는 것과 같은 폐기물 스트림 (waste streams)에서 조절하도록 적용된다. 따라서, As2O3 및 Sb2O3의 농도를 개별적으로 또는 조합하여 0.005 mol% 넘지 않게 제한하는 것이 바람직하다.
개시된 유리로 의도적으로 혼입된 원소에 부가하여, 주기율표에서 태반의 안정한 원소는, 원료에 낮은 수준의 오염을 통해, 제작 공정에서 내화물 및 귀금속의 고-온 침식을 통해, 또는 최종 유리의 속성을 미세 조정하기 위해 낮은 수준에서 의도적 도입을 통해, 약간의 수준으로 유리에 존재한다. 예를 들어, 지르코늄은 지르코늄-풍부 내화물과 상호작용을 통해 오염원으로 도입될 수 있다. 또 다른 실시 예에서, 백금 및 로듐은 귀금속과 상호작용을 통해 도입될 수 있다. 또 다른 실시 예로서, 철은 원료에 떠돌이 성분 (tramp component)으로 도입될 수 있거나, 또는 가스 내포물의 조절을 향상시키도록 의도적으로 첨가될 수 있다. 또 다른 실시 예에서, 망간은 가스 내포물의 조절을 향상시키거나 또는 색상을 조절하기 위해 도입될 수 있다. 또 다른 실시 예에서, 알칼리는 Li2O, Na2O 및 K2O의 조합된 농도에 대해 약 0.1 mol%까지의 수준에서 떠돌이 성분으로 존재될 수 있다.
수소는 필연적으로 수산기 음이온인, OH-의 형태로 존재하고, 이의 존재는 표준 적외선 분광법 기술을 통해 확인될 수 있다. 용해된 수산기 이온은 개시된 유리의 어닐링점에 상당히 및 비선형적으로 영향을 주고, 따라서, 원하는 어닐링점을 얻기 위해, 보상을 위하여 주요 산화물 성분의 농도를 조정하는 것이 필요할 수 있다. 수산기 이온 농도는 원료의 선택 또는 용융 시스템의 선택을 통해 어느 정도까지 조절될 수 있다. 예를 들어, 붕산은 수산기의 주 공급원이고, 산화붕소로 붕산의 대체는 최종 유리에서 수산기 농도를 조절하기 위한 유용한 수단일 수 있다. 동일한 추론은 수산기 이온, 수화물, 또는 물리적 흡착된 또는 화학적 흡착된 물 분자를 포함하는 화합물을 포함하는 다른 잠재적 원료에 적용된다. 만약 버너가 용융 공정에 사용된다면, 그 다음 수산기 이온은 또한 천연가스 및 연관된 탄화수소의 연소 유래의 연소 산물을 통해 도입될 수 있고, 및 따라서, 보상을 위해 용융에 사용된 에너지를 버너로부터 전극으로 이동하는 것이 바람직할 수 있다. 선택적으로, 용해된 수산기 이온의 악영향에 대해 보상하기 위해 주요 산화물 성분을 조정하는 반복적 공정을 대신 사용할 수 있다.
황은 천연가스에 종종 존재하고, 유사하게 다수의 탄산염, 질산염, 할라이드, 및 산화물 원료에서 떠돌이 성분이다. SO2의 형태에서, 황은 가스 내포물의 고칫거리인 공급원일 수 있다. SO2-풍부 결함을 형성하는 경향은 원료에서 황 수준을 조절하여, 및 유리 매트릭스로 낮은 수준의 비교적 감소된 다가 양이온을 혼입시켜, 상당한 정도로 관리될 수 있다. 이론에 제한되는 것을 원하지는 않지만, SO2-풍부 가스 내포물은 유리에 용해된 황산염 (SO4 =)의 환원을 통해 주로 발생하는 것으로 나타난다. 개시된 유리의 상승된 바륨 농도는, 용융의 초기 단계에서 유리 내에 황 보유를 증가시키는 것으로 나타나지만, 전술된 바와 같이, 바륨은 낮은 액상선 온도, 따라서, 높은 T35k-Tliq 및 높은 액상선 점도를 얻기 위해 요구된다. 원료에서 낮은 수준으로 황 수준을 의도적으로 조절하는 것이, 유리에서 (아마 황산염으로) 용해된 황을 감소시키는 유용한 수단이다. 특히, 황은 구체적으로 배치 물질에서 200 중량ppm 미만이고, 좀 더 구체적으로 배치 물질에서 100 중량ppm 미만이다.
