KR20160096565A - Preparation method of polyimide using water as a dispersion medium - Google Patents

Preparation method of polyimide using water as a dispersion medium Download PDF

Info

Publication number
KR20160096565A
KR20160096565A KR1020160093085A KR20160093085A KR20160096565A KR 20160096565 A KR20160096565 A KR 20160096565A KR 1020160093085 A KR1020160093085 A KR 1020160093085A KR 20160093085 A KR20160093085 A KR 20160093085A KR 20160096565 A KR20160096565 A KR 20160096565A
Authority
KR
South Korea
Prior art keywords
polyimide
dianhydride
reaction
water
diamine
Prior art date
Application number
KR1020160093085A
Other languages
Korean (ko)
Other versions
KR101714980B1 (en
Inventor
정찬문
이웅희
유환철
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Priority to KR1020160093085A priority Critical patent/KR101714980B1/en
Publication of KR20160096565A publication Critical patent/KR20160096565A/en
Application granted granted Critical
Publication of KR101714980B1 publication Critical patent/KR101714980B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention relates to a novel synthesis method of polyimide, and more specifically, to a synthesis method of polyimide, in which a dianhydride compound and a diamine compound are dispersed in water, and reacted in a sealed pressure container at a temperature condition of 5C or above in a pressurized state to produce polyimide. The synthesis method of polyimide according to the present invention utilizes water as a dispersion medium without generating organic-based liquid waste, and is thus environmentally friendly, and has the advantages of low synthesis cost and minimizing the amount of a residual solvent after drying, thereby ameliorating the problem of reduced physical properties due to the residual solvent. Further, the present synthesis method has the advantages of lower reaction temperature, less reaction steps and shorter reaction time compared to the conventional method. Also, the polyimide synthesized above has higher thermal stability and larger molecular weight than the polyimide synthesized through the conventional synthesis method.

Description

물을 분산매로 사용한 폴리이미드의 제조방법{Preparation method of polyimide using water as a dispersion medium}Preparation method of polyimide using water as a dispersion medium "

본 발명은 폴리이미드의 제조방법에 관한 것으로, 보다 상세하게는 분산매로서 물을 사용함으로써 유기계 폐액이 발생하지 않아 친환경적이고, 제조비용이 저렴하며, 건조 후 잔류용매가 최소화될 수 있는, 물을 분산매로 사용한 폴리이미드의 제조방법에 관한 것이다.More particularly, the present invention relates to a process for producing a polyimide, which comprises using water as a dispersion medium to produce an organic solvent-free waste liquid, which is environmentally friendly, low in production cost, and capable of minimizing residual solvent after drying, To a process for producing polyimide.

폴리이미드 등의 고내열성 고분자 재료는 첨단 기술의 발달에 따라 제품의 소형경박화, 고성능화, 고신뢰화를 위한 필수적인 소재로서 필름, 성형품, 섬유, 도료, 접착제 및 복합재 등의 형태로 우주, 항공, 전기/전자, 자동차 및 정밀기기 등 광범위한 산업분야에 이용되고 있다. 이들 중 필름에 대하여 살펴보면 전자 재료와 패키징 재료로 개발되어 왔으며 이들을 분류한다면 폴리에스터 필름을 중심으로 한 일반 목적 엔지니어링 플라스틱 필름, 고내열, 내화학성 및 전기적 특성이 우수하여 유연회로기판 등으로 사용되는 폴리이미드 필름, 고탄성 특성을 갖는 아라미드 필름 및 불소 필름, 슈퍼엔지니어링 열가소성 필름 등으로 나누며 이들 중 내열성 및 용도에 따라 다양한 목적의 특수 필름으로 분류할 수 있다. 이들 재료의 사용은 IT 산업의 발달에 따라 꾸준한 증가 추세에 있다. Polyimide and other highly heat-resistant polymer materials are essential materials for miniaturization, high performance, and high reliability of products in accordance with the development of advanced technology. They are used in the form of films, molded products, fibers, paints, adhesives and composites, / Electronics, automobiles and precision instruments. Among these films, they have been developed as electronic materials and packaging materials. If they are classified as such, general-purpose engineering plastic films mainly composed of polyester films, poly-urea resins having high heat resistance, excellent chemical resistance and electrical properties, A mid-film, an aramid film having high elasticity properties, a fluorine film, and a super engineering thermoplastic film. Among them, the film can be classified as a special film for various purposes depending on its heat resistance and usage. The use of these materials is steadily increasing with the development of the IT industry.

상기 재료 중 폴리이미드(polyimide, PI)는 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가진다. 뿐만 아니라 합성이 용이하고, 박막형 필름을 만들 수 있고 경화를 위한 가교기가 필요 없는 장점을 가지고 있고 뛰어난 전기적 특성으로 인해 미소전자 분야, 광학 분야 등에 이르기까지 고기능성 고분자 재료로 각광받고 있다. Among these materials, polyimide (PI) has excellent mechanical strength, chemical resistance, weather resistance and heat resistance based on the chemical stability of the imide ring. In addition, it is easy to synthesize, can form a thin film and does not need a crosslinking agent for curing. Due to its excellent electrical properties, it is widely regarded as a highly functional polymer material ranging from microelectronics and optical fields.

최근 디스플레이 분야에서 제품의 경량화 및 소형화가 중요시되고 있으나 현재 사용되고 있는 유리 기판의 경우 무겁고 잘 깨지며 연속공정이 어렵다는 단점이 있다. 이 때문에 유리 기판을 대체하여 가볍고 유연하며 연속공정이 가능한 장점을 갖는 폴리이미드 기판을 제작하여 반도체 디바이스의 절연 필름이나 보호 코팅제, 플렉시블 회로 기판이나 집적 회로 등의 표면 보호 재료나 기재 수지, 더 나아가 미세한 회로의 층간 절연막이나 보호막을 형성시키는 경우에도 사용할 수 있다. 특히, 코팅 재료로서 사용하는 경우에는, 폴리이미드 필름 등의 성형체를 접착제로 접착한 보호 재료나, 액상의 폴리이미드 수지 용액 등이 사용될 수 있다.In recent years, weight reduction and miniaturization of products have been emphasized in the field of display, but the glass substrates currently used are heavy and broken, and continuous process is difficult. Therefore, a polyimide substrate having advantages of being light, flexible, and continuous process can be manufactured by replacing a glass substrate, and a surface protective material or base resin such as an insulating film or a protective coating of a semiconductor device, a flexible circuit substrate or an integrated circuit, But also in the case of forming an interlayer insulating film or a protective film of a circuit. In particular, when used as a coating material, a protective material to which a molded article such as a polyimide film is adhered with an adhesive, a liquid polyimide resin solution, or the like can be used.

현재까지 보고된 폴리이미드 합성 방법에는 크게 4가지 방법이 있다. 첫 번째 방법으로서, 다이안하이드라이드와 다이아민의 반응에 의하여 전구체인 폴리아믹산(polyamic acid, PAA)를 먼저 합성하고 다음 단계에서 폴리아믹산을 이미드화시키는 2단계로 구성된 일반적인 방법이다.There are four main methods of polyimide synthesis reported so far. As a first method, it is a general method composed of two steps of synthesizing polyamic acid (PAA) as a precursor by the reaction of dianhydride and diamine, and imidizing polyamic acid in the next step.

제 1단계는 폴리아믹산의 제조 단계로 다이아민이 용해된 반응용액에 다이안하이드라이드가 첨가되어 개환, 중부가 반응으로 인해 폴리아믹산이 만들어진다. 사용되는 반응 용매로는 N,N-다이메틸아세트아마이드, N,N-다이메틸포름아마이드, N-메틸피롤리돈, 메타-크레졸 등의 극성 유기 용매가 주로 사용된다. In the first step, the dianhydride is added to the reaction solution in which the diamine is dissolved as a step of preparing the polyamic acid, whereby the polyamic acid is formed due to the ring opening and the middle portion reaction. The reaction solvent to be used is N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, meta-polar organic solvent such as cresol are mainly used.

제 2단계는 1단계에서 제조한 폴리아믹산을 화학적 방법 또는 열적 방법을 통한 탈수 및 폐환 반응으로 이미드화하여 폴리이미드를 만들 수 있다.In the second step, the polyamic acid prepared in step 1 may be imidized by a chemical method or a dehydration and ring-closing reaction through a thermal method to form a polyimide.

화학적 이미드화 방법은 전구체인 폴리아믹산 용액에 아세틱안하이드라이드등의 산무수물로 대표되는 탈수제와 피리딘등 3급 아민류 등으로 대표되는 이미드화 촉매를 투입하는 방법이다. 피리딘과 같은 수화물형성에 용이한 용매를 사용하여 화학적으로 이미드화 반응을 수행하는 방법으로 무정형 폴리이미드 필름의 제조에 유용하다. 열적 이미드화 방법은 전구체인 폴리아믹산 용액을 250∼300 ℃로 가열하여 열적으로 이미드화 하는 방법으로서 가장 간단한 공정이다. The chemical imidization method is a method of adding a dehydrating agent represented by an acid anhydride such as acetic anhydride and a imidization catalyst represented by a tertiary amine such as pyridine to a polyamic acid solution which is a precursor. And is chemically imidized using a solvent which is easy to form hydrates such as pyridine, which is useful for the production of amorphous polyimide films. The thermal imidization method is the simplest method for thermally imidizing a polyamic acid solution, which is a precursor, by heating to 250 to 300 캜.

상기의 일반적인 폴리이미드 합성법을 사용하여 합성한 전지환식 폴리이미드(fully aliphatic polyimide)는 일반적으로 분자량이 낮아 기계적 성질이 떨어진다. 특히 지방족 다이아민을 사용하는 경우 다이아민의 아미노기의 염기도가 높아 다이아민이 중합반응에 참여하는 대신 아믹산과 염(salt)을 형성하기 때문에 고분자량의 폴리이미드가 얻어지지 않는다.The fully aliphatic polyimide synthesized using the general polyimide synthesis method described above generally has a low molecular weight and thus has poor mechanical properties. In particular, when an aliphatic diamine is used, the basicity of the amino group of the diamine is high, so that the diamine does not participate in the polymerization reaction but forms a salt with the ammic acid, so that a high molecular weight polyimide can not be obtained.

두번째 방법은 N-실릴레이션 반응을 이용하는 것으로, 첫 번째 방법에 있어서 염의 형성을 방지하여 분자량을 높이기 위해 다이아민과 클로로트리메틸실레인을 반응시켜 N-트리메틸실릴기로 보호된 다이아민을 합성한 후, 이 다이아민을 사용하여 폴리이미드를 합성한다. 이 방법에서도 N-트리메틸실릴기로 보호된 다이아민의 합성과 폴리이미드 합성에 유기용매가 사용된다.The second method uses N - silylation reaction. In the first method, diamine and chlorotrimethylsilane are reacted with each other to prevent formation of salt to increase the molecular weight. The diamine protected by N - trimethylsilyl group is synthesized, The diamine is used to synthesize a polyimide. In this method, an organic solvent is used for the synthesis of the diamine protected by the N - trimethylsilyl group and for the polyimide synthesis.

N-실릴레이션 방법의 단점으로는 N-트리메틸실릴기로 보호된 지방족 다이아민을 합성하기 위한 클로로트리메틸실레인 시약의 가격이 비싸고 수분에 매우 민감하여 취급하는 데에 어려움이 있으며 폴리이미드의 수평균 분자량이 10,000 정도밖에 되지 않고, 폴리이미드 합성 방법이 일반적인 합성 방법보다 더 복잡해진다는 단점을 가지고 있다. N - chamber as a disadvantage of the correlation method is N - trimethylsilyl and the group difficulty in handling very sensitive to the expensive water price of the aliphatic diamine chloro trimethyl silane reagent for synthesizing min protect a number average molecular weight of the polyimide Is about 10,000, and the polyimide synthesis method has a disadvantage that it becomes more complicated than the general synthesis method.

세 번째 방법은 메타-크레졸을 용매로 사용하는 방법으로서, 용매로 메타-크레졸을 넣고 다이안하이드라이드과 다이아민을 넣은 후 온도를 단계별로 올려 장시간 동안 반응을 보내는 방법이다.The third method is a method of using meta-cresol as a solvent, in which meta-cresol is added as a solvent, dianhydride and diamine are added, and the temperature is increased stepwise to react for a long time.

메타-크레졸을 이용한 방법은 반응시간이 64시간 이상으로 반응시간이 길고 수 평균 분자량이 10,000 정도로 만족할 수 없는 분자량을 가지고 있고 메타-크레졸 용매를 사용하기 때문에 건조 시간이 길고 자극적인 냄새가 심하다는 단점을 가지고 있다. The meta-cresol method has a long reaction time of more than 64 hours and a molecular weight that can not be satisfied with a number-average molecular weight of about 10,000. The meta-cresol solvent has a disadvantage that the drying time is long and the irritating odor is severe Lt; / RTI >

네 번째 방법은 In-situ 실릴레이션 방법으로서, N-실릴레이션 방법이 수분에 민감한 단점을 해결하기 위한 것이다. 유기용매가 들어있는 반응기에 다이아민을 넣은 후 저온에서 클로로트리메틸실레인을 넣어준 후 다이안하이드라이드를 넣어 N-트리메틸실릴기로 보호된 폴리아믹산을 합성한 후 보호기를 제거하여 폴리아믹산을 거쳐 폴리이미드를 합성한다.The fourth method is an in-situ method for solving the drawback that the N -seal relation method is sensitive to moisture. After adding diamine to a reactor containing an organic solvent, chlorotrimethylsilane was added at a low temperature and then dianhydride was added to synthesize a polyamic acid protected with N - trimethylsilyl group. After removing the protecting group, the polyimide was passed through polyamic acid, .

In-situ 실릴레이션 합성 방법의 단점은 반응시간이 길고 분자량은 개선되었지만 수 평균 분자량이 80,000 정도로 여전히 만족할 수 없는 분자량을 가지고 있고 클로로트리메틸실레인 시약이 고가이며 이미드화시 촉매가 필요하고 건조 시간이 길고 N-트리메틸실릴기로 보호된 폴리아믹산에서 보호기를 제거한 폴리아믹산을 합성하기 위해서 재침전 과정이 필요하며 전지환식 폴리이미드의 경우에도 충분한 투명성을 확보 할 수 없다는 단점을 가지고 있다. A disadvantage of the in situ silylation synthesis method is that the reaction time is long and the molecular weight is improved but the number average molecular weight is about 80,000 and the molecular weight is still unsatisfactory and the chlorotrimethylsilane reagent is expensive, It is necessary to carry out a reprecipitation process in order to synthesize a polyamic acid from which a protecting group has been removed from a polyamic acid protected with a long N - trimethylsilyl group, and it is disadvantageous that sufficient transparency can not be secured even in the case of a battery cyclic polyimide.

유기용매를 사용한 상기의 폴리이미드 합성 방법에 대하여, 전 방향족 폴리이미드 합성 방법이 High Performance Polymers,15:269-279, 2003 및 High Performance Polymers,18:31-44, 2006에 개시되어 있다. 이 방법에서는 먼저 다이안하이드라이드를 물에 넣고 환류온도에서 가열하여 가수분해 시켜 테트라카복실산을 합성한다. 이 용액에 다이아민을 넣으면 테트라카복실산과 다이아민의 염 침전물이 생성된다. 그 후 이 침전물과 물의 혼합물을 압력 장치의 글래스라이너로 옮긴 후 공기를 빼내고 질소를 채워 넣는 조작을 수회 반복하여 질소 분위기로 만든다. 이 혼합물에 질소를 가하여 압력을 20 psi로 올린 후 135℃에서 1시간, 180℃에서 2시간 가열한다. 생성된 생성물을 여과하고 물로 세정하여 분말을 얻은 후 뜨거운 물, 메탄올, 아세톤 및 디클로로메탄으로 차례로 세정한다. 얻어진 생성물을 진공오븐에 넣고 40℃에서 하룻밤 동안 가열하여 폴리이미드 분말을 얻는다. 그러나 이 방법은 다수의 합성단계를 거쳐야 해서 번거롭고 제조단가가 상승한다는 단점이 있다.With respect to the polyimide synthesis method using an organic solvent, a wholly aromatic polyimide synthesis method is disclosed in High Performance Polymers , 15: 269-279, 2003 and High Performance Polymers , 18: 31-44, 2006. In this method, first, dianhydride is added to water and heated at a reflux temperature to hydrolyze tetracarboxylic acid. When diamine is added to this solution, salt precipitates of tetracarboxylic acid and diamine are formed. Thereafter, the mixture of the precipitate and water is transferred to a glass liner of a pressure device, air is taken out, and nitrogen is filled into the nitrogen atmosphere. Nitrogen is added to the mixture, the pressure is raised to 20 psi, and the mixture is heated at 135 ° C for 1 hour and 180 ° C for 2 hours. The resulting product is filtered and washed with water to obtain a powder, which is washed successively with hot water, methanol, acetone and dichloromethane. The obtained product is placed in a vacuum oven and heated at 40 DEG C overnight to obtain a polyimide powder. However, this method has a disadvantage in that it requires cumbersome synthesis steps and increases manufacturing cost.

한국등록특허 1,004,096호Korean Registered Patent No. 1,004,096 한국등록특허 449,798호Korea Patent No. 449,798 한국등록특허 0717377호Korean Patent No. 0717377 미국등록특허 7,053,168호U.S. Patent No. 7,053,168 국제특허출원 2012-091231호(WO2012/91231)International Patent Application No. 2012-091231 (WO2012 / 91231) 국제특허출원 PCT/JP2011/066144(WO 2012/008543)International patent application PCT / JP2011 / 066144 (WO 2012/008543)

Polymer Science and Technology Vol. 24, No. 1, pp. 3-9, 박진영 외, 폴리이미드 기반 입자 제조 및 응용Polymer Science and Technology Vol. 24, No. 1, pp. 3-9, Park Jin-Young et al., Fabrication and Application of Polyimide-Based Particles Macromolecules 2002, 35, 2277-2281 Yasufumi Watanabe, Yoshimasa Sakai, Yuji Shibasaki, Shinji Ando, and Mitsuru Ueda Synthesis of Wholly Alicyclic Polyimides from N-Silylated Alicyclic Diamines and Alicyclic DianhydridesMacromolecules 2002, 35, 2277-2281 Yasufumi Watanabe, Yoshimasa Sakai, Yuji Shibasaki, Shinji Ando, and Mitsuru Ueda Synthesis of Wholly Alicyclic Polyimides from N-Silylated Alicyclic Diamines and Alicyclic Dianhydrides Journal of photopolymer Science and Technology Volume16,Number2(2003) Youshiyuki Oishi, Shu Ondera, Jan Oravec, Kunio Mori, Shinji Ando, Yoshiharu Terui, and kazuhiko Maeda Synthesis of Fluorine-Containing wholly Alicyclic Polyimide by In Situ Silylation MethodYoshiharu Terui, and Kazuhiko Maeda Synthesis of Fluorine-Containing wholly Alicyclic Polyimide by In Situ Silylation Method (in Japanese), Journal of photopolymer science and technology Volume 16, Number 2 (2003) Youshiyuki Oishi; Shu Ondera; Jan Oravec; Kunio Mori; Shinji Ando; Macromolecules 2009, 42, 5892-5894 Dulce M. Munoz, Mariola Calle, Jose G. de la Campa, Javier de Abajo, and Angel E. Lozano An Improved Method for Preparing Very High Molecular Weight PolyimidesMacromolecules 2009, 42, 5892-5894 Dulce M. Munoz, Mariola Calle, Jose G. de la Campa, Javier de Abajo, and Angel E. Lozano An Improved Method for Preparing Very High Molecular Weight Polyimides Macromolecular Research, Vol. 15, No. 2, pp 114-128 (2007) Anu Stella Mathews, Il Kim, and Chang-Sik Ha Synthesis, Characterization, and Properties of Fully Aliphatic Polyimides and Their Derivatives for Microelectronics and Optoelectronics ApplicationsMacromolecular Research, Vol. 15, No. 2, pp 114-128 (2007) Anu Stella Mathews, Il Kim, and Chang-Sik Ha Synthesis, Characterization, and Properties of Fully Aliphatic Polyimides and Their Derivatives for Microelectronics and Optoelectronics Applications High Performance Polymers,15:269-279, 2003 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimide Synthesis : Thermoset and Thermoplastic Examlpes High Performance Polymers, 15: 269-279, 2003 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimide Synthesis: Thermoset and Thermoplastic Examlpes High Performance Polymers,18:31-44, 2006 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimides Synthesis II : Processable Aromatic PolyimideHigh Performance Polymers, 18: 31-44, 2006 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimides Synthesis II: Processable Aromatic Polyimide

본 발명에서는 종래 폴리이미드의 제조방법에서 유기용매를 사용함으로써 발생하는 환경오염, 제조 비용 상승, 잔류용매 등의 문제를 해결하고자 물을 분산매로 사용하는 새로운 제조방법을 제시하고자 한다. 또한 종래의 폴리이미드 제조방법에 비하여 합성단계가 대폭 감소한 매우 간편한 새로운 제조방법을 제시하고자 한다.In the present invention, a new manufacturing method using water as a dispersion medium is proposed to solve environmental pollution, increase in manufacturing cost, residual solvent, and the like caused by using an organic solvent in the conventional process for producing polyimide. The present invention also provides a novel method for manufacturing a polyimide which is significantly simpler than the conventional polyimide manufacturing method.

아울러 본 발명에서는 종래의 합성방법으로 제조되는 고분자에 비하여 분자량이 매우 높아 우수한 기계적 물성을 가지며 높은 열적 특성을 가지는 폴리이미드를 제공하고자 한다.In addition, the present invention provides a polyimide having a high molecular weight as compared with a polymer produced by a conventional synthesis method, and having excellent mechanical properties and high thermal properties.

본 발명에서는 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시킨 후 밀봉된 압력용기 내에서 5℃ 이상의 온도 조건 및 압력이 가해진 상태에서 반응시켜 폴리이미드를 제조하는 방법을 제공함으로써, 종래의 방법에 비하여 간편하고 저렴하며 친환경적으로 폴리이미드를 제조할 수 있으며, 종래의 합성방법으로 제조되는 폴리이미드에 비하여 잔류용매의 문제가 없고 분자량이 매우 높아 우수한 기계적 물성을 가지며 높은 열적 특성을 가지는 폴리이미드를 제조할 수 있다.The present invention provides a process for producing a polyimide by dispersing a dianhydride compound and a diamine compound in water and then reacting the polyimide in a sealed pressure vessel under a temperature condition of 5 DEG C or higher and a pressure applied, Polyimide can be produced in a simple, inexpensive and environmentally friendly manner, and there is no problem of a residual solvent and a very high molecular weight as compared with the polyimide produced by a conventional synthetic method, so that polyimide having excellent mechanical properties and high thermal properties can be manufactured can do.

본 발명에서는 폴리이미드 제조 시 반응 분산매로 물을 사용함으로써 유기계 폐액이 발생하지 않아 친환경적이고, 제조비용이 저렴하며, 건조 후 잔류용매가 최소화되어 잔류용매에 의한 물성 저하 등의 문제가 없다는 장점이 있다. In the present invention, since water is used as a reaction dispersion medium in the production of polyimide, an organic waste solution is not generated, thus being environmentally friendly, low in production cost, minimized in residual solvent after drying, and there is no problem of deterioration of physical properties by residual solvent .

아울러 본 발명에서는 폴리이미드 제조 시 압력을 가함으로써 종래의 제조방법에 비하여 반응온도가 낮고, 반응단계가 적으며 반응시간이 짧은 장점이 있으며, 제조된 폴리이미드는 종래의 방법에 의하여 제조된 폴리이미드에 비하여 열안정성이 높고, 분자량이 큰 장점이 있다. 또한, 전방향족(fully aromatic) 폴리이미드, 부분지환식(partially aliphatic) 폴리이미드 및 전지환식(fully aliphatic) 폴리이미드를 모두 제조할 수 있는 장점이 있다.In addition, the present invention has the advantages of lowering the reaction temperature, lowering the reaction step and shortening the reaction time as compared with the conventional production method by applying pressure during the production of the polyimide. The polyimide thus produced has a polyimide , It has a high thermal stability and a high molecular weight. Further, there is an advantage that all of the fully aromatic polyimide, the partially aliphatic polyimide and the fully aliphatic polyimide can be produced.

도1은 실시예 1에 따른 피로멜리틱 다이안하이드라이드와 4,4'-옥시다이아닐린 폴리이미드의 FT-IR 스펙트럼이다.
도2는 실시예 2에 따른 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 4,4'-옥시다이아닐린 폴리이미드의 FT-IR 스펙트럼이다.
도3은 실시예 3에 따른 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 폴리이미드의 FT-IR 스펙트럼이다.
도4는 비교예 1에 따른 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드와 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.
도5는 비교예 2에 따른 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.
도6은 비교예 3에 따른 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.
도7은 비교예 4에 따른 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드와 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.
1 is an FT-IR spectrum of pyromellitic dianhydride and 4,4'-oxydianiline polyimide according to Example 1.
2 is an FT-IR spectrum of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 4,4'-oxydianiline polyimide according to Example 2. Fig.
3 is an FT-IR spectrum of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 4,4-methylenebis (2-methylcyclohexylamine) polyimide according to Example 3.
4 is a graph showing the FT-IR spectra of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride and 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine polyimide according to Comparative Example 1 to be.
5 shows the FT-IR spectra of 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine and 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine polyimide according to Comparative Example 2 to be.
6 shows the FT-IR spectra of 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine and 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine polyimide according to Comparative Example 3 to be.
7 is a graph showing the FT-IR spectrum of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride and 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine polyimide according to Comparative Example 4 to be.

본 발명은 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시킨 후 이 혼합물을 밀봉된 압력용기에 넣고 반응온도 5℃ 내지 400℃의 범위에서 압력이 가해진 상태에서 반응시켜 폴리이미드를 제조하는 새로운 폴리이미드의 제조방법이다.The present invention relates to a process for producing a polyimide by dispersing a dianhydride compound and a diamine compound in water, placing the mixture in a sealed pressure vessel and reacting the mixture under pressure at a reaction temperature in the range of 5 to 400 캜, Meade. ≪ / RTI >

보다 구체적으로 본 발명은 a) 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시키는 단계; 및 b) 상기 분산액을 밀봉된 압력용기에 넣고, 5℃ 내지 400℃ 온도 및 가압 조건에서 다이안하이드라이드 화합물과 다이아민 화합물을 반응시키는 단계;를 포함하는 폴리이미드의 제조방법에 관한 것이다.More particularly, the present invention relates to a process for preparing a dianhydride compound, comprising: a) dispersing a dianhydride compound and a diamine compound in water; And b) placing the dispersion in a sealed pressure vessel and reacting the dianhydride compound and the diamine compound at a temperature of 5 to 400 캜 and under a pressure condition.

본 발명에 따른 일 양태에서, 상기 방법에 따라 제조된 폴리이미드는 전방향족(fully aromatic) 폴리이미드, 부분지환식(partially aliphatic) 폴리이미드 또는 전지환식(fully aliphatic) 폴리이미드일 수 있다.In one embodiment according to the present invention, the polyimide prepared according to the process may be a fully aromatic polyimide, a partially aliphatic polyimide or a fully aliphatic polyimide.

본 발명에서 사용할 수 있는 다이안하이드라이드 화합물은 치환되거나 치환되지 않은 방향족 또는 지방족 다이안하이드라이드 화합물이다.The dianhydride compounds that can be used in the present invention are substituted or unsubstituted aromatic or aliphatic dianhydride compounds.

본 발명에 따른 일 양태에서, 다이안하이드라이드로 하기 화학식 1로 나타내어지는 치환된 또는 치환되지 않은 방향족 또는 지방족 다이안하이드라이드를 사용할 수 있다.In an embodiment of the present invention, substituted or unsubstituted aromatic or aliphatic dianhydrides represented by the following formula (1) may be used as the dianhydride.

<화학식 1>&Lt; Formula 1 >

Figure pat00001
Figure pat00001

상기 화학식1에서 R1은,In the general formula 1 R 1 is

Figure pat00002
Figure pat00002

로 이루어진 그룹으로부터 선택될 수 있다. &Lt; / RTI &gt;

본 발명에 따른 일 양태에서, 다이안하이드라이드 화합물은 1종 또는 2종 이상의 다이안하이드라이드를 사용할 수 있다.In one embodiment according to the present invention, the dianhydride compound may use one or more dianhydrides.

본 발명에 따른 일 양태에서, 다이아민은 치환되거나 치환되지 않은 방향족 또는 지방족 다이아민일 수 있다.
In one embodiment according to the present invention, the diamines may be substituted or unsubstituted aromatic or aliphatic diamines.

*본 발명에 따른 일 양태에서, 다이아민은 하기 화학식2로 나타내어지는 치환된 또는 치환되지 않은 방향족 또는 지방족 다이아민일 수 있다.In an embodiment of the present invention, the diamine may be a substituted or unsubstituted aromatic or aliphatic diamine represented by the following formula (2).

<화학식 2>(2)

Figure pat00003
Figure pat00003

상기 화학식2에서 R2는,It is in Formula 2 R 2,

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

Figure pat00009
Figure pat00009

로 이루어진 그룹으로부터 선택될 수 있다.
&Lt; / RTI &gt;

본 발명에 따른 일 양태에서, 다이아민 화합물은 1종 또는 2종 이상의 다이아민을 사용할 수 있다.In one embodiment of the present invention, one or more diamines may be used as the diamine compound.

본 발명에 따른 일 양태에서, 물로는 증류수, 탈이온수, 수돗물 등 어떠한 상태의 물이라도 사용할 수 있다.In one embodiment of the present invention, water may be used in any state of water, such as distilled water, deionized water, tap water or the like.

본 발명에 따른 일 양태에서, 반응온도는 5℃ 내지 400℃의 범위를 갖는 것이 바람직하다. 보다 구체적으로는 20℃ 내지 250℃이다. 반응 온도를 5℃ 미만으로 할 경우에는 반응속도가 너무 느려 폴리이미드 제조가 사실상 어려우며, 400℃를 초과하는 온도로 할 경우에는 단량체 또는 고분자의 열분해가 일어날 수 있다.In one embodiment according to the present invention, the reaction temperature is preferably in the range of from 5 캜 to 400 캜. More specifically from 20 캜 to 250 캜. When the reaction temperature is lower than 5 ° C, the reaction rate is too slow to produce polyimide. When the temperature is higher than 400 ° C, thermal decomposition of monomers or polymers may occur.

본 발명에 따른 일 양태에서, b)단계의 반응시간은 5분에서 5일의 범위를 갖는 것이 바람직하다. 보다 구체적으로는 10분 내지 10시간, 보다 더 구체적으로 10분 내지 5시간 동안 반응시킬 수 있다. 반응시간을 5분 미만으로 할 경우에는 반응이 잘 진행되지 않으며, 5일 이상으로 할 경우에는 고분자의 가수분해가 일어날 수 있다.In one embodiment according to the present invention, the reaction time of step b) preferably ranges from 5 minutes to 5 days. More specifically 10 minutes to 10 hours, more particularly 10 minutes to 5 hours. When the reaction time is less than 5 minutes, the reaction does not proceed well. If the reaction time is more than 5 days, hydrolysis of the polymer may occur.

본 발명에 따른 일 양태에서, b)단계의 가압조건은 1 bar 내지 1000 bar의 범위를 갖는 것이 바람직하다. 보다 구체적으로는 1 bar 내지 500 bar이다. 반응 압력을 1 bar 미만으로 할 경우에는 반응이 잘 진행되지 않으며, 1000 bar 이상으로 할 경우에는 반응용기의 손상을 초래할 수 있다.In one embodiment according to the present invention, the pressing conditions of step b) preferably have a range of from 1 bar to 1000 bar. More specifically from 1 bar to 500 bar. If the reaction pressure is less than 1 bar, the reaction does not proceed well. If the reaction pressure is more than 1000 bar, the reaction vessel may be damaged.

본 발명에 따른 일 양태에서, 가압을 하는 방법은 압력용기 내부에서 수증기압이 형성되거나, 압력용기 내부에 불활성 기체를 주입하거나 또는 압력용기를 압축하는 방법 중에서 선택되는 한 가지 또는 두 가지 이상의 방법으로 구성된다. 여기에서 불활성 기체는 질소, 아르곤, 헬륨, 네온, 크립톤 및 크세논으로 구성된 그룹으로부터 선택되는 하나 이상의 기체인 것을 특징으로 한다.In one aspect of the present invention, the method of pressurizing is configured in one or more ways selected from the group consisting of forming a water vapor pressure inside the pressure vessel, injecting an inert gas into the pressure vessel, or compressing the pressure vessel do. Wherein the inert gas is at least one gas selected from the group consisting of nitrogen, argon, helium, neon, krypton and xenon.

본 발명에 따른 일 양태에서, b)단계의 반응 생성물을 여과하고 건조시켜 폴리이미드를 수득하는 단계를 추가로 포함할 수 있다.In one embodiment according to the present invention, the reaction product of step b) may be further filtered and dried to obtain a polyimide.

본 발명에 따른 또 다른 일 양태에서, 상기와 같은 방법에 따라 제조된 폴리이미드를 유기용매에 용해시키고 그 용액을 기판에 도포하여 제조한 폴리이미드 필름이 제공된다. 여기에서, 유기용매로는 N-메틸피롤리돈, N,N-다이메틸아세트아미드, N,N-다이메틸포름아미드, N-비닐피롤리돈, N-메틸카프로락탐, 디메틸술폭시드, 테트라메틸요소, 피리딘, 디메틸술폰, 헥사메틸술폭시드, 메타-크레졸, 감마-부티로락톤, 에틸셀로솔브, 부틸셀로솔브, 에틸카르비톨, 부틸카르비톨,에틸카르비톨 아세테이트, 부틸카르비톨 아세테이트, 에틸렌글리콜, 젖산에틸, 젖산부틸, 시클로헥사논 및 시클로펜타논으로 이루어진 그룹으로부터 선택되는 하나 이상의 용매가 사용될 수 있다. 또한 여기에서, 용액 내 폴리이미드의 농도는 1 내지 90 wt%일 수 있다. 만약 폴리이미드의 용해도가 낮아 폴리이미드 용액의 제조가 어려운 경우에는, 폴리아믹산을 유기용매에 용해시켜 기판에 도포한 후 열적 이미드화에 의해 폴리이미드 필름을 제조한다.In another embodiment according to the present invention, there is provided a polyimide film prepared by dissolving polyimide prepared according to the above method in an organic solvent and applying the solution to a substrate. Examples of the organic solvent include N -methylpyrrolidone, N, N -dimethylacetamide, N, N -dimethylformamide, N -vinylpyrrolidone, N -methylcaprolactam, dimethylsulfoxide, tetra But are not limited to, methyl urea, pyridine, dimethylsulfone, hexamethylsulfoxide, meta-cresol, gamma-butyrolactone, ethylcellosolve, butylcellosolve, ethylcarbitol, butylcarbitol, ethylcarbitol acetate, butylcarbitol acetate , Ethylene glycol, ethyl lactate, butyl lactate, cyclohexanone, and cyclopentanone may be used. Also, here, the concentration of the polyimide in the solution may be 1 to 90 wt%. If the polyimide solution is difficult to prepare because of low solubility of the polyimide, the polyamic acid is dissolved in an organic solvent and applied to a substrate, followed by thermal imidization to produce a polyimide film.

본 발명에 따른 일 양태에서, 상기의 폴리이미드 또는 폴리아믹산 용액에 필요한 경우 젖음성 향상제 등의 첨가제를 소량 첨가할 수 있다. 첨가제는 폴리이미드 또는 폴리아믹산에 대하여 0.001 내지 5중량%를 첨가하는 것이 바람직하다. 보다 구체적으로는 0.01 내지 2중량%를 첨가할 수 있다.In an embodiment of the present invention, a small amount of an additive such as a wettability improver may be added to the polyimide or polyamic acid solution if necessary. The additive is preferably added in an amount of 0.001 to 5 wt% based on the polyimide or polyamic acid. More specifically, 0.01 to 2% by weight may be added.

본 발명에 따른 일 양태에서, 폴리이미드 필름의 형성을 위한 폴리이미드 또는 폴리아믹산 조성물의 도포방법으로는, 스핀도포법, 침지법, 프렉소 인쇄법, 잉크젯인쇄법, 분사법, 포팅법, 스크린인쇄법 등이 사용될 수 있다. 이들 방법 중, 10 ㎛ 이상의 두꺼운 막을 얻는 방법으로는, 바코트도포법, 슬릿코팅도포법, 스크린인쇄법, 스핀도포법 등이 바람직하다.In one embodiment of the present invention, the method of applying the polyimide or polyamic acid composition for forming the polyimide film may be a spin coating method, a dipping method, a flexographic printing method, an inkjet printing method, a spraying method, A printing method and the like can be used. Among these methods, a bar coating method, a slit coating method, a screen printing method, a spin coating method and the like are preferable as a method for obtaining a thick film of 10 탆 or more.

본 발명에 따른 또 다른 일 양태에서, 상기와 같은 방법에 따라 제조된 폴리이미드를 압축성형, 사출성형, 슬러시성형, 중공성형, 압출성형 또는 방적 방법을 통해 성형한 성형품이 제공된다.According to another aspect of the present invention, there is provided a molded article produced by compression molding, injection molding, slush molding, blow molding, extrusion molding or spinning of a polyimide produced by the above method.

본 발명의 제조방법으로 합성된 폴리이미드는 우주, 항공, 전기/전자, 반도체, 투명/유연 디스플레이, 액정 배향막, 자동차, 정밀기기, 패키징, 의료용 소재, 분리막, 연료전지, 2차전지 등 광범위한 산업분야에 이용될 수 있다.
The polyimide synthesized by the production method of the present invention can be used in a wide range of industries including space, aviation, electric / electronic, semiconductor, transparent / flexible display, liquid crystal alignment film, automobile, precision instrument, packaging, medical material, separator, fuel cell, Can be used in the field.

이하, 본 발명의 실시예 및 실험예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예 및 실험예는 본 발명의 이해를 돕기 위한 것이고 본 발명의 권리범위를 이로 한정하는 것을 의도하지 않는다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. It should be understood, however, that the following examples and experimental examples are provided to aid understanding of the present invention and are not intended to limit the scope of the present invention thereto.

실시예 1-1: 전방향족 폴리이미드의 제조Example 1-1: Preparation of wholly aromatic polyimide

*피로멜리틱 다이안하이드라이드 22.6 g과 4,4'-옥시다이아닐린 21.13 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다.22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500-mL pressure vessel equipped with a stirrer, a nitrogen inlet, and a temperature controller. The air in the pressure vessel was replaced with nitrogen gas, and the temperature was adjusted to 135 ° C. The mixture was stirred at a pressure of 60 bar for 3 hours, Meade were synthesized.

합성된 중합체의 적외선흡수스펙트럼(도 1)에서는 1775 cm-1와 1715 cm-1에서 이미드기의 C=O 흡수띠, 1367 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer (FIG. 1), C═O absorption band of imide was observed at 1775 cm -1 and 1715 cm -1 , and CN absorption band of imide was observed at 1367 cm -1 .

실시예 1-2. 전방향족 폴리이미드의 제조Examples 1-2. Preparation of wholly aromatic polyimide

4,4'-(헥사플루오로아이소프로필아이덴)다이아닐린 11.106 g과 2,2'-비스(트리플루오로메틸)-4,4'-다이아미노바이페닐 8.005 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다.11.106 g of 4,4 '- (hexafluoroisopropylidene) dianiline and 8.005 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500-mL pressure vessel equipped with a stirrer, a nitrogen inlet, and a temperature controller. The air in the pressure vessel was replaced with nitrogen gas, and the temperature was adjusted to 135 ° C. The mixture was stirred at a pressure of 60 bar for 3 hours, Meade were synthesized.

합성된 중합체의 적외선흡수스펙트럼에서는 1780 cm-1와 1718 cm-1에서 이미드기의 C=O 흡수띠, 1369 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer, C═O absorption band of imide was observed at 1780 cm -1 and 1718 cm -1 , and CN absorption band of imide was observed at 1369 cm -1 .

실시예 2-1: 부분지환식 폴리이미드의 제조Example 2-1: Preparation of partial alicyclic polyimide

1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.604 g과 4,4'-옥시다이아닐린 5.006 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다.5.604 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.006 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500-mL pressure vessel equipped with a stirrer, a nitrogen inlet, and a temperature controller. The air in the pressure vessel was replaced with nitrogen gas, and the temperature was adjusted to 135 ° C. The mixture was stirred at a pressure of 60 bar for 3 hours, Meade were synthesized.

합성된 중합체의 적외선흡수스펙트럼(도 2)에서는 1778 cm-1와 1716 cm-1에서 이미드기의 C=O 흡수띠, 1365 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer (FIG. 2), C═O absorption band of imide was observed at 1778 cm -1 and 1716 cm -1 , and CN absorption band of imide was observed at 1365 cm -1 .

실시예 2-2: 부분지환식 폴리이미드의 제조Example 2-2: Preparation of partial alicyclic polyimide

4,4'-(헥사플루오로아이소프로필아이덴)다이아닐린 8.3565 g과 4,4'-옥시다이아닐린 5.604 g을 증류수 200 mL에 넣고 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다.8.3565 g of 4,4 '- (hexafluoroisopropylidene) dianiline and 5.604 g of 4,4'-oxydianiline were added to 200 mL of distilled water and dispersed. The reaction solution was transferred to a 500-mL pressure vessel equipped with a stirrer, a nitrogen inlet, and a temperature controller. The air in the pressure vessel was replaced with nitrogen gas, and the temperature was adjusted to 135 ° C. The mixture was stirred at a pressure of 60 bar for 3 hours, Meade were synthesized.

합성된 중합체의 적외선흡수스펙트럼에서는 1779 cm-1와 1718 cm-1에서 이미드기의 C=O 흡수띠, 1362 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer, C═O absorption band of imide was observed at 1779 cm -1 and 1718 cm -1 , and CN absorption band of imide was observed at 1362 cm -1 .

실시예 2-3: 부분지환식 폴리이미드의 제조Example 2-3: Preparation of partial alicyclic polyimide

1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.604 g과 4,4'-옥시다이아닐린 5.006 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 180℃로 맞춘 후 100 bar의 압력에서 10분 동안 교반하여 폴리이미드를 합성하였다.5.604 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.006 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500-mL pressure vessel equipped with a stirrer, a nitrogen inlet, and a temperature controller. The air in the pressure vessel was replaced with nitrogen gas and the temperature was adjusted to 180 ° C. The mixture was stirred at a pressure of 100 bar for 10 minutes, Meade were synthesized.

합성된 중합체의 적외선흡수스펙트럼에서는 1778 cm-1와 1714 cm-1에서 이미드기의 C=O 흡수띠, 1365 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer, C═O absorption band of imide was observed at 1778 cm -1 and 1714 cm -1 , and CN absorption band of imide was observed at 1365 cm -1 .

실시예 2-4: 부분지환식 폴리이미드의 제조Example 2-4: Preparation of partial alicyclic polyimide

1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.604 g과 4,4'-옥시다이아닐린 5.006 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 50℃로 맞춘 후 1.3 bar의 압력에서 3일 동안 교반하여 폴리이미드를 합성하였다.5.604 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.006 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500-mL pressure vessel equipped with a stirrer, a nitrogen inlet, and a temperature controller. The air in the pressure vessel was replaced with nitrogen gas and the temperature was adjusted to 50 ° C. Meade were synthesized.

합성된 중합체의 적외선흡수스펙트럼에서는 1776 cm-1와 1716 cm-1에서 이미드기의 C=O 흡수띠, 1364 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer, C═O absorption band of imide was observed at 1776 cm -1 and 1716 cm -1 , and CN absorption band of imide was observed at 1364 cm -1 .

실시예 2-5: 부분지환식 폴리이미드의 제조Example 2-5: Preparation of partial alicyclic polyimide

1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.604 g과 4,4'-옥시다이아닐린 5.006 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기에 고압의 질소기체를 주입하여 50 bar의 압력을 형성시키고 온도를 10℃로 맞춘 후 5일 동안 교반하여 폴리이미드를 합성하였다.5.604 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.006 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500-mL pressure vessel equipped with a stirrer, a nitrogen injector and a temperature controller, and a high-pressure nitrogen gas was injected into the pressure vessel to form a pressure of 50 bar. The temperature was adjusted to 10 ° C, To synthesize polyimide.

합성된 중합체의 적외선흡수스펙트럼에서는 1775 cm-1와 1717 cm-1에서 이미드기의 C=O 흡수띠, 1364 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer, C═O absorption band of imide was observed at 1775 cm -1 and 1717 cm -1 , and CN absorption band of imide was observed at 1364 cm -1 .

실시예 3 : 전지환식 폴리이미드의 제조Example 3: Preparation of battery cyclic polyimide

1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.9605 g와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) MMCA 5.604 g을 증류수 200 mL에 넣고 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다.5.9605 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.604 g of 4,4-methylenebis (2-methylcyclohexylamine) MMCA were added to 200 mL of distilled water and dispersed. The reaction solution was transferred to a 500-mL pressure vessel equipped with a stirrer, a nitrogen inlet, and a temperature controller. The air in the pressure vessel was replaced with nitrogen gas, and the temperature was adjusted to 135 ° C. The mixture was stirred at a pressure of 60 bar for 3 hours, Meade were synthesized.

합성된 중합체의 적외선흡수스펙트럼(도 3)에서는 1773 cm-1와 1712 cm-1에서 이미드기의 C=O 흡수띠, 1368 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum (FIG. 3) of the synthesized polymer, the C═O absorption band of the imide was observed at 1773 cm -1 and 1712 cm -1 , and the CN absorption band of the imide was observed at 1368 cm -1 .

실시예 4 : 폴리이미드의 박막 제조Example 4: Preparation of thin film of polyimide

박막 제조에 앞서 기판으로 사용할 실리콘 웨이퍼의 세정 공정을 실시하였다. 이 공정을 통하여 파티클(particle)이나 유기 오염물, 금속 오염물 그리고 자연 산화막 등의 다양한 오염물들이 제거된다. 황산과 과산화수소를 7:3의 비로 혼합한 피라나(Piranha)용액을 이용하여 120 ℃로 3시간 가열하여 오염물을 제거해 주었다.Prior to the production of the thin film, a cleaning process of a silicon wafer to be used as a substrate was carried out. This process removes various contaminants such as particles, organic contaminants, metal contaminants, and natural oxide films. The contaminants were removed by heating at 120 ° C for 3 hours using a Piranha solution containing sulfuric acid and hydrogen peroxide in a ratio of 7: 3.

그 후 합성된 폴리이미드 0.20 g을 2.0 mL의 N,N-디메틸아세트아마이드 또는 N,N-디메틸포름아마이드에 녹인 후 0.2 ㎛의 세공 크기를 갖고 있는 미세필터로 여과하여 세정된 기판에 500 rpm으로 10초, 1500 rpm으로 50초의 2단계 회전도포(spin coating)한 뒤 용매를 제거한 후 아닐링 과정을 거쳐 전지환식 폴리이미드 박막을 제조하였다. 또 다른 방법으로 세정된 기판위에 폴리이미드용액을 캐스팅(casting)하고, 용매 제거와 아닐링 과정을 거쳐 전지환식 폴리이미드 박막을 제조하였다.
Then, 0.20 g of the synthesized polyimide was dissolved in 2.0 mL of N, N -dimethylacetamide or N, N -dimethylformamide, filtered through a fine filter having a pore size of 0.2 μm, and dried at 500 rpm 10 seconds and 1500 rpm for 50 seconds, followed by annealing after removing the solvent. Thus, a battery cyclic polyimide thin film was prepared. A polyimide solution was cast on a cleaned substrate, and solvent removal and annealing were performed to produce a battery cyclic polyimide thin film.

비교예 1 : 전지환식 폴리이미드의 2단계 제조Comparative Example 1: Two-step preparation of battery cyclic polyimide

질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 10 mL을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.2028 g (2.00 mmol)과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.406 g (2.00 mmol)을 넣고 실온에서 24시간 반응시켰다. 10 mL of N -methyl-2-pyrrolidone was added to a 50-mL 2-neck round bottom flask substituted with nitrogen gas, and 4.2028 g (2.00 mmol) of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride was added thereto, And 3.406 g (2.00 mmol) of 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine were added thereto, followed by reaction at room temperature for 24 hours.

화학적 이미드화 방법으로는 이 용액에 5 mL의 아세틱안하이드라이드와 3 mL의 피리딘을 넣고 170 ℃에서 5시간 동안 환류시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 그리고 물 100 mL와 메틸알콜 100 mL로 세척 후 진공 건조하여 전지환식 폴리이미드를 합성하였다.As a chemical imidization method, 5 mL of acetic anhydride and 3 mL of pyridine were added to this solution, refluxed at 170 ° C. for 5 hours, cooled to room temperature, and reprecipitated using an excessive amount of ice water. And washed with 100 mL of water and 100 mL of methyl alcohol, followed by vacuum drying to synthesize a battery cyclic polyimide.

열적이미드화 방법으로는 합성된 폴리아믹산 용액을 250~300℃로 오븐 또는 핫플레이트로 단계별로 승온하여 12시간 가열하는 방법을 사용하여 폴리이미드를 얻었다.As the thermal imidation method, polyimide was obtained by heating the synthesized polyamic acid solution at 250 to 300 ° C in an oven or hot plate stepwise and heating for 12 hours.

합성된 중합체의 적외선흡수스펙트럼(도 4)에서는 1774 cm-1와 1713 cm-1에서이미드기의 C=O 흡수띠, 1368 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum (FIG. 4) of the synthesized polymer, the C═O absorption band of the imide group and the CN absorption band of the imide at 1368 cm -1 were observed at 1774 cm -1 and 1713 cm -1 , respectively.

비교예 2 : 전지환식 폴리이미드의 Comparative Example 2: Synthesis of battery cyclic polyimide NN -실릴레이션 방법에 의한 제조- Manufacture by seal relation method

지방족 디아미노폴리실록산을 합성하는 방법은 질소 가스로 치환한 100 mL 3구 둥근바닥 플라스크에 정제한 톨루엔 25 mL을 넣고 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 8.515 g (5.00 mmol)와 클로로트리메틸실레인 1.0864 g (10.0 mmol)을 넣고 5℃에서 30분간 반응시켰다. 이 용액에 트리메틸아민 0.5911 g (10.0 mmol) 을 천천히 적가하였다. 5℃에서 2시간 동안 반응시킨 후 60℃까지 온도를 올려 24시간 동안 반응시킨 후 진공 건조하여 지방족 디아미노폴리실록산을 합성하였다.To prepare an aliphatic diaminopolysiloxane, 25 mL of purified toluene was added to a 100 mL three-neck round bottom flask substituted with nitrogen gas, and 8.515 g (5.00 g) of 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine mmol) and 1.0864 g (10.0 mmol) of chlorotrimethylsilane were placed and reacted at 5 DEG C for 30 minutes. 0.5911 g (10.0 mmol) of trimethylamine was slowly added dropwise to this solution. After reacting at 5 ° C for 2 hours, the temperature was raised to 60 ° C, reacted for 24 hours, and vacuum dried to synthesize an aliphatic diaminopolysiloxane.

질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 10 mL을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.2028 g (2.00 mmol)과 위에서 합성된 지방족 다이아미노폴리실록산(2.00 mmol)을 넣고 실온에서 24시간 반응시켰다. 10 mL of N -methyl-2-pyrrolidone was added to a 50-mL 2-neck round bottom flask substituted with nitrogen gas, and 4.2028 g (2.00 mmol) of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride was added thereto, And the aliphatic diaminopolysiloxane synthesized above (2.00 mmol) were added thereto, followed by reaction at room temperature for 24 hours.

합성된 폴리이미드-실록산을 증류수를 사용하여 재침전을 하였다. 그리고 여과 후 진공 건조하여 폴리아믹산을 합성하였다. The synthesized polyimide-siloxane was reprecipitated using distilled water. After filtration and vacuum drying, polyamic acid was synthesized.

화학적 이미드화 방법으로는 이 용액에 5 mL의 아세틱안하이드라이드와 3 mL의 피리딘을 넣고 170 ℃에서 5시간 동안 환류시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 그리고 물 100 mL와 메틸알콜 100 mL로 세척 후 진공 건조하여 전지환식 폴리이미드를 합성하였다.As a chemical imidization method, 5 mL of acetic anhydride and 3 mL of pyridine were added to this solution, refluxed at 170 ° C. for 5 hours, cooled to room temperature, and reprecipitated using an excessive amount of ice water. And washed with 100 mL of water and 100 mL of methyl alcohol, followed by vacuum drying to synthesize a battery cyclic polyimide.

열적이미드화 방법으로는 합성된 폴리아믹산 용액을 250~300℃로 오븐 또는 핫플레이트로 단계별로 승온하여 12시간 동안 가열하는 방법을 사용하여 폴리이미드를 수득하였다.As the thermal imidation method, a polyimide was obtained by heating the synthesized polyamic acid solution at 250 to 300 ° C in an oven or a hot plate stepwise and heating for 12 hours.

합성된 중합체의 적외선흡수스펙트럼(도 5)에서는 1778 cm-1와 1714 cm-1에서 이미드기의 C=O 흡수띠, 1368 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer (Fig. 5), C═O absorption band of imide was observed at 1778 cm -1 and 1714 cm -1 , and CN absorption band of imide was observed at 1368 cm -1 .

비교예 3 : 전지환식 폴리이미드의 Comparative Example 3: Synthesis of battery cyclic polyimide in-situin-situ 실릴레이션 방법에 의한 제조 Manufacturing by seal relation method

질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 (NMP) 10 mL을 넣고 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.406 g (2.00 mmol)를 넣은 후 0 ℃에서 클로로트리메틸실레인 0.43456 g (4.0 mmol)을 넣어준 후 2시간 동안 교반하였다. 그 후 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.2028 g (2.00 mmol)을 넣고 실온에서 24시간 반응시켰다. 합성된 다이아미노폴리실록산을 증류수를 사용하여 재침전을 하였다. 그리고 여과 후 진공 건조하여 폴리아믹산을 합성하였다. 10 mL of N -methyl-2-pyrrolidone (NMP) was added to a 50-mL 2-necked round bottom flask substituted with nitrogen gas, and 3.406 g of 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine 2.00 mmol) was added thereto, and 0.43456 g (4.0 mmol) of chlorotrimethylsilane was added thereto at 0 ° C, followed by stirring for 2 hours. Then, 4.2028 g (2.00 mmol) of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride was added thereto and reacted at room temperature for 24 hours. The synthesized diaminopolysiloxane was reprecipitated using distilled water. After filtration and vacuum drying, polyamic acid was synthesized.

화학적 이미드화로는 이 용액에 5 mL의 아세틱안하이드라이드와 3 mL의 피리딘을 넣고 170 ℃에서 5시간 동안 환류시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 그리고 물 100 mL와 메틸알콜 100 mL로 세척 후 진공 건조하여 전지환식 폴리이미드를 합성하였다.The chemical imidization furnace was prepared by adding 5 mL of acetic anhydride and 3 mL of pyridine to the solution, refluxing the mixture at 170 ° C. for 5 hours, reducing the temperature to room temperature, and reprecipitation using an excess of ice water. And washed with 100 mL of water and 100 mL of methyl alcohol, followed by vacuum drying to synthesize a battery cyclic polyimide.

열적이미드화 방법으로는 합성된 폴리아믹산 용액을 250~300℃로 오븐 또는 핫플레이트로 단계별로 승온하여 12시간 동안 가열하는 방법을 사용하여 폴리이미드를 수득하였다.As the thermal imidation method, a polyimide was obtained by heating the synthesized polyamic acid solution at 250 to 300 ° C in an oven or a hot plate stepwise and heating for 12 hours.

합성된 중합체의 적외선흡수스펙트럼(도 6)에서는 1776 cm-1와 1714 cm-1에서 이미드기의 C=O 흡수띠, 1367 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum of the synthesized polymer (Fig. 6), C = O absorption band of imide group and CN absorption band of imide group at 1367 cm -1 were observed at 1776 cm -1 and 1714 cm -1 , respectively.

비교예 4 : 전지환식 폴리이미드의 메타-크레졸 합성방법에 의한 제조Comparative Example 4: Preparation of battery cyclic polyimide by meta-cresol synthesis method

질소 가스로 치환한 50 mL-2구 둥근바닥 플라스크에 메타-크레졸 10 mL 을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.2028 g (2.00 mmol)과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.406 g (2.00 mmol)을 넣고 100 ℃에서 12시간 150℃에서 4시간 그리고 200℃ 48시간 동안 반응시켰다. 합성된 용액을 상온까지 온도를 내린 후 메타 크레졸 100 mL과 메틸알콜 100 mL로 세척과 필터를 한 후 60℃에서 진공 건조하여 전지환식 폴리이미드를 합성하였다.10 mL of meta-cresol was added to a 50 mL-2-necked round bottom flask substituted with nitrogen gas, and 4.2028 g (2.00 mmol) of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride and 3- (aminomethyl ) -3,5,5-trimethylcyclohexaneamine (3.406 g, 2.00 mmol) were added and reacted at 100 ° C for 12 hours at 150 ° C for 4 hours and at 200 ° C for 48 hours. The synthesized solution was cooled to room temperature, washed with 100 mL of methacresol and 100 mL of methyl alcohol, filtered and vacuum dried at 60 ° C. to synthesize a battery cyclic polyimide.

합성된 중합체의 적외선흡수스펙트럼(도 7)에서는 1773 cm-1와 1712 cm-1에서 이미드기의 C=O 흡수띠, 1367 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.
In the infrared absorption spectrum (FIG. 7) of the synthesized polymer, the C═O absorption band of the imide was observed at 1773 cm -1 and 1712 cm -1 , and the CN absorption band of the imide was observed at 1367 cm -1 .

Figure pat00010
Figure pat00010

상기의 표 1에 나타내었듯이 본 발명의 실시예 1~3에서는 종래의 방법인 비교예 1~4에 비하여 이미드화 최고온도가 낮고, 반응시간이 짧으며, 반응단계가 적다. 또한 촉매와 유기용매를 사용하지 않고, 수중에서 반응이 진행되는 장점이 있다. 실시예 1~3에서 합성된 폴리이미드는 비교예 1~4에서 합성된 폴리이미드에 비하여 열분해 온도가 높고, 분자량이 매우 큰 것으로 확인되었다. As shown in Table 1, in Examples 1 to 3 of the present invention, the maximum imidization temperature is low, the reaction time is short, and the reaction step is small as compared with Comparative Examples 1 to 4 which are conventional methods. In addition, there is an advantage that the reaction proceeds in water without using a catalyst and an organic solvent. It was confirmed that the polyimides synthesized in Examples 1 to 3 had higher pyrolysis temperatures and higher molecular weights than the polyimides synthesized in Comparative Examples 1 to 4.

따라서 본 발명의 폴리이미드 합성방법은 종래의 방법에 비하여 간편하고 친환경적이며, 본 발명의 방법으로 합성되는 폴리이미드는 종래의 합성방법으로 제조되는 폴리이미드에 비하여 분자량이 매우 높아 우수한 기계적 물성을 가지며 높은 열적특성을 가진다.Therefore, the polyimide synthesizing method of the present invention is simpler and more environmentally friendly than the conventional method, and the polyimide synthesized by the method of the present invention has a higher molecular weight than the polyimide produced by the conventional synthetic method, It has thermal properties.

Claims (15)

다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시킨 분산액을 압력용기에 넣고, 5℃ 내지 400℃ 온도 및 가압 조건에서 다이안하이드라이드 화합물과 다이아민 화합물을 반응시켜 얻은 반응 생성물을 여과하고 건조시켜 단일 반응 스텝(step)으로 폴리이미드를 수득하는 단계를 포함하는 폴리이미드의 제조방법.
The dispersion obtained by dispersing the dianhydride compound and the diamine compound in water is placed in a pressure vessel, and the reaction product obtained by reacting the dianhydride compound with the diamine compound at a temperature of 5 to 400 ° C. and under pressure is filtered and dried to obtain a single And obtaining a polyimide by a reaction step.
제1항에 있어서,
폴리이미드는 전방향족 폴리이미드, 부분지환식 폴리이미드 또는 전지환식 폴리이미드인 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the polyimide is a wholly aromatic polyimide, a partial alicyclic polyimide or a battery cyclic polyimide.
제1항에 있어서,
다이안하이드라이드 화합물은 치환되거나 치환되지 않은 방향족 또는 지방족 다이안하이드라이드인 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the dianhydride compound is a substituted or unsubstituted aromatic or aliphatic dianhydride.
제3항에 있어서,
치환되거나 치환되지 않은 방향족 또는 지방족 다이안하이드라이드는 하기 화학식 1의 다이안하이드라이드인 것을 특징으로 하는 폴리이미드의 제조방법:
<화학식 1>
Figure pat00011

여기서, R1
Figure pat00012

로 이루어진 그룹으로부터 선택된다.
The method of claim 3,
Wherein the substituted or unsubstituted aromatic or aliphatic dianhydride is a dianhydride of formula (1): < EMI ID =
&Lt; Formula 1 &gt;
Figure pat00011

Wherein R &lt; 1 &gt;
Figure pat00012

&Lt; / RTI &gt;
제1항에 있어서,
다이안하이드라이드 화합물은 1종 또는 2종 이상의 다이안하이드라이드를 사용하는 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the dianhydride compound is one or more than one dianhydride.
제1항에 있어서,
다이아민 화합물은 치환되거나 치환되지 않은 방향족 또는 지방족 다이아민인 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the diamine compound is a substituted or unsubstituted aromatic or aliphatic diamine.
제6항에 있어서,
치환되거나 치환되지 않은 방향족 또는 지방족 다이아민은 하기 화학식 2의 다이아민인 것을 특징으로 하는 폴리이미드의 제조방법:
<화학식 2>
Figure pat00013

여기서, R2
Figure pat00014

Figure pat00015

Figure pat00016

Figure pat00017

Figure pat00018

Figure pat00019

로 이루어진 그룹으로부터 선택된다.
The method according to claim 6,
Wherein the substituted or unsubstituted aromatic or aliphatic diamine is a diamine of formula (2): < EMI ID =
(2)
Figure pat00013

Here, R 2 is
Figure pat00014

Figure pat00015

Figure pat00016

Figure pat00017

Figure pat00018

Figure pat00019

&Lt; / RTI &gt;
제1항에 있어서,
다이아민 화합물은 1종 또는 2종 이상의 다이아민을 사용하는 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the diamine compound is one or more diamines.
제1항에 있어서,
상기 반응은 20℃ 내지 250℃의 온도 조건에서 수행하는 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the reaction is carried out at a temperature of 20 ° C to 250 ° C.
제1항에 있어서,
상기 반응은 5분 내지 5일간 수행하는 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the reaction is carried out for 5 minutes to 5 days.
제1항에 있어서,
상기 반응은 10분 내지 10시간 동안 수행하는 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the reaction is carried out for 10 minutes to 10 hours.
제1항에 있어서,
상기 반응은 10분 내지 5시간 동안 수행하는 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the reaction is carried out for 10 minutes to 5 hours.
제1항에 있어서,
상기 가압 조건은 1 bar 내지 1000 bar 범위의 압력 조건인 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the pressurizing condition is a pressure condition in the range of 1 bar to 1000 bar.
제1항에 있어서,
상기 가압 조건은 1 bar 내지 500 bar 범위의 압력 조건인 것을 특징으로 하는 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the pressurizing condition is a pressure condition in the range of 1 bar to 500 bar.
제1항에 있어서,
가압 조건은, 압력용기 내부에서 수증기압이 형성되거나, 압력용기 내부에 불활성 기체를 주입하거나 또는 압력용기를 압축하는 방법 중에서 선택되는 한가지 또는 두 가지 이상의 방법에 의한 것임을 특징으로 하는, 폴리이미드의 제조방법.
The method according to claim 1,
Wherein the pressurizing condition is one or two or more selected from the group consisting of forming a water vapor pressure inside the pressure vessel, injecting an inert gas into the pressure vessel, or compressing the pressure vessel .
KR1020160093085A 2016-07-22 2016-07-22 Preparation method of polyimide using water as a dispersion medium KR101714980B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160093085A KR101714980B1 (en) 2016-07-22 2016-07-22 Preparation method of polyimide using water as a dispersion medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160093085A KR101714980B1 (en) 2016-07-22 2016-07-22 Preparation method of polyimide using water as a dispersion medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140070392A Division KR20150141839A (en) 2014-06-10 2014-06-10 Preparation method of polyimide using water as a dispersion medium

Publications (2)

Publication Number Publication Date
KR20160096565A true KR20160096565A (en) 2016-08-16
KR101714980B1 KR101714980B1 (en) 2017-03-09

Family

ID=56854517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160093085A KR101714980B1 (en) 2016-07-22 2016-07-22 Preparation method of polyimide using water as a dispersion medium

Country Status (1)

Country Link
KR (1) KR101714980B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203212B1 (en) * 2019-09-23 2021-01-14 피아이첨단소재 주식회사 Manufacturing method of polyimide powder and polyimide powder manufactured by the same
WO2021015360A1 (en) * 2019-07-23 2021-01-28 에스케이씨코오롱피아이 주식회사 Method for preparing polyimide powder, and polyimide powder prepared thereby
KR20220032406A (en) * 2020-09-07 2022-03-15 피아이첨단소재 주식회사 Low dielectric polyimide powder, preparing method thereof, and polyimide molded product including the same
KR20220046768A (en) * 2020-10-08 2022-04-15 연세대학교 원주산학협력단 Method for producing plate-shaped polyimide powder with improved mechanical property
WO2022114373A1 (en) * 2020-11-30 2022-06-02 피아이첨단소재 주식회사 Polyimide composite powder including lcp powder and manufacturing method therefor
WO2022114375A1 (en) * 2020-11-30 2022-06-02 피아이첨단소재 주식회사 Polyimide powder having controlled particle size and method for preparing same
WO2022114374A1 (en) * 2020-11-30 2022-06-02 피아이첨단소재 주식회사 Polyimide composite powder comprising silane agent and method for preparing same
KR20230052368A (en) * 2021-10-12 2023-04-20 주식회사 제라브리드 Water based polyimide-powder coating material compositions and manufacturing method of lithium secondary battery separators containing thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102050660B1 (en) 2018-01-22 2019-12-02 연세대학교 원주산학협력단 Preparation method for polyimide
KR102198357B1 (en) 2018-12-17 2021-01-04 연세대학교 원주산학협력단 Preparation method for polyimide
KR102334124B1 (en) 2019-11-22 2021-12-03 피아이첨단소재 주식회사 Low Dielectric Polyimide Composite Powder and Method for Preparing the Same
KR102255134B1 (en) 2019-11-22 2021-05-24 피아이첨단소재 주식회사 Thermally Conductive Polyimide Composite Powder and Method for Preparing the Same
KR102245690B1 (en) * 2019-11-22 2021-04-29 피아이첨단소재 주식회사 Wear Resistant and Impact Resistant Polyimide Composite Powder and Method for Preparing the Same
KR102460307B1 (en) 2020-09-24 2022-10-27 연세대학교 원주산학협력단 Polyimide for SLA-3D printer and its manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US449798A (en) 1891-04-07 Is pttow co
US1004096A (en) 1910-12-27 1911-09-26 New Eccles Rubber Works Ltd Machine for making hollow india-rubber balls.
US7053168B2 (en) 2003-10-10 2006-05-30 General Electric Company Method for preparing polyimide and polyimide prepared thereby
KR100717377B1 (en) 2006-04-24 2007-05-10 부산대학교 산학협력단 Wholly alicyclic polyimide from silylated aliphatic diamines : a method for making the same and its uses
US20080300360A1 (en) * 2007-05-31 2008-12-04 The Boeing Company Water-entrained-polyimide chemical compositions for use in high-performance composite fabrication
WO2012008543A1 (en) 2010-07-14 2012-01-19 宇部興産株式会社 Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
KR20120091231A (en) 2009-11-03 2012-08-17 크리, 인코포레이티드 Power semiconductor devices having selectively doped jfet regions and related methods of forming such devices
KR20130072267A (en) * 2010-11-01 2013-07-01 바스프 에스이 Polyimides as dielectric
KR20140034868A (en) * 2011-06-13 2014-03-20 가부시키가이샤 가네카 Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide films obtained from these solutions, and use of polyimide films
KR20140063701A (en) * 2011-09-20 2014-05-27 로디아 오퍼레이션스 Thermoplastic (co)polyimides and synthesis methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US449798A (en) 1891-04-07 Is pttow co
US1004096A (en) 1910-12-27 1911-09-26 New Eccles Rubber Works Ltd Machine for making hollow india-rubber balls.
US7053168B2 (en) 2003-10-10 2006-05-30 General Electric Company Method for preparing polyimide and polyimide prepared thereby
KR100717377B1 (en) 2006-04-24 2007-05-10 부산대학교 산학협력단 Wholly alicyclic polyimide from silylated aliphatic diamines : a method for making the same and its uses
US20080300360A1 (en) * 2007-05-31 2008-12-04 The Boeing Company Water-entrained-polyimide chemical compositions for use in high-performance composite fabrication
KR20120091231A (en) 2009-11-03 2012-08-17 크리, 인코포레이티드 Power semiconductor devices having selectively doped jfet regions and related methods of forming such devices
WO2012008543A1 (en) 2010-07-14 2012-01-19 宇部興産株式会社 Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
KR20130072267A (en) * 2010-11-01 2013-07-01 바스프 에스이 Polyimides as dielectric
KR20140034868A (en) * 2011-06-13 2014-03-20 가부시키가이샤 가네카 Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide films obtained from these solutions, and use of polyimide films
KR20140063701A (en) * 2011-09-20 2014-05-27 로디아 오퍼레이션스 Thermoplastic (co)polyimides and synthesis methods

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
High Performance Polymers,15:269-279, 2003 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimide Synthesis : Thermoset and Thermoplastic Examlpes
High Performance Polymers,18:31-44, 2006 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimides Synthesis II : Processable Aromatic Polyimide
Journal of photopolymer Science and Technology Volume16,Number2(2003) Youshiyuki Oishi, Shu Ondera, Jan Oravec, Kunio Mori, Shinji Ando, Yoshiharu Terui, and kazuhiko Maeda Synthesis of Fluorine-Containing wholly Alicyclic Polyimide by In Situ Silylation Method
Macromolecular Research, Vol. 15, No. 2, pp 114-128 (2007) Anu Stella Mathews, Il Kim, and Chang-Sik Ha Synthesis, Characterization, and Properties of Fully Aliphatic Polyimides and Their Derivatives for Microelectronics and Optoelectronics Applications
Macromolecules 2002, 35, 2277-2281 Yasufumi Watanabe, Yoshimasa Sakai, Yuji Shibasaki, Shinji Ando, and Mitsuru Ueda Synthesis of Wholly Alicyclic Polyimides from N-Silylated Alicyclic Diamines and Alicyclic Dianhydrides
Macromolecules 2009, 42, 5892-5894 Dulce M. Munoz, Mariola Calle, Jose G. de la Campa, Javier de Abajo, and Angel E. Lozano An Improved Method for Preparing Very High Molecular Weight Polyimides
Polymer Science and Technology Vol. 24, No. 1, pp. 3-9, 박진영 외, 폴리이미드 기반 입자 제조 및 응용

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015360A1 (en) * 2019-07-23 2021-01-28 에스케이씨코오롱피아이 주식회사 Method for preparing polyimide powder, and polyimide powder prepared thereby
KR20210012099A (en) * 2019-07-23 2021-02-03 피아이첨단소재 주식회사 Manufacturing method of polyimide powder and polyimide power manufactured by the same
KR102203212B1 (en) * 2019-09-23 2021-01-14 피아이첨단소재 주식회사 Manufacturing method of polyimide powder and polyimide powder manufactured by the same
WO2021060602A1 (en) * 2019-09-23 2021-04-01 에스케이씨코오롱피아이 주식회사 Polyimide powder preparation method, and polyimide powder prepared thereby
KR20220032406A (en) * 2020-09-07 2022-03-15 피아이첨단소재 주식회사 Low dielectric polyimide powder, preparing method thereof, and polyimide molded product including the same
KR20220046768A (en) * 2020-10-08 2022-04-15 연세대학교 원주산학협력단 Method for producing plate-shaped polyimide powder with improved mechanical property
WO2022114373A1 (en) * 2020-11-30 2022-06-02 피아이첨단소재 주식회사 Polyimide composite powder including lcp powder and manufacturing method therefor
WO2022114375A1 (en) * 2020-11-30 2022-06-02 피아이첨단소재 주식회사 Polyimide powder having controlled particle size and method for preparing same
WO2022114374A1 (en) * 2020-11-30 2022-06-02 피아이첨단소재 주식회사 Polyimide composite powder comprising silane agent and method for preparing same
KR20220075986A (en) * 2020-11-30 2022-06-08 피아이첨단소재 주식회사 Polyimide composite powder containing LCP powder and manufacturing method thereof
KR20220076011A (en) * 2020-11-30 2022-06-08 피아이첨단소재 주식회사 Polyimide powder with controlled particle size and manufacturing method thereof
KR20220075987A (en) * 2020-11-30 2022-06-08 피아이첨단소재 주식회사 Polyimide composite powder containing silane agent and manufacturing method thereof
KR20230052368A (en) * 2021-10-12 2023-04-20 주식회사 제라브리드 Water based polyimide-powder coating material compositions and manufacturing method of lithium secondary battery separators containing thereof

Also Published As

Publication number Publication date
KR101714980B1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
KR101714980B1 (en) Preparation method of polyimide using water as a dispersion medium
CN112334511B (en) Polyimide resin and method for producing same, and polyimide film and method for producing same
KR101755251B1 (en) Method for recycling water in the preparation of polyimide using water as a dispersion medium
KR102198357B1 (en) Preparation method for polyimide
KR102050660B1 (en) Preparation method for polyimide
CN106459411B (en) Method for producing polyimide using water as dispersion medium and method for recovering water
KR20150141839A (en) Preparation method of polyimide using water as a dispersion medium
KR101548877B1 (en) Preparation method for polyimide from salt of monomer and the polyimide thereby
JP2006199945A (en) Low water absorbable polyimide resin and process for its production
CN111212867A (en) Polyimide resin and method for producing same, polyimide solution, and polyimide film and method for producing same
CN113906083B (en) Polyimide resin and method for producing same, and polyimide film and method for producing same
KR102203211B1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
KR102219892B1 (en) Manufacturing method of polyimide powder and polyimide power manufactured by the same
KR100717377B1 (en) Wholly alicyclic polyimide from silylated aliphatic diamines : a method for making the same and its uses
KR101728823B1 (en) The manufacturing method of polyimide
KR101709378B1 (en) Preparation method of polyimide under high pressure
KR20160105378A (en) Preparation method of polyimide film, and the polyimide film thereby
KR20160146113A (en) Preparation method for polyimide film using microwave
CN112079743B (en) Diamine, polyimide and polyimide film
KR102203212B1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
KR101692137B1 (en) Preparation method for polyimide powder and polyimide product from water soluble polyamic acid
KR20160033009A (en) Preparation method for polyimide product and the polyimide product thereby
CN111212868B (en) Polyimide resin and method for producing same, polyimide solution, and polyimide film and method for producing same
KR20160013772A (en) Preparation method of polyimide film, and the polyimide film thereby
KR20160017460A (en) Method for recycling water in the preparation of polyimide using water as a dispersion medium

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant