KR20160115909A - Reaction rate measurement method for acrylic adhesive, and acrylic adhesive - Google Patents

Reaction rate measurement method for acrylic adhesive, and acrylic adhesive Download PDF

Info

Publication number
KR20160115909A
KR20160115909A KR1020167015172A KR20167015172A KR20160115909A KR 20160115909 A KR20160115909 A KR 20160115909A KR 1020167015172 A KR1020167015172 A KR 1020167015172A KR 20167015172 A KR20167015172 A KR 20167015172A KR 20160115909 A KR20160115909 A KR 20160115909A
Authority
KR
South Korea
Prior art keywords
group
acrylic adhesive
compound
fluorene
reaction rate
Prior art date
Application number
KR1020167015172A
Other languages
Korean (ko)
Other versions
KR102368125B1 (en
Inventor
나오야 우에사와
유스케 다나카
Original Assignee
데쿠세리아루즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 데쿠세리아루즈 가부시키가이샤 filed Critical 데쿠세리아루즈 가부시키가이샤
Publication of KR20160115909A publication Critical patent/KR20160115909A/en
Application granted granted Critical
Publication of KR102368125B1 publication Critical patent/KR102368125B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
    • G01N2030/8854Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds involving hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

미량의 샘플로도 정밀도 양호하게 아크릴계 접착제의 반응률 측정을 행할 수 있는 반응률 측정 방법, 및 아크릴계 접착제를 제공한다. 플루오렌 골격을 갖는 화합물을 내표준물질로서 사용하고, 아크릴계 접착제를 포함하는 시료 용액을 액체 크로마토그래피로 분리하고, 자외 검출기에 의해 미반응의 라디칼 중합성 화합물을 검출한다. 플루오렌 골격을 갖는 화합물이, 자외 검출기에 높은 감도를 나타내므로, 미량의 샘플로도 정밀도 양호하게 반응률을 측정할 수 있다. 또, 플루오렌 골격을 갖는 화합물은, 아크릴계 접착제의 경화 반응에 관여하지 않기 때문에, 미리 아크릴계 접착제에 배합하는 것이 가능해진다. A reaction rate measuring method capable of measuring the reaction rate of an acrylic adhesive with good precision even with a small amount of sample, and an acrylic adhesive. A compound having a fluorene skeleton is used as a reference material, a sample solution containing an acrylic adhesive is separated by liquid chromatography, and an unreacted radically polymerizable compound is detected by an ultraviolet detector. Since a compound having a fluorene skeleton exhibits high sensitivity to an ultraviolet detector, the reaction rate can be measured with good precision even with a very small amount of sample. Further, since the compound having a fluorene skeleton does not participate in the curing reaction of the acrylic adhesive, it is possible to mix it in advance with the acrylic adhesive.

Description

아크릴계 접착제의 반응률 측정 방법, 및 아크릴계 접착제{REACTION RATE MEASUREMENT METHOD FOR ACRYLIC ADHESIVE, AND ACRYLIC ADHESIVE}TECHNICAL FIELD [0001] The present invention relates to a method of measuring the reaction rate of an acrylic adhesive, and an acrylic adhesive,

본 발명은, 라디칼 중합성 화합물을 함유하는 아크릴계 접착제의 반응률 측정 방법, 및 아크릴계 접착제에 관한 것이다. 본 출원은, 일본에 있어서 2014년 2월 3일에 출원된 일본 특허출원 번호 일본 특허출원 2014-18388을 기초로 해서 우선권을 주장하는 것이고, 본 출원은 참조됨으로써 본 출원에 원용된다. The present invention relates to a method for measuring the reaction rate of an acrylic adhesive containing a radical polymerizable compound, and an acrylic adhesive. The present application claims priority based on Japanese Patent Application No. 2014-18388 filed on February 3, 2014, the entirety of which is incorporated herein by reference.

종래 전기 회로 재료로서, 이방성 도전 필름(ACF : Anisotropic Conductive Film) 등이 널리 사용되고 있다. ACF의 불량 발생 요인으로서는, 회로 전극 내에서의 경화도의 편차가 추측되고 있다. 이방성 도전 접속에서는, 다수의 전극을 일괄적으로 또한 균일하게 접속시키기 때문에, 상대적으로 열전도성이 큰 전극 상과, 상대적으로 열전도성이 낮은 전극 간의 부위에서, 반응률에 차가 생기는 것이라고 생각된다.As an electric circuit material in the past, anisotropic conductive film (ACF) and the like are widely used. As a cause of the defect of the ACF, variation of the degree of curing in the circuit electrode is presumed. In the anisotropic conductive connection, a plurality of electrodes are collectively and uniformly connected, so that it is considered that there is a difference in the reaction rate at the portion between the electrode having relatively high thermal conductivity and the electrode having relatively low thermal conductivity.

그러나, 종래의 DSC, FT-IR 등에 의한 분석에서는, 필요로 되는 샘플량이 많아, 전극 상, 전극 간 등의 미소 영역의 반응률을 정밀도 양호하게 측정하는 것은 곤란했다.However, in the conventional analysis using DSC, FT-IR, etc., it is difficult to accurately measure the reaction rate of the minute domains such as the electrode surface and the electrode because the amount of the sample required is large.

일본 특허공개 2010-251789호 공보Japanese Patent Application Laid-Open No. 2010-251789

본 발명은, 이와 같은 종래의 실정을 감안하여 제안된 것으로, 미량의 샘플로도 정밀도 양호하게 아크릴계 접착제의 반응률 측정을 실시할 수 있는 반응률 측정 방법, 및 아크릴계 접착제를 제공한다.The present invention has been proposed in view of such conventional circumstances, and provides a reaction rate measuring method and an acrylic adhesive that can measure the reaction rate of an acrylic adhesive with good precision even with a small amount of sample.

본 발명자는, 예의 검토를 실시한 결과, 내표준물질로서 플루오렌 골격을 갖는 화합물을 사용함으로써, 미량의 샘플로도 정밀도 양호하게 반응률 측정을 실시할 수 있는 것을 알아냈다.As a result of intensive studies, the inventor of the present invention has found that the use of a compound having a fluorene skeleton as a reference material enables the reaction rate measurement to be performed with high accuracy even with a very small amount of sample.

즉, 본 발명에 관련된 반응률 측정 방법은, 하기 (1)식으로 나타내는 플루오렌 골격을 갖는 화합물을 내표준물질로서 사용하고, 아크릴계 접착제를 포함하는 시료 용액을 액체 크로마토그래피로 분리하고, 자외 검출기에 의해 미반응의 라디칼 중합성 화합물을 검출하는 것을 특징으로 한다.That is, in the reaction rate measuring method according to the present invention, a compound having a fluorene backbone represented by the following formula (1) is used as a reference material, a sample solution containing an acrylic adhesive is separated by liquid chromatography, To thereby detect an unreacted radically polymerizable compound.

[화학식 1][Chemical Formula 1]

Figure pct00001
Figure pct00001

식 중, R1은, 수소 원자, 탄소수 1∼3의 알킬기, 탄소수 1∼3의 알콕시기로 이루어지는 군에서 선택되는 기이고, R2는, 하이드록실기, 탄소수 1∼3의 하이드록시알킬기, 탄소수 1∼3의 하이드록시알콕시기로 이루어지는 군에서 선택되는 기이다.Wherein R 1 is a group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 3 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, R 2 is a hydroxyl group, a hydroxyalkyl group having 1 to 3 carbon atoms, And a hydroxyalkoxy group having 1 to 3 carbon atoms.

또, 본 발명에 관련된 아크릴계 접착제는, 상기 (1)식으로 나타내는 플루오렌 골격을 갖는 화합물과, 라디칼 중합성 화합물과, 반응 개시제를 함유하는 것을 특징으로 한다.The acrylic adhesive according to the present invention is characterized by containing a compound having a fluorene skeleton represented by the above formula (1), a radically polymerizable compound, and a reaction initiator.

또, 본 발명에 관련된 이방성 도전 접착제는, 상기 아크릴계 접착제에 도전성 입자가 분산되어 이루어지는 것을 특징으로 한다.The anisotropic conductive adhesive according to the present invention is characterized in that conductive particles are dispersed in the acrylic adhesive.

본 발명에 의하면, 플루오렌 골격을 갖는 화합물이, 자외 검출기에 높은 감도를 나타내므로, 미량의 샘플로도 정밀도 양호하게 반응률을 측정할 수 있다. 또, 플루오렌 골격을 갖는 화합물은, 아크릴계 접착제의 경화 반응에 관여하지 않기 때문에, 미리 아크릴계 접착제에 배합하는 것이 가능해진다. According to the present invention, since a compound having a fluorene skeleton exhibits high sensitivity to an ultraviolet detector, the reaction rate can be measured with high accuracy even with a very small amount of sample. Further, since the compound having a fluorene skeleton does not participate in the curing reaction of the acrylic adhesive, it is possible to mix it in advance with the acrylic adhesive.

도 1은, 경화 전의 아크릴계 접착제의 분석 결과의 일례를 나타내는 크로마토그램이다.
도 2는, 경화 후의 아크릴계 접착제의 분석 결과의 일례를 나타내는 크로마토그램이다.
1 is a chromatogram showing an example of an analysis result of an acrylic adhesive before curing.
2 is a chromatogram showing an example of an analysis result of the acrylic adhesive after curing.

이하, 본 발명의 실시형태에 대해, 도면을 참조하면서 하기 순서로 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings in the following order.

1. 아크릴계 접착제의 반응률 측정 방법1. Measurement of reaction rate of acrylic adhesive

2. 아크릴계 접착제2. Acrylic adhesive

3. 실시예 3. Example

<1. 아크릴계 접착제의 반응률 측정 방법><1. Method of measuring reaction rate of acrylic adhesive>

본 실시형태에 관련된 아크릴계 접착제의 반응률 측정 방법은, 하기 (1)식으로 나타내는 플루오렌 골격을 갖는 화합물을 내표준물질로서 사용하고, 아크릴계 접착제를 포함하는 시료 용액을 액체 크로마토그래피로 분리하고, 자외 검출기에 의해 미반응의 라디칼 중합성 화합물을 검출한다.The reaction rate measurement method of the acrylic adhesive relating to the present embodiment is a method of measuring the reaction rate of an acrylic adhesive using a compound having a fluorene skeleton represented by the following formula (1) as a standard material, separating a sample solution containing an acrylic adhesive by liquid chromatography, Unreacted radically polymerizable compound is detected by a detector.

[화학식 2](2)

Figure pct00002
Figure pct00002

식 중, R1은, 수소 원자(-H), 탄소수 1∼3의 알킬기(-CnH2n +1 : n=1∼3), 탄소수 1∼3의 알콕시기(-OCnH2n+1 : n=1∼3)로 이루어지는 군에서 선택되는 기이고, R2는, 하이드록실기(-OH), 탄소수 1∼3의 하이드록시알킬기(-CnH2nOH : n=1∼3), 탄소수 1∼3의 하이드록시알콕시기(-OCnH2nOH : n=1∼3)로 이루어지는 군에서 선택되는 기이다.In the formula, R 1 represents a hydrogen atom (-H), an alkyl group having 1 to 3 carbon atoms (-C n H 2n +1 : n = 1 to 3), an alkoxy group having 1 to 3 carbon atoms (-OC n H 2n + 1 : n = 1 to 3), R 2 is a group selected from the group consisting of a hydroxyl group (-OH), a hydroxyalkyl group having 1 to 3 carbon atoms (-C n H 2n OH: n = 1 to 3) And a hydroxyalkoxy group having 1 to 3 carbon atoms (-OC n H 2n OH: n = 1 to 3).

(1)식으로 나타내는 플루오렌 골격을 갖는 화합물의 구체예로서는, 비스페녹시에탄올플루오렌(BPEF : R1=H, R2=OC2H4OH), 비스페놀플루오렌(BPF : R1=H, R2=OH), 비스크레졸플루오렌(BCF : R1=CH3, R2=OH) 등을 들 수 있다. (1)식으로 나타내는 플루오렌 골격을 갖는 화합물은, 자외선 흡수능이 높기 때문에 자외 검출기에 높은 감도를 나타내어, 미량의 샘플로도 정밀도 양호하게 반응률을 측정할 수 있다. (1) Specific examples of the compound having a fluorene skeleton represented by the following formula, when the non-Made rust ethanol fluorene (BPEF: R 1 = H, R 2 = OC 2 H 4 OH), bisphenol fluorene (BPF: R 1 = H, R 2 = OH), and biscresol fluorene (BCF: R 1 = CH 3 , R 2 = OH). A compound having a fluorene skeleton represented by the formula (1) shows high sensitivity to an ultraviolet detector because of its high ability to absorb ultraviolet rays, and a reaction rate can be measured with high accuracy even with a very small amount of sample.

또한, 자외 검출기로 검출 가능한 일반적인 내표준물질로서, 디부틸하이드록시톨루엔(BHT), 벤조트리아졸(BTZ) 등이 있지만, 검출 감도가 충분하지 않아 다량으로 첨가해야 한다. 또, BHT는 비스페녹시에탄올플루오렌아크릴레이트(BPEFA)와, BTZ는 4-하이드록시부틸아크릴레이트(4-HBA)와 피크 검출 위치가 겹치기 때문에, 범용성이 낮다.In addition, there are dibutylhydroxytoluene (BHT), benzotriazole (BTZ) and the like as a general internal standard substance which can be detected by an ultraviolet detector, but the detection sensitivity is insufficient and a large amount should be added. In addition, the BHT is low in versatility, because the peak detection sites overlap with bisphenoxyethanol fluorene acrylate (BPEFA) and BTZ with 4-hydroxybutyl acrylate (4-HBA).

액체 크로마토그래피는, 고속 액체 크로마토그래피(HPLC : High Performance liquid Chromatography)이고, 시료 용액을 분리제가 충전된 분리 칼럼에 통과시키고, 분리제에 대한 분배, 흡착의 용이함 정도 등의 차로부터 이것을 복수의 성분으로 분리한다.Liquid chromatography is a high performance liquid chromatography (HPLC) method in which a sample solution is passed through a separation column packed with a separating agent and separated from a difference in easiness of distribution, .

분리제(충전제)로서는, HPLC용의 입경이 2∼30㎛ 정도인 실리카 겔, 옥타데실기, 시아노프로필기 등의 기에 의해 결합된 화학 결합형 실리카 겔, 포러스 폴리머, 이온 교환 수지 등을 들 수 있다.Examples of the separating agent (filler) include a chemically bonded silica gel, a porous polymer, an ion exchange resin, etc. bonded by a group such as silica gel, octadecyl group, and cyanopropyl group having a particle diameter of about 2 to 30 μm for HPLC .

자외 검출기로서는, 시료 용액에 자외광을 조사하고, 시료 용액에 의한 흡광도를 측정하는 것이면 특별히 한정되는 것은 아니고, HPLC에 의한 분석에서 범용되고 있는 자외 흡광도 검출기를 사용할 수 있다.The ultraviolet detector is not particularly limited as long as ultraviolet light is irradiated to the sample solution and the absorbance by the sample solution is measured. An ultraviolet absorbance detector commonly used in analysis by HPLC can be used.

다음으로, 반응률 측정의 상세한 것에 대하여 설명한다. 본 기술은, 미리 아크릴계 접착제에 플루오렌 골격을 갖는 화합물을 소정량 배합해도, 아크릴계 접착제의 시료 용액에 플루오렌 골격을 갖는 화합물을 소정량 첨가해도 된다. 아크릴계 접착제를 용해시키는 용매로서는, 아세토니트릴, 아세톤 등을 사용할 수 있다.Next, details of the reaction rate measurement will be described. In the present technology, a predetermined amount of a compound having a fluorene skeleton may be added to a sample solution of an acrylic adhesive even if a predetermined amount of a compound having a fluorene skeleton is added to the acrylic adhesive in advance. As the solvent for dissolving the acrylic adhesive, acetonitrile, acetone and the like can be used.

도 1 및 도 2 는, 각각 경화 전 및 경화 후의 아크릴계 접착제의 분석 결과의 일례를 나타내는 크로마토그램이다. 자외 검출기에 의해 얻어진 크로마토그램의 피크 강도는, 통상 피크 면적 또는 피크 높이로 나타내어지지만, 이하에서는 피크 높이에 의한 반응률의 산출 방법에 대해 설명한다. Fig. 1 and Fig. 2 are chromatograms showing an example of the analysis results of the acrylic adhesive before and after curing, respectively. The peak intensity of the chromatogram obtained by the ultraviolet detector is usually expressed by the peak area or the peak height. Hereinafter, a calculation method of the reaction rate due to the peak height will be described.

먼저, 경화 전의 아크릴계 접착제, 및 완전 경화 후의 아크릴계 접착제의 크로마토그램으로부터 내표준물질과 미반응 모노머의 강도비를 구하고, 예를 들어 경화 전을 반응률 0%로 하고, 완전 경화 후를 반응률 100%로 해서, 강도비와 반응률의 관계선을 작성한다. 그리고, 미지 시료의 크로마토그램으로부터 내표준물질과 미반응 모노머의 강도비를 구하고, 작성한 관계선으로부터 반응률을 구할 수 있다.First, the intensity ratio of the internal standard substance to the unreacted monomer is determined from the chromatogram of the acrylic adhesive before curing and the acrylic adhesive after complete curing. For example, the reaction rate before the curing is set to 0% Thus, a relationship line between the intensity ratio and the reaction rate is created. Then, from the chromatogram of the unknown sample, the intensity ratio between the internal standard substance and the unreacted monomer is obtained, and the reaction rate can be obtained from the created relationship line.