환원된 다가 원소 (multivalents)는 또한 SO2 블리스터 (blisters)를 형성하는 개시된 유리의 경향을 조절하는데 사용될 수 있다. 이온에 제한되는 것을 원하지는 않지만, 이들 원소는 황산염 환원을 위한 기전력 (electromotive force)을 억제하는 잠재적 전자 도너 (electron donors)로서 거동한다. 황산염 환원은 하기 반응과 같은 반쪽 반응 (half reaction)의 관점에서 표기될 수 있고,
SO4 = → SO2 + O2 + 2e-
여기서 e-는 전자를 나타낸다. 반쪽 반응에 대해 "평형 상수"는 하기 수학식이고,
Keq = [SO2][O2][e-]2/[SO4 =]
여기서 괄호는 화학적 활성도를 나타낸다. 이상적으로, 반응을 강제하여 SO2, O2 및 2e-로부터 황산염이 생성되는 것을 바란다. 질산염, 과산화물, 또는 다른 산소-풍부 원료를 첨가하는 것은, 도움이 될 수 있지만, 또한, 애초에 이들을 첨가하는 이점에 대응할 수 있는, 용융의 초기 단계에서 황산염 환원에 불리하게 될 수 있다. SO2는 대부분의 유리에서 매우 낮은 용해도를 가지며, 그래서 유리 용융 공정에 첨가하는 것이 비현실적이다. 전자는 환원된 다가 원소를 통해 "첨가"될 수 있다. 예를 들어, 이가 철 (Fe2+)에 대해 적절한 전자-공여 (electron-donating) 반쪽 반응은 하기 반응식으로 표시된다:
2Fe2 + → 2Fe3 + + 2e-
이 전자의 "활성"은 남는 황산염 환원 반응을 강제할 수 있어, 유리에서 SO4 =를 안정화시킨다. 적절한 환원된 다가 원소는 Fe2 +, Mn2 +, Sn2 +, Sb3 +, As3 +, V3+, Ti3 +, 및 기술분야에 당업자에게 친밀한 다른 것을 포함하지만, 이에 제한되는 것은 아니다. 각 경우에서, 유리의 색상에 대해 불리한 영향을 피하기 위해, 또는 As 및 Sb의 경우에서, 충분히 높은 수준에서 이러한 성분의 첨가가 최종 사용자의 공정에서 폐기물 관리를 복잡하게 하는 것을 피하기 위해 이러한 성분의 농도를 최소화하는 것이 중요할 수 있다.
개시된 유리의 주요 산화물 성분, 및 전술된 부 또는 떠돌이 구성분에 부가하여, 할라이드는, 원료의 선택을 통해 도입된 오염원으로, 또는 유리에서 가스 내포물을 제거하는데 사용된 의도적 성분으로, 다양한 수준으로 존재할 수 있다. 청징제로서, 할라이드는, 더 적은 양을 사용하는 것이 일반적으로 바람직할지라도, 만약 오프-가스 취급 장치의 부식을 피하는 것이 가능하다면, 약 0.4 mol% 이하의 수준으로 혼입될 수 있다. 바람직한 구체 예에서, 개별적인 할라이드 원소의 농도는 개별적인 할라이드에 대해 약 200 중량ppm 아래, 또는 모든 할라이드 원소의 합에 대해 약 800 중량ppm 아래이다.
이들 주 산화물 성분, 부성분 및 떠돌이 성분, 다가 및 할라이드 청징제에 부가하여, 원하는 물리적, 광학적, 또는 점탄성 특성을 달성하기 위해 저농도의 다른 무색 산화물 성분을 혼입하는 것은 유용할 수 있다. 이러한 산화물은, TiO2, ZrO2, HfO2, Nb2O5, Ta2O5, MoO3, WO3, ZnO, In2O3, Ga2O3, Bi2O3, GeO2, PbO, SeO3, TeO2, Y2O3, La2O3, Gd2O3, 및 기술분야의 당업자에게 알려진 다른 것을 포함하지만, 이에 제한되는 것은 아니다. 개시된 유리의 주 산화물 성분의 상대적인 비율을 조절하는 반복적 공정을 통해, 이러한 무색 산화물은 어닐링점, T10k-Tliq 또는 액상선 점도에 허용 가능하지 않는 영향 없이 약 2 mol%까지의 수준으로 첨가될 수 있다.
구체 예에 따른 유리 조성물의 실시 예들은 하기 표 1 내지 5에 기재된다.
mole% 1 2 3 4 5 6
SiO2 66.4 66.07 65.77 66.17 66.41 66.54
Al2O3 12.05 12.44 12.18 12.11 12.16 12.22
B2O3 6.64 6.92 6.63 6.63 6.84 6.52
MgO 5.64 5.29 6.38 6.2 5.14 5.35
CaO 5.32 5.26 5.37 5.28 5.25 5.28
SrO 2.05 2.3 1.45 1.4 2.54 2.35
BaO 1.74 1.57 2.05 2.07 1.51 1.59
SnO2 0.07 0.08 0.07 0.05 0.08 0.08
Fe2O3 0.01 0.01 0.01 0.01 0.01 0.01
ZrO2 0.01 0.01 0.02 0.03
중량% 1 2 3 4 5 6
SiO2 59.504 59.023 58.998 59.366 59.362 59.539
Al2O3 18.33 18.86 18.54 18.44 18.45 18.56
B2O3 6.89 7.16 6.89 6.89 7.08 6.76
MgO 3.39 3.17 3.84 3.73 3.08 3.21
CaO 4.45 4.39 4.5 4.42 4.38 4.41
SrO 3.17 3.54 2.25 2.16 3.92 3.62
BaO 3.99 3.58 4.69 4.73 3.45 3.62
SnO2 0.167 0.17 0.168 0.119 0.17 0.17
Fe2O3 0.031 0.031 0.032 0.032 0.03 0.031
ZrO2 0.024 0.025 0.043 0.062 0.023 0.025
특성 1 2 3 4 5 6
RO/Al2O3 1.22 1.16 1.25 1.23 1.19 1.19
변형점 (℃) 689 692 690 689 690 693
어닐링점 (℃) 741 744 742 740 742 745
연화점 (℃) 974 973 972 975 975 978
CTE (10-7/℃) 35.2 35.2 34.5 34.7 35.3 34.7
밀도 (g/㎤) 2.521 2.517 2.525 2.522 2.519 2.522
푸아송비 0.237 0.231 0.233 0.235 0.229 0.237
영률 (GPa) 79.29 78.94 79.43 79.36 78.88 79.29
비탄성계수 (GPa/g/㎤) 31.45 31.36 31.85 31.47 31.48 31.48
T200P (℃) 1577 1581 1570 1577 1574 1580
T10kP (℃) 1282 1286 1282 1281 1283 1288
T35kP (℃) 1214 1218 1216 1214 1216 1221
T100kP (℃) 1165 1169 1168 1165 1167 1171
T130kP (℃) 1153 1157 1156 1153 1156 1160
액상선 온도 (℃) 1140 1140 1140 1140 1140 1130
액상선 점도 (P) 1.8E+05 1.9E+05 1.9E+05 1.8E+05 1.9E+05 1.9E+05
T35kP -Tliq 74 78 76 74 76 76
T10K-Tliq 142 146 142 141 143 143
mole% 7 8 9 10 11 12
SiO2 66.59 66.62 66.67 66.72 66.4 66.55
Al2O3 12.2 12.18 12.02 11.78 12.2 12.16
B2O3 6.56 7.19 6.33 5.92 6.73 6.85
MgO 5.27 4.63 5.37 6.51 5.54 5.3
CaO 5.29 5.18 5.27 5.32 5.31 5.27
SrO 2.35 2.47 2.57 2.28 2.09 2.24
BaO 1.58 1.58 1.62 1.33 1.59 1.5
SnO2 0.07 0.07 0.08 0.07 0.08 0.08
Fe2O3 0.01 0.01 0.01 0.01 0.01 0.01
ZrO2
중량% 7 8 9 10 11 12
SiO2 59.582 59.401 59.638 60.367 59.54 59.675
Al2O3 18.52 18.43 18.24 18.08 18.56 18.5
B2O3 6.8 7.43 6.56 6.21 6.99 7.12
MgO 3.16 2.77 3.22 3.95 3.33 3.19
CaO 4.42 4.31 4.4 4.49 4.44 4.41
SrO 3.63 3.8 3.96 3.55 3.23 3.46
BaO 3.61 3.59 3.7 3.08 3.63 3.37
SnO2 0.167 0.16 0.17 0.17 0.17 0.17
Fe2O3 0.031 0.03 0.031 0.032 0.031 0.031
ZrO2 0.022 0.025 0.024 0.02 0.02 0.025
특성 7 8 9 10 11 12
RO/Al2O3 1.19 1.14 1.23 1.31 1.19 1.18
변형점 (℃) 689 690 692 694 692 689
어닐링점 (℃) 741 743 743 745 743 742
연화점 (℃) 977 977 976 976 976 975
CTE (10-7/℃) 34.9 35.2 35.9 35.2 34.8 34.7
밀도 (g/㎤) 2.523 2.511 2.529 2.524 2.516 2.512
푸아송비 0.236 0.238 0.234 0.236 0.241 0.249
영률 (GPa) 79.08 77.84 79.22 80.67 79.63 79.50
비탄성계수 (GPa/g/㎤) 31.34 31.00 31.32 31.96 31.65 31.65
T200P (℃) 1600 1584 1577 1573 1580 1583
T10kP (℃) 1295 1289 1283 1284 1286 1287
T35kP (℃) 1226 1221 1216 1218 1219 1220
T100kP (℃) 1175 1172 1167 1169 1170 1170
T130kP (℃) 1164 1160 1155 1158 1158 1158
액상선 온도 (℃) 1140 1120 1140 1155 1140 1130
액상선 점도 (P) 2.2E+05 3.4E+05 1.9E+05 1.4E+05 2.0E+05 2.5E+05
T35kP -Tliq 86 101 76 63 79 90
T10K-Tliq 155 169 143 129 146 157
mole% 13 14 15 16 17 18
SiO2 66.6 66.76 66.68 66.56 66.68 66.66
Al2O3 12.18 12.12 12.2 12.06 12.2 12.04
B2O3 6.52 7.05 6.69 6.56 6.69 6.54
MgO 5.78 4.49 5.37 5.92 5.37 5.39
CaO 5.26 5.19 5.17 5.24 5.17 5.29
SrO 1.44 2.11 1.6 1.45 1.6 2.33
BaO 2.07 2.12 2.16 2.06 2.16 1.59
SnO2 0.08 0.07 0.07 0.08 0.07 0.07
Fe2O3 0.01 0.01 0.01 0.01 0.01 0.01
ZrO2
중량% 13 14 15 16 17 18
SiO2 59.638 59.227 59.474 59.662 59.474 59.723
Al2O3 18.5 18.24 18.46 18.35 18.46 18.31
B2O3 6.76 7.25 6.91 6.81 6.91 6.79
MgO 3.47 2.67 3.21 3.56 3.21 3.24
CaO 4.4 4.3 4.3 4.38 4.3 4.42
SrO 2.22 3.23 2.46 2.24 2.46 3.6
BaO 4.73 4.81 4.92 4.72 4.92 3.64
SnO2 0.17 0.16 0.16 0.17 0.16 0.167
Fe2O3 0.031 0.03 0.031 0.031 0.031 0.031
ZrO2 0.03 0.02 0.03 0.02 0.03 0.02
특성 13 14 15 16 17 18
RO/Al2O3 1.19 1.15 1.17 1.22 1.17 1.21
변형점 (℃) 693 691 691 691 691 692
어닐링점 (℃) 745 745 744 743 744 744
연화점 (℃) 978 982 983 978 983 974
CTE (10-7/℃) 35.0 35.3 34.5 35.2 34.5 34.6
밀도 (g/㎤) 2.519 2.520 2.518 2.519 2.518 2.521
푸아송비 0.233 0.238 0.234 0.226 0.234 0.238
영률 (GPa) 79.15 77.63 78.39 78.60 78.39 79.43
비탄성계수 (GPa/g/㎤) 31.84 31.82 31.72 31.20 31.13 31.13
T200P (℃) 1587 1597 1592 1575 1592 1574
T10kP (℃) 1289 1297 1297 1285 1297 1283
T35kP (℃) 1222 1228 1228 1219 1228 1216
T100kP (℃) 1172 1178 1177 1170 1177 1167
T130kP (℃) 1161 1166 1165 1158 1165 1155
액상선 온도 (℃) 1140 1120 1140 1140 1140 1110
액상선 점도 (P) 2.1E+05 3.9E+05 2.3E+05 2.0E+05 2.3E+05 4.0E+05
T35kP -Tliq 82 108 88 79 88 106
T10K-Tliq 149 177 157 145 157 173
mole% 19 20 21 22 23 24
SiO2 66.64 66.52 66.64 65.95 66.1 66.19
Al2O3 12.39 12.09 12.39 12.01 12.25 12.13
B2O3 6.88 6.5 6.88 6.7 7.01 6.53
MgO 4.88 6 4.88 5.32 5.23 5.47
CaO 4.9 5.23 4.9 5.28 4.07 5.29
SrO 1.82 1.44 1.82 3.22 2.84 2.58
BaO 2.34 2.06 2.34 1.36 2.33 1.65
SnO2 0.08 0.07 0.08 0.07 0.07 0.08
Fe2O3 0.01 0.01 0.01 0.01 0.01 0.01
ZrO2
중량% 19 20 21 22 23 24
SiO2 59.028 59.646 59.028 58.924 58.246 59.141
Al2O3 18.62 18.4 18.62 18.21 18.31 18.39
B2O3 7.06 6.75 7.06 6.94 7.16 6.76
MgO 2.9 3.61 2.9 3.19 3.09 3.28
CaO 4.05 4.38 4.05 4.4 3.35 4.41
SrO 2.78 2.22 2.78 4.956 4.32 3.978
BaO 5.28 4.72 5.28 3.11 5.25 3.76
SnO2 0.169 0.156 0.169 0.163 0.16 0.17
Fe2O3 0.03 0.031 0.03 0.031 0.029 0.031
ZrO2 0.02 0.03 0.024 0.023 0.023 0.024
특성 19 20 21 22 23 24
RO/Al2O3 1.13 1.22 1.13 1.26 1.18 1.24
변형점 (℃) 694 690 694 685 687 690
어닐링점 (℃) 747 742 747 737 740 741
연화점 (℃) 982 975 982 970 978 973
CTE (10-7/℃) 34.7 35.2 34.7 37.3 35.7 35.9
밀도 (g/㎤) 2.528 2.521 2.528 2.536 2.543 2.530
푸아송비 0.247 0.240 0.247 0.254 0.241 0.235
영률 (GPa) 79.01 79.57 79.01 80.53 77.98 79.22
비탄성계수 (GPa/g/㎤) 31.26 31.56 31.84 31.84 31.33 31.33
T200P (℃) 1594 1584 1594 1570 1580 1578
T10kP (℃) 1297 1287 1297 1276 1289 1281
T35kP (℃) 1229 1219 1229 1209 1221 1214
T100kP (℃) 1178 1169 1178 1159 1171 1165
T130kP (℃) 1167 1157 1167 1148 1159 1153
액상선 온도 (℃) 1125 1140 1125 1120 1120 1120
액상선 점도 (P) 3.5E+05 2.0E+05 3.5E+05 2.5E+05 3.3E+05 3.3E+05
T35kP -Tliq 104 79 104 89 101 101
T10K-Tliq 172 147 172 156 169 169
mole% 25 26 27 28 29 30
SiO2 66.1 66.14 66.34 66.69 65.96 66.41
Al2O3 12.25 12.17 12.08 12.28 11.73 11.95
B2O3 7.01 6.68 6.72 6.44 6.79 6.46
MgO 5.23 5.56 5.76 5.77 5.76 5.84
CaO 4.07 5.33 5.31 5.23 5.32 5.28
SrO 2.84 2.35 1.75 1.62 1.85 2.45
BaO 2.33 1.61 1.89 1.83 2.44 1.5
SnO2 0.07 0.08 0.08 0.08 0.08 0.08
Fe2O3 0.01 0.01 0.01 0.01 0.01 0.01
ZrO2
중량% 25 26 27 28 29 30
SiO2 58.246 59.208 59.452 59.811 58.74 59.692
Al2O3 18.31 18.49 18.37 18.69 17.73 18.23
B2O3 7.16 6.93 6.98 6.69 7.01 6.73
MgO 3.09 3.34 3.46 3.47 3.44 3.52
CaO 3.35 4.45 4.44 4.38 4.42 4.43
SrO 4.32 3.63 2.7 2.5 2.84 3.8
BaO 5.25 3.67 4.32 4.18 5.54 3.32
SnO2 0.16 0.17 0.17 0.17 0.17 0.17
Fe2O3 0.029 0.031 0.031 0.031 0.032 0.032
ZrO2 0.023 0.023 0.023 0.025 0.024 0.024
특성 25 26 27 28 29 30
RO/Al2O3 1.18 1.22 1.22 1.18 1.31 1.26
변형점 (℃) 687 690 690 695 687 691
어닐링점 (℃) 740 742 741 747 739 742
연화점 (℃) 978 974 975 979 973 974
CTE (10-7/℃) 35.7 35.3 35.1 34.2 35.8 34.9
밀도 (g/㎤) 2.543 2.524 2.520 2.516 2.528 2.523
푸아송비 0.241 0.239 0.247 0.243 0.236 0.236
영률 (GPa) 77.98 79.63 79.91 79.84 77.91 79.57
비탄성계수 (GPa/g/㎤) 31.55 31.82 31.73 31.82 31.54 31.54
T200P (℃) 1580 1577 1578 1579 1598 1578
T10kP (℃) 1289 1282 1285 1286 1290 1282
T35kP (℃) 1221 1215 1218 1219 1221 1215
T100kP (℃) 1171 1166 1168 1170 1171 1166
T130kP (℃) 1159 1154 1156 1159 1159 1155
액상선 온도 (℃) 1120 1125 1135 1140 1140 1140
액상선 점도 (P) 3.3E+05 2.6E+05 2.2E+05 2.0E+05 2.0E+05 1.8E+05
T35kP -Tliq 101 90 83 79 81 75
T10K-Tliq 169 157 150 146 150 142
다양한 변형 및 변경이 여기에 기재된 물질, 방법, 및 제품들에 대해 만들어질 수 있다. 여기에 기재된 물질, 방법, 및 제품들의 다른 관점은 여기에 기재된 물질, 방법, 및 제품들의 실행 및 본 명세서의 고려사항으로부터 명백해질 것이다. 본 명세서 및 실시 예들은 대표적인 것으로 고려되는 것으로 의도된다.

Claims (23)

  1. 산화물 기준에 대한 중량 퍼센트로: SiO2 57-61, Al2O3 17.5-20.5, B2O3 5-8, MgO 1-5, CaO 3-9, SrO 0-6, BaO 0-6.5의 범위를 포함하고, 변형점 > 685℃, 영률 > 77GPa, 밀도 < 2.55, 및 약 10,000 poises (T10k)의 점도에서 온도 < 1300℃를 나타내는 유리.
  2. 청구항 1에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로 57.5-60.5의 범위에서, SiO2를 포함하는 유리.
  3. 청구항 1 또는 2에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로 17.8-20.2의 범위에서, Al2O3를 포함하는 유리.
  4. 청구항 1-3 중 어느 한 항에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로 5.5-7.8의 범위에서, B2O3를 포함하는 유리.
  5. 청구항 1-4 중 어느 한 항에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로 1-4.5의 범위에서, MgO를 포함하는 유리.
  6. 청구항 1-5 중 어느 한 항에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로 1-4.5의 범위에서, CaO를 포함하는 유리.
  7. 청구항 1-6 중 어느 한 항에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로 1-4.5의 범위에서, CaO를 포함하는 유리.
  8. 청구항 1-7 중 어느 한 항에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로 1-4.5의 범위에서, SrO를 포함하는 유리.
  9. 청구항 1-8 중 어느 한 항에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로 0-6의 범위에서, BaO를 포함하는 유리.
  10. 청구항 1-9 중 어느 한 항에 있어서,
    상기 유리는 730℃를 초과하는 어닐링점을 갖는 유리.
  11. 청구항 1-10 중 어느 한 항에 있어서,
    상기 유리는 31을 초과하는 비탄성계수를 갖는 유리.
  12. 청구항 1-11 중 어느 한 항에 있어서,
    상기 유리는: T15k - Tliq > 30℃를 만족하는 유리.
  13. 청구항 1에 있어서,
    상기 유리는, 산화물 기준에 대한 중량 퍼센트로: SiO2 58-60, Al2O3 17-20, B2O3 7.25 이하, MgO 3 이상, CaO 2-4.5, SrO 1.5 이상, BaO 3-5를 포함하고, 여기서 SiO2, Al2O3, B2O3, MgO, CaO, SrO 및 BaO는 산화물 성분의 중량 퍼센트를 나타내는, 유리.
  14. 청구항 1-13 중 어느 한 항에 있어서,
    상기 유리는 735℃ 이상의 어닐링점을 갖는 유리.
