KR20160120382A - 광학 분광 분석 장치 및 플라즈마 처리 장치 - Google Patents

광학 분광 분석 장치 및 플라즈마 처리 장치 Download PDF

Info

Publication number
KR20160120382A
KR20160120382A KR1020150049051A KR20150049051A KR20160120382A KR 20160120382 A KR20160120382 A KR 20160120382A KR 1020150049051 A KR1020150049051 A KR 1020150049051A KR 20150049051 A KR20150049051 A KR 20150049051A KR 20160120382 A KR20160120382 A KR 20160120382A
Authority
KR
South Korea
Prior art keywords
light
unit
receiving control
control unit
optical
Prior art date
Application number
KR1020150049051A
Other languages
English (en)
Inventor
김인중
윤일구
Original Assignee
삼성전자주식회사
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 연세대학교 산학협력단 filed Critical 삼성전자주식회사
Priority to KR1020150049051A priority Critical patent/KR20160120382A/ko
Priority to US15/089,520 priority patent/US9721768B2/en
Publication of KR20160120382A publication Critical patent/KR20160120382A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0037Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • G01J3/0221Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers the fibers defining an entry slit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0248Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using a sighting port, e.g. camera or human eye
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Drying Of Semiconductors (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Plasma Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)

Abstract

광학 분광 분석 장치가 제공된다. 광학 분광 분석 장치는, 기판에 대해 플라즈마 공정을 처리하는 공정 챔버 내의 광을 측정하는 광 측정부, 상기 광 측정부로부터 수집된 광을 전달받아 플라즈마 상태를 분석하는 광 분석부, 상기 광 분석부의 출력 신호를 전달받아 상기 출력 신호를 처리하는 제어부, 상기 공정 챔버와 상기 광 측정부 사이에 배치되어 상기 광 측정부에 결합되고, 상기 광 측정부로 수집되는 수집광을 제어하는 수광 제어부를 포함한다.

Description

광학 분광 분석 장치 및 플라즈마 처리 장치{APPARATUS FOR OPTICAL EMISSION SPECTROSCOPY AND APPARATUS FOR TREATING PLASMA}
본 발명은 광학 분광 분석 장치에 관한 것으로, 보다 상세하게는 공정 챔버 내의 플라즈마 상태를 측정하기 위한 광학 분광 분석 장치 및 이를 이용한 플라즈마 처리 장치에 관한 것이다.
반도체 소자 및 평판표시 소자의 제조 공정이 점차 미세화되고 고도화됨에 따라, 식각 공정 및 화학 기상 증착 공정 등을 수행하기 위한 장비로서 플라즈마 기판 처리 장치가 사용되고 있다. 플라즈마 기판 처리 장치는 스테이지 혹은 전극에 고주파 에너지를 인가하여 플라즈마 처리 챔버 내에 전기장 또는 자기장을 형성하고, 전자기장에 의해 플라즈마를 발생하여 기판을 처리한다. 이 때, 광학 데이터에 의해 처리의 종점(End point)을 검출하여 공정 완료 여부를 판단한다.
본 발명은 국소 범위의 플라즈마 상태에 대한 정밀 분석이 가능한 광학 분광 분석 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 공정 챔버 내 플라즈마 균일도 분석이 가능한 광학 분광 분석 장치를 제공하는 것을 목적으로 한다.
상기 해결하고자 하는 과제를 달성하기 위하여 본 발명의 일 실시예에 따른 광학 분광 분석 장치는, 기판에 대해 플라즈마 공정을 처리하는 공정 챔버 내의 광을 측정하는 광 측정부, 상기 광 측정부로부터 수집된 광을 전달받아 플라즈마 상태를 분석하는 광 분석부, 상기 광 분석부의 출력 신호를 전달받아 상기 출력 신호를 처리하는 제어부, 그리고 상기 광 측정부로 수집되는 광량을 제어하여, 상기 공정 챔버 내 국소 범위에 대해 정밀 분석이 가능한 수광 제어부 포함한다.
일 실시예에 따르면, 상기 수광 제어부는 원통 형상으로 제공되고, 상기 수광 제어부의 내경은 상기 광 측정부의 내경보다 클 수 있다.
일 실시예에 따르면, 상기 수광 제어부는 상기 공정 챔버와 상기 광 측정부 사이에 제공될 수 있다.
일 실시예에 따르면, 상기 수광 제어부는 상기 광 측정부에 결합 가능할 수 있다.
일 실시예에 따르면, 상기 광학 분광 분석 장치는, 상기 광 측정부를 회전시키는 회동부를 더 포함할 수 있다.
일 실시예에 따르면, 상기 광 측정부는 상기 수광 제어부에 강제 끼움될 수 있다.
일 실시예에 따르면, 상기 수광 제어부는 상기 광 측정부 내에 매설될 수 있다.
일 실시예에 따르면, 상기 수광 제어부는, 상기 광량을 제어하는 조절부, 탄성 부재, 상기 탄성 부재를 조절하여, 상기 조절부가 상기 광량을 제어하도록 상기 광 측정부 외부에 위치하는 공정 위치 및 상기 광 측정부 내에 위치하는 대기 위치간에 상기 조절부를 이동시키는 조절핀을 포함할 수 있다.
일 실시예에 따르면, 상기 수광 제어부는 그 내부에 상기 광량을 제어하도록 조리개를 더 포함할 수 있다.
일 실시예에 따르면, 상기 수광 제어부는 상기 조리개로 광량 입사 범위를 조절하는 조절핀을 더 포함할 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시 예에 의하면, 본 발명은 국소 범위의 플라즈마 상태에 대한 정밀 분석이 가능한 광학 분광 분석 장치를 제공할 수 있다.
또한, 본 발명은 공정 챔버 내 플라즈마 균일도 분석이 가능한 광학 분광 분석 장치를 제공할 수 있다.
본 발명의 효과는 상술한 효과들로 제한되지 않는다. 언급되지 않은 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 일반적인 공정 챔버에 설치된 광학 발광 분석 장치를 개략적으로 보여주는 도면이다.
도 2는 도 1의 광학 발광 분석 장치를 개략적으로 보여주는 평면도이다.
도 3은 본 발명의 일 실시예에 따른 플라즈마 처리 장치를 개략적으로 보여주는 도면이다.
도 4는 도 3의 광학 발광 분석 장치를 개략적으로 보여주는 평면도이다.
도 5는 도 4의 일 예에 따른 수광 제어부의 단면도이다.
도 6은 도 5를 I 방향에서 바라본 도면이다.
도 7 및 도 8은 도 4의 다른 예에 따른 수광 제어부의 단면도들이다.
도 9 및 도 11은 도 4의 또 다른 예에 따른 수광 제어부의 단면도들이다.
도 10 및 도 12는 각각 도 9 및 도 11을 I 방향에서 바라본 도면들이다.
도 13은 다른 실시예에 따른 플라즈마 처리 장치를 보여주는 도면이다.
도 14는 도 13의 플라즈마 처리 장치를 이용하여, 광학 분광 분석한 결과를 보여주는 그래프이다.
도 15는 본 발명의 또 다른 실시 예에 따른 플라즈마 처리 장치를 보여주는 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전문에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
또한, 본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서, 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다.
본 발명의 실시예들에 따른 광학 분광 분석 장치는, 반도체 플라즈마 공정 광학 진단 기술인 OES(Optical Emission Spectroscopy)를 활용하여 공정 챔버 내의 플라즈마 상태를 측정할 수 있다. 기판(W)의 예로는 반도체 소자를 제조하기 위한 반도체 기판, 평판표시소자를 제조하기 위한 유리 기판 등을 들 수 있으나, 이에 제한되는 것은 아니다. 기판(W) 처리의 예로는 식각 공정, 화학 기상 증착 공정, 에싱 공정, 세정 공정 등을 들 수 있으나, 이에 제한되지는 않는다.
챔버 내부의 전자 밀도, 이온 밀도와 같은 플라즈마 특성은 플라즈마 처리 공정의 처리율(process rate), 균질성(homogeneity), 균일성(uniformity) 및 웨이퍼 대 웨이퍼 반복성(wafer-to-wafer repeatability)에 영향을 미치는 요인이다. 예를 들어, 플라즈마 처리 챔버 내의 전자 밀도는 전자의 여기(excitation), 이온화(ionization), 해리(dissociation) 정도에 영향을 미친다. 따라서, 플라즈마 기판 처리 공정을 효과적으로 수행하기 위해서, 플라즈마 처리 챔버 내부의 상태를 감시하고, 플라즈마 상태를 파악하는 것이 중요하다.
이러한 플라즈마 상태에 관한 특성 변수들을 구할 수 있는 방법으로 플라즈마 농도 측정 센서, 예컨대, 랑뮤어 프로브(langmuir probe)를 통하여 플라즈마 밀도를 측정하는 방식이 있다. 랑뮤어 프로브를 이용하여 플라즈마 특성을 측정하는 방법은 플라즈마 분위기가 형성된 챔버 내부로 금속 프로브를 삽입하고, 금속 프로브에 전원 전압을 인가하여 전류의 변화를 측정함으로써, 플라즈마에 의한 전자 밀도를 판단한다.
이러한 접촉식 측정 방식은 필요할 때마다 챔버 내부로 금속 프로브를 삽입하여 플라즈마 밀도 등의 특성을 실시간으로 측정할 수 없다. 뿐만 아니라, 랑뮤어 프로브는 챔버 내의 플라즈마에 직접적으로 접촉시켜 플라즈마 상태를 분석하는 방식이기 때문에, 프로브가 챔버의 분위기에 따라 오염, 손상되고, 랑뮤어 프로브를 챔버 내에 도입하는 과정에서 불순물이 챔버 내로 유입되는 등의 여러 가지 문제점을 갖는다.
도 1은 일반적인 공정 챔버(10)에 설치된 광학 발광 분석 장치를 개략적으로 보여주는 도면이고, 도 2는 공정 챔버(10)에 설치된 광학 발광 분석 장치를 개략적으로 보여주는 평면도이다. 도 1 및 도 2에 도시된 바와 같이, 반도체 플라즈마 공정을 광학 진단하는 기술인 OES(optical emission spectroscopy)의 광섬유(41)는 광 입사각 범위(A)가 30~40° 정도로 제한되며, 12인치 기판(W) 기준으로 대략 40% 내지 60%의 면적에 해당하는 영역에 대하여만 플라즈마 상태를 측정할 수 있다. 이로 인해, 공정 챔버(10) 내 플라즈마 균일도의 측정이 어렵고, 일부분에 플라즈마 이상 상태가 발생하여도 정확한 감지가 어려울 수 있다.
도 3은 본 발명의 일 실시예에 따른 플라즈마 처리 장치(1)를 개략적으로 보여주는 도면이다. 도 4는 도 3의 광학 분광 분석 장치(400)를 개략적으로 보여주는 평면도이다. 플라즈마 처리 장치(10)는 CCP(capacitive coupled plasma) 설비, ICP(inductive coupled plasma) 설비, 마이크로파 플라즈마(microwave plasma) 설비, 혹은 그 밖의 다양한 플라즈마 기판 처리 장치로 제공될 수 있다. 도 3 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 플라즈마 처리 장치(1)는 공정 챔버(100), 스테이지(200), RF 전원부(300), 그리고 광학 분광 분석 장치(400)를 가질 수 있다.
공정 챔버(100)(이하, '챔버'로 약칭될 수 있음)는 기판(W)의 처리가 수행되는 내부 공간을 가질 수 있다. 내부 공간에서는, 플라즈마가 발생되어 플라즈마에 의해 기판(W)이 처리될 수 있다. 챔버(100)는 진공을 유지할 수 있도록 밀폐 구조로 제공될 수 있다. 일 예로, 챔버(100)는 중공의 육면체 또는 중공의 원기둥, 혹은 그 밖의 형태를 가질 수 있다.
챔버(100)는 샤워 헤드(110), 윈도우(120), 가스 공급구(130), 그리고 가스 배출구(140)를 가질 수 있다. 샤워 헤드(110)는 챔버(100)의 내부 공간에 위치될 수 있다. 일 예로, 도 3과 같이, 샤워 헤드(110)는 챔버(100)의 내측 상부에 구비될 수 있다. 샤워 헤드(110)는 공정 가스를 기판(W)으로 균일하게 제공할 수 있다. 샤워 헤드(110)는 상부 전극(110)으로 기능할 수 있다. 상부 전극(110)은 스테이지(200)와 마주보도록 배치될 수 있다. 윈도우(120)는 챔버(100)의 일측면에 제공될 수 있다. 윈도우(120)는 유리, 또는 석영(quartz)로 이루어질 수 있다. 윈도우(120)는 적외선, 자외선, 또는 가시 광선 대역을 투과시킬 수 있다. 챔버(100) 내에 불순물이 유입되지 않고 챔버(100) 내의 진공 상태가 유지될 수 있도록, 윈도우(120)가 제공된 개구부는 밀폐될 수 있다. 윈도우(120)는 광을 투과할 수 있는 다른 물질로 대체될 수 있다. 윈도우(120)는 챔버(100)의 측면에 배치되는 것에 한정되지 않고, 챔버(100)의 상부면 또는 챔버(100)의 배기부에도 배치될 수 있다. 또한, 윈도우(120)는 챔버(100) 내에 복수 개로 제공될 수 있다. 윈도우(120)는 무반사 코딩될 수 있고, 윈도우(120)는 파장에 따라 투과율이 일정할 수 있다.
가스 공급구(130)는 챔버(100)의 측면 또는 상면에 형성될 수 있다. 가스 공급구(130)를 통해, 기판(W)을 처리하기 위한 공정 가스가 공급될 수 있다. 가스 배출구(140)는 챔버(100)의 저면 또는 측면 하부에 구비될 수 있다. 가스 배출구(140)를 통해 미반응된 소스 가스와 기판(W) 가공 공정의 부산물이 배출될 수 있다.
스테이지(200)는 챔버(100)의 내부 공간에 제공되어, 기판(W)을 지지할 수 있다. 스테이지(200)는 챔버(100) 내측 저면에 구비될 수 있다. 스테이지(200)는 평판 형태를 가질 수 있다. 일 예로, 스테이지(200)는 정전기력으로 기판(W)을 고정하는 정전척을 구비할 수 있다. 스테이지(200)는 기판(W)을 플라즈마 처리에 적합한 온도로 가열하기 위한 히터(210)를 포함할 수 있다. 히터(210)는 스테이지(200) 내 매설되는 열선 형태로 제공될 수 있다.
RF 전원부(300)는 상부 전극(110)에 플라즈마의 생성이나 제어를 위한 고주파(Radio Frequency; RF) 전원을 인가하도록 제공될 수 있다. RF 전원부(300)는 하나 또는 다수의 전원으로 제공될 수 있다. 선택적으로, RF 전원부(300)는 상부 전극(110)뿐만이 아닌 다른 위치로 RF 전원을 인가할 수 있다. 일 예로, RF 전원부(300)는 스테이지(200) 내 하부 전극이 매설된 경우, 스테이지(200) 내 하부 전극으로 RF 전원을 인가할 수 있다.
RF 전원부(300)에 의해 챔버(100) 내에 고주파 에너지가 인가되면, 스테이지(200)와 상부 전극(110) 간의 전위차에 따라 스테이지(200)와 상부 전극(110) 사이에 전기장이 형성되고, 그에 따라 챔버(100) 내에 플라즈마가 발생될 수 있다. 기판(W) 상에 형성되는 플라즈마의 밀도는 스테이지(200)와 상부 전극(110) 간의 전위차에 따라 변화할 수 있다. RF 전원부(300)의 고주파를 제어하여 챔버(100) 내의 플라즈마 상태를 조절할 수 있다.
광학 분광 분석 장치(400)는 챔버(100) 내의 광을 측정하여, 챔버(100) 내의 플라즈마 상태를 모니터링할 수 있다. 광학 분광 분석 장치(400)는 챔버(100) 내의 광을 수집하고, 광학 발광 분석(optical emission spectroscopy)에 의해 챔버(100) 내의 플라즈마 상태를 분석할 수 있다. 챔버(100)의 외부에서 챔버(100) 내의 플라즈마 상태를 분석함으로써, 챔버(100)의 내부 및 공정 환경에 영향을 미치지 않을 수 있다.
광학 분광 분석 장치(400)는 챔버(100)의 외측벽에 인접하게 설치될 수 있다. 광학 분광 분석 장치(400)는 윈도우(120)에 인접하게 설치될 수 있다. 광학 분광 분석 장치(400)는 윈도우(120)를 통해, 스테이지(200)와 상부 전극 사이 영역의 광을 수집할 수 있다.
다시 도 3 및 도 4를 참조하면, 광학 분광 분석 장치(400)는 광 측정부(410), 광 분석부(420), 제어부(430), 그리고 수광 제어부(440)를 가질 수 있다. 광 측정부(410)는 챔버(100) 내의 광을 측정할 수 있다. 광 측정부(410)는 광섬유(optic fiber)를 포함할 수 있다. 광 측정부(410)는 광을 수집하여, 광 분석부(420)로 수집된 광을 전달한다. 광 분석부(420)는 광 측정부(410)를 통해 제공된 광을 분석하여, 챔버(100) 내의 플라즈마 상태를 분석한다. 광 분석부(420)는 광 측정부(410)를 통해 제공된 광을 파장에 따라 분광하고, 파장에 따른 광의 강도를 측정할 수 있다. 광 분석부(420)는 제어부(430)로 플라즈마 상태를 분석한 출력 신호를 전달할 수 있다. 제어부(430)는 출력 신호를 전달받고, 이를 처리할 수 있다. 제어부(430)는 광 측정부(410), 광 분석부(420), 그리고 수광 제어부(440)를 제어할 수 있다. 수광 제어부(440)는 광 측정부(410)와 챔버(100) 사이에 제공될 수 있다. 수광 제어부(440)는 광 측정부(410)로 수집되는 수집광을 제어할 수 있다. 일 예로, 수광 제어부(440)는 광 측정부(410)로 수집되는 수집광의 입사 범위(A´)를 제어할 수 있다. 수광 제어부(440)는 챔버(100) 내 국소 범위에 대한 정밀 분석이 가능하도록, 수집광의 입사 범위(A´)를 좁힐 수 있다. 일 예로, 수광 제어부(440)는 기판(W)의 전체 면적의 10% 미만에 해당하는 광만을 받아들이도록 제어할 수 있다. 또는, 수광 제어부(440)는 광 측정부(410)로 수집되는 수집광의 광량을 제어할 수 있다. 수광 제어부(440)는 수광 시간 등을 제어하여, 수집광의 광량을 제어할 수 있다. 이로 인해, 챔버(100) 내 국소 범위에 대한 정밀 분석이 가능할 수 있다. 수광 제어부(440)는 경통으로 제공될 수 있다.
도 5는 도 4의 일 예에 따른 수광 제어부(440a)의 단면도이다. 도 6은 도 5를 I 방향에서 바라본 도면이다. 도 5 및 도 6을 참조하면, 광 측정부(410)는 수집광을 수광하는 코어(c)를 가질 수 있다. 코어(c)는 제 1 내경(D1)을 가질 수 있다. 제 1 내경(D1)은 코어(c)의 크기 및 종류에 따라 달라질 수 있다. 수광 제어부(440a)는 원통 형상으로 제공될 수 있다. 수광 제어부(440a)는 광 측정부(410)와 결합 가능하게 제공될 수 있다. 수광 제어부(440a)는 광 측정부(410)와 대응되는 크기로 제공될 수 있다. 선택적으로, 수광 제어부(440a)는 광 측정부(410)보다 큰 크기로 제공될 수 있다. 광 측정부(410)는 수광 제어부(440a)의 일단에 강제로 끼워지는 구조로 제공될 수 있다. 선택적으로, 광 측정부(410)와 수광 제어부(440a)의 일단에는 별도의 탈착 부재가 제공될 수 있다. 수광 제어부(440a)는 조절부(442a)를 가질 수 있다. 조절부(442a)는 수광되는 수집광을 제어할 수 있다. 조절부(442a)는 수집광의 입사 범위 및/또는 광량을 조절할 수 있다. 조절부(442a)는 제 2 내경(D2)을 가질 수 있다. 제 2 내경(D2)은 제 1 내경(D1)보다 크게 제공될 수 있다.
도 7 및 도 8은 도 4의 다른 예에 따른 수광 제어부(440b)의 단면도들이다. 도 7 및 도 8을 참조하면, 광 측정부(410)는 수집광을 수광하는 코어(c)를 가질 수 있다. 코어(c)는 제 1 내경(D1)을 가질 수 있다. 제 1 내경(D1)은 코어(c)의 크기 및 종류에 따라 달라질 수 있다. 수광 제어부(440b)는 원통 형상으로 제공될 수 있다. 수광 제어부(440b)는 광 측정부(410)와 결합 가능하게 제공될 수 있다. 광 측정부(410)의 일단은 수광 제어부(440b)에 매설될 수 있다. 수광 제어부(440b)는 바디(441b), 조절부(442b), 조절핀(444b), 그리고 탄성 부재(446b)를 가질 수 있다. 바디(441b)는 광 측정부(410)의 일단을 감싸도록 제공될 수 있다. 바디(441b)는 강체로 제공될 수 있다. 조절부(442b)는 바디(441b) 내에 매설될 수 있다. 조절부(442b)는 수집광의 입사 범위 및/또는 광량을 조절할 수 있다. 광 측정부(410)의 일단으로부터 조절부(442b)의 돌출 정도를 조절하여, 수집광을 제어할 수 있다. 조절부(442b)는 제 3 내경(D3)을 가질 수 있다. 조절부(442b)의 제 3 내경(D3)은 코어(c)의 제 1 내경(D1)보다 크게 제공될 수 있다. 탄성 부재(446b)는 바디(441b) 내의 조절부(442b)의 일단에 인접하게 제공될 수 있다. 탄성 부재(446b)는 고무 등의 탄성을 갖는 물질로 제공될 수 있다. 조절핀(444b)은 탄성 부재(446b)를 조절하여, 조절부(442b)의 위치를 제어할 수 있다. 조절핀(444b)은 광 측정부(410)의 일단으로부터 조절부(442b)의 돌출 정도를 제어할 수 있다. 일 예로, 조절핀(444b)은 조절부(442b)를 대기 위치와 공정 위치간에 이동시킬 수 있다. 대기 위치는, 도 7과 같이, 조절부(442b)가 광 측정부(410) 내에 있는 위치이다. 대기 위치에서, 광 측정기(410)는 기판(W)의 상부면 상의 넓은 영역에 대한 평균적인 플라즈마 상태를 분석할 수 있다. 공정 위치는, 도 8과 같이, 조절부(442b)가 광 측정부(410) 외부에 위치하여 광량을 제어할 때의 위치이다. 공정 위치에서, 광 측정기(410)는 기판(W) 상의 국소 범위에 대한 정밀 분석이 가능할 수 있다. 조절부(442b)가 광 측정부(410) 내에 위치될 수 있어, 전체적인 면적이 줄어들고 공간 활용이 용이할 수 있다.
도 9 및 도 11은 또 다른 예에 따른 수광 제어부(440c)의 단면도들이다. 도 10 및 도 12는 각각 도 9 및 도 11을 I 방향에서 바라본 도면들이다. 도 9 내지 도 12를 참조하면, 광 측정부(410)는 수집광을 수광하는 코어(c)를 가질 수 있다. 코어(c)는 제 1 내경(D1)을 가질 수 있다. 제 1 내경(D1)은 코어(c)의 크기 및 종류에 따라 달라질 수 있다. 수광 제어부(440c)는 원통 형상으로 제공될 수 있다. 수광 제어부(440c)는 광 측정부(410)와 결합 가능하게 제공될 수 있다. 수광 제어부(440c)는 광 측정부(410)와 대응되는 크기로 제공될 수 있다. 선택적으로, 수광 제어부(440c)는 광 측정부(410)보다 큰 크기로 제공될 수 있다. 광 측정부(410)는 수광 제어부(440c)의 일단에 강제로 끼워지는 구조로 제공될 수 있다. 선택적으로, 광 측정부(410)와 수광 제어부(440c)의 일단에는 별도의 탈착 부재가 제공될 수 있다. 수광 제어부(440c)는 조절부(442c), 조리개(444c), 그리고 조절핀(446c)을 가질 수 있다. 조절부(442c)의 내측에는 조리개(444c)가 제공될 수 있다. 조리개(444c)는 조절부(442c)의 길이 방향을 따라, 복수 개로 제공될 수 있다. 이 때, 복수 개로 제공된 조리개들(444c)은 서로 독립적으로 제어될 수 있다. 조리개(444c)는 수집광의 입사 범위 및/또는 광량을 조절할 수 있다. 일 예로, 조리개(444c)는 제 4 내경(D4) 내지 제 5 내경(D5) 사이의 내경을 가질 수 있다. 제 4 내경(D4)은 조리개(444c)가 가장 적은 광량을 받아들일 때이다. 제 5 내경(D5)은 조리개(444c)가 가장 많은 광량을 받아들일 때이다. 도 9 내지 도 12를 참조하면, 조리개(444c)의 제 4 내경(D4) 및 제 5 내경(D5) 각각은 제 1 내경(D1)보다 크게 제공될 수 있다. 조절핀(446c)은 조리개(444c)의 폭을 조절함으로써, 수집광의 광량을 조절할 수 있다. 일 예로, 조절핀(446c)은 조리개(444c)가 제 4 내경(D4)과 제 5 내경(D5) 내지 그 사이의 내경을 갖도록 조절할 수 있다.
도 13은 또 다른 실시예에 따른 플라즈마 처리 장치(2)를 보여주는 도면이다. 도 13의 플라즈마 처리 장치(2)는 도 3의 플라즈마 처리 장치(1)와 대체로 동일 또는 유사한 형상 및 기능을 가진다. 다만, 도 13의 플라즈마 처리 장치(2)는 도 3의 플라즈마 처리 장치(1)에 비해, 회동부(450)를 더 포함할 수 있다. 회동부(450)는 광 측정부(410)에 결합되도록 제공될 수 있다. 회동부(450)는 광 측정부(410)를 회전시킬 수 있다. 회동부(450)로 인해, 광 측정부(410)는 윈도우(120)를 통해, 다양한 각도의 광을 측정할 수 있다. 따라서, 챔버(100) 내 다양한 범위의 플라즈마 분석이 가능할 수 있다.
도 14는 도 13의 플라즈마 처리 장치(2)를 이용하여, 광학 분광 분석한 결과를 보여주는 그래프이다. ①과 ②는 RF 전원부(300)로 300W를 인가할 때, 기판(W)의 우측(①)과 좌측(②)의 광의 강도를 각각 분석한 그래프이다. ③과 ④는 RF 전원부(300)로 200W를 인가할 때, 기판(W)의 우측(③)과 좌측(④)의 광의 강도를 각각 분석한 그래프이다. ① 및 ②, ③ 및 ④ 각각을 비교하면, 광의 강도가 기판(W)의 우측(①, ③)이 좌측(②, ④)에 비해, 약 100[A.U] 큰 것을 알 수 있다. 이와 같이, 회동부(450)로 광 측정부(410)의 위치를 제어함으로써, 챔버(100) 내 플라즈마 이상 상태 발생 또는 불균일 생성 등을 파악할 수 있다. 또한, 국소 범위를 사용자가 직접 설정함으로써, 플라즈마 이상 상태 여부 및 그 위치 등을 유동적으로 파악할 수 있다.
도 15는 본 발명의 또 다른 실시예에 따른 플라즈마 처리 장치(3)를 보여주는 도면이다. 도 15의 플라즈마 처리 장치(3)는 도 3의 플라즈마 처리 장치(1)와 대체로 동일 또는 유사한 형상 및 기능을 가진다. 다만, 도 15의 플라즈마 처리 장치(3)는 복수 개의 광 측정기들(410e,410f) 및 복수 개의 수광 제어부들(440e,440f)을 가질 수 있다. 복수 개의 광 측정기들(410e,410f)은 플라즈마 처리 장치(3) 내 서로 다른 위치에 구비될 수 있다. 복수 개의 광 측정기들(410e,410f) 각각은 수광 제어부들(440e,440f)과 결합될 수 있다. 복수 개의 광 측정기들(410e,410f)은 공정 챔버의 서로 다른 위치의 윈도우에 대응되게 위치될 수 있다. 이에 따라, 복수 개의 광 측정기들(410e,410f)의 수광 범위의 교차 영역(B)에 대한 공간 분석이 가능할 수 있다.
본 발명의 실시예들에 따른 광학 분광 분석 장치는 기존 플라즈마 사용 설비에 손쉽게 추가 장착이 가능한 확장성과 용이성이 크며, 플라즈마 이상상태를 미리 검출하고 조치하여 웨이퍼 스크랩이나 폐기를 감소시켜 생산 비용 절감에 기여할 수 있다. 또한, 본 발명의 실시 예에 따른 광학 분광 분석 장치는 웨이퍼에 영향을 주는 플라즈마의 모든 빛에 대해 플라즈마 상태를 분석할 수 있다. 또한, 기존의 EPD(End Point Detection) 설정 신호에도 영향을 주지 않으며, 범용적 사용이 가능하다.
이상의 실시 예들은 본 발명의 이해를 돕기 위하여 제시된 것으로, 본 발명의 범위를 제한하지 않으며, 이로부터 다양한 변형 가능한 실시 예들도 본 발명의 범위에 속하는 것임을 이해하여야 한다. 본 발명의 기술적 보호범위는 특허청구범위의 기술적 사상에 의해 정해져야 할 것이며, 본 발명의 기술적 보호범위는 특허청구범위의 문언적 기재 그 자체로 한정되는 것이 아니라 실질적으로는 기술적 가치가 균등한 범주의 발명에 대하여까지 미치는 것임을 이해하여야 한다.

Claims (10)

  1. 기판에 대해 플라즈마 공정을 처리하는 공정 챔버 내의 광을 측정하는 광 측정부;
    상기 광 측정부로부터 수집된 광을 전달받아 플라즈마 상태를 분석하는 광 분석부;
    상기 광 분석부의 출력 신호를 전달받아 상기 출력 신호를 처리하는 제어부; 그리고
    상기 공정 챔버와 상기 광 측정부 사이에 배치되어 상기 광 측정부에 결합되고, 상기 광 측정부로 수집되는 수집광을 제어하는 수광 제어부를 포함하는 광학 분광 분석 장치.
  2. 제 1 항에 있어서,
    상기 수광 제어부는 상기 수집광의 입사 범위를 제어하는 광학 분광 분석 장치.
  3. 제 2 항에 있어서,
    상기 수광 제어부는 원통 형상으로 제공되고,
    상기 수광 제어부의 내경은 상기 광 측정부의 내경보다 큰 광학 분광 분석 장치.
  4. 제 3 항에 있어서,
    상기 광학 분광 분석 장치는,
    상기 광 측정부를 회전시키는 회동부를 더 포함하는 광학 분광 분석 장치.
  5. 제 4 항에 있어서,
    상기 광 측정부는 상기 수광 제어부에 강제 끼움되는 광학 분광 분석 장치.
  6. 제 4 항에 있어서,
    상기 광 측정부의 일단은 상기 수광 제어부에 강제 끼움되는 광학 분광 분석 장치.
  7. 제 6 항에 있어서,
    상기 수광 제어부는:
    상기 광 측정부의 상기 일단을 감싸는 바디;
    상기 바디 내에 매설되고, 상기 수집광을 제어하는 조절부;
    상기 바디 내의 상기 조절부의 일단에 인접하게 배치된 탄성 부재;
    상기 광 측정부로부터 상기 조절부의 타단의 위치를 조절하도록 상기 탄성 부재를 제어하는 조절핀을 포함하는 광학 분광 분석 장치.
  8. 제 4 항에 있어서,
    상기 수광 제어부는 그 내부에 상기 수집광을 제어하는 조리개를 더 포함하는 광학 분광 분석 장치.
  9. 제 8 항에 있어서,
    상기 수광 제어부는, 상기 수집광의 광량을 조절하도록 상기 조리개를 제어하는 조절핀을 더 포함하는 광학 분광 분석 장치.
  10. 제 1 항에 있어서,
    상기 수광 제어부는 상기 수집광의 광량을 제어하는 광학 분광 분석 장치.
KR1020150049051A 2015-04-07 2015-04-07 광학 분광 분석 장치 및 플라즈마 처리 장치 KR20160120382A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150049051A KR20160120382A (ko) 2015-04-07 2015-04-07 광학 분광 분석 장치 및 플라즈마 처리 장치
US15/089,520 US9721768B2 (en) 2015-04-07 2016-04-02 Apparatus for optical emission spectroscopy and plasma treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150049051A KR20160120382A (ko) 2015-04-07 2015-04-07 광학 분광 분석 장치 및 플라즈마 처리 장치

Publications (1)

Publication Number Publication Date
KR20160120382A true KR20160120382A (ko) 2016-10-18

Family

ID=57112812

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150049051A KR20160120382A (ko) 2015-04-07 2015-04-07 광학 분광 분석 장치 및 플라즈마 처리 장치

Country Status (2)

Country Link
US (1) US9721768B2 (ko)
KR (1) KR20160120382A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096668A (ko) * 2018-02-09 2019-08-20 삼성전자주식회사 Oes 장치와 이를 포함하는 플라즈마 처리 장치, 및 반도체 장치의 제조 방법
KR20200003999A (ko) * 2018-07-03 2020-01-13 연세대학교 산학협력단 플라즈마 공정 모니터링 장치 및 이를 포함하는 플라즈마 처리장치
KR102088084B1 (ko) * 2017-01-05 2020-03-12 페어테크 코포레이션 분광광도계를 응용하여 기체 해리 상태를 측정하는 측정 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102543349B1 (ko) * 2016-07-11 2023-06-30 삼성전자주식회사 플라즈마 모니터링 장치
GB201705202D0 (en) * 2017-03-31 2017-05-17 Univ Dublin City System and method for remote sensing a plasma
KR102035423B1 (ko) * 2018-05-16 2019-10-22 연세대학교 산학협력단 플라즈마 공정 모니터링 장치 및 이를 포함하는 플라즈마 처리장치
KR102663185B1 (ko) 2018-08-07 2024-05-03 삼성전자주식회사 광학 방출 분광 시스템 및 그 보정 방법, 반도체 소자 제조 방법
JP2021118045A (ja) * 2020-01-22 2021-08-10 東京エレクトロン株式会社 プラズマ観測システム及びプラズマ観測方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3193265B2 (ja) * 1995-05-20 2001-07-30 東京エレクトロン株式会社 プラズマエッチング装置
US5654796A (en) 1995-12-22 1997-08-05 Lam Research Corporation Apparatus and method for mapping plasma characteristics
US5958258A (en) * 1997-08-04 1999-09-28 Tokyo Electron Yamanashi Limited Plasma processing method in semiconductor processing system
JP2002231639A (ja) 2001-01-31 2002-08-16 Toshiba Corp 半導体デバイス製造装置及びプラズマ処理方法
US6841032B2 (en) * 2002-03-12 2005-01-11 Hitachi High-Technologies Corporation Plasma processing apparatus for adjusting plasma processing through detecting plasma processing state within chamber
US20040058359A1 (en) * 2002-05-29 2004-03-25 Lin Mei Erbin as a negative regulator of Ras-Raf-Erk signaling
CN100481308C (zh) 2002-09-30 2009-04-22 东京毅力科创株式会社 采用具有等离子体处理系统的光学系统的装置和方法
US20040127031A1 (en) 2002-12-31 2004-07-01 Tokyo Electron Limited Method and apparatus for monitoring a plasma in a material processing system
KR20050059451A (ko) 2003-12-15 2005-06-21 삼성전자주식회사 기판 가공 공정의 종점 검출 장치
JP2006310371A (ja) 2005-04-26 2006-11-09 Matsushita Electric Ind Co Ltd 半導体装置の製造方法および製造装置
FR2887072A1 (fr) 2005-06-08 2006-12-15 Alcatel Sa Systeme spectographique ameliore avec source plasma
US7453059B2 (en) 2006-03-10 2008-11-18 Varian Semiconductor Equipment Associates, Inc. Technique for monitoring and controlling a plasma process
KR101247540B1 (ko) 2011-04-18 2013-03-26 주식회사 뉴프로테크 플라즈마 검사 장치
JP6002487B2 (ja) 2012-07-20 2016-10-05 株式会社日立ハイテクノロジーズ 分析方法、分析装置、及びエッチング処理システム
KR20120127350A (ko) 2012-08-29 2012-11-21 (주)쎄미시스코 플라즈마 모니터링 시스템
US9310308B2 (en) 2012-12-07 2016-04-12 Ldetek Inc. Micro-plasma emission detector unit and method
JP5525087B2 (ja) 2013-05-27 2014-06-18 ルネサスエレクトロニクス株式会社 半導体集積回路装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102088084B1 (ko) * 2017-01-05 2020-03-12 페어테크 코포레이션 분광광도계를 응용하여 기체 해리 상태를 측정하는 측정 장치
KR20190096668A (ko) * 2018-02-09 2019-08-20 삼성전자주식회사 Oes 장치와 이를 포함하는 플라즈마 처리 장치, 및 반도체 장치의 제조 방법
KR20200003999A (ko) * 2018-07-03 2020-01-13 연세대학교 산학협력단 플라즈마 공정 모니터링 장치 및 이를 포함하는 플라즈마 처리장치

Also Published As

Publication number Publication date
US9721768B2 (en) 2017-08-01
US20160300699A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
KR20160120382A (ko) 광학 분광 분석 장치 및 플라즈마 처리 장치
KR101877862B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 장치의 운전 방법
KR100499229B1 (ko) 플라즈마를 사용하여 반도체웨이퍼를 처리하는플라즈마처리장치
JP5366413B2 (ja) イオン電流に関連した発光分光法/残留ガス分析装置を使用するドーズ計測
TWI240600B (en) Apparatus and method for use of optical system with a plasma processing system
KR101169764B1 (ko) 공정챔버의 실시간 모니터링 시스템
US4857136A (en) Reactor monitoring system and method
KR200456733Y1 (ko) 센서챔버의 가스배출장치
KR101829811B1 (ko) 플라즈마 공정 계측 장치 및 방법
US20110090503A1 (en) Apparatus for detecting arcs
KR101600520B1 (ko) 광학 분광 분석 장치
WO2004042788A2 (en) Method and apparatus for determining an etch property using an endpoint signal
KR101591961B1 (ko) 플라즈마 처리 챔버의 플라즈마 상태 분석 장치 및 방법
US20130059403A1 (en) Method and apparatus for wafer temperature measurement using an independent light source
KR102663185B1 (ko) 광학 방출 분광 시스템 및 그 보정 방법, 반도체 소자 제조 방법
KR20070019297A (ko) 플라즈마 장치용 비침투식 이온 에너지 분포 측정 시스템및 이를 이용한 이온 에너지 분포 측정 방법
KR20160093574A (ko) 광학 분광 분석 장치 및 이를 구비한 플라즈마 처리 장치
KR101937335B1 (ko) 기판 처리 장치 및 방법
KR100835379B1 (ko) 사중극자 질량 분석기를 이용한 챔버 상태 모니터링 방법
KR102162728B1 (ko) 광학 분광 분석 장치 및 이를 구비한 플라즈마 처리 장치
KR102232784B1 (ko) 기판 처리 장치 및 기판 처리 방법
CN117102156A (zh) 一种石墨舟干法清洗装置及清洗方法
KR102574604B1 (ko) 반도체/디스플레이 플라즈마 화학증착공정 모니터링 전용 실시간 온도편차 보정 발광분광분석시스템
KR102667398B1 (ko) 가스분석장치 및 이를 포함하는 기판처리시스템
US11039527B2 (en) Air leak detection in plasma processing apparatus with separation grid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application