이와 같이 (1)식으로 나타내는 플루오렌 골격을 갖는 화합물을 내표준물질로서 사용함으로써, 미량의 샘플로도 정밀도 양호하게 반응률을 측정할 수 있다.By using the compound having the fluorene backbone represented by the formula (1) as the reference material in this way, the reaction rate can be measured with high accuracy even with a very small amount of sample.

<2. 아크릴계 접착제><2. Acrylic adhesive>

본 실시형태에 관련된 아크릴계 접착제는, 하기 (1)식으로 나타내는 플루오렌 골격을 갖는 화합물과, 라디칼 중합성 화합물과, 반응 개시제를 함유한다.The acrylic adhesive relating to the present embodiment contains a compound having a fluorene skeleton represented by the following formula (1), a radically polymerizable compound, and a reaction initiator.

[화학식 3](3)

Figure pct00003
Figure pct00003

식 중, R1은, 수소 원자(-H), 탄소수 1∼3의 알킬기(-CnH2n +1 : n=1∼3), 탄소수 1∼3의 알콕시기(-OCnH2n+1 : n=1∼3)로 이루어지는 군에서 선택되는 기이고, R2는, 하이드록실기(-OH), 탄소수 1∼3의 하이드록시알킬기(-CnH2nOH : n=1∼3), 탄소수 1∼3의 하이드록시알콕시기(-OCnH2nOH : n=1∼3)로 이루어지는 군에서 선택되는 기이다.In the formula, R 1 represents a hydrogen atom (-H), an alkyl group having 1 to 3 carbon atoms (-C n H 2n +1 : n = 1 to 3), an alkoxy group having 1 to 3 carbon atoms (-OC n H 2n + 1 : n = 1 to 3), R 2 is a group selected from the group consisting of a hydroxyl group (-OH), a hydroxyalkyl group having 1 to 3 carbon atoms (-C n H 2n OH: n = 1 to 3) And a hydroxyalkoxy group having 1 to 3 carbon atoms (-OC n H 2n OH: n = 1 to 3).

(1)식으로 나타내는 플루오렌 골격을 갖는 화합물의 구체예로서는, 비스페녹시에탄올플루오렌(BPEF : R1=H, R2=OC2H4OH), 비스페놀플루오렌(BPF : R1=H, R2=OH), 비스크레졸플루오렌(BCF : R1=CH3, R2=OH) 등을 들 수 있다.(1) Specific examples of the compound having a fluorene skeleton represented by the following formula, when the non-Made rust ethanol fluorene (BPEF: R 1 = H, R 2 = OC 2 H 4 OH), bisphenol fluorene (BPF: R 1 = H, R 2 = OH), and biscresol fluorene (BCF: R 1 = CH 3 , R 2 = OH).

이하에서는, 아크릴계 접착제에 도전성 입자가 분산되어 이루어지는 이방성 도전 접착제에 대해 설명한다. (1)식으로 나타내는 플루오렌 골격을 갖는 화합물은, 이방성 도전 접착제에 배합되어도 열압착 시에 분해되지 않고, 또 경화 반응에 관여하지 않기 때문에, 반응률 측정 시에는 자외 검출기에 높은 감도를 나타낼 수 있다. 이 때문에, 이 이방성 도전 접착제를 사용하면, 전극 상, 전극 간 등의 미소 영역의 반응률을 정밀도 양호하게 측정할 수 있다.Hereinafter, an anisotropic conductive adhesive in which conductive particles are dispersed in an acrylic adhesive will be described. The compound having a fluorene skeleton represented by the formula (1) is not decomposed at the time of thermocompression bonding even when mixed with an anisotropic conductive adhesive, and does not participate in the curing reaction, . Therefore, by using this anisotropic conductive adhesive, it is possible to accurately measure the reaction rate of the minute domains such as the electrode surface and the electrode.

플루오렌 골격을 갖는 화합물의 배합량은, 0.01wt% 이상 5.0wt% 이하인 것이 바람직하고, 0.2wt% 이상 1.0wt% 이하인 것이 보다 바람직하다. 배합량이 지나치게 적은 경우 측정 피크가 작아지고, 내표준물질로서 기능하지 않고, 배합량이 지나치게 많은 경우, 이방성 도전 필름으로서의 특성이 악화되어 버린다.The compounding amount of the compound having a fluorene skeleton is preferably 0.01 wt% or more and 5.0 wt% or less, and more preferably 0.2 wt% or more and 1.0 wt% or less. When the blending amount is too small, the measurement peak becomes small, and when the blending amount is too large, the characteristics as the anisotropic conductive film deteriorate.

라디칼 중합성 화합물로서는, 단관능 (메트)아크릴레이트 모노머, 다관능 (메트)아크릴레이트 모노머, 혹은 그것들에 에폭시기, 우레탄기, 아미노기, 에틸렌옥사이드기, 프로필렌옥사이드기 등을 도입한 변성 단관능, 또는 다관능 (메트)아크릴레이트 모노머를 사용할 수 있다. 또, 라디칼 중합성 화합물은, 모노머, 올리고머 어느 상태로 사용할 수 있고, 모노머와 올리고머를 병용할 수도 있다.Examples of the radical polymerizable compound include monofunctional (meth) acrylate monomers, polyfunctional (meth) acrylate monomers, or modified monofunctional monomers having epoxy groups, urethane groups, amino groups, ethylene oxide groups and propylene oxide groups introduced into them Polyfunctional (meth) acrylate monomers can be used. The radical polymerizable compound may be used in either a monomer or an oligomer state, or a monomer and an oligomer may be used in combination.

(메트)아크릴레이트 모노머로서는, 적어도 1분자 중에 1개 이상의 (메트)아크릴로일기를 갖는 (메트)아크릴레이트 수지나 이들의 변성물 등을 들 수 있다. 또, 그들의 변성물로서는, 테트라하이드로푸르푸릴아크릴레이트, 이소보르닐아크릴레이트, 메틸메타크릴아크릴레이트, 에틸메타크릴아크릴레이트, 트리시클로데칸디메탄올디아크릴레이트, 트리시클로데칸디메탄올디메타크릴레이트, 에톡시화비스페놀 A 디아크릴레이트, 프로폭시화비스페놀 A 디아크릴레이트, 펜타에리트리톨트리 아크릴레이트, 에톡시화이소시아누르산트리아크릴레이트 등을 들 수 있다. 이들은 1종 혹은 2종류 이상을 혼합해 사용해도 된다.Examples of the (meth) acrylate monomer include (meth) acrylate resins having at least one (meth) acryloyl group in at least one molecule, and modifications thereof. Examples of the denatured materials include, but are not limited to, tetrahydrofurfuryl acrylate, isobornyl acrylate, methyl methacrylate, ethyl methacrylate, tricyclodecane dimethanol diacrylate, tricyclodecane dimethanol dimethacrylate , Ethoxylated bisphenol A diacrylate, propoxylated bisphenol A diacrylate, pentaerythritol triacrylate, ethoxylated isocyanuric acid triacrylate, and the like. These may be used alone or in combination of two or more.

반응 개시제로서는, 유기 과산화물, 광 라디칼 중합 개시제 등을 사용할 수 있다. 유기 과산화물로서는, 디아실퍼옥사이드, 디알킬퍼옥사이드, 퍼옥시디카르보네이트, 퍼옥시에스테르, 퍼옥시케탈, 하이드로퍼옥사이드, 실릴퍼옥사이드 등으로부터 1종 또는 2종 이상을 사용할 수 있다. 또, 광 라디칼 중합 개시제로서는, 벤조인에틸에테르, 이소프로필벤조인에테르 등의 벤조인에테르, 벤질, 하이드록시시클로헥실페닐케톤 등의 벤질케탈, 벤조페논, 아세토페논 등의 케톤류 및 그 유도체, 티오크산톤류, 비스이미다졸류 등으로부터 1종 또는 2종 이상을 사용할 수 있다.As the reaction initiator, an organic peroxide, a photo radical polymerization initiator, or the like can be used. As the organic peroxide, one or more of diacyl peroxide, dialkyl peroxide, peroxydicarbonate, peroxy ester, peroxyketal, hydroperoxide, silyl peroxide and the like can be used. Examples of the photo radical polymerization initiator include benzoin ethers such as benzoin ethyl ether and isopropyl benzoin ether; benzyl ketals such as benzyl and hydroxycyclohexyl phenyl ketone; ketones and derivatives such as benzophenone and acetophenone; Oacic acid, oceansaltone, bisimidazoles, and the like.

도전성 입자는, 종래의 이방성 도전 필름에서 사용되고 있는 도전성 입자를 사용할 수 있고, 예를 들어 금 입자, 은 입자, 니켈 입자 등의 금속 입자, 벤조구아나민 수지나 스티렌 수지 등의 수지 입자의 표면을 금, 니켈, 아연 등의 금속으로 피복한 금속 피복 수지 입자 등을 사용할 수 있다. 이와 같은 도전성 입자의 평균 입경으로서는, 통상 1∼10㎛, 보다 바람직하게는 2∼6㎛이다.As the conductive particles, conductive particles used in conventional anisotropic conductive films can be used. For example, the surface of resin particles such as gold particles, silver particles, metal particles such as nickel particles, benzoguanamine resin or styrene resin, , Metal coated resin particles coated with a metal such as nickel or zinc, or the like can be used. The average particle diameter of such conductive particles is usually 1 to 10 占 퐉, and more preferably 2 to 6 占 퐉.

또, 이방성 도전 접착제는, 막 형성 수지, 실란 커플링제, 인산에스테르, 무기 필러, 응력 완화제 등을 함유해도 된다. 막 형성 수지로서는, 페녹시 수지, 폴리비닐아세탈 수지, 폴리비닐부티랄 수지, 알킬화셀룰로오스 수지, 폴리에스테르 수지, 아크릴 수지, 스티렌 수지, 우레탄 수지, 폴리에틸렌테레프탈레이트 수지 등을 들 수 있다. 실란 커플링제로서는, γ-글리시도프로필트리메톡시실란, γ-메르캅토프로필트리메톡시실란, γ-아미노프로필트리에톡시실란, γ-우레이도프로필트리에톡시실란, N-β-아미노에틸-γ-아미노프로필트리메톡시실란, γ-메타크릴옥시프로필트리메톡시실란 등을 들 수 있다.The anisotropic conductive adhesive may contain a film-forming resin, a silane coupling agent, a phosphoric acid ester, an inorganic filler, a stress relaxation agent, and the like. Examples of the film-forming resin include phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin, alkylated cellulose resin, polyester resin, acrylic resin, styrene resin, urethane resin, and polyethylene terephthalate resin. Examples of the silane coupling agent include γ-glycidopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, N- -aminopropyltrimethoxysilane, -methacryloxypropyltrimethoxysilane, and the like.

이와 같은 이방성 도전 접착제를 사용하면, 전극 상, 전극 간 등의 미소 영역의 반응률을 정밀도 양호하게 측정할 수 있으므로, 안정적인 접합 조건을 단시간에 얻을 수 있게 된다.By using such an anisotropic conductive adhesive, it is possible to measure the reaction rate of the minute domains such as the electrode surface and the electrodes with good precision, so that stable bonding conditions can be obtained in a short time.

실시예Example

<3. 실시예><3. Examples>

이하, 본 발명의 실시예에 대해 설명한다. 본 실시예에서는, 내표준물질로서 비스페놀에탄올플루오렌(BPEF)을 사용하고, HPLC(High performance liquid chromatography)로 아크릴계의 이방성 도전 접착제의 반응률을 측정하고, 표준 편차에 대해 평가했다. 또, 비교예로서 DSC(Differential scanning calorimetry), FT-IR(Fourier Transform Infrared Spectroscopy)로 측정한 반응률의 표준 편차에 대해서도 평가했다. 또, 본 기술을 사용해, 실장체의 배선 상, 배선 간의 반응률을 측정하고, 접속 신뢰성의 평가를 실시했다. 또한 BPEF의 첨가량에 대해 검토를 실시했다. 또한, 본 발명은 이들 실시예에 한정되는 것은 아니다.Hereinafter, an embodiment of the present invention will be described. In this example, the reaction rate of an acrylic anisotropic conductive adhesive was measured by high performance liquid chromatography (HPLC) using bisphenolethanol fluorene (BPEF) as an internal standard substance, and the standard deviation was evaluated. The standard deviation of the reaction rates measured by DSC (differential scanning calorimetry) and FT-IR (Fourier transform infrared spectroscopy) was also evaluated as a comparative example. In addition, the present technology was used to measure the reaction rate between the wirings of the mounting body and the wirings, and evaluation of the connection reliability was performed. In addition, the addition amount of BPEF was examined. The present invention is not limited to these examples.

이방성 도전 필름, 및 실장체는, 다음과 같이 제작했다.The anisotropic conductive film and the mounting body were produced as follows.

[이방성 도전 필름의 제작][Production of anisotropic conductive film]

하기 배합의 이방성 도전 접착제를 사용했다. 배합은, 페녹시 수지(상품명 : YP50, 신닛테츠수미킹카가쿠(주)) 40질량부, 폴리우레탄(상품명 : N-5196, 닛폰폴리우레탄코교(주)) 40질량부, 인산에스테르(상품명 : PM-2, 닛폰카야쿠(주)) 2질량부, 실란 커플링제(상품명 : A-187, 모멘티브 퍼포먼스 매티리얼즈(주)) 2질량부, 2관능 아크릴레이트(상품명 : DCP, 신나카무라카가쿠코교(주)) 3질량부, 아크릴산 에스테르(상품명 : SG-P3, (나가세켐텍스(주)) 5질량부, 디아실퍼옥사이드(상품명 : 퍼로일L, 니혼유시(주)) 5질량부, 및 평균 입자경(D50) 10㎛의 도전성 입자(세키스이카가쿠(주)) 3질량부의 합계 100질량부로 했다. 이 배합에 BPEF를 소정량 첨가한 조성물을 PET(Polyethylene Terephthalate)에 도포하고, 60℃의 열풍으로 4분간 건조시킴으로써, 두께 16㎛의 필름상의 이방성 도전 접착제를 얻었다.The following anisotropic conductive adhesive was used. 40 parts by mass of a phenoxy resin (trade name: YP50, Shin Nittsu Sumikin Kagaku K.K.), 40 parts by mass of a polyurethane (trade name: N-5196, manufactured by Nippon Polyurethane Coatings Co., Ltd.) 2 parts by mass of a silane coupling agent (trade name: PM-2, manufactured by Nippon Kayaku Co., Ltd.), 2 parts by mass of a silane coupling agent (trade name: A-187, Momentive Performance Materials Co., 5 parts by mass of acrylic acid ester (trade name: SG-P3, manufactured by Nagase Chemtex Co., Ltd.), 5 parts by mass of diacyl peroxide (trade name: PEROIL L, available from Nippon Oil Co., Ltd.) , And 3 parts by mass of conductive particles having an average particle size (D50) of 10 mu m (Sekisui Chemical Co., Ltd.) were added in a total amount of 100 parts by mass. A composition prepared by adding a predetermined amount of BPEF to this composition was applied to PET (Polyethylene Terephthalate) And dried by hot air at 60 DEG C for 4 minutes to obtain an anisotropic conductive adhesive film having a thickness of 16 mu m.

[실장체의 제작][Production of mounting body]

평가 기재로서, FPC(200㎛P, L/S=1/1, PI/Cu=25/12㎛, Au 도금), 및 유리 기판(ITO 솔리드 유리(solid glass), 10Ω/□, 0.7㎜t)을 사용하여 실장체를 제작했다. 유리 기판 상에 이방성 도전 필름을 첩부(貼付)하고, 45℃, 1㎫, 2sec의 조건으로 가열 가압한 후, PET를 박리하고, 가압착을 실시했다. 이방성 도전 필름 상에 FPC를 배치하고, 소정 온도, 2㎫, 5sec의 조건으로 가열 가압해, 실장체를 얻었다.As the evaluation substrate, an FPC (200 탆 P, L / S = 1/1, PI / Cu = 25/12 탆, Au plating) and a glass substrate (ITO solid glass, 10 Ω / ) Was used to produce a mounting body. An anisotropic conductive film was pasted on the glass substrate and heated and pressed under the conditions of 45 DEG C, 1 MPa, and 2 seconds, PET was peeled off, and pressure bonding was performed. An FPC was placed on the anisotropic conductive film, and heated and pressed under the conditions of a predetermined temperature, 2 MPa, and 5 seconds to obtain a mounting body.

<3.1 측정값의 표준 편차><3.1 Standard deviation of measured value>

전술한 바와 같이 0.5wt%의 BPEF를 배합한 이방성 도전 필름을 사용하여 실장체를 제작한 후, HPLC, DSC, 및 FT-IR을 사용하여 이방성 도전 필름의 반응률 측정을 실시했다. 실장체로부터 FPC를 박리하고, 2.0㎜×0.2㎜의 배선 상, 및 2.0㎜×0.2㎜의 배선 간으로부터 측정용 샘플의 샘플링을 행했다.As described above, the anisotropic conductive film containing 0.5 wt% of BPEF was used to prepare a mounting body, and the reaction rate of the anisotropic conductive film was measured using HPLC, DSC, and FT-IR. The FPC was peeled off from the mounting body, and the measurement sample was sampled from the wiring of 2.0 mm x 0.2 mm and the wiring of 2.0 mm x 0.2 mm.

[HPLC][HPLC]

HPLC 분석 장치로서, Waters사 제조 UPLC(UV 검출기 접속)를 사용하였다. 측정용 샘플 0.005㎎을 아세토니트릴에 용해하고, 이것을 분리 칼럼(10㎝, 40℃)에 주입해, 크로마토그램을 얻었다. 분석 조건은 이하와 같이 했다.As a HPLC analysis apparatus, UPLC (UV detector connection) manufactured by Waters was used. 0.005 mg of the sample for measurement was dissolved in acetonitrile, and this was injected into a separation column (10 cm, 40 캜) to obtain a chromatogram. The analysis conditions were as follows.

아세토니트릴 상온 추출-HPLC/DAD법Acetonitrile room temperature extraction-HPLC / DAD method

추출 : 아세토니트릴 30㎕Extraction: 30 占 퐇 of acetonitrile

그레이디언트 조건 : A 60%, B 40%(1분간 유지)→5분 후에 A 1%, B 99%(6분간 유지), A=H2O, B=ACN Gradient conditions: A 60%, B 40% (hold for 1 minute), A 1%, B 99% (hold for 6 minutes), A = H 2 O, B = ACN

유량 : 0.4㎖/min Flow rate: 0.4 ml / min

주입량 : 5㎕Injection amount: 5 μl

해석 파장 : 210-400㎚Analysis wavelength: 210-400 nm

얻어진 크로마토그램으로부터 BPEF와 아크릴 모노머의 측정 강도비를 구하고, 미리 작성한 BPEF와 아크릴 모노머의 측정 강도비와 반응률의 관계선으로부터 반응률을 구했다. 상기 조작을 합계 3회 반복했다.From the chromatogram thus obtained, the measurement intensity ratio between BPEF and acrylic monomer was determined, and the reaction rate was determined from the relationship between the measurement intensity ratio of BPEF and acrylic monomer prepared beforehand and the reaction rate. This operation was repeated three times in total.

표 1에 나타내는 바와 같이, 압착 온도가 130℃인 경우의 반응률의 측정 결과는, 1회째 78.5%, 2회째 79.4%, 및 3회째 79.2%이고, 표준 편차는, 0.4726이었다. 또, 압착 온도가 140℃인 경우의 반응률의 측정 결과는, 1회째 86.3%, 2회째 86.8%, 및 3회째 85.2%이고, 표준 편차는, 0.8185였다. 압착 온도가 150℃인 경우의 반응률의 측정 결과는, 1회째 91.1%, 2회째 92.0%, 및 3회째 91.0%이고, 표준 편차는, 0.5508이었다. As shown in Table 1, the measurement results of the reaction rate when the compression temperature was 130 ° C were 78.5% for the first time, 79.4% for the second time, and 79.2% for the third time, and the standard deviation was 0.4726. The measurement results of the reaction rate when the compression temperature was 140 캜 were 86.3% for the first time, 86.8% for the second time and 85.2% for the third time, and the standard deviation was 0.8185. The results of the measurement of the reaction rate when the compression temperature was 150 ° C were 91.1% for the first time, 92.0% for the second time and 91.0% for the third time, and the standard deviation was 0.5508.

[DSC][DSC]

시차 열분석 장치(DSC6200, 세이코 인스트루먼트(주))를 사용하여, 측정용 샘플 5.0㎎을, 30℃에서 250℃까지 10℃/min으로 승온시켜, DSC 차트를 얻었다.Using a differential thermal analyzer (DSC6200, Seiko Instruments Inc.), 5.0 mg of a sample for measurement was heated from 30 占 폚 to 250 占 폚 at 10 占 폚 / min to obtain a DSC chart.

미경화(압착 전) 샘플을 레퍼런스로 했다. 미경화 샘플의 발열량과 압착 후의 미지 샘플의 발열량의 차분을 구하고, 미경화 샘플의 발열량을 1로 해서 미지 샘플의 반응률을 산출했다. 미지 샘플의 측정은, 3회(N=3) 행했다. 또한, 발열량은, DSC 차트의 면적으로부터 구했다.The uncured (pre-crimped) sample was taken as a reference. The difference between the calorific value of the uncured sample and the calorific value of the unknown sample after compression was determined and the calorific value of the uncured sample was set at 1 to calculate the reaction rate of the unknown sample. Measurement of the unknown sample was performed three times (N = 3). The calorific value was obtained from the area of the DSC chart.

표 1에 나타내는 바와 같이, 압착 온도가 130℃인 경우의 반응률의 측정 결과는, 1회째 72.0%, 2회째 83.2%, 및 3회째 75.7%이고, 표준 편차는, 5.7064였다. 또, 압착 온도가 140℃인 경우의 반응률의 측정 결과는, 1회째 82.6%, 2회째 78.9%, 및 3회째 88.1%이고, 표준 편차는, 4.6293이었다. 압착 온도가 150℃인 경우의 반응률의 측정 결과는, 1회째 94.2%, 2회째 86.8%, 및 3회째 90.2%이고, 표준 편차는, 3.7041이었다.As shown in Table 1, the results of the measurement of the reaction rate when the compression temperature was 130 ° C were 72.0% for the first time, 83.2% for the second time, and 75.7% for the third time, and the standard deviation was 5.7064. The results of the measurement of the reaction rate when the compression temperature was 140 캜 were 82.6% for the first time, 78.9% for the second time, and 88.1% for the third time, and the standard deviation was 4.6293. The measurement results of the reaction rate when the compression temperature was 150 ° C were 94.2% for the first time, 86.8% for the second time and 90.2% for the third time, and the standard deviation was 3.7041.

[FT-IR][FT-IR]

푸리에 변환 적외 분광 광도계(FT/IR-4100, 니혼분코사 제조)를 사용하여, 측정용 샘플 0.02㎎을 투과법으로 측정했다.0.02 mg of a sample for measurement was measured by a transmission method using a Fourier transform infrared spectrophotometer (FT / IR-4100, manufactured by Nihon Bunko).

미경화(압착 전) 샘플의 아크릴 모노머(불포화기)의 측정 강도와, 압착 후의 미지 샘플의 아크릴 모노머(불포화기)의 측정 강도의 비로부터, 미지 샘플의 반응률을 산출했다. 미지 샘플의 측정은, 3회(N=3) 행했다.The reaction rate of the unknown sample was calculated from the ratio between the measurement intensity of the acrylic monomer (unsaturated group) of the uncured (pre-compression) sample and the measurement intensity of the acrylic monomer (unsaturated group) of the unknown sample after compression. Measurement of the unknown sample was performed three times (N = 3).

표 1에 나타내는 바와 같이, 압착 온도가 130℃인 경우의 반응률의 측정 결과는, 1회째 68.7%, 2회째 79.6%, 및 3회째 74.2%이고, 표준 편차는, 5.4501이었다. 또, 압착 온도가 140℃인 경우의 반응률의 측정 결과는, 1회째 77.8%, 2회째 82.0%, 및 3회째 89.7%이고, 표준 편차는, 6.0352였다. 압착 온도가 150℃인 경우의 반응률의 측정 결과는, 1회째 88.8%, 2회째 87.3%, 및 3회째 93.8%이고, 표준 편차는, 3.4034였다.As shown in Table 1, the results of the measurement of the reaction rate when the compression temperature was 130 ° C were 68.7% for the first time, 79.6% for the second time and 74.2% for the third time, and the standard deviation was 5.4501. The results of the measurement of the reaction rate when the compression temperature was 140 캜 were 77.8% for the first time, 82.0% for the second time, and 89.7% for the third time, and the standard deviation was 6.0352. The results of the measurement of the reaction rate when the compression temperature was 150 ° C were 88.8% for the first time, 87.3% for the second time, and 93.8% for the third time, and the standard deviation was 3.4034.

Figure pct00004
Figure pct00004

표 1에 나타내는 바와 같이, DSC, FT-IR을 사용한 측정에서는, 측정값의 표준 편차가 커져, 정밀도가 낮았다. 또, 샘플량이 많이 필요하고, 후술하는 바와 같은 배선 상, 배선 간의 반응률 측정은 곤란하다. 한편, HPLC-UV 검출을 사용한 측정에서는, UV 검출에 대한 감도가 높은 BPEF에 의해, 소량의 샘플로 정밀도가 양호한 반응률 측정을 행할 수 있었다.As shown in Table 1, in the measurement using DSC and FT-IR, the standard deviation of the measured value became large and the precision was low. In addition, a large amount of sample is required, and it is difficult to measure the reaction rate between wirings and wirings as described later. On the other hand, in the measurement using HPLC-UV detection, it was possible to measure the reaction rate with a high precision with a small amount of sample by BPEF having high sensitivity to UV detection.

<3.2 실장체의 배선 상, 배선 간의 반응률 측정>&Lt; 3.2 Measurement of reaction rate between wiring and wiring in a mounting body &gt;

전술한 바와 같이 0.5wt%의 BPEF를 배합한 이방성 도전 필름을 사용하여 실장체를 제작한 후, HPLC를 사용하여 이방성 도전 필름의 반응률 측정을 행했다. 실장체로부터 FPC를 박리하고, 2.0㎜×0.2㎜의 배선 상의 측정용 샘플, 2.0㎜×0.2㎜의 배선 간의 측정용 샘플, 및 배선 상과 배선 간의 측정용 샘플의 샘플링을 행했다.As described above, a packaging material was produced using an anisotropic conductive film containing 0.5 wt% of BPEF, and the reaction rate of the anisotropic conductive film was measured by HPLC. The FPC was peeled off from the mounting body, and a sample for measurement on a wiring of 2.0 mm x 0.2 mm, a sample for measurement between wiring of 2.0 mm x 0.2 mm, and a sample for measurement between wiring and wiring were sampled.

[HPLC][HPLC]

HPLC 분석 장치로서, Waters사 제조 UPLC(UV 검출기 접속)를 사용하였다. 측정용 샘플 0.005㎎을 아세토니트릴에 용해하고, 이것을 분리 칼럼(10㎝, 40℃)에 주입해, 크로마토그램을 얻었다. 분석 조건은 이하와 같이 했다.As a HPLC analysis apparatus, UPLC (UV detector connection) manufactured by Waters was used. 0.005 mg of the sample for measurement was dissolved in acetonitrile, and this was injected into a separation column (10 cm, 40 캜) to obtain a chromatogram. The analysis conditions were as follows.

아세토니트릴 상온 추출-HPLC/DAD법Acetonitrile room temperature extraction-HPLC / DAD method

추출 : 아세토니트릴 30㎕Extraction: 30 占 퐇 of acetonitrile

그레이디언트 조건 : A 60%, B 40%(1분간 유지)→5분 후에 A 1%, B 99%(6분간 유지), A=H2O, B=ACN Gradient conditions: A 60%, B 40% (hold for 1 minute), A 1%, B 99% (hold for 6 minutes), A = H 2 O, B = ACN

유량 : 0.4㎖/min Flow rate: 0.4 ml / min

주입량 : 5㎕Injection amount: 5 μl

해석 파장 : 210-400㎚Analysis wavelength: 210-400 nm

얻어진 크로마토그램으로부터 BPEF와 아크릴 모노머의 측정 강도비를 구하고, 미리 작성한 BPEF와 아크릴 모노머의 측정 강도비와 반응률의 관계선으로부터 반응률을 구했다. 상기 조작을 합계 3회 반복해, 평균값을 구했다.From the chromatogram thus obtained, the measurement intensity ratio between BPEF and acrylic monomer was determined, and the reaction rate was determined from the relationship between the measurement intensity ratio of BPEF and acrylic monomer prepared beforehand and the reaction rate. The above operations were repeated three times in total to obtain an average value.

또, 0.5wt%의 BPEF를 배합한 이방성 도전 필름을 사용하여 제작한 실장체에 대해, 환경 시험(60℃, 95%, 500hr)을 실시하고, 도통 저항을 측정했다. 도통 저항은, 디지털 멀티미터(디지털 멀티미터 7561, 요코가와덴키사 제조)를 사용하여 4단자법으로 측정했다. 신뢰성 시험의 평가는, 도통 저항이 3Ω 이상인 것을 「NG」, 3Ω 미만인 것을 「OK」로 했다.An environmental test (60 DEG C, 95%, 500 hours) was also performed on a package made using an anisotropic conductive film containing 0.5 wt% of BPEF, and the conduction resistance was measured. The conduction resistance was measured by a four-terminal method using a digital multimeter (Digital Multimeter 7561, manufactured by Yokogawa Electric KK). In the evaluation of the reliability test, "NG" was defined as a conduction resistance of 3 Ω or more, and "OK" as a conduction resistance of 3 Ω or less.

표 2에 나타내는 바와 같이, 압착 온도가 130℃인 경우, 배선 상의 반응률은 75%, 배선 간의 반응률은 82%, 배선 상 및 배선 간의 반응률은 80%이고, 신뢰성 시험의 평가는 NG였다. 또, 압착 온도가 140℃인 경우, 배선 상의 반응률은 83%, 배선 간의 반응률은 89%, 배선 상 및 배선 간의 반응률은 86%이고, 신뢰성 시험의 평가는 OK였다. 또, 압착 온도가 150℃인 경우, 배선 상의 반응률은 88%, 배선 간의 반응률은 93%, 배선 상 및 배선 간의 반응률은 90%이고, 신뢰성 시험의 평가는 OK였다.As shown in Table 2, when the compression temperature was 130 占 폚, the reaction rate on the wiring was 75%, the reaction rate between the wirings was 82%, and the reaction rate between the wirings and wiring was 80%. When the compression temperature was 140 占 폚, the reaction rate on the wiring was 83%, the reaction rate between the wirings was 89%, and the reaction rate between the wiring and the wiring was 86%. When the compression temperature was 150 ° C, the reaction rate on the wiring was 88%, the reaction rate between the wirings was 93%, and the reaction rate between the wiring and the wiring was 90%.

Figure pct00005
Figure pct00005

표 2에 나타내는 바와 같이, 배선 상은, 구리 등의 금속의 높은 열전도율의 영향으로 열누출이 크고, 축열하지 않기 때문에, 배선 간에 비해 ACF의 경화가 되기 어려운 경향이 있는 것을 알 수 있다. 이와 같이 본 기술에서는, 샘플이 소량이면 되므로, 배선 상, 배선 간 등의 국소적인 반응률을 정밀도 양호하게 측정할 수 있다.As shown in Table 2, it can be seen that the wiring pattern tends to be harder to cure ACF as compared with the wiring, because heat leakage is large due to the influence of high thermal conductivity of a metal such as copper and no heat accumulation occurs. As described above, in the present technology, since a small amount of sample is required, local reaction rates such as interconnection and interconnection can be measured with good precision.

<3.3 BPEF의 첨가량>&Lt; Addition amount of 3.3 BPEF &gt;

다음으로, 이방성 도전 필름에 배합되는 BPEF의 첨가량의 영향에 대해 검토했다. 이방성 도전 필름, 및 실장체는, 전술과 동일한 것을 사용하고, 이방성 도전 필름에 대한 BPEF의 첨가량을 변경해, 실장체의 이방성 도전 필름 부분의 외관, 필 강도, 압입성, 및 측정의 용이함에 대해 평가했다.Next, the effect of the amount of BPEF added to the anisotropic conductive film was examined. The anisotropic conductive film and the mounting body were the same as those described above, and the amount of BPEF added to the anisotropic conductive film was changed to evaluate the appearance, fill strength, indentation property, and easiness of measurement of the anisotropic conductive film portion of the mounting body did.

실장체의 이방성 도전 필름 부분의 외관의 평가는, 육안 관찰에 의해 기포가 없는 경우를 「◎」, 작은 기포가 있는 경우를 「○」, 큰 기포가 있는 경우를 「△」, 들뜸이 생긴 경우를 「×」로 했다. 또, 실장체의 필 강도(JIS K6854)의 평가는, 90° 필 강도가 10N/25㎜ 이상인 경우를 「◎」, 90° 필 강도가 8N/25㎜ 이상 10N/25㎜ 미만인 경우를 「○」, 90° 필 강도가 6N/25㎜ 이상 8N/25㎜ 미만인 경우를 「△」, 90° 필 강도가 6N/25㎜ 미만인 경우를 「×」로 했다. 또, 압입성의 평가는, 실장체의 도통 저항이 1Ω 이하인 것을 「◎」, 1Ω 이상 2Ω 미만인 것을 「○」, 2Ω 이상 5Ω 미만인 것을 「△」, 5Ω 이상인 것을 「×」로 했다. 도통 저항은, 디지털 멀티미터(디지털 멀티미터 7561, 요코가와덴키사 제조)를 사용하여 4단자법으로 측정했다. 또, 측정 용이함의 평가는, 육안 관찰에 의해 크로마토그램의 피크가 쉽게 보이는 경우를 「◎」, 피크가 보통으로 보이는 경우를 「○」, 피크가 잘 보이지 않는 경우를 「△」, 보이지 않는 경우를 「×」로 했다. The evaluation of the appearance of the anisotropic conductive film portion of the mounting body was made by observing with naked eyes the case where no air bubbles exist, the case where small air bubbles are present, the case where large air bubbles exist, the case where air bubbles are present, Quot; x &quot;. The peel strength (JIS K6854) of the mounting body was evaluated as &quot;? &Quot; when the 90 DEG pitch strength was 10 N / 25 mm or more, &quot;Quot; and the case where the 90 DEG pitch strength was less than 6N / 25 mm was evaluated as &quot; DELTA &quot; when the 90 DEG pitch strength was less than 6N / 25 mm and less than 8N / 25 mm. In addition, evaluation of the indentation property was evaluated as &quot;? &Quot; when the conduction resistance of the mounting body was 1? Or less, &quot;? &Quot;, 1 &amp; cir &amp; The conduction resistance was measured by a four-terminal method using a digital multimeter (Digital Multimeter 7561, manufactured by Yokogawa Electric KK). In the evaluation of ease of measurement, the case where the peak of the chromatogram is easily seen by visual observation is indicated as &quot;? &Quot;, the case where the peak is normal is indicated by &quot; O &quot;, the case where the peak is not easily seen is indicated by &Quot; x &quot;.