  15. 청구항 1-14 중 어느 한 항에 있어서,
    T35k - Tliq는 60 이상인 유리.
  16. 청구항 1-15 중 어느 한 항에 있어서,
    상기 유리는 약 1200℃ 내지 약 1250℃의 범위에서 T35k를 갖는 유리.
  17. 청구항 1-16 중 어느 한 항에 있어서,
    T35k는 약 1235℃ 이하인 유리.
  18. 청구항 1-14 중 어느 한 항에 있어서,
    상기 유리는 약 28-42 x 10-7/℃ 범위의 CTE를 갖는 유리.
  19. 청구항 1-17 중 어느 한 항에 있어서,
    액상선 점도는 130 kpoise 이상인 유리.
  20. 산화물 기준에 대한 중량 퍼센트로: SiO2 57-61, Al2O3 17-21, B2O3 5-8, MgO 3 이상 내지 5 미만, CaO 2-4.5, SrO 1.5 이상 내지 5 미만, BaO 3.5-8을 포함하는 유리로, 여기서 SiO2, Al2O3, B2O3, MgO, CaO, SrO 및 BaO은 산화물 성분의 중량 퍼센트를 나타내며, 여기서 상기 유리는: (MgO+CaO+SrO+BaO)/Al2O3 ≥1.05, 735℃ 이상의 어닐링점, 60 이상인 T35k - Tliq, 1250℃ 이하의 T35k, 약 39 x 10-7/℃ 미만의 CTE, 77GPa 이상의 영률, 및 2.55 g/㎤ 이하의 밀도의 특성을 갖는, 보로알루미노실리케이트 유리.
  21. 청구항 1-19 중 어느 한 항에 따른 유리를 포함하는 물건으로, 상기 물건은 다운드로우 시트 제작 공정에 의해 생산되는 물건.
  22. 청구항 1-19 중 어느 한 항에 따른 유리를 포함하는 물건으로, 상기 물건은 퓨전 공정에 의해 생산되는 물건.
  23. 청구항 1-19 중 어느 한 항에 따른 유리를 포함하는 액정 디스플레이 기판.
KR1020167035234A 2014-05-15 2015-05-13 알루미노실리케이트 유리 KR102279182B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461993711P 2014-05-15 2014-05-15
US61/993,711 2014-05-15
PCT/US2015/030444 WO2015175581A1 (en) 2014-05-15 2015-05-13 Aluminosilicate glasses

Publications (2)

Publication Number Publication Date
KR20170008278A true KR20170008278A (ko) 2017-01-23
KR102279182B1 KR102279182B1 (ko) 2021-07-20

Family

ID=53264814

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167035234A KR102279182B1 (ko) 2014-05-15 2015-05-13 알루미노실리케이트 유리

Country Status (7)

Country Link
US (1) US10077205B2 (ko)
EP (1) EP3142977B1 (ko)
JP (2) JP6462724B2 (ko)
KR (1) KR102279182B1 (ko)
CN (1) CN106488889A (ko)
TW (2) TWI635062B (ko)
WO (1) WO2015175581A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200088906A (ko) * 2017-12-13 2020-07-23 퉁수 테크놀로지 그룹 컴퍼니 리미티드 유리 조성물, 알루미노실리케이트 유리 및 그 제조 방법, 적용

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
KR102391994B1 (ko) * 2017-08-14 2022-04-28 삼성디스플레이 주식회사 멀티 스택 접합체, 멀티 스택 접합체의 제조 방법 및 멀티 스택 접합체를 포함하는 표시 장치
WO2019082616A1 (ja) * 2017-10-25 2019-05-02 Agc株式会社 光学ガラス、光学部材およびウェアラブル機器
CN116062993A (zh) * 2018-06-19 2023-05-05 康宁公司 高应变点且高杨氏模量玻璃
JP2020097506A (ja) * 2018-12-19 2020-06-25 日本電気硝子株式会社 アルミノシリケートガラス
CN112266168A (zh) * 2020-10-16 2021-01-26 郑州旭飞光电科技有限公司 一种无碱高铝硼硅酸盐玻璃及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082130A (ja) * 2010-10-06 2012-04-26 Corning Inc 高熱および化学安定性を有する無アルカリガラス組成物
JP2013151407A (ja) * 2011-12-29 2013-08-08 Nippon Electric Glass Co Ltd 無アルカリガラス

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338696A (en) 1964-05-06 1967-08-29 Corning Glass Works Sheet forming apparatus
BE757057A (fr) 1969-10-06 1971-04-05 Corning Glass Works Procede et appareil de controle d'epaisseur d'une feuille de verre nouvellement etiree
US6169047B1 (en) * 1994-11-30 2001-01-02 Asahi Glass Company Ltd. Alkali-free glass and flat panel display
JP4250208B2 (ja) * 1994-11-30 2009-04-08 旭硝子株式会社 ディスプレイ基板用無アルカリガラス及び液晶ディスプレイパネル
US6319867B1 (en) * 1998-11-30 2001-11-20 Corning Incorporated Glasses for flat panel displays
DE19939789A1 (de) 1999-08-21 2001-02-22 Schott Glas Alkalifreie Aluminoborosilicatgläser und deren Verwendungen
DE10000839C1 (de) * 2000-01-12 2001-05-10 Schott Glas Alkalifreies Aluminoborosilicatglas und dessen Verwendungen
TW570905B (en) 2002-10-23 2004-01-11 China Optoelectronics Technolo Glass composition of a substrate for display
CN1898168B (zh) * 2003-12-26 2012-08-01 旭硝子株式会社 无碱玻璃、其制造方法及液晶显示板
CN1268567C (zh) * 2005-02-06 2006-08-09 河南安彩高科股份有限公司 一种无碱金属的玻璃组合物及其制法和应用
CN100550903C (zh) 2005-06-06 2009-10-14 华为技术有限公司 一种微波接入全球互通接入网系统
JP5703535B2 (ja) 2006-05-23 2015-04-22 日本電気硝子株式会社 無アルカリガラス基板
JP4457410B2 (ja) * 2006-09-21 2010-04-28 日本電気硝子株式会社 無アルカリガラス基板
CN101784494B (zh) * 2007-08-31 2013-01-30 旭硝子株式会社 玻璃板及其制造方法以及tft面板的制造方法
RU2010154445A (ru) * 2008-05-30 2012-07-10 Фостер Вилер Энергия Ой (Fi) Способ и система для генерации энергии путем сжигания в чистом кислороде
EP2354105A1 (en) * 2010-02-05 2011-08-10 3B Glass fibre composition and composite material reinforced therewith
US8785336B2 (en) * 2011-03-14 2014-07-22 Nippon Electric Glass Co., Ltd. Alkali-free glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082130A (ja) * 2010-10-06 2012-04-26 Corning Inc 高熱および化学安定性を有する無アルカリガラス組成物
JP2013151407A (ja) * 2011-12-29 2013-08-08 Nippon Electric Glass Co Ltd 無アルカリガラス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200088906A (ko) * 2017-12-13 2020-07-23 퉁수 테크놀로지 그룹 컴퍼니 리미티드 유리 조성물, 알루미노실리케이트 유리 및 그 제조 방법, 적용
US11795100B2 (en) 2017-12-13 2023-10-24 Tunghsu Technology Group Co., Ltd. Composition for glass, and aluminosilicate glass, preparation method therefor, and use thereof

Also Published As

Publication number Publication date
EP3142977A1 (en) 2017-03-22
EP3142977B1 (en) 2021-10-06
JP6826797B2 (ja) 2021-02-10
WO2015175581A1 (en) 2015-11-19
JP2019089701A (ja) 2019-06-13
US10077205B2 (en) 2018-09-18
KR102279182B1 (ko) 2021-07-20
JP2017522252A (ja) 2017-08-10
TW201742842A (zh) 2017-12-16
TWI635062B (zh) 2018-09-11
TW201546012A (zh) 2015-12-16
TWI593655B (zh) 2017-08-01
CN106488889A (zh) 2017-03-08
JP6462724B2 (ja) 2019-01-30
US20170260084A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US9802857B2 (en) Dimensionally stable fast etching glasses
KR101790478B1 (ko) 고변형점 알루미노실리케이트 유리
JP6826797B2 (ja) アルミノシリケートガラス
US11655180B2 (en) Alkali-free boroalumino silicate glasses
US20170152170A1 (en) Dimensionally stable fast etching glasses
KR20210049943A (ko) 치수적으로 안정한 유리
US11352288B2 (en) Dimensionally stable fast etching glasses
US11939260B2 (en) High strain point and high young&#39;s modulus glasses
KR102673755B1 (ko) 고 변형점 및 고 영률 유리

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant