KR20170007349A - 촉매 컨버터의 노화 정도를 검출하기 위한 방법 - Google Patents

촉매 컨버터의 노화 정도를 검출하기 위한 방법 Download PDF

Info

Publication number
KR20170007349A
KR20170007349A KR1020167034190A KR20167034190A KR20170007349A KR 20170007349 A KR20170007349 A KR 20170007349A KR 1020167034190 A KR1020167034190 A KR 1020167034190A KR 20167034190 A KR20167034190 A KR 20167034190A KR 20170007349 A KR20170007349 A KR 20170007349A
Authority
KR
South Korea
Prior art keywords
catalytic converter
aging
water
degree
temperature
Prior art date
Application number
KR1020167034190A
Other languages
English (en)
Other versions
KR102356117B1 (ko
Inventor
그레고르 보일레르츠
마르틴 포츠마이어
랄프 모스
Original Assignee
우미코레 아게 운트 코 카게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우미코레 아게 운트 코 카게 filed Critical 우미코레 아게 운트 코 카게
Publication of KR20170007349A publication Critical patent/KR20170007349A/ko
Application granted granted Critical
Publication of KR102356117B1 publication Critical patent/KR102356117B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/227Sensors changing capacitance upon adsorption or absorption of fluid components, e.g. electrolyte-insulator-semiconductor sensors, MOS capacitors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/028Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting humidity or water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1628Moisture amount in exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • Y02T10/47

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 촉매 컨버터(2)의 노화 상태를 결정하기 위한 방법에 관한 것이다. 개시된 방법은 하우징에 위치된 촉매 컨버터(2)가 고주파수 전자기파로 여기될 때 형성되는 공진이 분석됨에 따라서 비침입식 방식으로 기능한다.