표 3에 나타내는 바와 같이, BPEF의 첨가량이 0.01wt%인 경우, 외관의 평가는 ◎, 필 강도의 평가는 ◎, 압입성의 평가는 ◎, 측정의 용이함은 △였다. 또, BPEF의 첨가량이 0.1wt%인 경우, 외관의 평가는 ◎, 필 강도의 평가는 ◎, 압입성의 평가는 ◎, 측정의 용이함은 ○였다. 또, BPEF의 첨가량이 0.2wt%인 경우, 외관의 평가는 ◎, 필 강도의 평가는 ◎, 압입성의 평가는 ◎, 측정의 용이함은 ◎였다. 또, BPEF의 첨가량이 0.5wt%인 경우, 외관의 평가는 ◎, 필 강도의 평가는 ◎, 압입성의 평가는 ◎, 측정의 용이함은 ◎였다. 또, BPEF의 첨가량이 1.0wt%인 경우, 외관의 평가는 ◎, 필 강도의 평가는 ◎, 압입성의 평가는 ○, 측정의 용이함은 ◎였다. 또, BPEF의 첨가량이 5.0wt%인 경우, 외관의 평가는 ○, 필 강도의 평가는 △, 압입성의 평가는 △, 측정의 용이함은 ◎였다. 또, BPEF의 첨가량이 10.0wt%인 경우, 외관의 평가는 △, 필 강도의 평가는 ×, 압입성의 평가는 ×, 측정의 용이함은 ◎였다. 또, BPEF의 첨가량이 30.0wt%인 경우, 외관의 평가는 ×, 필 강도의 평가는 ×, 압입성의 평가는 ×, 측정의 용이함은 ◎였다.As shown in Table 3, when the addition amount of BPEF was 0.01 wt%, the appearance was evaluated as ⊚, the evaluation of the peel strength as ⊚, the evaluation of indentation as ⊚, and the ease of measurement as △. When the addition amount of BPEF was 0.1 wt%, evaluation of appearance was evaluated as?, Evaluation of peel strength was evaluated as?, Evaluation of indentation property as?, And ease of measurement as?. When the addition amount of BPEF was 0.2 wt%, the appearance was evaluated as ⊚, the evaluation of the peel strength was evaluated as ◎, the evaluation of indentation property was evaluated as ◎, and the measurement was easy. When the addition amount of BPEF was 0.5 wt%, the appearance was evaluated as?, The peel strength evaluated?, The indentation evaluated as?, And the ease of measurement was evaluated as?. When the addition amount of BPEF was 1.0 wt%, the evaluation of appearance was ⊚, evaluation of peel strength was ◎, evaluation of indentation property was ○, and ease of measurement was ◎. When the addition amount of BPEF was 5.0 wt%, the appearance was evaluated as O, the evaluation of peel strength was evaluated as?, The evaluation of indentation property was as?, And the ease of measurement was as?. When the addition amount of BPEF was 10.0% by weight, the appearance was evaluated as?, The evaluation of the peel strength was evaluated as?, The evaluation of indentation property was evaluated as?, And the ease of measurement was evaluated as?. When the addition amount of BPEF was 30.0 wt%, evaluation of appearance was X, evaluation of peel strength was X, evaluation of indentation property was X, and ease of measurement was ◎.

Figure pct00006
Figure pct00006

표 3에 나타내는 바와 같이 BPEF를 이방성 도전 필름에 배합해 사용하는 경우, 그 배합량은, 0.01wt% 이상 5.0wt% 이하인 것이 바람직하고, 0.2wt% 이상 1.0wt% 이하인 것이 보다 바람직한 것을 알 수 있다. BPEF의 배합량이 커지면, 측정의 용이함은 향상되지만, 압착 시에 ACF에 기포가 발생하고, 필 강도, 및 압입성을 악화시켜 버리는 것을 알 수 있다.As shown in Table 3, when BPEF is used in combination with an anisotropic conductive film, the blending amount thereof is preferably 0.01 wt% or more and 5.0 wt% or less, more preferably 0.2 wt% or more and 1.0 wt% or less. When the blending amount of BPEF is increased, the easiness of measurement is improved, but bubbles are generated in the ACF at the time of pressing, and it is found that the peel strength and indentation property are deteriorated.

Claims (8)

하기 (1)식으로 나타내는 플루오렌 골격을 갖는 화합물을 내표준물질로서 사용하고, 아크릴계 접착제를 포함하는 시료 용액을 액체 크로마토그래피로 분리하고, 자외 검출기에 의해 미반응의 라디칼 중합성 화합물을 검출하는 반응률 측정 방법.
[화학식 1]
Figure pct00007

식 중, R1은, 수소 원자, 탄소수 1∼3의 알킬기, 탄소수 1∼3의 알콕시기로 이루어지는 군에서 선택되는 기이고, R2는, 하이드록실기, 탄소수 1∼3의 하이드록시알킬기, 탄소수 1∼3의 하이드록시알콕시기로 이루어지는 군에서 선택되는 기이다.
A compound having a fluorene skeleton represented by the following formula (1) is used as a reference material, a sample solution containing an acrylic adhesive is separated by liquid chromatography, and an unreacted radically polymerizable compound is detected by an ultraviolet detector Determination of reaction rate.
[Chemical Formula 1]
Figure pct00007

Wherein R 1 is a group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 3 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, R 2 is a hydroxyl group, a hydroxyalkyl group having 1 to 3 carbon atoms, And a hydroxyalkoxy group having 1 to 3 carbon atoms.
제 1 항에 있어서, 상기 플루오렌 골격을 갖는 화합물이, 비스페녹시에탄올플루오렌(BPEF), 비스페놀플루오렌(BPFL), 비스크레졸플루오렌(BCF)으로 이루어지는 군에서 선택되는 1종 이상인 반응률 측정 방법. The process according to claim 1, wherein the compound having a fluorene skeleton is at least one selected from the group consisting of bisphenoxyethanol fluorene (BPEF), bisphenol fluorene (BPFL), and biscresol fluorene (BCF) How to measure. 제 1 항 또는 제 2 항에 있어서, 상기 아크릴계 접착제가, 상기 플루오렌 골격을 갖는 화합물을 함유하는 반응률 측정 방법.The method according to claim 1 or 2, wherein the acrylic adhesive contains a compound having the fluorene skeleton. 제 3 항에 있어서, 상기 플루오렌 골격을 갖는 화합물의 배합량이, 0.01wt% 이상 5.0wt% 이하인 반응률 측정 방법.4. The method according to claim 3, wherein the compounding amount of the compound having a fluorene skeleton is 0.01 wt% or more and 5.0 wt% or less. 하기 (1)식으로 나타내는 플루오렌 골격을 갖는 화합물과, 라디칼 중합성 화합물과, 반응 개시제를 함유하는 아크릴계 접착제.
[화학식 2]
Figure pct00008

식 중, R1은, 수소 원자, 탄소수 1∼3의 알킬기, 탄소수 1∼3의 알콕시기로 이루어지는 군에서 선택되는 기이고, R2는, 하이드록실기, 탄소수 1∼3의 하이드록시알킬기, 탄소수 1∼3의 하이드록시알콕시기로 이루어지는 군에서 선택되는 기이다.
An acrylic adhesive containing a compound having a fluorene skeleton represented by the following formula (1), a radically polymerizable compound, and a reaction initiator.
(2)
Figure pct00008

Wherein R 1 is a group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 3 carbon atoms and an alkoxy group having 1 to 3 carbon atoms, R 2 is a hydroxyl group, a hydroxyalkyl group having 1 to 3 carbon atoms, And a hydroxyalkoxy group having 1 to 3 carbon atoms.
제 5 항에 있어서, 상기 플루오렌 골격을 갖는 화합물이, 비스페녹시에탄올플루오렌(BPEF), 비스페놀플루오렌(BPFL), 비스크레졸플루오렌(BCF)으로 이루어지는 군에서 선택되는 1종 이상인 아크릴계 접착제. 6. The composition according to claim 5, wherein the compound having a fluorene skeleton is at least one selected from the group consisting of bisphenol ethoxyl fluorene (BPEF), bisphenol fluorene (BPFL), and biscresol fluorene (BCF) glue. 제 5 항 또는 제 6 항에 있어서, 상기 플루오렌 골격을 갖는 화합물의 배합량이, 0.01wt% 이상 5.0wt% 이하인 아크릴계 접착제.The acrylic adhesive according to claim 5 or 6, wherein the compounding amount of the fluorene backbone compound is 0.01 wt% or more and 5.0 wt% or less. 제 5 항 내지 제 7 항 중 어느 한 항에 기재된 아크릴계 접착제에 도전성 입자가 분산되어 이루어지는 이방성 도전 접착제.An anisotropic conductive adhesive comprising conductive particles dispersed in the acrylic adhesive according to any one of claims 5 to 7.
KR1020167015172A 2014-02-03 2015-02-03 Reaction rate measurement method for acrylic adhesive, and acrylic adhesive KR102368125B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2014-018388 2014-02-03
JP2014018388A JP6231394B2 (en) 2014-02-03 2014-02-03 Method for measuring reaction rate of acrylic adhesive and acrylic adhesive
PCT/JP2015/052928 WO2015115658A1 (en) 2014-02-03 2015-02-03 Reaction rate measurement method for acrylic adhesive, and acrylic adhesive

Publications (2)

Publication Number Publication Date
KR20160115909A true KR20160115909A (en) 2016-10-06
KR102368125B1 KR102368125B1 (en) 2022-02-25

Family

ID=53757223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167015172A KR102368125B1 (en) 2014-02-03 2015-02-03 Reaction rate measurement method for acrylic adhesive, and acrylic adhesive

Country Status (6)

Country Link
JP (1) JP6231394B2 (en)
KR (1) KR102368125B1 (en)
CN (2) CN108384486B (en)
HK (1) HK1259332A1 (en)
TW (1) TWI659079B (en)
WO (1) WO2015115658A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636999B (en) * 2016-09-29 2018-10-01 Taiwan Textile Research Institute Flame-retardant material with high refractive index and fabricating method thereof and flame-retardant polymer with high refractive index

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2048209A1 (en) * 2006-08-04 2009-04-15 Hitachi Chemical Company, Ltd. Adhesive composition, and connection structure for circuit member
JP2010251789A (en) 2010-06-22 2010-11-04 Sony Chemical & Information Device Corp Junction and method of manufacturing the same
KR20110036733A (en) * 2008-07-11 2011-04-08 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Anisotropic conductive film
CN103087650A (en) * 2011-11-04 2013-05-08 第一毛织株式会社 Composition for anisotropic conductive adhesive film, anisotropic conductive adhesive film and semiconductor device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067977A (en) * 1996-08-28 1998-03-10 Nippon Steel Chem Co Ltd Adhesive for optical disk and optical disk
MY130910A (en) * 1996-12-04 2007-07-31 Samsung Display Devices Co Ltd A composition of photoconductive layer for a color display panel.
JP2000265145A (en) * 1999-03-17 2000-09-26 Sekisui Chem Co Ltd Photocuring type adhesive composition and method of bonding
JP3911154B2 (en) * 2001-03-16 2007-05-09 日本碍子株式会社 Adhesive and production method thereof
JP4215445B2 (en) * 2002-04-11 2009-01-28 旭化成ケミカルズ株式会社 Adhesive composition
CN1315907C (en) * 2002-11-14 2007-05-16 帝人化成株式会社 Polycarbonate copolymer, resin composition, and molded article
JP2004233199A (en) * 2003-01-30 2004-08-19 Nof Corp Reaction rate analyzing method of reaction product resulting from functional group introduction
JP2007056110A (en) * 2005-08-23 2007-03-08 Bridgestone Corp Adhesive composition
JP2011190336A (en) * 2010-03-15 2011-09-29 Adeka Corp Adhesive composition and adhesive sheet
JP5543818B2 (en) * 2010-03-25 2014-07-09 大日本印刷株式会社 Gas barrier film, gas barrier layer, apparatus, and method for producing gas barrier film
JP5293779B2 (en) * 2010-07-20 2013-09-18 日立化成株式会社 Adhesive composition, circuit connection structure, semiconductor device and solar cell module
JP2012204059A (en) * 2011-03-24 2012-10-22 Hitachi Chem Co Ltd Circuit connection material and circuit connection structure using the same
JP6158084B2 (en) * 2011-08-11 2017-07-05 大阪ガスケミカル株式会社 Multifunctional (meth) acrylate having fluorene skeleton and curable composition thereof
JP6231257B2 (en) * 2011-12-15 2017-11-15 デクセリアルズ株式会社 Conductive adhesive and electronic component connecting method
JP5877133B2 (en) * 2012-07-09 2016-03-02 デクセリアルズ株式会社 Conductive adhesive for solar cell, solar cell module, and manufacturing method thereof
CN103524650A (en) * 2013-09-26 2014-01-22 南京邮电大学 Asymmetric two-block polymers as well as preparation and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2048209A1 (en) * 2006-08-04 2009-04-15 Hitachi Chemical Company, Ltd. Adhesive composition, and connection structure for circuit member
KR20110036733A (en) * 2008-07-11 2011-04-08 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 Anisotropic conductive film
KR20130106451A (en) * 2008-07-11 2013-09-27 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film
JP2010251789A (en) 2010-06-22 2010-11-04 Sony Chemical & Information Device Corp Junction and method of manufacturing the same
CN103087650A (en) * 2011-11-04 2013-05-08 第一毛织株式会社 Composition for anisotropic conductive adhesive film, anisotropic conductive adhesive film and semiconductor device
KR20130049423A (en) * 2011-11-04 2013-05-14 제일모직주식회사 A composition for use of an anisotropic conductive film and anisotropic conductive film using the same

Also Published As

Publication number Publication date
JP6231394B2 (en) 2017-11-15
CN105940299B (en) 2018-03-09
JP2015145815A (en) 2015-08-13
CN108384486B (en) 2020-05-19
TW201538653A (en) 2015-10-16
TWI659079B (en) 2019-05-11
CN105940299A (en) 2016-09-14
HK1259332A1 (en) 2019-11-29
KR102368125B1 (en) 2022-02-25
WO2015115658A1 (en) 2015-08-06
CN108384486A (en) 2018-08-10

Similar Documents

Publication Publication Date Title
KR100996035B1 (en) Film-shaped circuit connection material, circuit member connection structure material, and manufacturing method thereof
CN100398620C (en) Adhesion agent for electrode conection and connection method using same
KR101279980B1 (en) Anisotropic conductive film composition and the anisotropic conductive film thereof
KR101453179B1 (en) Anisotropic conductive film, method for producing connected body, and connected body
KR101090577B1 (en) Adhesive and connection structure using the same
KR20050024404A (en) Anisotropic conductive film
WO2005111168A1 (en) Adhesive agent composition and adhesive film for electronic component
KR20160115909A (en) Reaction rate measurement method for acrylic adhesive, and acrylic adhesive
JP6438102B2 (en) Connection body and method of manufacturing connection body
KR20140103855A (en) Anisotropic conductive film, connecting method, and joined structure
KR101982885B1 (en) Adhesive composition, film-like adhesive and circuit connecting material using same adhesive composition, connection structure for circuit member and manufacturing method for same
JP2003282637A (en) Adhesive composite for circuit connection and circuit connection structure empolying it
JP2010024384A (en) Anisotropically electroconductive composition
JP2001176335A (en) Anisotropic conductive film
KR101437256B1 (en) Anisotropic conductive film, bonded body, and connection method
JP2001164207A (en) Anisotropic conductive film
JPH10338844A (en) Anisotropically conductive film
JPH10273633A (en) Anisotropic electroconductive film
JPH10269853A (en) Aeolotropic conductive film
JP3922321B2 (en) Anisotropic conductive film
JPH10273540A (en) Anisotropic, electrically conductive film
JPH10338842A (en) Anisotropically conductive film
JP2011111474A (en) Circuit connecting material
JP2012126915A (en) Anisotropic conductive film, connection, and semiconductor device
JP4491873B2 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant