WO2021060602A1 - Polyimide powder preparation method, and polyimide powder prepared thereby - Google Patents

Polyimide powder preparation method, and polyimide powder prepared thereby Download PDF

Info

Publication number
WO2021060602A1
WO2021060602A1 PCT/KR2019/013689 KR2019013689W WO2021060602A1 WO 2021060602 A1 WO2021060602 A1 WO 2021060602A1 KR 2019013689 W KR2019013689 W KR 2019013689W WO 2021060602 A1 WO2021060602 A1 WO 2021060602A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide powder
polyimide
catalyst
dispersion
producing
Prior art date
Application number
PCT/KR2019/013689
Other languages
French (fr)
Korean (ko)
Inventor
이길남
전진석
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Publication of WO2021060602A1 publication Critical patent/WO2021060602A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1021Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing a polyimide powder and to a polyimide powder produced through the same, and more particularly, a polymerization reaction can be controlled using a mixed solvent including water, a high boiling point organic solvent, and a catalyst.
  • a method for producing a polyimide powder providing a polyimide powder having a low, imidation rate and a high molecular weight, and a polyimide powder prepared through the same.
  • High heat-resistant polymer materials such as polyimide are essential materials for miniaturization, lightness, high performance, and high reliability of products according to the development of advanced technologies, and are used in the form of films, molded products, fibers, paints, adhesives and composites. /It is used in a wide range of industries such as electronics, automobiles and precision equipment.
  • Polyimide has excellent mechanical strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of the imide ring.
  • it is easy to synthesize can be manufactured as a thin film, has the advantage of not needing a crosslinker for curing, and is in the spotlight as a high-functional polymer material in microelectronics and optical fields due to its excellent electrical properties.
  • a polyimide substrate that has the advantage of being light, flexible, and capable of continuous processing by replacing glass substrates, insulating films and protective coatings for semiconductor devices, surface protection materials such as flexible circuit boards and integrated circuits, and base resins, and furthermore, It can also be used when forming an interlayer insulating film or a protective film of a circuit.
  • a protective material obtained by bonding a molded article such as a polyimide film with an adhesive, a liquid polyimide resin solution, or the like can be used.
  • the first method is a two-step method in which polyamic acid (PAA), a precursor, is first synthesized by reaction of dianhydride and diamine, and polyamic acid is imidized in the next step.
  • the first step is to prepare polyamic acid.
  • Diane hydride is added to a reaction solution in which diamine is dissolved, and polyamic acid is produced by ring-opening and polyaddition reaction.
  • a polar organic solvent is mainly used.
  • the second step is to produce a polyimide by imidizing the polyamic acid prepared in the first step by dehydration and ring closure reaction through a chemical method or a thermal method.
  • a dehydrating agent typified by acid anhydrides such as acetic anhydride and an imidization catalyst typified by tertiary amines such as pyridine are added to a polyamic acid solution as a precursor. It is a method of chemically performing an imidation reaction using a solvent that is easy to form a hydrate such as pyridine, and is useful for preparing an amorphous polyimide film.
  • the thermal imidization method is the simplest step as a method of thermally imidizing a precursor polyamic acid solution by heating at 250 to 300°C.
  • Fully aliphatic polyimide synthesized using the general polyimide synthesis method described above generally has a low molecular weight and low mechanical properties.
  • the basicity of the amino group of the diamine is high, so the diamine forms a salt with amic acid instead of participating in the polymerization reaction, so that a high molecular weight polyimide cannot be obtained.
  • the second method is to use an N-silylation reaction, and in the first method, in order to increase the molecular weight by preventing salt formation, diamine and chlorotrimethylsilane are reacted to synthesize a diamine protected by an N-trimethylsilyl group, Polyimide is synthesized using this diamine. Also in this method, an organic solvent is used for the synthesis of diamines protected by N-trimethylsilyl groups and for the synthesis of polyimides.
  • the disadvantages of the N-silylation method are that the cost of the chlorotrimethyl silane reagent for synthesizing an aliphatic diamine protected by an N-trimethylsilyl group is expensive and very sensitive to moisture, making it difficult to handle, and the number average molecular weight of polyimide. It is only about 10,000, and has the disadvantage that the polyimide synthesis method becomes more complicated than the general synthesis method.
  • the third method is a method of using meta-cresol as a solvent, in which meta-cresol is added as a solvent, dianhydride and diamine are added, and the temperature is raised stepwise to react for a long time.
  • the method using meta-cresol has a long reaction time with a reaction time of more than 64 hours, a number average molecular weight of 10,000, which cannot be satisfied, and the use of a meta-cresol solvent has a long drying time and a strong irritating odor. Have.
  • the fourth method is an in-situ sirillation method, which is intended to solve the shortcomings of the N-silylation method being sensitive to moisture.
  • diamine is added to the reactor containing the organic solvent
  • chlorotrimethylsilane is added at low temperature
  • dianhydride is added to synthesize polyamic acid protected by N-trimethylsilyl group, and the protecting group is removed, and then polyimide is passed through polyamic acid.
  • the disadvantages of the in-situ silylation synthesis method are that the reaction time is long and the molecular weight is improved, but the number average molecular weight is 80,000, which is still unsatisfactory, and the chlorotrimethylsilane reagent is expensive.
  • Korean Patent Laid-Open Publication No. 10-2016-0100392 discloses a polyimide manufacturing method in which a mixture of an oligomer and a solvent is introduced into an extruder, the solvent is removed through one or more extruder exhaust ports, and the oligomer is melt-kneaded to produce a polyimide. .
  • An object of the present invention is a dispersion preparation step of preparing a dispersion by dispersing a dianhydride compound and a diamine compound in a mixed solvent containing a catalyst, and introducing the dispersion prepared through the dispersion preparation step into a reactor and A dispersion reaction step of reacting under temperature and pressurized conditions, and a polyimide powder production step of filtering and drying the reaction product prepared through the dispersion reaction step to prepare a polyimide powder, and the mixed solvent containing the catalyst is water ,
  • a method for producing a polyimide powder characterized in that it comprises a high boiling point organic solvent and a catalyst.
  • the dispersion preparation step is performed by dispersing 100 parts by weight of a dianhydride compound and 80 to 120 parts by weight of a diamine compound in 1000 to 1200 parts by weight of a mixed solvent containing a catalyst.
  • the high boiling point organic solvent is assumed to have a boiling point of 180 to 220 °C.
  • the high boiling point organic solvent is made of one selected from the group consisting of N-methylpyrrolidone, dimethyl sulfoxide, and ethylene glycol.
  • the mixed solvent containing the catalyst is composed of 100 parts by weight of water, 1 to 15 parts by weight of a high boiling point organic solvent, and 1.5 to 5 parts by weight of the catalyst.
  • the catalyst is made of at least one selected from the group consisting of isoquinoline and beta-ficoline.
  • the polyimide powder is one selected from the group consisting of wholly aromatic polyimide, partially alicyclic polyimide, and wholly alicyclic polyimide.
  • the dianhydride compound is to be represented by the following formula (1).
  • R 1 is selected from the following formulas.
  • the diamine compound is represented by the following formula (2).
  • R 2 is selected from the following formulas.
  • the dispersion reaction step is to be carried out at a temperature of 150 to 220 °C.
  • the dispersion reaction step is supposed to proceed for 5 minutes to 5 days.
  • the dispersion reaction step is to be carried out under a pressurized condition of 1 to 500 bar.
  • the object of the present invention can be achieved by providing a polyimide powder, characterized in that it is produced through the method for producing the polyimide powder.
  • the polyimide powder has a particle size of 1 to 10 ⁇ m.
  • the method for producing a polyimide powder according to the present invention uses a mixed solvent including water, a high boiling point organic solvent, and a catalyst to control the polymerization reaction, so that a polyimide powder having a low particle size and high imidation rate and molecular weight is obtained. It shows the excellent effect it provides.
  • reaction temperature is low and the reaction time is short, indicating excellent effects of high efficiency of the manufacturing process.
  • the manufacturing method of the polyimide powder according to the present invention is a dispersion preparation step of preparing a dispersion by dispersing a dianhydride compound and a diamine compound in a mixed solvent containing a catalyst, and the dispersion prepared through the dispersion preparation step is introduced into a reactor. And a dispersion reaction step of reacting at a temperature of 150 to 400° C. and a pressurized condition, and a polyimide powder production step of filtering and drying the reaction product prepared through the dispersion reaction step to prepare a polyimide powder, wherein the catalyst is
  • the mixed solvent contained includes water, a high boiling point organic solvent, and a catalyst.
  • the dispersion preparation step is a step of preparing a dispersion by dispersing a dianhydride compound and a diamine compound in a mixed solvent containing a catalyst, and 100 parts by weight of the dianhydride compound and 80 to 120 parts by weight of the diamine compound are contained in the catalyst. It is made by dispersing in 1000 to 1200 parts by weight of the mixed solvent, and at this time, the mixed solvent containing the catalyst includes water, a high boiling point organic solvent, and a catalyst.
  • the dianhydride compound may be a substituted or unsubstituted aromatic or aliphatic dianhydride compound, and preferably one or two or more dianhydride compounds may be used.
  • the dianhydride compound may be a compound represented by the following formula (1).
  • R 1 may be selected from the following formulas.
  • the dianhydrad compound is pyromellitic dianhydride, 4,4'- (hexafluoroisopropylidene) dianillin, 1,2,4,5-cyclohexanetetracarboxylic dianhydride , Or 4,4'-(hexafluoroisopropylidene)dianiline.
  • the diamine compound may be a substituted or unsubstituted aromatic or aliphatic diamine, and preferably one or two or more diamines may be used.
  • the diamine compound may be a compound represented by the following formula (2).
  • R 2 is selected from the following formulas.
  • the diamine compound is 4,4'-oxydianiline, ,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-oxydianiline, Or it may be 4,4-methylenebis(2-methylcyclohexylamine).
  • the mixed solvent containing the catalyst in which the dianhydride compound and the diamine compound are dispersed is a mixture of water, a high boiling point organic solvent, and a catalyst, and 100 parts by weight of water, a high boiling point organic solvent It is preferably composed of 1 to 15 parts by weight and 1.5 to 5 parts by weight of the catalyst.
  • a polymerization reaction can be controlled by using a mixed solvent including water, a high boiling point organic solvent, and a catalyst, and a high molecular weight polyimide powder can be prepared.
  • the water may be distilled water, deionized water, tap water, and the like, and water in any state may be used.
  • the high boiling point organic solvent may be an organic solvent having a boiling point of 180 to 220°C, specifically 185 to 205°C.
  • the high boiling point organic solvent may be N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol, and one or more of these may be used together.
  • the high boiling point organic solvent may contain 1 to 15 parts by weight based on 100 parts by weight of water, more preferably 3 to 12 parts by weight based on 100 parts by weight of the water.
  • the content of the high boiling point organic solvent relative to 100 parts by weight of water is less than 1 part by weight, a precipitate may be formed after the polymerization reaction, and if the content of the high boiling point organic solvent relative to 100 parts by weight of water exceeds 15 parts by weight, high molecular weight It becomes impossible to obtain polyimide powder.
  • the catalyst contains 1.5 to 5 parts by weight based on 100 parts by weight of water, and consists of at least one selected from the group consisting of isoquinoline and beta-ficoline ( ⁇ -ficoline), although the particle size is low It serves to provide a polyimide powder having a high imidation rate and molecular weight.
  • the content of the catalyst is less than 1.5 parts by weight, the imidation rate of the polyimide powder decreases, and if the content of the catalyst exceeds 5 parts by weight, the molecular weight of the polyimide powder is too low.
  • the mixed solvent containing the catalyst may be used in an amount of 7 to 30 times the weight of the dianhydride compound as a reactant.
  • the dispersion reaction step is a step of introducing the dispersion prepared through the dispersion preparation step into a reactor and reacting at a temperature of 150 to 400°C and a pressurized condition, and the reaction temperature of the dispersion reaction step may be 150 to 400°C.
  • the reaction temperature is preferably 160 to 250°C, more preferably 170 to 240°C, and even more preferably 180 to 220°C. At this time, if the reaction temperature is less than 150°C, the reaction rate may be too low, and if the reaction temperature exceeds 400°C, thermal decomposition of the monomer or polymer may proceed.
  • the pressure condition in the dispersion reaction step may be 1 to 500 bar. Specifically, it is preferably 1 to 300 bar, more preferably 1 to 100 bar, and even more preferably 1 to 80 bar.
  • the reaction pressure is less than 1 bar, it is difficult to control the reactivity, and when the reaction pressure exceeds 500 bar, it may be difficult to obtain a high molecular weight polyimide powder.
  • a method of applying pressure is not particularly limited, and a commonly used method may be used. Although not limited thereto, for example, a method of forming a water vapor pressure inside a pressure vessel, a method of injecting an inert gas into the pressure vessel, or a method of compressing a pressure vessel may be used. One or two or more of the above methods may be used together.
  • the inert gas may be nitrogen, argon, helium, neon, krypton or xenon.
  • the reaction time may be 5 minutes to 5 days. Specifically, 10 minutes to 10 hours are preferable, and 10 minutes to 5 hours are more preferable. If the reaction time is less than 5 minutes, the reaction does not proceed well, and if the reaction time exceeds 5 days, hydrolysis of the polymer may occur.
  • the polyimide powder manufacturing step is a step of filtering and drying the reaction product prepared through the dispersion reaction step to prepare a polyimide powder.
  • a method of filtering and drying the reaction product in the polyimide powder manufacturing step is not particularly limited, and a method commonly used may be used. Although not limited thereto, for example, it may be washed with water and methyl alcohol and dried under vacuum.
  • the particle size and surface area of the polyimide powder can be controlled by using water and a predetermined ratio of a high boiling point organic solvent together.
  • the particle size of the polyimide powder may be 1 to 10 ⁇ m. Specifically, it may be 1 to 8 ⁇ m and 3 to 7 ⁇ m.
  • the polyimide powder prepared according to an embodiment of the present invention may be a fully aromatic polyimide, a partially aliphatic polyimide, or a fully aliphatic polyimide.
  • the polymerization reaction is controlled by using water, a small amount of a high boiling point organic solvent, and a catalyst as a reaction solvent to prepare a high molecular weight polyimide powder.
  • the manufacturing method of the polyimide powder according to an embodiment of the present invention includes a small amount of a high-boiling organic solvent and a catalyst, so that residual solvent after drying can be minimized, and problems such as deterioration of physical properties due to residual solvent do not occur. May not.
  • the polyimide powder prepared according to an embodiment of the present invention may have excellent thermal stability.
  • the polyimide powder prepared according to an embodiment of the present invention may be used for manufacturing a molded article through compression molding, injection molding, slush molding, blow molding, extrusion molding or spinning method.
  • Polyimide powder prepared according to an embodiment of the present invention is space, aviation, electricity/electronics, semiconductors, transparent/flexible displays, liquid crystal alignment films, automobiles, precision equipment, packaging, medical materials, separators, fuel cells, and secondary batteries. Etc. It can be used in a wide range of industries.
  • the particle size was determined by using the SALD-2201 particle size analyzer of Shimaz Corporation, and after dispersing the polyimide powder in water, the average particle diameter was measured.
  • the imidation rate was measured by using Thermo Scientific's Nicolet iZ20 FT IR (ATR) after making the polyimide powder into pellets.
  • the 1390cm -1 /1490cm -1 value was compared with the value of the polyimide powder with 100% imidization. I used the method of calculation,
  • the molecular weight As for the molecular weight, after dissolving 0.05 g of polyimide powder in 10 ml of sulfuric acid, a method of measuring the viscosity in an atmosphere of 30° C. using a Canon-Fenske viscometer was used.
  • the polyimide powder prepared through Examples 1 to 6 of the present invention has a lower particle size, an imidation rate, and a higher molecular weight compared to the polyimide powder prepared through Comparative Examples 1 to 2. I can.
  • the polyimide powder prepared through Comparative Example 3 has a higher imidation rate but lower molecular weight than the polyimide powder prepared through Examples 1 to 6 of the present invention.
  • the method for producing a polyimide powder according to the present invention and the polyimide powder produced through the same can be used for product weight reduction and miniaturization in the display field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention relates to a polyimide powder preparation method and a polyimide powder prepared thereby and, more specifically, the method comprises: a dispersion solution preparation step of preparing a dispersion solution by dispersing a dianhydride compound and a diamine compound in a mixed solvent containing a catalyst; a dispersion solution reaction step of injecting, into a reactor, the dispersion solution having been prepared through the dispersion solution preparation step, and reacting same at a temperature of 150-400°C in a pressurized condition; and a polyimide powder preparation step of preparing a polyimide powder by filtering and drying a reaction product prepared through the dispersion solution reaction step, wherein the mixed solvent containing a catalyst comprises water, a high-boiling-point organic solvent and a catalyst. The polyimide powder preparation method performed through the steps can control a polymerization reaction by using the mixed solvent comprising water, a high-boiling-point organic solvent and a catalyst, and thus provides a polyimide powder having a small particle size, a high degree of imidization and a high molecular weight.

Description

폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말Method for producing polyimide powder and polyimide powder prepared therethrough
본 발명은 폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말에 관한 것으로, 더욱 상세하게는 물, 고비점 유기용매 및 촉매를 포함하는 혼합용매를 사용하여 중합반응을 제어할 수 있기 때문에 입도가 낮고, 이미드화율과 분자량이 높은 폴리이미드 분말을 제공하는 폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말에 관한 것이다.The present invention relates to a method for producing a polyimide powder and to a polyimide powder produced through the same, and more particularly, a polymerization reaction can be controlled using a mixed solvent including water, a high boiling point organic solvent, and a catalyst. A method for producing a polyimide powder providing a polyimide powder having a low, imidation rate and a high molecular weight, and a polyimide powder prepared through the same.
폴리이미드 등의 고내열성 고분자 재료는 첨단 기술의 발달에 따라 제품의 소형 경박화, 고성능화, 고신뢰화를 위한 필수적인 소재로서 필름, 성형품, 섬유, 도료, 접착제 및 복합재 등의 형태로 우주, 항공, 전기/전자, 자동차 및 정밀기기 등 광범위한 산업 분야에 이용되고 있다. 폴리이미드는 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가진다. 또한 합성이 용이하고, 박막형 필름으로 제조될 수 있으며, 경화를 위한 가교기가 필요없는 장점을 가지며, 뛰어난 전기적 특성으로 인해 미소 전자 분야, 광학 분야 등에 이르기까지 고기능성 고분자 재료로 각광받고 있다.High heat-resistant polymer materials such as polyimide are essential materials for miniaturization, lightness, high performance, and high reliability of products according to the development of advanced technologies, and are used in the form of films, molded products, fibers, paints, adhesives and composites. /It is used in a wide range of industries such as electronics, automobiles and precision equipment. Polyimide has excellent mechanical strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of the imide ring. In addition, it is easy to synthesize, can be manufactured as a thin film, has the advantage of not needing a crosslinker for curing, and is in the spotlight as a high-functional polymer material in microelectronics and optical fields due to its excellent electrical properties.
최근 디스플레이 분야에서 제품의 경량화 및 소형화가 중요시되고 있으나 현재 사용되고 있는 유리 기판의 경우 무겁고 잘 깨지며 연속공정이 어렵다는 단점이 있다. 이 때문에 유리 기판을 대체하여 가볍고 유연하며 연속공정이 가능한 장점을 갖는 폴리이미드 기판을 제작하여 반도체 디바이스의 절연 필름이나 보호 코팅제, 플렉시블 회로 기판이나 집적 회로 등의 표면 보호 재료나 기재 수지, 더 나아가 미세한 회로의 층간 절연막이나 보호막을 형성시키는 경우에도 사용할 수 있다. 특히, 코팅 재료로서 사용하는 경우에는, 폴리이미드 필름 등의 성형체를 접착제로 접착한 보호 재료나, 액상의 폴리이미드 수지 용액 등이 사용될 수 있다.In the recent display field, weight reduction and miniaturization of products have been regarded as important, but the glass substrates currently used have a disadvantage in that they are heavy and easily broken, and continuous processing is difficult. For this reason, by manufacturing a polyimide substrate that has the advantage of being light, flexible, and capable of continuous processing by replacing glass substrates, insulating films and protective coatings for semiconductor devices, surface protection materials such as flexible circuit boards and integrated circuits, and base resins, and furthermore, It can also be used when forming an interlayer insulating film or a protective film of a circuit. In particular, in the case of using as a coating material, a protective material obtained by bonding a molded article such as a polyimide film with an adhesive, a liquid polyimide resin solution, or the like can be used.
일반적으로 사용되는 폴리이미드 합성방법은 크게 4가지가 있다. 첫 번째 방법으로, 다이안하이드라이드와 다이아민의 반응으로 전구체인 폴리아믹산(polyamic acid, PAA)를 먼저 합성하고 다음 단계에서 폴리아믹산을 이미드화시키는 2단계로 구성된 방법이다. 제1 단계는 폴리아믹산의 제조 단계로 다이아민이 용해된 반응용액에 다이안하이드라이드가 첨가되어 개환, 중부가 반응으로 인해 폴리아믹산이 만들어진다. 사용되는 반응 용매는 극성 유기용매가 주로 사용된다. 제2 단계는 제1 단계에서 제조한 폴리아믹산을 화학적 방법 또는 열적 방법을 통한 탈수 및 폐환 반응으로 이미드화하여 폴리이미드를 만드는 것이다.There are largely four methods of synthesizing polyimide that are generally used. The first method is a two-step method in which polyamic acid (PAA), a precursor, is first synthesized by reaction of dianhydride and diamine, and polyamic acid is imidized in the next step. The first step is to prepare polyamic acid. Diane hydride is added to a reaction solution in which diamine is dissolved, and polyamic acid is produced by ring-opening and polyaddition reaction. As the reaction solvent used, a polar organic solvent is mainly used. The second step is to produce a polyimide by imidizing the polyamic acid prepared in the first step by dehydration and ring closure reaction through a chemical method or a thermal method.
화학적 이미드화 방법은 전구체인 폴리아믹산 용액에 아세틱안하이드라이드등의 산무수물로 대표되는 탈수제와 피리딘등 3급 아민류 등으로 대표되는 이미드화 촉매를 투입하는 방법이다. 피리딘과 같은 수화물 형성에 용이한 용매를 사용하여 화학적으로 이미드화 반응을 수행하는 방법으로 무정형 폴리이미드 필름의 제조에 유용하다.In the chemical imidization method, a dehydrating agent typified by acid anhydrides such as acetic anhydride and an imidization catalyst typified by tertiary amines such as pyridine are added to a polyamic acid solution as a precursor. It is a method of chemically performing an imidation reaction using a solvent that is easy to form a hydrate such as pyridine, and is useful for preparing an amorphous polyimide film.
열적 이미드화 방법은 전구체인 폴리아믹산 용액을 250 내지 300℃로 가열하여 열적으로 이미드화 하는 방법으로서 가장 간단한 공정이다.The thermal imidization method is the simplest step as a method of thermally imidizing a precursor polyamic acid solution by heating at 250 to 300°C.
상기의 일반적인 폴리이미드 합성법을 사용하여 합성한 전지환식 폴리이미드(fully aliphatic polyimide)는 일반적으로 분자량이 낮아 기계적 성질이 떨어진다. 특히 지방족 다이아민을 사용하는 경우 다이아민의 아미노기의 염기도가 높아 다이아민이 중합반응에 참여하는 대신 아믹산과 염(salt)을 형성하기 때문에 고분자량의 폴리이미드가 얻어지지 않는다.Fully aliphatic polyimide synthesized using the general polyimide synthesis method described above generally has a low molecular weight and low mechanical properties. In particular, when using an aliphatic diamine, the basicity of the amino group of the diamine is high, so the diamine forms a salt with amic acid instead of participating in the polymerization reaction, so that a high molecular weight polyimide cannot be obtained.
두번째 방법은 N-실릴레이션 반응을 이용하는 것으로, 첫 번째 방법에 있어서 염의 형성을 방지하여 분자량을 높이기 위해 다이아민과 클로로트리메틸실레인을 반응시켜 N-트리메틸실릴기로 보호된 다이아민을 합성한 후, 이 다이아민을 사용하여 폴리이미드를 합성한다. 이 방법에서도 N-트리메틸실릴기로 보호된 다이아민의 합성과 폴리이미드 합성에 유기용매가 사용된다. N-실릴레이션 방법의 단점으로는 N-트리메틸실릴기로 보호된 지방족 다이아민을 합성하기 위한 클로로트리메틸 실레인 시약의 가격이 비싸고 수분에 매우 민감하여 취급하는 데에 어려움이 있으며 폴리이미드의 수평균 분자량이 10,000 정도밖에 되지 않고, 폴리이미드 합성 방법이 일반적인 합성 방법보다 더 복잡해진다는 단점을 가지고 있다.The second method is to use an N-silylation reaction, and in the first method, in order to increase the molecular weight by preventing salt formation, diamine and chlorotrimethylsilane are reacted to synthesize a diamine protected by an N-trimethylsilyl group, Polyimide is synthesized using this diamine. Also in this method, an organic solvent is used for the synthesis of diamines protected by N-trimethylsilyl groups and for the synthesis of polyimides. The disadvantages of the N-silylation method are that the cost of the chlorotrimethyl silane reagent for synthesizing an aliphatic diamine protected by an N-trimethylsilyl group is expensive and very sensitive to moisture, making it difficult to handle, and the number average molecular weight of polyimide. It is only about 10,000, and has the disadvantage that the polyimide synthesis method becomes more complicated than the general synthesis method.
세 번째 방법은 메타-크레졸을 용매로 사용하는 방법으로서, 용매로 메타-크레졸을 넣고 다이안하이드라이드과 다이아민을 넣은 후 온도를 단계별로 올려 장시간 동안 반응을 보내는 방법이다. 메타-크레졸을 이용한 방법은 반응시간이 64시간 이상으로 반응시간이 길고 수 평균 분자량이 10,000 정도로 만족할 수 없는 분자량을 가지고 있고 메타-크레졸 용매를 사용하기 때문에 건조 시간이 길고 자극적인 냄새가 심하다는 단점을 가지고 있다.The third method is a method of using meta-cresol as a solvent, in which meta-cresol is added as a solvent, dianhydride and diamine are added, and the temperature is raised stepwise to react for a long time. The method using meta-cresol has a long reaction time with a reaction time of more than 64 hours, a number average molecular weight of 10,000, which cannot be satisfied, and the use of a meta-cresol solvent has a long drying time and a strong irritating odor. Have.
네 번째 방법은 In-situ 실릴레이션 방법으로서, N-실릴레이션 방법이 수분에 민감한 단점을 해결하기 위한 것이다. 유기용매가 들어있는 반응기에 다이아민을 넣은 후 저온에서 클로로트리메틸실레인을 넣어준 후 다이안하이드라이드를 넣어 N-트리메틸실릴기로 보호된 폴리아믹산을 합성한 후 보호기를 제거하여 폴리아믹산을 거쳐 폴리이미드를 합성한다. In-situ 실릴레이션 합성방법의 단점은 반응시간이 길고 분자량은 개선되었지만 수 평균 분자량이 80,000 정도로 여전히 만족할 수 없는 분자량을 가지고 있고 클로로트리메틸실레인 시약이 고가이며 이미드화시 촉매가 필요하고 건조 시간이 길고 N-트리메틸실릴기로 보호된 폴리아믹산에서 보호기를 제거한 폴리아믹산을 합성하기 위해서 재침전 과정이 필요하며 전지환식 폴리이미드의 경우에도 충분한 투명성을 확보할 수 없다는 단점을 가지고 있다.The fourth method is an in-situ sirillation method, which is intended to solve the shortcomings of the N-silylation method being sensitive to moisture. After diamine is added to the reactor containing the organic solvent, chlorotrimethylsilane is added at low temperature, dianhydride is added to synthesize polyamic acid protected by N-trimethylsilyl group, and the protecting group is removed, and then polyimide is passed through polyamic acid. To synthesize. The disadvantages of the in-situ silylation synthesis method are that the reaction time is long and the molecular weight is improved, but the number average molecular weight is 80,000, which is still unsatisfactory, and the chlorotrimethylsilane reagent is expensive. In order to synthesize a polyamic acid from which a protecting group has been removed from a long, N-trimethylsilyl group-protected polyamic acid, a reprecipitation process is required, and even in the case of a battery-cyclic polyimide, sufficient transparency cannot be secured.
한국 공개특허 제10-2016-0100392호는 올리고머와 용매의 혼합물을 압출기로 도입하고, 하나 이상의 압출기 배기구를 통해 용매를 제거하며, 올리고머를 용융 반죽하여 폴리이미드를 생성시키는 폴리이미드 제조방법을 개시한다.Korean Patent Laid-Open Publication No. 10-2016-0100392 discloses a polyimide manufacturing method in which a mixture of an oligomer and a solvent is introduced into an extruder, the solvent is removed through one or more extruder exhaust ports, and the oligomer is melt-kneaded to produce a polyimide. .
본 발명의 목적은 물, 고비점 유기용매 및 촉매를 포함하는 혼합용매를 사용하여 중합반응을 제어할 수 있기 때문에 입도가 낮고, 이미드화율과 분자량이 높은 폴리이미드 분말을 제공하는 폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말을 제공하는 것이다.It is an object of the present invention to provide a polyimide powder having a low particle size, high imidation rate and high molecular weight since the polymerization reaction can be controlled using a mixed solvent containing water, a high boiling point organic solvent, and a catalyst. It is to provide a manufacturing method and a polyimide powder prepared through it.
본 발명의 목적은 다이안하이드라이드 화합물 및 다이아민 화합물을 촉매가 함유된 혼합용매에 분산시켜 분산액을 제조하는 분산액 제조단계, 상기 분산액 제조단계를 통해 제조된 분산액을 반응기에 투입하고 150 내지 400℃의 온도와 가압조건에서 반응시키는 분산액 반응단계 및 상기 분산액 반응단계를 통해 제조된 반응생성물을 여과하고 건조하여 폴리이미드 분말을 제조하는 폴리이미드 분말 제조단계를 포함하며, 상기 촉매가 함유된 혼합용매는 물, 고비점 유기용매 및 촉매를 포함하는 것을 특징으로 하는 폴리이미드 분말의 제조방법을 제공함에 의해 달성된다.An object of the present invention is a dispersion preparation step of preparing a dispersion by dispersing a dianhydride compound and a diamine compound in a mixed solvent containing a catalyst, and introducing the dispersion prepared through the dispersion preparation step into a reactor and A dispersion reaction step of reacting under temperature and pressurized conditions, and a polyimide powder production step of filtering and drying the reaction product prepared through the dispersion reaction step to prepare a polyimide powder, and the mixed solvent containing the catalyst is water , By providing a method for producing a polyimide powder, characterized in that it comprises a high boiling point organic solvent and a catalyst.
본 발명의 바람직한 특징에 따르면, 상기 분산액 제조단계는 다이안하이드라이드 화합물 100 중량부 및 다이아민 화합물 80 내지 120 중량부를 촉매가 함유된 혼합용매 1000 내지 1200 중량부에 분산시켜 이루어지는 것으로 한다.According to a preferred feature of the present invention, the dispersion preparation step is performed by dispersing 100 parts by weight of a dianhydride compound and 80 to 120 parts by weight of a diamine compound in 1000 to 1200 parts by weight of a mixed solvent containing a catalyst.
본 발명의 더 바람직한 특징에 따르면, 상기 고비점 유기용매는 비점이 180 내지 220℃인 것으로 한다.According to a more preferred feature of the present invention, the high boiling point organic solvent is assumed to have a boiling point of 180 to 220 ℃.
본 발명의 더욱 바람직한 특징에 따르면, 상기 고비점 유기용매는 N-메틸피롤리돈, 디메틸술폭시드 및 에틸렌글리콜로 이루어진 그룹에서 선택된 하나로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the high boiling point organic solvent is made of one selected from the group consisting of N-methylpyrrolidone, dimethyl sulfoxide, and ethylene glycol.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 촉매가 함유된 혼합용매는 물 100 중량부, 고비점 유기용매 1 내지 15 중량부 및 촉매 1.5 내지 5 중량부로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the mixed solvent containing the catalyst is composed of 100 parts by weight of water, 1 to 15 parts by weight of a high boiling point organic solvent, and 1.5 to 5 parts by weight of the catalyst.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 촉매는 이소퀴놀린 및 베타-피콜린으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the catalyst is made of at least one selected from the group consisting of isoquinoline and beta-ficoline.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 폴리이미드 분말은 전 방향족 폴리이미드, 부분 지환식 폴리이미드 및 전 지환식 폴리이미드로 이루어진 그룹에서 선택된 하나인 것으로 한다.According to a further preferred feature of the present invention, the polyimide powder is one selected from the group consisting of wholly aromatic polyimide, partially alicyclic polyimide, and wholly alicyclic polyimide.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 다이안하이드라이드 화합물은 하기 화학식 1로 표시되는 것으로 한다.According to an even more preferred feature of the present invention, the dianhydride compound is to be represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2019013689-appb-I000001
Figure PCTKR2019013689-appb-I000001
상기 화학식 1에서,In Formula 1,
R1은 하기 화학식 중에서 선택된다.R 1 is selected from the following formulas.
Figure PCTKR2019013689-appb-I000002
Figure PCTKR2019013689-appb-I000002
Figure PCTKR2019013689-appb-I000003
Figure PCTKR2019013689-appb-I000003
Figure PCTKR2019013689-appb-I000004
Figure PCTKR2019013689-appb-I000004
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 다이아민 화합물은 하기 화학식 2로 표시되는 것으로 한다.According to an even more preferred feature of the present invention, the diamine compound is represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2019013689-appb-I000005
Figure PCTKR2019013689-appb-I000005
상기 화학식 2에서, In Chemical Formula 2,
R2는 하기 화학식 중에서 선택된다.R 2 is selected from the following formulas.
Figure PCTKR2019013689-appb-I000006
Figure PCTKR2019013689-appb-I000006
Figure PCTKR2019013689-appb-I000007
Figure PCTKR2019013689-appb-I000007
Figure PCTKR2019013689-appb-I000008
Figure PCTKR2019013689-appb-I000008
Figure PCTKR2019013689-appb-I000009
Figure PCTKR2019013689-appb-I000009
Figure PCTKR2019013689-appb-I000010
Figure PCTKR2019013689-appb-I000010
Figure PCTKR2019013689-appb-I000011
Figure PCTKR2019013689-appb-I000011
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 분산액 반응단계는 150 내지 220℃의 온도에서 진행되는 것으로 한다.According to an even more preferred feature of the present invention, the dispersion reaction step is to be carried out at a temperature of 150 to 220 ℃.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 분산액 반응단계는 5분 내지 5일 동안 진행되는 것으로 한다.According to an even more preferred feature of the present invention, the dispersion reaction step is supposed to proceed for 5 minutes to 5 days.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 분산액 반응단계는 1 내지 500 bar의 가압조건에서 진행되는 것으로 한다.According to an even more preferred feature of the present invention, the dispersion reaction step is to be carried out under a pressurized condition of 1 to 500 bar.
또한, 본 발명의 목적은 상기 폴리이미드 분말의 제조방법을 통해 제조되는 것을 특징으로 하는 폴리이미드 분말을 제공함에 의해서도 달성될 수 있다.In addition, the object of the present invention can be achieved by providing a polyimide powder, characterized in that it is produced through the method for producing the polyimide powder.
본 발명의 바람직한 특징에 따르면, 상기 폴리이미드 분말은 입자 크기가 1 내지 10㎛인 것으로 한다.According to a preferred feature of the present invention, the polyimide powder has a particle size of 1 to 10 μm.
본 발명에 따른 폴리이미드 분말의 제조방법은 물, 고비점 유기용매 및 촉매를 포함하는 혼합용매를 사용하여 중합반응을 제어할 수 있기 때문에 입도가 낮고, 이미드화율과 분자량이 높은 폴리이미드 분말을 제공하는 탁월한 효과를 나타낸다.The method for producing a polyimide powder according to the present invention uses a mixed solvent including water, a high boiling point organic solvent, and a catalyst to control the polymerization reaction, so that a polyimide powder having a low particle size and high imidation rate and molecular weight is obtained. It shows the excellent effect it provides.
또한, 중합반응 후에 침전물이 발생하는 현상을 개선할 수 있고, 이에 따라 여과 및 건조 공정을 용이하게 수행할 수 있으며, 반응 수율을 높은 탁월한 효과를 나타낸다.In addition, it is possible to improve the phenomenon that precipitates are generated after the polymerization reaction, thereby making it possible to easily perform filtration and drying processes, and exhibit excellent effects of high reaction yield.
또한, 폴리이미드 분말의 입자 크기 및 표면적을 제어할 수 있고, 우수한 열 안정성을 갖는 폴리이미드 분말을 제공하는 탁월한 효과를 나타낸다.In addition, it is possible to control the particle size and surface area of the polyimide powder, and exhibits an excellent effect of providing a polyimide powder having excellent thermal stability.
또한, 소량의 고비점 유기용매가 사용되기 때문에, 건조 후에 잔류용매가 최소화되어 잔류용매로 인한 물성저하 등의 문제가 발생하지 않는 폴리이미드 분말을 제공하는 탁월한 효과를 나타낸다.In addition, since a small amount of high-boiling organic solvent is used, residual solvent is minimized after drying, thereby exhibiting an excellent effect of providing a polyimide powder that does not cause problems such as deterioration of properties due to residual solvent.
또한, 하나의 반응단계를 포함하며, 반응온도가 낮고 반응시간이 짧아 제조공정의 효율성이 높은 탁월한 효과를 나타낸다.In addition, it includes one reaction step, and the reaction temperature is low and the reaction time is short, indicating excellent effects of high efficiency of the manufacturing process.
또한, 반응용매로 물이 주로 사용되어 유기계 폐액의 발생량이 줄어들기 때문에 친환경적이며 제조비용이 저렴한 탁월한 효과를 나타낸다.In addition, since water is mainly used as a reaction solvent and the amount of organic waste liquid is reduced, it is eco-friendly and has an excellent effect of low manufacturing cost.
이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, but this is for explaining in detail enough that one of ordinary skill in the art can easily carry out the invention, This does not mean that the technical spirit and scope of the present invention are limited.
본 발명에 따른 폴리이미드 분말의 제조방법은 다이안하이드라이드 화합물 및 다이아민 화합물을 촉매가 함유된 혼합용매에 분산시켜 분산액을 제조하는 분산액 제조단계, 상기 분산액 제조단계를 통해 제조된 분산액을 반응기에 투입하고 150 내지 400℃의 온도와 가압조건에서 반응시키는 분산액 반응단계 및 상기 분산액 반응단계를 통해 제조된 반응생성물을 여과하고 건조하여 폴리이미드 분말을 제조하는 폴리이미드 분말 제조단계를 포함하며, 상기 촉매가 함유된 혼합용매는 물, 고비점 유기용매 및 촉매를 포함한다.The manufacturing method of the polyimide powder according to the present invention is a dispersion preparation step of preparing a dispersion by dispersing a dianhydride compound and a diamine compound in a mixed solvent containing a catalyst, and the dispersion prepared through the dispersion preparation step is introduced into a reactor. And a dispersion reaction step of reacting at a temperature of 150 to 400° C. and a pressurized condition, and a polyimide powder production step of filtering and drying the reaction product prepared through the dispersion reaction step to prepare a polyimide powder, wherein the catalyst is The mixed solvent contained includes water, a high boiling point organic solvent, and a catalyst.
상기 분산액 제조단계는 다이안하이드라이드 화합물 및 다이아민 화합물을 촉매가 함유된 혼합용매에 분산시켜 분산액을 제조하는 단계로, 다이안하이드라이드 화합물 100 중량부 및 다이아민 화합물 80 내지 120 중량부를 촉매가 함유된 혼합용매 1000 내지 1200 중량부에 분산시켜 이루어지며, 이때, 상기 촉매가 함유된 혼합용매는 물, 고비점 유기용매 및 촉매를 포함하여 이루어진다.The dispersion preparation step is a step of preparing a dispersion by dispersing a dianhydride compound and a diamine compound in a mixed solvent containing a catalyst, and 100 parts by weight of the dianhydride compound and 80 to 120 parts by weight of the diamine compound are contained in the catalyst. It is made by dispersing in 1000 to 1200 parts by weight of the mixed solvent, and at this time, the mixed solvent containing the catalyst includes water, a high boiling point organic solvent, and a catalyst.
상기 다이안하이드라이드 화합물은 치환되거나 치환되지 않은 방향족 또는 지방족 다이안하이드라이드 화합물일 수 있는데, 바람직하게는 1종 또는 2종 이상의 다이안하이드라이드 화합물을 사용할 수 있다.The dianhydride compound may be a substituted or unsubstituted aromatic or aliphatic dianhydride compound, and preferably one or two or more dianhydride compounds may be used.
일 구체예에서, 상기 다이안하이드라이드 화합물은 하기 화학식 1로 표시되는 화합물일 수 있다.In one embodiment, the dianhydride compound may be a compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2019013689-appb-I000012
Figure PCTKR2019013689-appb-I000012
상기 화학식 1에서,In Formula 1,
R1은 하기 화학식 중에서 선택될 수 있다.R 1 may be selected from the following formulas.
Figure PCTKR2019013689-appb-I000013
Figure PCTKR2019013689-appb-I000013
Figure PCTKR2019013689-appb-I000014
Figure PCTKR2019013689-appb-I000014
Figure PCTKR2019013689-appb-I000015
Figure PCTKR2019013689-appb-I000015
일 구체예에서, 상기 다이안하이드라드 화합물은 피로멜리틱 다이안하이드라이드, 4,4'-(헥사플루오로아이소프로필아이덴)다이아닐린, 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 또는 4,4'-(헥사플루오로아이소프로필아이덴)다이아닐린일 수 있다.In one embodiment, the dianhydrad compound is pyromellitic dianhydride, 4,4'- (hexafluoroisopropylidene) dianillin, 1,2,4,5-cyclohexanetetracarboxylic dianhydride , Or 4,4'-(hexafluoroisopropylidene)dianiline.
본 발명의 일 실시형태에서, 상기 다이아민 화합물은 치환되거나 치환되지 않은 방향족 또는 지방족 다이아민일 수 있으며, 바람직하기로는 1종 또는 2종 이상의 다이아민을 사용할 수 있다. 일 구체예에서, 상기 다이아민 화합물은 하기 화학식 2로 표시되는 화합물일 수 있다.In one embodiment of the present invention, the diamine compound may be a substituted or unsubstituted aromatic or aliphatic diamine, and preferably one or two or more diamines may be used. In one embodiment, the diamine compound may be a compound represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2019013689-appb-I000016
Figure PCTKR2019013689-appb-I000016
상기 화학식 2에서, In Chemical Formula 2,
R2는 하기 화학식 중에서 선택된다.R 2 is selected from the following formulas.
Figure PCTKR2019013689-appb-I000017
Figure PCTKR2019013689-appb-I000017
Figure PCTKR2019013689-appb-I000018
Figure PCTKR2019013689-appb-I000018
Figure PCTKR2019013689-appb-I000019
Figure PCTKR2019013689-appb-I000019
Figure PCTKR2019013689-appb-I000020
Figure PCTKR2019013689-appb-I000020
Figure PCTKR2019013689-appb-I000021
Figure PCTKR2019013689-appb-I000021
Figure PCTKR2019013689-appb-I000022
Figure PCTKR2019013689-appb-I000022
일 구체예에서, 상기 다이아민 화합물은 4,4'-옥시다이아닐린, ,2'-비스(트리플루오로메틸)-4,4'-다이아미노바이페닐, 4,4'-옥시다이아닐린, 또는 4,4-메틸렌비스(2-메틸싸이클로헥실아민)일 수 있다.In one embodiment, the diamine compound is 4,4'-oxydianiline, ,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 4,4'-oxydianiline, Or it may be 4,4-methylenebis(2-methylcyclohexylamine).
본 발명의 일 실시형태에서, 상기 다이안하이드라이드 화합물과 상기 다이아민 화합물이 분산되는 촉매가 함유된 혼합용매는 물, 고비점 유기용매 및 촉매가 혼합된 것으로, 물 100 중량부, 고비점 유기용매 1 내지 15 중량부 및 촉매 1.5 내지 5 중량부로 이루어지는 것이 바람직하다.In one embodiment of the present invention, the mixed solvent containing the catalyst in which the dianhydride compound and the diamine compound are dispersed is a mixture of water, a high boiling point organic solvent, and a catalyst, and 100 parts by weight of water, a high boiling point organic solvent It is preferably composed of 1 to 15 parts by weight and 1.5 to 5 parts by weight of the catalyst.
본 발명의 일 실시형태에 따르면, 물, 고비점 유기용매 및 촉매를 포함하는 혼합용매를 사용함으로써 중합 반응을 제어할 수 있고, 고분자량의 폴리이미드 분말을 제조할 수 있다.According to an embodiment of the present invention, a polymerization reaction can be controlled by using a mixed solvent including water, a high boiling point organic solvent, and a catalyst, and a high molecular weight polyimide powder can be prepared.
본 발명의 일 실시형태에서, 상기 물은 증류수, 탈 이온수 및 수돗물 등일 수 있으며, 어떠한 상태의 물이라도 사용할 수 있다.In one embodiment of the present invention, the water may be distilled water, deionized water, tap water, and the like, and water in any state may be used.
본 발명의 일 실시형태에서, 상기 고비점 유기용매는 비점이 180 내지 220℃, 구체적으로 185 내지 205℃인 유기용매일 수 있다. In one embodiment of the present invention, the high boiling point organic solvent may be an organic solvent having a boiling point of 180 to 220°C, specifically 185 to 205°C.
일 구체예에서, 상기 고비점 유기용매는 N-메틸피롤리돈, 디메틸술폭사이드, 에틸렌글리콜일 수 있고, 이들은 1종 이상 함께 사용될 수 있다.In one embodiment, the high boiling point organic solvent may be N-methylpyrrolidone, dimethyl sulfoxide, ethylene glycol, and one or more of these may be used together.
상기 고비점 유기용매는 상기 물 100 중량부에 대해 1 내지 15중량부가 함유될 수 있으며, 더욱 바람직한게는 상기 물 100 중량부에 대해 3 내지 12 중량부가 함유될 수 있다.The high boiling point organic solvent may contain 1 to 15 parts by weight based on 100 parts by weight of water, more preferably 3 to 12 parts by weight based on 100 parts by weight of the water.
상기 물 100 중량부 대비 고비점 유기용매의 함량이 1 중량부 미만이면 중합 반응 후 침전물이 형성될 수 있으며, 상기 물 100 중량부 대비 고비점 유기용매의 함량이 15 중량부를 초과하게 되면 고분자량의 폴리이미드 분말을 얻을 수 없게 된다.If the content of the high boiling point organic solvent relative to 100 parts by weight of water is less than 1 part by weight, a precipitate may be formed after the polymerization reaction, and if the content of the high boiling point organic solvent relative to 100 parts by weight of water exceeds 15 parts by weight, high molecular weight It becomes impossible to obtain polyimide powder.
또한, 상기 촉매는 상기 물 100 중량부 대비 1.5 내지 5 중량부가 함유되는데, 이소퀴놀린(isoquinoline) 및 베타-피콜린(β-피콜린)으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는데, 입도가 낮으면서도 이미드화율과 분자량이 높은 폴리이미드 분말을 제공하는 역할을 한다.In addition, the catalyst contains 1.5 to 5 parts by weight based on 100 parts by weight of water, and consists of at least one selected from the group consisting of isoquinoline and beta-ficoline (β-ficoline), although the particle size is low It serves to provide a polyimide powder having a high imidation rate and molecular weight.
상기 촉매의 함량이 1.5 중량부 미만이면 폴리이미드 분말의 이미드화율이 저하되며, 상기 촉매의 함량이 5 중량부를 초과하게 되면 폴리이미드 분말의 분자량이 지나치게 낮아지게 된다.If the content of the catalyst is less than 1.5 parts by weight, the imidation rate of the polyimide powder decreases, and if the content of the catalyst exceeds 5 parts by weight, the molecular weight of the polyimide powder is too low.
본 발명의 일 실시형태에 따르면, 상기 촉매가 함유된 혼합용매는 반응물인 다이안하이드라이드 화합물의 중량에 대하여 7 내지 30배의 양을 사용할 수 있다. According to an embodiment of the present invention, the mixed solvent containing the catalyst may be used in an amount of 7 to 30 times the weight of the dianhydride compound as a reactant.
상기 분산액 반응단계는 상기 분산액 제조단계를 통해 제조된 분산액을 반응기에 투입하고 150 내지 400℃의 온도와 가압조건에서 반응시키는 단계로, 상기 분산액 반응단계의 반응온도는 150 내지 400℃ 일 수 있다. 구체적으로는 상기 반응온도는 160 내지 250℃인 것이 바람직하며, 170 내지 240℃인 것이 더욱 바람직하고, 180 내지 220℃인 것이 더욱 더 바람직하다. 이때, 반응온도가 150℃ 미만이면 반응속도가 지나치게 저하될 수 있고, 반응온도가 400℃를 초과하게 되면 단량체 또는 고분자의 열 분해가 진행될 수 있다.The dispersion reaction step is a step of introducing the dispersion prepared through the dispersion preparation step into a reactor and reacting at a temperature of 150 to 400°C and a pressurized condition, and the reaction temperature of the dispersion reaction step may be 150 to 400°C. Specifically, the reaction temperature is preferably 160 to 250°C, more preferably 170 to 240°C, and even more preferably 180 to 220°C. At this time, if the reaction temperature is less than 150°C, the reaction rate may be too low, and if the reaction temperature exceeds 400°C, thermal decomposition of the monomer or polymer may proceed.
또한, 상기 분산액 반응단계에서 가압조건은 1 내지 500bar일 수 있다. 구체적으로 1 내지 300bar인 것이 바람직하며, 1 내지 100bar인 것이 더욱 바람직하고, 1 내지 80bar인 것이 더욱 더 바람직하다. 반응압력이 1bar 미만이면 반응성을 제어하기 어렵고, 반응압력이 500bar을 초과하게 되면 고분자량의 폴리이미드 분말을 얻기 어려울 수 있다.In addition, the pressure condition in the dispersion reaction step may be 1 to 500 bar. Specifically, it is preferably 1 to 300 bar, more preferably 1 to 100 bar, and even more preferably 1 to 80 bar. When the reaction pressure is less than 1 bar, it is difficult to control the reactivity, and when the reaction pressure exceeds 500 bar, it may be difficult to obtain a high molecular weight polyimide powder.
본 발명의 일 실시형태에서, 압력을 가하는 방법은 특별히 제한되지 않으며, 통상적으로 사용되는 방법을 사용할 수 있다. 이에 제한되지 않으나 예를 들면, 압력용기 내부에서 수증기압을 형성하는 방법, 압력용기 내부에 불활성 기체를 주입하는 방법 또는 압력용기를 압축하는 방법을 사용할 수 있다. 상기 방법 중에서 한가지 또는 두 가지 이상의 방법을 함께 사용할 수 있다. 상기 불활성 기체는 질소, 아르곤, 헬륨, 네온, 크립톤 또는 크세논 등을 사용할 수 있다.In one embodiment of the present invention, a method of applying pressure is not particularly limited, and a commonly used method may be used. Although not limited thereto, for example, a method of forming a water vapor pressure inside a pressure vessel, a method of injecting an inert gas into the pressure vessel, or a method of compressing a pressure vessel may be used. One or two or more of the above methods may be used together. The inert gas may be nitrogen, argon, helium, neon, krypton or xenon.
본 발명의 일 실시형태에서, 반응시간은 5분 내지 5일일 수 있다. 구체적으로 10분 내지 10시간이 바람직하며, 10분 내지 5시간이 더욱 바람직하다. 반응시간이 5분 미만이면 반응이 잘 진행되지 않으며, 반응시간이 5일을 초과하게 되면 고분자의 가수분해가 일어날 수 있다.In one embodiment of the present invention, the reaction time may be 5 minutes to 5 days. Specifically, 10 minutes to 10 hours are preferable, and 10 minutes to 5 hours are more preferable. If the reaction time is less than 5 minutes, the reaction does not proceed well, and if the reaction time exceeds 5 days, hydrolysis of the polymer may occur.
상기 폴리이미드 분말 제조단계는 상기 분산액 반응단계를 통해 제조된 반응생성물을 여과하고 건조하여 폴리이미드 분말을 제조하는 단계다.The polyimide powder manufacturing step is a step of filtering and drying the reaction product prepared through the dispersion reaction step to prepare a polyimide powder.
이때, 상기 폴리이미드 분말 제조단계에서 반응생성물을 여과 및 건조하는 방법은 특별히 제한되지 않으며, 통상적으로 사용되는 방법을 사용할 수 있다. 이에 제한되지 않으나, 예를 들면, 물과 메틸 알콜로 세정하고, 진공 건조할 수 있다.In this case, a method of filtering and drying the reaction product in the polyimide powder manufacturing step is not particularly limited, and a method commonly used may be used. Although not limited thereto, for example, it may be washed with water and methyl alcohol and dried under vacuum.
또한, 일반적으로 중합 반응이 완료되면 반응기 하부에 침전물이 형성되어 여과 및 건조 등 후 작업이 어려울 수 있다. 그러나 본 발명의 일 실시형태에 따르면 물과 소정 비율의 고비점 유기용매를 함께 사용함으로써 중합 반응 완료 후 침전물이 생기는 현상을 개선할 수 있다. 이에 따라 여과 및 건조 공정이 용이하게 진행될 수 있으며, 반응 수율을 높일 수 있다.In addition, in general, when the polymerization reaction is completed, precipitates are formed in the lower part of the reactor, so that it may be difficult to perform operations after filtration and drying. However, according to an embodiment of the present invention, by using water and a high boiling point organic solvent in a predetermined ratio together, it is possible to improve a phenomenon in which a precipitate occurs after the polymerization reaction is completed. Accordingly, the filtration and drying process can be easily performed, and the reaction yield can be increased.
또한, 본 발명의 일 실시형태에 따르면 물과 소정 비율의 고비점 유기용매를 함께 사용함으로써 폴리이미드 분말의 입자 크기 및 표면적을 제어할 수 있다.In addition, according to an embodiment of the present invention, the particle size and surface area of the polyimide powder can be controlled by using water and a predetermined ratio of a high boiling point organic solvent together.
일 구체예에서 폴리이미드 분말의 입자 크기는 1 내지 10㎛일 수 있다. 구체적으로, 1 내지 8㎛, 3 내지 7㎛일 수 있다.In one embodiment, the particle size of the polyimide powder may be 1 to 10 μm. Specifically, it may be 1 to 8 μm and 3 to 7 μm.
본 발명의 일 실시형태에 따라 제조된 폴리이미드 분말은 전 방향족(fully aromatic) 폴리이미드, 부분 지환식(partially aliphatic) 폴리이미드 또는 전 지환식(fully aliphatic) 폴리이미드일 수 있다.The polyimide powder prepared according to an embodiment of the present invention may be a fully aromatic polyimide, a partially aliphatic polyimide, or a fully aliphatic polyimide.
본 발명의 일 실시형태에 따르면, 반응 용매로 물과 소량의 고비점 유기용매 및 촉매를 사용함으로써 중합 반응이 제어되어 고분자량의 폴리이미드 분말을 제조할 수 있다. According to an embodiment of the present invention, the polymerization reaction is controlled by using water, a small amount of a high boiling point organic solvent, and a catalyst as a reaction solvent to prepare a high molecular weight polyimide powder.
또한, 본 발명의 일 실시형태에 따른 폴리이미드 분말의 제조방법은 소량의 고비점 유기용매 및 촉매를 포함하여 건조 후 잔류 용매가 최소화될 수 있으며, 잔류용매에 의한 물성 저하 등의 문제가 발생하지 않을 수 있다. In addition, the manufacturing method of the polyimide powder according to an embodiment of the present invention includes a small amount of a high-boiling organic solvent and a catalyst, so that residual solvent after drying can be minimized, and problems such as deterioration of physical properties due to residual solvent do not occur. May not.
또한, 본 발명의 일 실시형태에 따라 제조된 폴리이미드 분말은 우수한 열 안정성을 가질 수 있다.In addition, the polyimide powder prepared according to an embodiment of the present invention may have excellent thermal stability.
본 발명의 일 실시형태에 따라 제조된 폴리이미드 분말은 압축성형, 사출성형, 슬러시 성형, 중공성형, 압출성형 또는 방적 방법을 통한 성형품이 제조에 사용될 수 있다.The polyimide powder prepared according to an embodiment of the present invention may be used for manufacturing a molded article through compression molding, injection molding, slush molding, blow molding, extrusion molding or spinning method.
본 발명의 일 실시형태에 따라 제조된 폴리이미드 분말은 우주, 항공, 전기/전자, 반도체, 투명/유연 디스플레이, 액정 배향막, 자동차, 정밀기기, 패키징, 의료용 소재, 분리막, 연료전지 및 2차전지 등 광범위한 산업분야에 이용될 수 있다.Polyimide powder prepared according to an embodiment of the present invention is space, aviation, electricity/electronics, semiconductors, transparent/flexible displays, liquid crystal alignment films, automobiles, precision equipment, packaging, medical materials, separators, fuel cells, and secondary batteries. Etc. It can be used in a wide range of industries.
이하에서는, 본 발명에 따른 폴리이미드 분말의 제조방법 및 그 제조방법을 통해 제조된 폴리이미드 분말의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, the method of manufacturing the polyimide powder according to the present invention and the physical properties of the polyimide powder manufactured through the manufacturing method will be described by way of examples.
<실시예 1><Example 1>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 6mL, 이소퀴놀린 3g에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 190℃로 맞춘 후 12bar의 압력에서 3시간 동안 교반하여 반응을 진행하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water, 6 mL of N-methylpyrrolidone, and 3 g of isoquinoline, the dispersion was mixed with a stirrer, a nitrogen injector, and a temperature controller. After transferring to the attached 500mL pressure vessel, the air in the pressure vessel was replaced with nitrogen gas, the temperature was adjusted to 190°C, and the reaction was carried out by stirring at a pressure of 12 bar for 3 hours, followed by filtration and drying to prepare a polyimide powder.
<실시예 2><Example 2>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 8mL, 이소퀴놀린 5.5g에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 190℃로 맞춘 후 12bar의 압력에서 3시간 동안 교반하여 반응을 진행하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water, 8 mL of N-methyl pyrrolidone, 5.5 g of isoquinoline, the dispersion was mixed with a stirrer, nitrogen injector, and temperature controller. Was transferred to a 500 mL pressure vessel attached, and then the air in the pressure vessel was replaced with nitrogen gas, the temperature was adjusted to 190°C, and the reaction was carried out by stirring at a pressure of 12 bar for 3 hours, followed by filtration and drying to prepare a polyimide powder.
<실시예 3><Example 3>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 20mL, 이소퀴놀린 10g에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 190℃로 맞춘 후 12bar의 압력에서 3시간 동안 교반하여 반응을 진행하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water, 20 mL of N-methylpyrrolidone, and 10 g of isoquinoline, the dispersion was mixed with a stirrer, a nitrogen injector, and a temperature controller. After transferring to the attached 500mL pressure vessel, the air in the pressure vessel was replaced with nitrogen gas, the temperature was adjusted to 190°C, and the reaction was carried out by stirring at a pressure of 12 bar for 3 hours, followed by filtration and drying to prepare a polyimide powder.
<실시예 4><Example 4>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 7mL, 베타-피콜린 3g에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 150℃로 맞춘 후 5bar의 압력에서 3시간 동안 교반하여 반응을 진행하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water, 7 mL of N-methyl pyrrolidone, and 3 g of beta-picoline, the dispersion was mixed with a stirrer, nitrogen injector, and temperature. After transferring to a 500 mL pressure vessel with a regulator attached, the air in the pressure vessel was replaced with nitrogen gas, the temperature was adjusted to 150°C, and the reaction was carried out by stirring at a pressure of 5 bar for 3 hours, followed by filtration and drying to prepare a polyimide powder. .
<실시예 5><Example 5>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 10mL, 베타-피콜린 6g에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 190℃로 맞춘 후 5bar의 압력에서 3시간 동안 교반하여 반응을 진행하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water, 10 mL of N-methylpyrrolidone, and 6 g of beta-picoline, the dispersion was mixed with a stirrer, nitrogen injector, and temperature. After transferring to a 500 mL pressure vessel with a regulator attached, the air in the pressure vessel was replaced with nitrogen gas, the temperature was adjusted to 190°C, and the reaction was carried out by stirring at a pressure of 5 bar for 3 hours, followed by filtration and drying to prepare a polyimide powder. .
<실시예 6><Example 6>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 20mL, 베타-피콜린 10g에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 190℃로 맞춘 후 5bar의 압력에서 3시간 동안 교반하여 반응을 진행하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water, 20 mL of N-methyl pyrrolidone, and 10 g of beta-picoline, the dispersion was mixed with a stirrer, nitrogen injector, and temperature. After transferring to a 500 mL pressure vessel with a regulator, the air in the pressure vessel was replaced with nitrogen gas, the temperature was adjusted to 190°C, and the reaction was carried out by stirring at a pressure of 5 bar for 3 hours, followed by filtration and drying to prepare a polyimide powder. .
<비교예 1><Comparative Example 1>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 10mL에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 190℃로 맞춘 후 12bar의 압력에서 3시간 동안 교반하여 반응을 진행하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water and 10 mL of N-methyl pyrrolidone, the dispersion was subjected to 500 mL pressure with a stirrer, nitrogen injector, and temperature controller. After transferring to a container, the air in the pressure container was replaced with nitrogen gas, the temperature was adjusted to 190°C, and the mixture was stirred at a pressure of 12 bar for 3 hours to proceed with the reaction, followed by filtration and drying to prepare a polyimide powder.
<비교예 2><Comparative Example 2>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 10mL에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 190℃로 맞춘 후 12bar의 압력에서 6시간 동안 교반하여 반응을 진행하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water and 10 mL of N-methyl pyrrolidone, the dispersion was subjected to 500 mL pressure with a stirrer, nitrogen injector, and temperature controller. After transferring to a container, the air in the pressure container was replaced with nitrogen gas, the temperature was adjusted to 190°C, and the mixture was stirred at a pressure of 12 bar for 6 hours to proceed with the reaction, followed by filtration and drying to prepare a polyimide powder.
<비교예 3><Comparative Example 3>
피로멜리틱 다이안하이드라이드 22.6g과 4,4'-옥시다이아닐린 21.13g을 증류수 200mL와 N-메틸 피롤리돈 20mL, 베타-피콜린 20g에 분산시킨 후에 상기 분산액을 교반기, 질소 주입장치, 온도 조절기를 부착한 500mL 압력용기에 옮긴 후 압력용기의 공기를 질소 기체로 치환하고 온도를 150℃로 맞춘 후 5bar의 압력에서 3시간 동안 교반하고 여과 및 건조하여 폴리이미드 분말을 제조하였다.After dispersing 22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline in 200 mL of distilled water, 20 mL of N-methyl pyrrolidone, and 20 g of beta-picoline, the dispersion was mixed with a stirrer, nitrogen injector, and temperature. After transferring to a 500 mL pressure vessel with a regulator attached, the air in the pressure vessel was replaced with nitrogen gas, the temperature was adjusted to 150° C., stirred at a pressure of 5 bar for 3 hours, filtered and dried to prepare a polyimide powder.
상기 실시예 1 내지 6 및 비교예 1 내지 3을 통해 제조된 폴리이미드 분말의 입도, 이미드화율 및 분자량을 측정하여 아래 표 1에 나타내었다.The particle size, imidation ratio, and molecular weight of the polyimide powder prepared through Examples 1 to 6 and Comparative Examples 1 to 3 were measured and shown in Table 1 below.
(단, 입도는 쉬마즈사의 SALD-2201 입도분석기를 이용하되, 폴리이미드 분말을 물에 분산시킨 후에 평균입경을 측정하였으며,(However, the particle size was determined by using the SALD-2201 particle size analyzer of Shimaz Corporation, and after dispersing the polyimide powder in water, the average particle diameter was measured.
이미드화율은 폴리이미드 분말을 펠릿으로 만든 후 Thermo Scientific사의 Nicolet iZ20 FT IR(ATR)을 사용하여 측정하였으며 1390cm-1/1490cm-1 수치를 이미드화가 100% 진행된 폴리이미드 분말의 수치와 비교하여 계산하는 방법을 이용하였고,The imidation rate was measured by using Thermo Scientific's Nicolet iZ20 FT IR (ATR) after making the polyimide powder into pellets. The 1390cm -1 /1490cm -1 value was compared with the value of the polyimide powder with 100% imidization. I used the method of calculation,
분자량은 황산 10ml에 폴리이미드 분말 0.05g을 용해한 후에 Canon-Fenske 점도계를 사용 30℃의 분위기에서 점도를 측정하는 방법을 이용하였다.As for the molecular weight, after dissolving 0.05 g of polyimide powder in 10 ml of sulfuric acid, a method of measuring the viscosity in an atmosphere of 30° C. using a Canon-Fenske viscometer was used.
Inherent Viscosity 계산 → ηinh = [ln(η/η0)]/c = [ln(t/t0)]/cCalculate Inherent Viscosity → ηinh = [ln(η/η 0 )]/c = [ln(t/t 0 )]/c
t = PI powder 황산용액 이송시간, t0 = 황산 이송시간, c = 농도)t = PI powder sulfuric acid solution transfer time, t 0 = sulfuric acid transfer time, c = concentration)
<표 1><Table 1>
Figure PCTKR2019013689-appb-I000023
Figure PCTKR2019013689-appb-I000023
상기 표 1에 나타낸 것처럼, 본 발명의 실시예 1 내지 6을 통해 제조된 폴리이미드 분말은 비교예 1 내지 2를 통해 제조된 폴리이미드 분말에 비하여 입도가 낮고, 이미드화율 및 분자량이 높은 것을 알 수 있다.As shown in Table 1, it was found that the polyimide powder prepared through Examples 1 to 6 of the present invention has a lower particle size, an imidation rate, and a higher molecular weight compared to the polyimide powder prepared through Comparative Examples 1 to 2. I can.
또한, 비교예 3을 통해 제조된 폴리이미드 분말은 본 발명의 실시예 1 내지 6을 통해 제조된 폴리이미드 분말에 비해 이미드화율은 높은 반면 분자량이 낮을 것을 알 수 있다.In addition, it can be seen that the polyimide powder prepared through Comparative Example 3 has a higher imidation rate but lower molecular weight than the polyimide powder prepared through Examples 1 to 6 of the present invention.
본 발명에 따른 폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말은 디스플레이 분야에서 제품의 경량화 및 소형화에 이용될 수 있다.The method for producing a polyimide powder according to the present invention and the polyimide powder produced through the same can be used for product weight reduction and miniaturization in the display field.

Claims (14)

  1. 다이안하이드라이드 화합물 및 다이아민 화합물을 촉매가 함유된 혼합용매에 분산시켜 분산액을 제조하는 분산액 제조단계;A dispersion preparation step of dispersing a dianhydride compound and a diamine compound in a mixed solvent containing a catalyst to prepare a dispersion;
    상기 분산액 제조단계를 통해 제조된 분산액을 반응기에 투입하고 150 내지 400℃의 온도와 가압조건에서 반응시키는 분산액 반응단계; 및A dispersion reaction step of introducing the dispersion prepared through the dispersion preparation step into a reactor and reacting at a temperature of 150 to 400°C and pressurized conditions; And
    상기 분산액 반응단계를 통해 제조된 반응생성물을 여과하고 건조하여 폴리이미드 분말을 제조하는 폴리이미드 분말 제조단계;를 포함하며,Including; a polyimide powder manufacturing step of filtering and drying the reaction product prepared through the dispersion reaction step to prepare a polyimide powder, and
    상기 촉매가 함유된 혼합용매는 물, 고비점 유기용매 및 촉매를 포함하는 것을 특징으로 하는 폴리이미드 분말의 제조방법.The mixed solvent containing the catalyst comprises water, a high boiling point organic solvent, and a catalyst.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 분산액 제조단계는 다이안하이드라이드 화합물 100 중량부 및 다이아민 화합물 80 내지 120 중량부를 촉매가 함유된 혼합용매 1000 내지 1200 중량부에 분산시켜 이루어지는 것을 특징으로 하는 폴리이미드 분말의 제조방법.The dispersion preparation step is a method of producing a polyimide powder, characterized in that 100 parts by weight of a dianhydride compound and 80 to 120 parts by weight of a diamine compound are dispersed in 1000 to 1200 parts by weight of a mixed solvent containing a catalyst.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 고비점 유기용매는 비점이 180 내지 220℃인 것을 특징으로 하는 폴리이미드 분말의 제조방법.The method for producing a polyimide powder, wherein the high boiling point organic solvent has a boiling point of 180 to 220°C.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 고비점 유기용매는 N-메틸피롤리돈, 디메틸술폭시드 및 에틸렌글리콜로 이루어진 그룹에서 선택된 하나로 이루어지는 것을 특징으로 하는 폴리이미드 분말의 제조방법.The high boiling point organic solvent is a method for producing a polyimide powder, characterized in that consisting of one selected from the group consisting of N-methylpyrrolidone, dimethyl sulfoxide, and ethylene glycol.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 촉매가 함유된 혼합용매는 물 100 중량부, 고비점 유기용매 1 내지 15 중량부 및 촉매 1.5 내지 5 중량부로 이루어지는 것을 특징으로 하는 폴리이미드 분말의 제조방법.The mixed solvent containing the catalyst comprises 100 parts by weight of water, 1 to 15 parts by weight of a high boiling point organic solvent, and 1.5 to 5 parts by weight of a catalyst.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 촉매는 이소퀴놀린 및 베타-피콜린으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 폴리이미드 분말의 제조방법.The catalyst is a method of producing a polyimide powder, characterized in that consisting of at least one selected from the group consisting of isoquinoline and beta-picoline.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 폴리이미드 분말은 전 방향족 폴리이미드, 부분 지환식 폴리이미드 및 전 지환식 폴리이미드로 이루어진 그룹에서 선택된 하나인 것을 특징으로 하는 폴리이미드 분말의 제조방법.The polyimide powder is a method of producing a polyimide powder, characterized in that one selected from the group consisting of a wholly aromatic polyimide, a partially alicyclic polyimide, and a wholly alicyclic polyimide.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 다이안하이드라이드 화합물은 하기 화학식 1로 표시되는 것을 특징으로 하는 폴리이미드 분말의 제조방법:The dianhydride compound is a method for producing a polyimide powder, characterized in that represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2019013689-appb-I000024
    Figure PCTKR2019013689-appb-I000024
    상기 화학식 1에서,In Formula 1,
    R1은 하기 화학식 중에서 선택된다.R 1 is selected from the following formulas.
    Figure PCTKR2019013689-appb-I000025
    Figure PCTKR2019013689-appb-I000025
    Figure PCTKR2019013689-appb-I000026
    Figure PCTKR2019013689-appb-I000026
    Figure PCTKR2019013689-appb-I000027
    Figure PCTKR2019013689-appb-I000027
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 다이아민 화합물은 하기 화학식 2로 표시되는 것을 특징으로 하는 폴리이미드 분말의 제조방법:The diamine compound is a method of producing a polyimide powder, characterized in that represented by the following formula (2):
    [화학식 2][Formula 2]
    Figure PCTKR2019013689-appb-I000028
    Figure PCTKR2019013689-appb-I000028
    상기 화학식 2에서, In Chemical Formula 2,
    R2는 하기 화학식 중에서 선택된다.R 2 is selected from the following formulas.
    Figure PCTKR2019013689-appb-I000029
    Figure PCTKR2019013689-appb-I000029
    Figure PCTKR2019013689-appb-I000030
    Figure PCTKR2019013689-appb-I000030
    Figure PCTKR2019013689-appb-I000031
    Figure PCTKR2019013689-appb-I000031
    Figure PCTKR2019013689-appb-I000032
    Figure PCTKR2019013689-appb-I000032
    Figure PCTKR2019013689-appb-I000033
    Figure PCTKR2019013689-appb-I000033
    Figure PCTKR2019013689-appb-I000034
    Figure PCTKR2019013689-appb-I000034
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 분산액 반응단계는 150 내지 220℃의 온도에서 진행되는 것을 특징으로 하는 폴리이미드 분말의 제조방법.The dispersion reaction step is a method for producing a polyimide powder, characterized in that proceeds at a temperature of 150 to 220 ℃.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 분산액 반응단계는 5분 내지 5일 동안 진행되는 것을 특징으로 하는 폴리이미드 분말의 제조방법.The dispersion reaction step is a method of producing a polyimide powder, characterized in that proceeds for 5 minutes to 5 days.
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 분산액 반응단계는 1 내지 500 bar의 가압조건에서 진행되는 것을 특징으로 하는 폴리이미드 분말의 제조방법.The dispersion reaction step is a method of producing a polyimide powder, characterized in that it proceeds under a pressurized condition of 1 to 500 bar.
  13. 청구항 1 내지 12중 어느 한 항에 따른 폴리이미드 분말의 제조방법을 통해 제조되는 것을 특징으로 하는 폴리이미드 분말.Polyimide powder, characterized in that produced through the method for producing a polyimide powder according to any one of claims 1 to 12.
  14. 청구항 13에 있어서,The method of claim 13,
    상기 폴리이미드 분말은 입자 크기가 1 내지 10㎛인 것을 특징으로 하는 폴리이미드 분말.The polyimide powder is a polyimide powder, characterized in that the particle size of 1 to 10㎛.
PCT/KR2019/013689 2019-09-23 2019-10-17 Polyimide powder preparation method, and polyimide powder prepared thereby WO2021060602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190116667A KR102203212B1 (en) 2019-09-23 2019-09-23 Manufacturing method of polyimide powder and polyimide powder manufactured by the same
KR10-2019-0116667 2019-09-23

Publications (1)

Publication Number Publication Date
WO2021060602A1 true WO2021060602A1 (en) 2021-04-01

Family

ID=74141512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013689 WO2021060602A1 (en) 2019-09-23 2019-10-17 Polyimide powder preparation method, and polyimide powder prepared thereby

Country Status (2)

Country Link
KR (1) KR102203212B1 (en)
WO (1) WO2021060602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672272A (en) * 2022-03-11 2022-06-28 江苏环峰电工材料有限公司 Preparation process and application of polyimide-based conductive adhesive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000031062A (en) * 1998-11-03 2000-06-05 김충섭 Method for the preparation of high molecular weight polyimide resin powder having low crystallinity
KR20140057956A (en) * 2012-11-05 2014-05-14 도레이케미칼 주식회사 Photosensitive transparent-polyimide and composition of the same
KR20160096565A (en) * 2016-07-22 2016-08-16 연세대학교 원주산학협력단 Preparation method of polyimide using water as a dispersion medium
KR20170006586A (en) * 2015-07-08 2017-01-18 연세대학교 원주산학협력단 The manufacturing method of polyimide
CN108948352A (en) * 2018-07-18 2018-12-07 上海三普水相材料科技有限公司 A method of preparing polyimides

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780447B1 (en) * 2015-02-02 2017-09-21 연세대학교 원주산학협력단 Preparation method of polyimide composites under high pressure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000031062A (en) * 1998-11-03 2000-06-05 김충섭 Method for the preparation of high molecular weight polyimide resin powder having low crystallinity
KR20140057956A (en) * 2012-11-05 2014-05-14 도레이케미칼 주식회사 Photosensitive transparent-polyimide and composition of the same
KR20170006586A (en) * 2015-07-08 2017-01-18 연세대학교 원주산학협력단 The manufacturing method of polyimide
KR20160096565A (en) * 2016-07-22 2016-08-16 연세대학교 원주산학협력단 Preparation method of polyimide using water as a dispersion medium
CN108948352A (en) * 2018-07-18 2018-12-07 上海三普水相材料科技有限公司 A method of preparing polyimides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672272A (en) * 2022-03-11 2022-06-28 江苏环峰电工材料有限公司 Preparation process and application of polyimide-based conductive adhesive

Also Published As

Publication number Publication date
KR102203212B1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2017209413A1 (en) High-strength transparent polyamidimide and method for preparing same
WO2013133508A1 (en) Diamine compound having two substituents in asymmetrical structure, and polymer prepared using same
WO2018056573A1 (en) Polyamide precursor solution and method for producing same
WO2017179877A1 (en) Colorless and transparent polyamide-imide film, and manufacturing method therefor
WO2017111289A1 (en) Polyamic acid composition to which alicyclic monomers are applied and transparent polyimide film using same
WO2021054513A1 (en) Method for producing polyimide powder, and polyimide powder produced thereby
WO2014003451A1 (en) Polyimide and polyimide film comprising the same
WO2017188630A1 (en) High-strength transparent polyamide-imide and method for manufacturing same
WO2017204462A1 (en) Polyamide-imide, method for preparing same, and polyamide-imide film using same
WO2015190645A1 (en) Method for preparing polyimide using water as dispersion medium and method for recovering water
WO2016175344A1 (en) Polyimide resin and film using same
WO2017176000A1 (en) Polyimide film having improved heat resistance and method for manufacturing same
WO2011004938A1 (en) Low temperature curable polyimide insulator made from polyamic acid resin composition having high packing structure, and all-organic thin film transistor device having low hysteresis properties rendered by the composition
WO2018147618A1 (en) Method for preparing polyamide-imide film
WO2018117551A1 (en) Transparent polyimide film
WO2016140559A1 (en) Composition for polyimide film for flexible substrate of optoelectronic device
CN111971327A (en) Polyamic acid and method for producing same, polyamic acid solution, polyimide film, laminate and method for producing same, and flexible device and method for producing same
WO2020138645A1 (en) Polyamic acid composition and transparent polyimide film using same
WO2021015360A1 (en) Method for preparing polyimide powder, and polyimide powder prepared thereby
WO2019004677A1 (en) Polyimide precursor composition, preparation method therefor, and polyimide substrate manufactured therefrom
WO2021060602A1 (en) Polyimide powder preparation method, and polyimide powder prepared thereby
WO2019045376A1 (en) Polyimide film for flexible display device substrate
WO2016047821A1 (en) Nanoporous micro-spherical polyimide aerogels and method for preparing same
WO2016003146A1 (en) High heat-resistant polyamic acid solution and polyimide film
WO2018021747A1 (en) Polyimide precursor solution and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947266

Country of ref document: EP

Kind code of ref document: A1