Description

촉매 컨버터의 노화 정도를 검출하기 위한 방법{METHOD FOR DETECTING THE DEGREE OF AGING OF CATALYTIC CONVERTERS}
본 발명은 촉매 컨버터의 노화 정도를 검출하기 위한 방법에 관한 것이다. 목적으로 하는 방법은 고주파수 전자파에 의한 하우징 내에 배열된 촉매의 여기 시에 형성되는 공진을 분석하는 것에 의해 접촉없이 기능한다.
연료 소비를 감소시키도록 압력과 관련된 더욱 엄격해지는 배기 가스 법률은 내연기관뿐만 아니라 그 배기 가스의 처리를 위한 새로운 접근을 필요하게 만든다. 이러한 것은 또한 배기 가스 제어 시스템을 제어하고 모니터링하기 위한 새로운 접근을 의미한다.
예를 들어, 가솔린 엔진(λ = 1 엔진으로 공지된 것)에서, 미처리된 배기 가스의 공연비(λ)(또한 소위 공기비)는 제1 λ 센서의 수단에 의해 검출된다. 공칭값 λ = 1로부터 제어 편차의 경우에, 공연비는 조정된다. λ = 1은 평균 오버타임에서 거의 유지되어만 한다. 제1 λ 센서 다음에 배열되는 "삼원 촉매 컨버터(three-way catalytic converter)"로서 공지된 것의 산소 저장 용량이 주어지면, 최적의 변환은 촉매 컨버터가 여전히 양호한 상태에 있는 한 항상 일어난다. 촉매 컨버터의 품질이 감소함에 따라서(그 중에서도, 유해한 배기 가스(HC, CO 및 NO)의 변환율의 상승 및 시동 온도에서의 상승에 의해 명백하게 되는), 산소를 저장하는 촉매 컨버터의 능력도 감소한다. 촉매 컨버터 다음에 배열되는 제2 λ 센서는 이러한 것을 검출할 수 있다. 매우 복잡한 모델링은 산소-저장 촉매 컨버터의 상태가 2개의 λ 센서들의 신호로부터 추론되는 간접적인 방법을 위해 요구되며, 모델링은 특히 엔진 동작 상태 모델을 요구한다(예를 들어, J. Riegel 등의, "자동차 배기가스 제어를 위한 배기 가스 센서들", Solid State Ionics 152-153 (2002), 783-800 참조).
다른 형태의 촉매 컨버터들(디젤(산화 촉매 컨버터들), 코팅된 입자 필터들, NOx 저장 촉매 컨버터들, 및 SCR 촉매 컨버터들과 같은)은 동작 시간에 걸쳐서 그 변환 효율을 연속으로 감소시키는 노화 현상을 조건으로 한다. 그러므로, OBD 조치의 수단에 의한 적절한 모니터링은, 확인하고, 필요하면 배기 가스를 더 이상 충분히 취급할 수 없는 촉매 컨버터들을 교환할 수 있기 위하여 필수적이다.
이에 관한 지원은 특히, 촉매 컨버터의 동작 상태 및 품질이 특히 정규 동작 동안 직접 결정될 수 있는 방법에 의해 제공된다. 그러므로, 촉매 컨버터의 기능성들이 여전히 이용 가능한 정도는, 예를 들어 R. Moos, M. Wedemann, M. Spoerl, S. Reiß, G. Fischerauer의 "전기 수단에 의한 직접 촉매 모니터링: 유망한 신규 원리들의 개요" Topics in Catalysis, 52 (2009), 2035-2040가 입증할 수 있었음에 따라서 결정될 수 있다. 고주파수 지원 시스템(예를 들어, DE102011107784A1, DE102008012050A1 또는 DE10358495A1에 개시된 바와 같은)은 특히 간단한 디자인을 가진다.
출원 DE10358495A1에서, 무접촉 방법은 촉매 컨버터, 특히 NOx 저장 촉매 컨버터의 상태를 인식하기 위하여 제안된다. 이러한 목적을 위하여, 전자 마이크로파 공진은 공동 공진기(cavity resonator)로서 디자인된 촉매 컨버터 하우징의 내부에서 여기되고, 공진 주파수 및/또는 품질에서의 시프팅이 관찰된다. 공진 주파수에서의 감소는 저장 물질에서 증가하는 NOx 로딩의 측정으로서 취해진다. 공진 주파수의 사전 결정 가능한 값이 도달되면, 재생이 수행된다.
DE102008012050A1에서, 전자 마이크로파 공진은 공동 공진기로서 디자인된 촉매 컨버터 하우징의 내부에서 여기되고, 예를 들어 공진 주파수의 위치가 관찰된다. 공진 주파수에서의 변화는 예를 들어 촉매 컨버터의 저장 물질에서 산소 로딩의 측정으로서 취해진다.
가능하면, 모든 자동차의 배기 가스 컨버터들의 품질 또는 변환 효율을 충분하고 신뢰 가능하게 결정할 수 있는 수단에 의해 이용 가능한, 포괄적으로 이용 가능하고, 유사하게 간단하며 견고한 방법을 가지는 것이 바람직하다.
당업자에게 종래의 기술로부터 자명한 이들 및 다른 목적들은 본 발명의 청구항 제1항의 특징을 가지는 방법에 의해 달성된다. 청구항 제1항을 인용하는 종속항들에서, 본 발명에 따른 방법의 다른 바람직한 실시예들이 제시된다.
그렇더라도, 다루어질 목적을 달성하는데 성공적인 매우 유익한 방식에서, 촉매 표면상의 물의 흡착은 < 200℃의 촉매 컨버터 온도에서 공진 특징을 사용하여 결정되며, 이에 의해, 촉매 컨버터의 노화는, 바람직하게 마이크로파 범위 내에서 교류 전자기장(alternating electromagnetic field)을 발산하고 이를 검출하는 것에 의해, 금속 촉매 컨버터 하우징에 위치된 자동차의 배기 가스 컨버터의 노화의 비침입성 검출을 위한 방법으로 추론된다.
자동차 배기 가스 컨버터의 표면은 열응력 또는 오염으로 인하여 변한다. 이러한 공정에서, 반응이 일어날 수 있는 자유 표면 위치들의 수는 감소한다. 오염의 경우에, 활성 중심(active center)들은 차단되고, 열응력의 경우에, 미세하게 분포된 금속들과 캐리어 물질들은 모두 함께 소결된다. 그러므로, 표면은 노화와 함께 저하되고, 따라서 또한 그 표면에 있는 화학적 및 물리적 흡착 물질의 능력이 저하된다. 노화에 의해 감소된 자유 표면 위치들의 양은 표면에서 흡착될 수 있는 물의 양을 변화시킨다. 또한 표면에서 흡착될 수 있는 물의 양은 한편으로 배기 가스에 있는 물에, 다른 한편으로 온도에 의존한다. 캐리어 물질을 포함하는, 촉매 컨버터의 전자기 물질 파라미터(전기 전도성 및 유전율 또는 복소 유전율(complex permittivity))는 물의 수착(sorption)으로 인하여 변한다.
그 결과, 대응하는 공진 특징은 촉매 컨버터의 주어진 온도에서, 또는 한정된 온도 범위(dfres/dT와 같은)를 따라서 결정되고, 그런 다음 자동차의 ECU에 저장될 수 있는 촉매 컨버터의 신생 또는 갓 나온 상태의 데이터와 비교된다. 결과가 낮은 값을 향해 쉬프트되면, 예를 들어 온도와 공진 주파수에서의 변화의 경우에, 촉매 컨버터는 물을 적게 흡착할 수 있기 때문에, 공동 공진 주파수(cavity resonance frequency)가 대응하여 변하는 것이 가정된다. 그러나, 오직 충분한 구별은 200℃의 온도 아래에서 일어난다. 그러므로, 온도는 바람직하게 > 50℃ 내지 < 200℃, 바람직하게 60℃ 내지 150℃, 특히 바람직하게 70℃ 내지 120℃에서 수행된다. 이러한 온도 범위는, 전기 특성이 이러한 온도 범위 내에서 산소 로딩으로 거의 변하지 않으므로(DE102011107784A1의 도 4에 예시된 바와 같이), DE10358495A1에 설명된 상태 진단이 적어도 삼원 촉매 컨버터에 적용할 수 없기 때문에 또한 유익하다. 본 발명에 따른 방법에서, 환경 영향은 가능하면 배제되거나 또는 배기 트레인(exhaust train)의 가열 특징을 사용하여 수정되어야 한다. 예를 들어, 온도의 영향은 DE102011107784A1에서 개괄된 바와 같은 방법에 의해 수정될 수 있다.
상기된 바와 같이, 조사된 캐비티(irradiated cavity)의 공진 특징은 그 안에 위치된 촉매 컨버터의 수착 능력에 의해 차량의 동작 동안 변한다. 이러한 것은 차례로 그 노화 정도에 의존한다. 바람직하게, 흡착되는 물질은 물이며; 물은 물론 연료 연소가 일어날 때 자연적으로 배기 가스에 항상 존재한다. 물은 또한 높은 유전율을 가지며, 수착이 증가하거나 또는 감소함에 따라서 촉매 컨버터의 전자기 물질 파라미터를 대응하는 범위까지 변화시킨다. 흡착된 물의 양은 노화에 더하여 배기 가스에서의 물 함유량에 의해 또한 영향을 받는다. 유익하게, 그러므로, 배기 가스 중의 물 함유량은 엔진 제어에서 계산되고, 공진 신호로부터 노화 정도를 결정할 때 고려된다. 배기 가스 중의 물 함유량이 시간 경과에 따라서 변하면, 평가는 한정된 물의 수착률을 고려하는 것에 의해 추가적으로 개선될 수 있다. 바람직하게, 본 발명에 따른 방법은 배기 가스 중의 물의 양이 충분하고 최적으로 일정할 때 이용된다. 특히 바람직하게, 측정은 물의 체적당 3-20부, 바람직하게 체적당 5-15부를 함유하는 배기 가스 혼합물이 존재할 때 수행된다.
촉매 컨버터의 전기 특성은 공진 주파수를 사용하는 것에 의해서가 아니라, 다른 공진 특성을 고려하는 것에 의해 결정될 수 있다. 이러한 특징들은 공진 주파수, 진폭, 공진기(Q)의 품질, 손실, 분산 행렬(scatter matrix)(Sij)의 파라미터들, 투과 인자의 규모, 공진 피크 또는 공진 기압골(resonance trough)의 폭, 및 S 파라미터로부터 파생되는 다른 양들을 포함하는 그룹으로부터 바람직하게 선택된다(DE102008012050A1 참조). 공진 주파수뿐만 아니라 반사 파라미터(S11) 또는 투과 파라미터(S12)의 규모가 이러한 문맥에서 특히 바람직하다. 공진 주파수를 사용한 평가가 이러한 문맥에서 특히 바람직하다(도 2 참조). 다양한 공진 모드들이 또한 사용될 수 있다. 특히, 온도와 같은 상이한 외란 변수(disturbance variable)들에 상이하게 반응하는 것들이 바람직하다.
자동차 촉매 컨버터들은 통상적으로 촉매 컨버터들이 Pt, Pd 또는 Rh와 같은 미세하게 분포된 귀금속들로 인하여 화학 반응이 일어나는 큰 표면을 제공하는 것을 특징으로 한다. 또한 상기된 바와 같이, 본 방법은 공진 특성들이 촉매 컨버터의 증가하는 노화에 의해 변한다는 사실에 기초한다. 본 발명에서 고려된 촉매 컨버터들은 모든 촉매 컨버터들이 동일한 원리의 대상이기 때문에 모두 당업자에 관련된 것들이다. 이러한 촉매 컨버터들은 삼원 촉매 컨버터들, 디젤 산화 촉매 컨버터들(가능하게 촉매로 코팅된 디젤 입자 필터들), NOx 저장 촉매 컨버터들, 및 SCR 촉매 컨버터들을 포함하는 그룹으로부터 선택된다. 산소 저장 물질을 구비하는 삼원 촉매 컨버터들이 이러한 문맥에서 특히 바람직하다.
본 발명의 바람직한 실시예에서, 촉매 컨버터는 마이크로파 반사기(3, 4)에 의해 둘러싸인다(DE102008012050A1). 이에 적합한 모든 물질들은 최적으로 낮은 역압(counterpressure)으로 배기 가스 유동에 대응하며, 그럼에도 이용된 마이크로파를 반사할 수 있다. 당업자는 관련 디바이스들을 안다. 의심스러울 경우에, 간단한 금속 그리드들이 유용하다. 이것은, 고주파수에 관하여 명확하게 한정되고 연결 파이프들의 형상에 관계없는 공진기를 생성한다. 이러한 것은 특히, 예를 들어 가스가 세라믹 허니컴 바디를 통해 균일하게 흘러나오도록, 가스 입구에서 촉매 컨버터 하우징과 연결 파이프들 사이의 원뿔형 천이부들이 반사가 아니라 유동을 고려하여 디자인되기 때문이 이로울 수 있다. 그러나, 원칙적으로, 촉매 컨버터가 정상적으로 설치되는 대응하는 금속 촉매 컨버터 하우징이 이러한 목적에 적절하다. 반사 그리드없이 동작하는 것이 부응하여 가능하지만, 특정 환경에서, 촉매 컨버터 상태와 측정된 S 파라미터들 사이의 관계의 반전으로 인하여 보다 큰 노력을 요구할 수 있다.
바람직하게, 유익하게 마이크로파 범위 내에 놓이는 전자기 방사선을 전송하고 수신하기 위한 안테나(들)(5, 6)(도 1)가 촉매 컨버터(2) 전후에 위치된다. 그러나, 금속성 촉매 컨버터 하우징에 위치되는 안테나가 사용되는 본 발명에 따른 방법이 또한 바람직하다. 안테나는 대응하는 신호를 전송하고 수신한다. 안테나들은 당업자의 재량에 따라서 선택될 수 있다. 이러한 설비뿐만 아니라 신호 검출 유닛 및 대응하는 분석 유닛들을 당업자에게 충분히 공지되었다(P.S. Neelakanta, Handbook of Electromagnetic Materials. CRC Press, Boca Raton etc., 1995 및 S.H. Chao, 캐비티 섭동 방법 및 그 에러에 의한 마이크로파 전도성 및 유전율의 측정, IEEE Transactions on Microwave Theory and Techniques 33 (1985) 519-526 뿐만 아니라 본원에 인용된 문헌으로부터).
본 발명은 특히 유익한 방식으로 임의의 형태의 배기 가스 촉매 컨버터의 노화 정도를 결정하는 것을 추구한다. 우선일 전에, 촉매 컨버터 품질에 관한 결론이 특정 온도 범위 내에서 조사된 촉매 컨버터의 물 수착 능력의 수단에 의해 만들어질 수 있다는 것은 공지되지 않았다. 관련 방법에 의해, 처음으로 비교적 간단한 방식으로 정상적인 운전 상태 동안 자동차 배기 가스 컨버터의 노화 정도를 비침입식으로 직접 결정할 수 있는 절차가 당업자에게 제공된다. 공지된 종래 기술의 관점에서, 이러한 것은 결코 자명하지 않다.
도 1은 배기 가스 처리 시스템의 기본적인 구조를 도시한 도면.
도 2는 합성 가스 플랜트에서 측정된 공진 주파수 곡선들을 도시한 도면.
예:
도 1은, 촉매 컨버터(2)가 설치되는 하우징 부분(1), 2개의 안테나(5, 6)(그 중 하나는 선택적이다)들을 갖는 측정 시스템, 제어(7) 및 평가 전자 기기(8), 및 선택적 온도 센서(DE102008012050A1 참조) 뿐만 아니라 선택적 반사기(3, 4)를 갖는 배기 가스 처리 시스템의 기본적인 구조를 도시한다.
도 2는 1" x 3" 지름(dia.) TWC 드릴 코어들을 위한 합성 가스 플랜트에서 측정된 공진 주파수 곡선들을 도시한다. 드릴 코어는 측정되었다. 이러한 것은 먼저 초기(fresh)에 테스트되고, 850℃에서 12 시간 연료 차단 노화(노화 1) 후 뿐만 아니라 1050℃에서의 노화(노화 2) 후에 테스트되었다. 모두 3개의 노화 스테이지들에서, 촉매 컨버터는 먼저 환원 조건에서(λ=0.95) 600℃까지 온도 램프(temperature ramp)(20 K/min)가 전제되었으며, 그런 다음 80℃의 질소 분위기에서 냉각되었다. 실제의 테스트 동안, 10% H2O를 갖는 불변 합성(constant synthetic), 희박 배기 가스(λ=1.02)가 설정되었다. 맨 처음에, 온도는 600초 동안 80℃로 유지되었으며, 그런 다음 20 K/min로 600℃까지 증가되었다. 3번의 테스트에서 촉매 컨버터의 측정된 공진 주파수 및 온도는 도 2에 도시된다. N2로부터 물 함유 대기로의 전환 시에, 이에 의해 변경된 촉매 컨버터의 노화 정도 및 수착 특성에 의존하여, 공진 주파수에서 상당한 변화가 인식될 수 있다. 약 200℃의 온도까지 공진 주파수에서 변화에 또한 의존한다.
도 2에서의 측정된 데이터로부터, 예를 들어 공진 주파수에서의 변화는 80 내지 100℃의 온도 및 80℃에서의 공진 주파수로 평가되었다(표 1).
df/dT/㎒/K
(80 내지 100℃)
fres
(T=80℃)/㎒
초기 1.43 5377.4
노화 1(850℃) 1.19 5386.7
노화 2(1050 ℃) 0.85 5406.2

Claims (5)

  1. 교류 전자기장을 발산하고 이를 검출하는 것을 통하여, 금속 촉매 컨버터 하우징에 위치된 자동차의 배기 가스 컨버터의 노화 정도의 비침입성 검출을 위한 방법으로서,
    상기 촉매 표면상의 물의 흡착은 < 200℃의 촉매 온도에서 특정 공진 특징을 사용하여 결정되며, 이에 의해 상기 촉매 컨버터의 노화 정도가 추론되는 방법.
  2. 제1항에 있어서, > 50℃의 온도가 사용되는 것을 특징으로 하는 방법.
  3. 제1항 및/또는 제2항에 있어서, 3-20 체적%의 물을 함유하는 배기 가스 혼합물이 측정 동안 제공되는 것을 특징으로 하는 방법.
  4. 제1항 내지 제3항에 있어서, 공진 주파수, 진폭, 공진기(Q)의 품질, 손실, 분산 행렬(Sij)의 파라미터들, 및 이에 기초한 양(또는 다른 주파수 범위에서)들을 포함하는 그룹으로부터 선택되는 공진 특징들이 사용되는 것을 특징으로 하는 방법.
  5. 제1항 내지 제4항에 있어서, 금속 촉매 컨버터 하우징에 위치된 안테나가 사용되는 것을 특징으로 하는 방법.
KR1020167034190A 2014-05-16 2015-05-08 촉매 컨버터의 노화 정도를 검출하기 위한 방법 KR102356117B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014209305.8A DE102014209305B4 (de) 2014-05-16 2014-05-16 Methode zur Detektion des Alterungsgrades von Abgaskatalysatoren
DE102014209305.8 2014-05-16
PCT/EP2015/060238 WO2015173150A1 (de) 2014-05-16 2015-05-08 Methode zur detektion des alterungsgrades von abgaskatalysatoren

Publications (2)

Publication Number Publication Date
KR20170007349A true KR20170007349A (ko) 2017-01-18
KR102356117B1 KR102356117B1 (ko) 2022-01-28

Family

ID=53191654

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167034190A KR102356117B1 (ko) 2014-05-16 2015-05-08 촉매 컨버터의 노화 정도를 검출하기 위한 방법

Country Status (7)

Country Link
US (1) US10036298B2 (ko)
EP (1) EP3143264B1 (ko)
JP (1) JP6661548B2 (ko)
KR (1) KR102356117B1 (ko)
CN (1) CN106460628B (ko)
DE (1) DE102014209305B4 (ko)
WO (1) WO2015173150A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590819B2 (en) * 2013-09-18 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with resonant frequency measurement and methods for use therewith
US10760462B2 (en) * 2013-09-18 2020-09-01 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment using induction heating with movable heat profile
US10557392B2 (en) * 2013-09-18 2020-02-11 Advanced Technology Emission Solutions Inc. Emission control system with temperature measurement and methods for use therewith
US10590818B2 (en) * 2016-11-24 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with frequency controlled induction heating and methods for use therewith
DE102016219646A1 (de) * 2016-10-10 2018-04-12 Continental Automotive Gmbh Eigendiagnose eines Abgaskatalysators durch Messung der S-Parameter
JP6669116B2 (ja) * 2017-03-28 2020-03-18 トヨタ自動車株式会社 排気浄化触媒の加熱装置
CN107085035A (zh) * 2017-05-05 2017-08-22 武汉理工大学 基于天线传感器的frp加固钢结构胶层退化量化方法
DE102017214750B4 (de) 2017-08-23 2019-08-29 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug
DE102018202043B4 (de) * 2018-02-09 2020-09-03 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug
EP3530896B1 (en) * 2018-02-27 2020-02-12 Advanced Technology Emission Solutions Inc. Emission control system with resonant frequency measurement and methods for use therewith
JP6835018B2 (ja) * 2018-03-12 2021-02-24 トヨタ自動車株式会社 異常診断装置
JP6881363B2 (ja) * 2018-03-16 2021-06-02 トヨタ自動車株式会社 異常診断装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158425A (ja) * 1993-12-10 1995-06-20 Nippondenso Co Ltd 内燃機関の排気浄化装置
JPH10293111A (ja) * 1997-04-17 1998-11-04 Sanyo Denshi Syst Kk 道路表面の凍結検知方法ならびに装置
DE102008012050A1 (de) * 2008-02-29 2009-09-03 Fischerauer, Gerhard, Prof. Dr.-Ing. Vorrichtung und Verfahren zur Steuerung eines Abgasnachbehandlungssystems, das einen Abgaskatalysator beinhaltet

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580441A (en) 1983-05-10 1986-04-08 Nippondenso Co., Ltd. Diesel smoke meter
DE3510867A1 (de) * 1985-03-26 1986-10-16 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur qualitativen und quantitativen bestimmung der wasserstoffisotope protium, deuterium und tritium und anlage zur durchfuehrung des verfahrens
JP2738251B2 (ja) 1993-01-20 1998-04-08 松下電器産業株式会社 内燃機関用フィルタ再生装置
DE10103772C2 (de) 2001-01-27 2003-05-08 Omg Ag & Co Kg Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält
DE10358495B4 (de) 2003-12-13 2011-10-06 Ralf Moos Verfahren zur Erkennung des Zustands eines Katalysators mittels Mikrowellen
US7677031B2 (en) 2005-07-26 2010-03-16 Caterpillar Inc. Particulate loading monitoring system
US7260930B2 (en) 2005-07-26 2007-08-28 Caterpillar Inc. Radio frequency-based particulate loading monitoring system
US20080018442A1 (en) 2005-07-26 2008-01-24 Knitt Andrew A Particulate loading monitoring system
CA2828176C (en) 2006-09-20 2017-02-21 Imagineering, Inc. Plasma equipment and exhaust gas degradation apparatus
US8339637B2 (en) * 2007-08-03 2012-12-25 Ricoh Company, Ltd. Management apparatus, management system, operation status determination method, and image forming apparatus
WO2010084930A1 (ja) * 2009-01-22 2010-07-29 三菱化学株式会社 窒素酸化物浄化用触媒及びその製造方法
US8347607B2 (en) 2009-01-23 2013-01-08 GM Global Technology Operations LLC Integrated exhaust and electrically heated particulate filter regeneration systems
US20100212299A1 (en) 2009-02-25 2010-08-26 Jacob George Methods for determining when to regenerate exhaust gas particulate filters
DE102009024782A1 (de) * 2009-06-10 2010-02-04 Daimler Ag Verfahren und Messanordnung zum Bestimmen einer Wirkungsfähigkeit eines Katalysators
DE102010034983A1 (de) * 2010-08-20 2012-02-23 Gerhard Fischerauer Verfahren zur Erkennung des Ammoniakspeicherzustands eines SCR-Katalysators
DE102010037431A1 (de) * 2010-09-09 2012-03-15 Ford Global Technologies, Llc. Verfahren zum Anpassen einer exothermen Reaktion im Abgassystem eines Kraftfahrzeugs
CN109225246A (zh) * 2011-07-12 2019-01-18 巴斯夫欧洲公司 含Mo、Bi和Fe的多金属氧化物物质
DE102011107784B4 (de) 2011-07-15 2014-03-13 Umicore Ag & Co. Kg Verfahren zur Zustandsbestimmung einer Abgasreinigungsvorrichtung
US9708960B2 (en) 2013-05-08 2017-07-18 Cummins Ip, Inc. Exhaust aftertreatment system diagnostic and conditioning
WO2015188189A1 (en) * 2014-06-06 2015-12-10 Filter Sensing Technologies, Inc. Radio frequency state variable measurement system and method
US9611793B2 (en) 2014-08-04 2017-04-04 Caterpillar Inc. Method for thermal control of exhaust aftertreatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158425A (ja) * 1993-12-10 1995-06-20 Nippondenso Co Ltd 内燃機関の排気浄化装置
JPH10293111A (ja) * 1997-04-17 1998-11-04 Sanyo Denshi Syst Kk 道路表面の凍結検知方法ならびに装置
DE102008012050A1 (de) * 2008-02-29 2009-09-03 Fischerauer, Gerhard, Prof. Dr.-Ing. Vorrichtung und Verfahren zur Steuerung eines Abgasnachbehandlungssystems, das einen Abgaskatalysator beinhaltet

Also Published As

Publication number Publication date
EP3143264B1 (de) 2018-04-11
CN106460628A (zh) 2017-02-22
JP2017523335A (ja) 2017-08-17
EP3143264A1 (de) 2017-03-22
JP6661548B2 (ja) 2020-03-11
US20170107887A1 (en) 2017-04-20
KR102356117B1 (ko) 2022-01-28
DE102014209305A1 (de) 2015-11-19
US10036298B2 (en) 2018-07-31
CN106460628B (zh) 2019-04-12
DE102014209305B4 (de) 2016-04-07
WO2015173150A1 (de) 2015-11-19

Similar Documents

Publication Publication Date Title
KR102356117B1 (ko) 촉매 컨버터의 노화 정도를 검출하기 위한 방법
US9540984B2 (en) Method for condition determination of an exhaust-gas purification system
JP4949976B2 (ja) 粒子状物質の捕集分布検出方法及び捕集分布検出装置と排ガス浄化装置
JP6931001B2 (ja) エンジンの排気成分を監視する無線周波数システム及び方法
US9896989B2 (en) Deterioration diagnosis device for oxidation catalyst
EP2350443B1 (en) After-treatment method and system having a filter load monitoring system
US8650857B2 (en) Apparatus and method for onboard performance monitoring of exhaust gas particulate filter
US7157919B1 (en) Method and system for detecting soot and ash concentrations in a filter
Dietrich et al. Ammonia storage studies on H-ZSM-5 zeolites by microwave cavity perturbation: correlation of dielectric properties with ammonia storage
JP5060368B2 (ja) 粒子状物質の捕集量検出方法及び捕集量検出装置と排ガス浄化装置
Dietrich et al. Radio-frequency-based urea dosing control for diesel engines with ammonia SCR catalysts
Moos Microwave-Based Catalyst State Diagnosis-State of the Art and Future Perspectives
RU2394993C2 (ru) Способ позиционирования датчика в сотовом элементе, соответствующий сотовый элемент и транспортное средство
US20190249587A1 (en) On-Board Diagnostics of an Exhaust Gas Catalytic Converter by S Parameter Measurement
Reiß et al. Effects of H2O, CO2, CO, and flow rates on the RF-based monitoring of three-way catalysts
EP3540192B1 (en) Abnormality diagnosis apparatus
CA3125381A1 (en) Methods for diagnostics and operation of an emissions aftertreatment system
Sappok et al. Development of radio frequency sensing for in-situ diesel particulate filter state monitoring and aftertreatment system control
Moos et al. Automotive catalyst state diagnosis using microwaves
EP1544431B1 (en) Method for estimation of the catalyst efficiency loss
Sappok et al. Direct measurement of aftertreatment system stored water levels for improved dew point management using radio frequency sensing
Bromberg et al. Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH 3 Loading
Ragaller et al. Direct Simultaneous Measurement of particulate matter and ammonia storage on combined selective catalytic reduction filter systems using radio frequency sensors
Moos New approaches for exhaust gas sensing
Kubinski et al. NH3 storage on a zeolite SCR catalyst measured using a microwave-based method: Reduced sensitivity for more strongly held NH3

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant