WO2015190645A1 - Method for preparing polyimide using water as dispersion medium and method for recovering water - Google Patents

Method for preparing polyimide using water as dispersion medium and method for recovering water Download PDF

Info

Publication number
WO2015190645A1
WO2015190645A1 PCT/KR2014/007426 KR2014007426W WO2015190645A1 WO 2015190645 A1 WO2015190645 A1 WO 2015190645A1 KR 2014007426 W KR2014007426 W KR 2014007426W WO 2015190645 A1 WO2015190645 A1 WO 2015190645A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
water
reaction
producing
group
Prior art date
Application number
PCT/KR2014/007426
Other languages
French (fr)
Korean (ko)
Inventor
정찬문
유환철
이웅희
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140070392A external-priority patent/KR20150141839A/en
Priority claimed from KR1020140101005A external-priority patent/KR20160017460A/en
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Priority to CN201480079787.3A priority Critical patent/CN106459411B/en
Publication of WO2015190645A1 publication Critical patent/WO2015190645A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing polyimide, and more particularly, by using water as a dispersion medium, organic waste liquid does not occur, which is environmentally friendly, low in manufacturing cost, and minimizes residual solvent after drying. It relates to a method for producing polyamide used as a method and to recover water used as a dispersion medium.
  • High heat-resistant polymer materials are essential materials for miniaturization, high performance, and high reliability of products according to the development of advanced technology.
  • films In the form of film, molded products, textiles, paints, adhesives, and composites, aerospace, aviation, electricity / electronics, automobiles And a wide range of industrial fields such as precision instruments.
  • films have been mainly developed as electronic materials and packaging materials, and they are classified into general purpose engineering plastic films centered on polyester films, and are used as flexible circuit boards because of their high heat resistance, chemical resistance and electrical properties.
  • the polyimide in the material has excellent mechanical strength, chemical resistance, weather resistance and heat resistance based on the chemical stability of the imide ring. In addition, it is easy to synthesize, can make a thin film, and has the advantage that no crosslinking group for curing. In addition, due to its excellent electrical properties, it has been spotlighted as a high functional polymer material in the field of microelectronics and optics.
  • the use of the polyimide is used as a surface protection material such as a flexible circuit board or an integrated circuit, or as a base resin, to form an interlayer insulating film or a protective film of a semiconductor ultrafine circuit.
  • a surface protection material such as a flexible circuit board or an integrated circuit, or as a base resin
  • an interlayer insulating film or a protective film of a semiconductor ultrafine circuit In recent years, weight reduction and miniaturization of products have been important in the display field.
  • glass substrates that are currently used have a disadvantage of being heavy, broken and difficult to process continuously. For this reason, research is being conducted to utilize a polyimide substrate having a merit of being lightweight, flexible, and continuous process in place of a glass substrate for flexible display fabrication.
  • a polyamic acid precursor is first synthesized by the reaction of dianhydride and diamine, and the second step is to prepare a polyimide by imidizing the polyamic acid in the next step.
  • the first step is a step of preparing a polyamic acid.
  • Diane hydride is added to a reaction solution in which diamine is dissolved to form a polyamic acid by ring opening and polyaddition reaction.
  • the reaction solvent to be used is N, N - dimethylacetamide, N, N - a polar organic solvent such as dimethylformamide, N- methyl-2-pyrrolidone are mainly used.
  • the polyamic acid prepared in step 1 is imidized by dehydration and ring-closure reaction by chemical or thermal method to synthesize polyimide.
  • the chemical imidization method is a method in which a chemical dehydrating agent represented by acid anhydrides such as acetic anhydride and tertiary amines such as pyridine are added to a solution of polyamic acid as a precursor and heated at 160 ° C or higher.
  • the thermal imidization method is a method of thermally imidating by applying a solution of polyamic acid as a precursor to a substrate, evaporating the solvent and heating to 250 ⁇ 350 °C without chemical dehydrating agent and catalyst.
  • the second method uses a N-silylation reaction to increase the molecular weight of the polyimide by preventing the formation of amic acid and diamine salts, which is a disadvantage of the first method.
  • Diamine and chlorotrimethylsilane are reacted to synthesize diamine protected with N-trimethylsilyl group, and then polyimide is synthesized using the protected diamine via polyamic acid protected with N-trimethylsilyl group.
  • organic solvents are used for the synthesis of diamines protected with N-trimethylsilyl groups and for the synthesis of polyimides.
  • the disadvantage of the N-silylation method is that the chlorotrimethylsilane reagent for synthesizing N-trimethylsilyl group-protected aliphatic diamine is expensive and very sensitive to moisture, which makes it difficult to handle.
  • the disadvantage is that it becomes more complex than the first synthesis method.
  • the third method is to use meta-cresol as a solvent, add meta-cresol as a solvent, add dianhydride and diamine, and send the reaction for a long time by raising the temperature step by step.
  • the method using the meta-cresol has the disadvantage that the reaction time is longer than 64 hours and the reaction time is long and still has an unsatisfactory molecular weight and the drying time is long and the irritating smell is severe because of the use of the meta-cresol solvent.
  • the fourth method is an in-situ silylation method, and the second method, N-silylation method, is intended to solve the disadvantages sensitive to moisture.
  • Diamine was added to the reactor containing the organic solvent, followed by chlorotrimethylsilane at low temperature, followed by dianhydride to synthesize polyamic acid protected with N-trimethylsilyl group, followed by chemical imidization or thermal imidization reaction. Synthesize polyimide.
  • Disadvantages of the in-situ silylation synthesis method are long reaction times, improved molecular weight but high chlorotrimethylsilane reagents, high imidization catalysts, long drying times and protecting groups in polyamic acids protected with N-trimethylsilyl groups.
  • a reprecipitation process may be required, and even in the case of an all-aliphatic polyimide, sufficient transparency cannot be obtained.
  • a full aromatic polyimide synthesis method is disclosed in High Performance Polymers, 15: 269-279, 2003 and High Performance Polymers, 18: 31-44, 2006.
  • dianhydride is first added to water and heated at reflux to hydrolyze to synthesize tetracarboxylic acid.
  • Diamine is added to this solution to form a salt precipitate of tetracarboxylic acid and diamine.
  • the mixture of sediment and water is then transferred to the glassliner of the pressure device, followed by the operation of bleeding air and filling with nitrogen several times to make a nitrogen atmosphere. Nitrogen was added to the mixture to raise the pressure to 20 psi and then heated at 135 ° C.
  • the solvent used in the normal polyimide manufacturing process is often difficult to recycle because it is mixed with impurities even if it must be removed or recovered.
  • a patent related to a system for circulating distilled water but in this case, a filter part for filtering raw water, a filter part for adsorption filtration of filtered water, a sewage bucket for recovering sewage generated after the reaction, and a filter part for filtering the same.
  • a filter part for filtering raw water a filter part for adsorption filtration of filtered water
  • a sewage bucket for recovering sewage generated after the reaction
  • a filter part for filtering the same since it consists of a device of a very complicated structure such as a sterilizer to sterilize it, there is a disadvantage that is not economical in terms of cost.
  • Patent Documents Korean Patent 1,004,096, Korean Patent 449,798, Korean Patent 0717377, US Patent 7,053,168, International Patent Application 2012-091231 (WO2012 / 91231), International Patent Application PCT / JP2011 / 066144 ( WO 2012/008543), Korean Patent No. 826,294
  • Non-Patent Document Polymer Science and Technology Vol. 24, No. 1, pp. 3-9, Jin Young Park et al., Preparation and application of polyimide based particles; Macromolecules 2002, 35, 2277-2281 Yasufumi Watanabe, Yoshimasa Sakai, Yuji Shibasaki, Shinji Ando, and Mitsuru Ueda Synthesis of Wholly Alicyclic Polyimides from N-Silylated Alicyclic Diamines and Alicyclic Dianhydrides; Journal of photopolymer Science and Technology Volume 16, Number 2 (2003) Youshiyuki Oishi, Shu Ondera, Jan Oravec, Kunio Mori, Shinji Ando, Yoshiharu Terui, and kazuhiko Maeda Synthesis of Fluorine-Containing wholly Alicyclic Polyimide by In Situ Silylation Method; Macromolecules 2009, 42, 5892-5894 Dulce M.
  • Hodgkin Water as Solvent in Polyimide Synthesis Thermoset and Thermoplastic Examlpes; High Performance Polymers, 18: 31-44, 2006 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimides Synthesis II: Processable Aromatic Polyimide
  • the present invention proposes a new production method using water as a dispersion medium in order to solve problems such as environmental pollution, an increase in manufacturing cost, residual solvent, and the like caused by using an organic solvent in a conventional method for producing polyimide.
  • the reaction temperature and time, the reaction reagents the synthesis step is reduced to propose a new manufacturing method which is very simple and reduced manufacturing costs.
  • the present invention is to provide a polyimide having a very high molecular weight and excellent mechanical properties compared to the polymer prepared by the conventional synthesis method having a high thermal properties.
  • the present invention is to provide a method for recovering the water used as a dispersion medium.
  • the present invention provides a method for preparing a polyimide by dispersing a dianhydride compound and a diamine compound in water and then reacting in a sealed pressure vessel under a temperature condition of 5 ° C. or higher and producing a polyimide.
  • a polyimide produced by the conventional synthesis method there is no problem of residual solvent and very high molecular weight. can do.
  • by easily recovering and recycling the water used in the reaction more economical manufacturing is possible and resources can be saved to reduce environmental pollution.
  • the present invention by using water as the reaction dispersion medium in the production of polyimide, there is an advantage that the organic waste solution does not occur, which is environmentally friendly, inexpensive to manufacture, and the residual solvent is minimized after drying so that there is no problem such as deterioration of physical properties due to the residual solvent.
  • the purchase cost of the water is reduced to reduce the polyimide manufacturing cost, thereby making it more economical and saving resources to reduce environmental pollution.
  • the present invention has the advantage that the reaction temperature is low, the reaction step is short and the reaction time is short compared to the conventional manufacturing method by applying a pressure in the production of polyimide, the prepared polyimide is a polyimide prepared by the conventional method Compared with the thermal stability, the molecular weight is large.
  • 1 is an FT-IR spectrum of a pyromellitic dianhydride and a 4,4'-oxydianiline polyimide according to Example 1;
  • 2 is an FT-IR spectrum of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 4,4′-oxydianiline polyimide according to Example 2;
  • 3 is an FT-IR spectrum of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 4,4-methylenebis (2-methylcyclohexylamine) polyimide according to Example 3;
  • 4 is an FT-IR spectrum of 5.9605 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 4,4-methylenebis (2-methylcyclohexylamine) polyimide according to Example 5;
  • 5 is an FT-IR spectrum of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride and 3- (aminomethyl) -3,5,5-trimethyl
  • FIG. ; 6 is an FT-IR spectrum of 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine and 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine polyimide according to Comparative Example 2.
  • FIG. ; 7 is an FT-IR spectrum of 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine and 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine polyimide according to Comparative Example 3.
  • the present invention is to prepare a polyimide by dispersing the dianhydride compound and the diamine compound in water and then placing the mixture in a pressure vessel and sealing the reaction under a pressure applied in the reaction temperature range of 5 °C to 400 °C It is a manufacturing method of a polyimide.
  • the present invention comprises the steps of: a) dispersing the dianhydride compound and the diamine compound in water; And b) sealing the dispersion in a pressure vessel, and reacting the dianhydride compound with the diamine compound at a temperature of 5 ° C. to 400 ° C. and pressurization conditions.
  • the present invention also provides a method for preparing a hydride compound comprising: a) dispersing a dianhydride compound and a diamine compound in water; b) after the dispersion is put in a pressure vessel and sealed, reacting the dianhydride compound and the diamine compound at a temperature of 5 °C to 400 °C and pressurized conditions; And (c) recovering water by cooling and condensing water vapor generated in step (b) from the pressure vessel after the completion of step (b).
  • steam may occur during step (b), and water may be recovered by cooling and condensing the steam, wherein the water may be distilled water.
  • the polyimide prepared according to the method may be a fully aromatic polyimide, a partially aliphatic polyimide or a fully aliphatic polyimide.
  • Dianehydride compounds that can be used in the present invention are substituted or unsubstituted aromatic or aliphatic dianhydride compounds.
  • a substituted or unsubstituted aromatic or aliphatic dianhydride represented by the following formula (1) may be used as the dianhydride.
  • the dianhydride compound may use one or two or more dianhydrides.
  • the diamine may be substituted or unsubstituted aromatic or aliphatic diamine.
  • the diamine may be a substituted or unsubstituted aromatic or aliphatic diamine represented by the following formula (2).
  • x may be an integer satisfying 1 ⁇ x ⁇ 50, preferably an integer satisfying 3 ⁇ x ⁇ 20.
  • n is a natural number in the range of 1 to 20
  • W, X, Y are each an alkyl group or an aryl group having 1 to 30 carbon atoms
  • Z is selected from an ester group, an amide group, an imide group, and an ether group.
  • the diamine compound may use one kind or two or more kinds of diamines.
  • water may be water in any state, such as distilled water, deionized water, tap water.
  • the reaction temperature preferably has a range of 5 °C to 400 °C. More specifically, it is 20 degreeC-250 degreeC. If the reaction temperature is less than 5 °C the reaction rate is too slow to make polyimide practically difficult, if the temperature exceeds 400 °C may cause thermal decomposition of the monomer or polymer.
  • the reaction time of step b) is preferably in the range of 5 minutes to 5 days. More specifically, the reaction may be performed for 10 minutes to 10 hours, even more specifically for 10 minutes to 5 hours. If the reaction time is less than 5 minutes, the reaction does not proceed well, if more than 5 days may cause hydrolysis of the polymer.
  • the pressing conditions of step b) is preferably in the range of 1 bar to 1000 bar. More specifically, it is 1 bar to 500 bar. If the reaction pressure is less than 1 bar, the reaction does not proceed well, and if it is more than 1000 bar may cause damage to the reaction vessel.
  • the method of pressurizing is composed of one or two or more methods selected from the method of forming water vapor pressure in the pressure vessel, injecting an inert gas into the pressure vessel, or compressing the pressure vessel. do.
  • the inert gas is at least one gas selected from the group consisting of nitrogen, argon, helium, neon, krypton and xenon.
  • the reaction product of step b) may further comprise the step of filtration and drying to obtain a polyimide.
  • a polyimide film prepared by dissolving a polyimide prepared according to the above method in an organic solvent and applying the solution to a substrate.
  • organic solvent N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N-vinylpyrrolidone, N-methylcaprolactam, dimethyl sulfoxide Seed, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, meta-cresol, gamma-butyrolactone, ethylcellosolve, butylcellosolve, ethylcarbitol, butylcarbitol, ethylcarbitol acetate, butyl
  • solvents selected from the group consisting of carbitol acetate, ethylene glycol, ethyl lactate, butyl lactate, cyclohe
  • the concentration of polyimide in the solution may be from 1 to 90 wt%. If the solubility of the polyimide is low and it is difficult to prepare a polyimide solution, the polyamic acid is dissolved in an organic solvent and applied to a substrate, thereby producing a polyimide film by thermal imidization.
  • a small amount of an additive such as a wetting enhancer may be added if necessary for the polyimide or polyamic acid solution.
  • the additive is preferably added 0.001 to 5% by weight based on the polyimide or polyamic acid. More specifically, 0.01 to 2% by weight can be added.
  • a coating method of a polyimide or polyamic acid composition for forming a polyimide film spin coating method, dipping method, flexo printing method, inkjet printing method, spraying method, potting method, screen A printing method or the like can be used.
  • spin coating method as a method for obtaining a thick film of 10 ⁇ m or more, the bar coat coating method, the slit coating coating method, the screen printing method, the spin coating method and the like are preferable.
  • a molded article formed by compression molding, injection molding, slush molding, blow molding, extrusion molding or spinning method of the polyimide prepared according to the above method.
  • Polyimide synthesized by the manufacturing method of the present invention is a wide range of industries such as space, aviation, electrical / electronics, semiconductors, transparent / flexible displays, liquid crystal alignment film, automotive, precision equipment, packaging, medical materials, separators, fuel cells, secondary batteries It can be used in the field.
  • the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water.
  • Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present.
  • the CN absorption band of the imide group was observed at 1369 cm ⁇ 1 .
  • Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present.
  • the CN absorption band of the imide group was observed at 1365 cm ⁇ 1 .
  • Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present.
  • the CN absorption band of the imide group was observed at 1364 cm ⁇ 1 .
  • Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present.
  • the CN absorption band of the imide group was observed at 1364 cm -1 .
  • a cleaning process of a silicon wafer to be used as a substrate Prior to thin film fabrication, a cleaning process of a silicon wafer to be used as a substrate was performed. This process removes various contaminants such as particles, organic contaminants, metal contaminants and natural oxide films. Contaminants were removed by heating at 120 ° C. for 3 hours using a Piranha solution in which sulfuric acid and hydrogen peroxide were mixed at a ratio of 7: 3. Thereafter, 0.20 g of the synthesized polyimide was dissolved in 2.0 mL of N, N-dimethylacetamide or N, N-dimethylformamide, filtered through a microfilter having a pore size of 0.2 ⁇ m, and then washed at 500 rpm.
  • a polyimide thin film was prepared by annealing after removing the solvent after performing a two-stage spin coating of 10 seconds and 1500 rpm for 50 seconds.
  • a polyimide thin film was prepared by casting a polyimide solution on a substrate and removing the solvent and annealing.
  • a polyimide was obtained by heating the synthesized polyamic acid solution step by step in an oven or a hot plate at 250 to 300 ° C. and heating it for 12 hours.
  • the C O absorption band of the imide group at 1774 cm ⁇ 1 and 1713 cm ⁇ 1
  • the CN absorption band of the imide group at 1368 cm ⁇ 1 .
  • a polyimide was obtained by heating the synthesized polyamic acid solution step by step in an oven or a hot plate at 250 to 300 ° C. and heating it for 12 hours.
  • the CN absorption band of the imide group was observed at 1368 cm ⁇ 1 .
  • NMP N-methyl-2-pyrrolidone
  • a polyimide was obtained by heating the synthesized polyamic acid solution step by step in an oven or a hot plate at 250 to 300 ° C. and heating it for 12 hours.
  • the CN absorption band of the imide group was observed at 1367 cm ⁇ 1 .
  • the C O absorption band of the imide group was observed at 1773 cm -1 and 1712 cm -1 , and the CN absorption band of the imide group was observed at 1367 cm -1 .
  • Examples 1 to 3 of the present invention the maximum imidization temperature is lower, the reaction time is shorter, and the reaction step is less than that of Comparative Examples 1 to 4, which is a conventional method.
  • the reaction proceeds in water without using a catalyst and an organic solvent. It was confirmed that the polyimide synthesized in Examples 1 to 3 had a higher pyrolysis temperature and a very high molecular weight than the polyimide synthesized in Comparative Examples 1 to 4. In addition, as illustrated in Example 5, it was possible to recover and recycle the water used to prepare the polyimide.
  • the polyimide synthesis method of the present invention is simpler, less expensive to manufacture and environmentally friendly than the conventional method, and the polyimide synthesized by the method of the present invention has a very high molecular weight compared to the polyimide prepared by the conventional synthesis method. It can be seen that it has mechanical properties and high thermal properties.
  • Polyimide synthesized by the manufacturing method of the present invention is a wide range of industries such as space, aviation, electrical / electronics, semiconductors, transparent / flexible displays, liquid crystal alignment film, automotive, precision equipment, packaging, medical materials, separators, fuel cells, secondary batteries It can be used in the field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention relates to a method for preparing a polyimide using water as a dispersion medium for reaction and, more particularly, to a method for preparing a polyimide by dispersing a dianhydride compound and a diamine compound in water and reacting the compounds in a pressurized state within a sealed pressure vessel under temperature conditions of 5°C or above. The present invention also provides a method for recovering water by discharging vapor generated during the preparation of the polyamide and cooling and condensing the vapor. By using water as a dispersion medium, the method according the present invention does not generate organic-based waste fluid and is thus environmentally-friendly, reduces production costs, minimizes residual solvents after drying and thus does not have a problem that physical properties are degraded due to the residual solvents, and is advantageous in that the reaction temperature is lower, reaction steps are reduced, and the reaction time is shortened compared to conventional methods. Since water can be recovered after the reaction is completed, the method also allows recycling of water and is thus economical and very environmentally-friendly. In addition, the polyimide prepared by the method according to the present invention has the advantage of increasing thermal stability and molecular weight compared to polyimides prepared by conventional synthesis methods.

Description

물을 분산매로 사용한 폴리이미드의 제조방법 및 물의 회수방법Method for producing polyimide using water as a dispersion medium and method for recovering water
본 발명은 폴리이미드의 제조방법에 관한 것으로, 보다 상세하게는 분산매로서 물을 사용함으로써 유기계 폐액이 발생하지 않아 친환경적이고, 제조비용이 저렴하며, 건조 후 잔류용매가 최소화될 수 있는, 물을 분산매로 사용한 폴리미이드의 제조방법 및 분산매로서 사용된 물을 회수하는 방법에 관한 것이다.The present invention relates to a method for producing polyimide, and more particularly, by using water as a dispersion medium, organic waste liquid does not occur, which is environmentally friendly, low in manufacturing cost, and minimizes residual solvent after drying. It relates to a method for producing polyamide used as a method and to recover water used as a dispersion medium.
고내열성 고분자 재료는 첨단 기술의 발달에 따라 제품의 소형 경박화, 고성능화, 고신뢰화를 위한 필수적인 소재로서 필름, 성형품, 섬유, 도료, 접착제 및 복합재 등의 형태로 우주, 항공, 전기/전자, 자동차 및 정밀기기 등 광범위한 산업분야에 이용되고 있다. 이들 중 필름은 주로 전자 재료와 패키징(packaging) 재료로 개발되어 왔으며 이들을 분류하면 폴리에스터 필름을 중심으로 한 일반 목적 엔지니어링 플라스틱 필름, 고내열, 내화학성 및 전기적 특성이 우수하여 유연회로기판 등으로 사용되는 폴리이미드(polyimide) 필름, 고탄성 특성을 갖는 아라미드 필름 및 불소 필름, 슈퍼엔지니어링 열가소성 필름 등으로 나눌 수 있고, 또한 이들은 내열성 및 용도에 따라 다양한 목적의 특수 필름으로 분류할 수 있다. 이들 재료의 사용은 IT 산업의 발달에 따라 꾸준한 증가 추세에 있다. High heat-resistant polymer materials are essential materials for miniaturization, high performance, and high reliability of products according to the development of advanced technology. In the form of film, molded products, textiles, paints, adhesives, and composites, aerospace, aviation, electricity / electronics, automobiles And a wide range of industrial fields such as precision instruments. Among them, films have been mainly developed as electronic materials and packaging materials, and they are classified into general purpose engineering plastic films centered on polyester films, and are used as flexible circuit boards because of their high heat resistance, chemical resistance and electrical properties. It can be divided into a polyimide film, an aramid film having high elastic properties, a fluorine film, a super-engineering thermoplastic film, and the like, and these may be classified into special films for various purposes according to heat resistance and use. The use of these materials is steadily increasing with the development of the IT industry.
상기 재료 중 폴리이미드는 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가진다. 뿐만 아니라 합성이 용이하고, 박막형 필름을 만들 수 있으며, 경화를 위한 가교기가 필요 없는 장점을 가지고 있다. 또한 뛰어난 전기적 특성으로 인해 미소전자 분야, 광학 분야 등에 이르기까지 고기능성 고분자 재료로 각광받고 있다. The polyimide in the material has excellent mechanical strength, chemical resistance, weather resistance and heat resistance based on the chemical stability of the imide ring. In addition, it is easy to synthesize, can make a thin film, and has the advantage that no crosslinking group for curing. In addition, due to its excellent electrical properties, it has been spotlighted as a high functional polymer material in the field of microelectronics and optics.
폴리이미드의 용도를 좀 더 구체적으로 설명하면, 플렉시블 회로 기판이나 집적 회로 등의 표면 보호 재료나 기재 수지로서, 더 나아가 반도체 초미세회로의 층간 절연막이나 보호막을 형성시키는 경우에 사용되고 있다. 최근 디스플레이 분야에서 제품의 경량화 및 소형화가 중요시 되고 있으나 현재 사용되고 있는 유리 기판의 경우 무겁고 잘 깨지며 연속공정이 어렵다는 단점이 있다. 이 때문에 유리 기판을 대체하여 가볍고 유연하며 연속공정이 가능한 장점을 갖는 폴리이미드 기판을 유연한 디스플레이 제작에 활용하기 위한 연구가 진행되고 있다. More specifically, the use of the polyimide is used as a surface protection material such as a flexible circuit board or an integrated circuit, or as a base resin, to form an interlayer insulating film or a protective film of a semiconductor ultrafine circuit. In recent years, weight reduction and miniaturization of products have been important in the display field. However, glass substrates that are currently used have a disadvantage of being heavy, broken and difficult to process continuously. For this reason, research is being conducted to utilize a polyimide substrate having a merit of being lightweight, flexible, and continuous process in place of a glass substrate for flexible display fabrication.
현재까지 보고된 폴리이미드 제조 방법에는 크게 4가지 방법이 있다. 첫 번째 방법으로서, 다이안하이드라이드와 다이아민의 반응에 의하여 전구체인 폴리아믹산(polyamic acid)를 먼저 합성하고 다음 단계에서 폴리아믹산을 이미드화시켜 폴리이미드를 제조하는 2단계로 구성된 방법이다.There are largely four methods for producing a polyimide reported to date. As a first method, a polyamic acid precursor is first synthesized by the reaction of dianhydride and diamine, and the second step is to prepare a polyimide by imidizing the polyamic acid in the next step.
상기의 제조 방법에서 제 1단계는 폴리아믹산의 제조 단계로서, 다이아민이 용해된 반응용액에 다이안하이드라이드가 첨가되어 개환, 중부가 반응에 의해 폴리아믹산이 만들어진다. 사용되는 반응 용매로는 N,N-다이메틸아세트아마이드, N,N-다이메틸포름아마이드, N-메틸-2-피롤리돈 등의 극성 유기 용매가 주로 사용된다. In the above manufacturing method, the first step is a step of preparing a polyamic acid. Diane hydride is added to a reaction solution in which diamine is dissolved to form a polyamic acid by ring opening and polyaddition reaction. The reaction solvent to be used is N, N - dimethylacetamide, N, N - a polar organic solvent such as dimethylformamide, N- methyl-2-pyrrolidone are mainly used.
제 2단계는 1단계에서 제조한 폴리아믹산을 화학적 방법 또는 열적 방법을 통해 탈수 및 폐환 반응시킴으로써 이미드화하여 폴리이미드를 합성한다.In the second step, the polyamic acid prepared in step 1 is imidized by dehydration and ring-closure reaction by chemical or thermal method to synthesize polyimide.
화학적 이미드화 방법은 전구체인 폴리아믹산의 용액에 무수아세트산 등의 산무수물로 대표되는 화학 탈수제와 피리딘 등의 3급 아민류 등으로 대표되는 이미드화 촉매를 투입하여 160℃이상에서 가열하는 방법이다. 한편, 열적 이미드화 방법은 전구체인 폴리아믹산의 용액을 기판에 도포하고 용매를 증발시킨 후 화학 탈수제 및 촉매 없이 250~350℃로 가열하여 열적으로 이미드화하는 방법이다. The chemical imidization method is a method in which a chemical dehydrating agent represented by acid anhydrides such as acetic anhydride and tertiary amines such as pyridine are added to a solution of polyamic acid as a precursor and heated at 160 ° C or higher. On the other hand, the thermal imidization method is a method of thermally imidating by applying a solution of polyamic acid as a precursor to a substrate, evaporating the solvent and heating to 250 ~ 350 ℃ without chemical dehydrating agent and catalyst.
상기의 폴리이미드 제조 방법을 사용한 폴리이미드의 제조에 있어서, 특히 지방족 다이아민을 사용하는 경우 다이아민의 아미노기의 염기도가 높아 다이아민이 중합반응에 참여하는 대신 아믹산과 염(salt)을 형성하기 때문에 고분자량의 폴리이미드가 얻어지지 않는다. 따라서 지방족 다이아민을 사용하여 합성한 전지방족 폴리이미드(fully aliphatic polyimide) 및 부분지방족 폴리이미드(partially aliphatic polyimide)는 일반적으로 분자량이 낮아 기계적 성질이 떨어진다. In the production of polyimide using the polyimide production method described above, especially when aliphatic diamine is used, the high molecular weight of the amino group of the diamine is high, so that the diamine forms a salt with amic acid instead of participating in the polymerization reaction. Polyimide of is not obtained. Therefore, fully aliphatic polyimide and partially aliphatic polyimide synthesized using aliphatic diamine are generally low in molecular weight and thus poor in mechanical properties.
두 번째 방법은, 첫 번째 방법의 단점인 아믹산과 다이아민 염의 형성을 방지하여 폴리이미드의 분자량을 높이기 위해 N-실릴레이션 반응을 이용하는 방법이다. 다이아민과 클로로트리메틸실레인을 반응시켜 N-트리메틸실릴기로 보호된 다이아민을 합성한 후, 이 보호된 다이아민을 사용하여 N-트리메틸실릴기로 보호된 폴리아믹산을 거쳐 폴리이미드가 합성된다. 이 방법에서도 N-트리메틸실릴기로 보호된 다이아민의 합성과 폴리이미드 합성에 유기용매가 사용된다.The second method uses a N-silylation reaction to increase the molecular weight of the polyimide by preventing the formation of amic acid and diamine salts, which is a disadvantage of the first method. Diamine and chlorotrimethylsilane are reacted to synthesize diamine protected with N-trimethylsilyl group, and then polyimide is synthesized using the protected diamine via polyamic acid protected with N-trimethylsilyl group. In this method as well, organic solvents are used for the synthesis of diamines protected with N-trimethylsilyl groups and for the synthesis of polyimides.
N-실릴레이션 방법의 단점으로는 N-트리메틸실릴기로 보호된 지방족 다이아민을 합성하기 위한 클로로트리메틸실레인 시약의 가격이 비싸고 수분에 매우 민감하여 취급하는 데에 어려움이 있으며, 폴리이미드 합성 방법이 첫 번째 합성 방법보다 더 복잡해진다는 단점을 가지고 있다.The disadvantage of the N-silylation method is that the chlorotrimethylsilane reagent for synthesizing N-trimethylsilyl group-protected aliphatic diamine is expensive and very sensitive to moisture, which makes it difficult to handle. The disadvantage is that it becomes more complex than the first synthesis method.
세 번째 방법은 메타-크레졸을 용매로 사용하는 방법으로서, 용매로 메타-크레졸을 넣고 다이안하이드라이드과 다이아민을 넣은 후 온도를 단계별로 올려 장시간 동안 반응을 보내는 방법이다.The third method is to use meta-cresol as a solvent, add meta-cresol as a solvent, add dianhydride and diamine, and send the reaction for a long time by raising the temperature step by step.
메타-크레졸을 이용한 방법은 반응시간이 64시간 이상으로 반응시간이 길고 여전히 만족할 수 없는 분자량을 가지고 있고 메타-크레졸 용매를 사용하기 때문에 건조 시간이 길고 자극적인 냄새가 심하다는 단점을 가지고 있다. The method using the meta-cresol has the disadvantage that the reaction time is longer than 64 hours and the reaction time is long and still has an unsatisfactory molecular weight and the drying time is long and the irritating smell is severe because of the use of the meta-cresol solvent.
네 번째 방법은 in-situ 실릴레이션 방법으로서, 상기 두 번째 방법인 N-실릴레이션 방법이 수분에 민감한 단점을 해결하기 위한 것이다. 유기용매가 들어있는 반응기에 다이아민을 넣은 후 저온에서 클로로트리메틸실레인을 넣어준 후 다이안하이드라이드를 넣어 N-트리메틸실릴기로 보호된 폴리아믹산을 합성한 후 화학적 이미드화 또는 열적 이미드화 반응에 의하여 폴리이미드를 합성한다.The fourth method is an in-situ silylation method, and the second method, N-silylation method, is intended to solve the disadvantages sensitive to moisture. Diamine was added to the reactor containing the organic solvent, followed by chlorotrimethylsilane at low temperature, followed by dianhydride to synthesize polyamic acid protected with N-trimethylsilyl group, followed by chemical imidization or thermal imidization reaction. Synthesize polyimide.
In-situ 실릴레이션 합성 방법의 단점은 반응시간이 길고, 분자량은 개선되지만 클로로트리메틸실레인 시약이 고가이며 이미드화시 촉매가 필요하고 건조 시간이 길고 N-트리메틸실릴기로 보호된 폴리아믹산에서 보호기를 제거한 폴리아믹산을 합성하기 위해서 재침전 과정이 필요할 수도 있으며 전지방족 폴리이미드의 경우에도 충분한 투명성을 확보할 수 없다는 단점을 가지고 있다. Disadvantages of the in-situ silylation synthesis method are long reaction times, improved molecular weight but high chlorotrimethylsilane reagents, high imidization catalysts, long drying times and protecting groups in polyamic acids protected with N-trimethylsilyl groups. In order to synthesize the removed polyamic acid, a reprecipitation process may be required, and even in the case of an all-aliphatic polyimide, sufficient transparency cannot be obtained.
유기용매를 사용한 상기의 폴리이미드 합성 방법에 대하여, 전 방향족 폴리이미드 합성 방법이 High Performance Polymers, 15:269-279, 2003 및 High Performance Polymers,18:31-44, 2006에 개시되어 있다. 이 방법에서는 먼저 다이안하이드라이드를 물에 넣고 환류온도에서 가열하여 가수분해 시켜 테트라카복실산을 합성한다. 이 용액에 다이아민을 넣으면 테트라카복실산과 다이아민의 염 침전물이 생성된다. 그 후 이 침전물과 물의 혼합물을 압력 장치의 글래스라이너로 옮긴 후 공기를 빼내고 질소를 채워 넣는 조작을 수회 반복하여 질소 분위기로 만든다. 이 혼합물에 질소를 가하여 압력을 20 psi로 올린 후 135℃에서 1시간, 180℃에서 2시간 가열한다. 생성된 생성물을 여과하고 물로 세정하여 분말을 얻은 후 뜨거운 물, 메탄올, 아세톤 및 디클로로메탄으로 차례로 세정한다. 얻어진 생성물을 진공오븐에 넣고 40℃에서 하룻밤 동안 가열하여 폴리이미드 분말을 얻는다. 그러나 이 방법은 다수의 합성단계를 거쳐야 해서 번거롭고 제조단가가 상승한다는 단점이 있다. Regarding the above polyimide synthesis method using an organic solvent, a full aromatic polyimide synthesis method is disclosed in High Performance Polymers, 15: 269-279, 2003 and High Performance Polymers, 18: 31-44, 2006. In this method, dianhydride is first added to water and heated at reflux to hydrolyze to synthesize tetracarboxylic acid. Diamine is added to this solution to form a salt precipitate of tetracarboxylic acid and diamine. The mixture of sediment and water is then transferred to the glassliner of the pressure device, followed by the operation of bleeding air and filling with nitrogen several times to make a nitrogen atmosphere. Nitrogen was added to the mixture to raise the pressure to 20 psi and then heated at 135 ° C. for 1 hour and 180 ° C. for 2 hours. The resulting product is filtered and washed with water to obtain a powder, which is in turn washed with hot water, methanol, acetone and dichloromethane. The obtained product is placed in a vacuum oven and heated at 40 ° C. overnight to obtain a polyimide powder. However, this method has a disadvantage of being cumbersome and costly to manufacture due to multiple synthesis steps.
한편 통상의 폴리이미드 제조과정에 있어서 사용되는 용매는 제거되어야만 하거나 회수하더라도 불순물이 섞여 있어 재활용하기 어려운 경우가 많다. 이와 관련하여 증류수를 순환시키는 시스템에 관련된 특허가 있으나 여기에서는 원수를 여과하는 필터부, 여과된 정수를 흡착여과하는 필터부, 반응에 사용된 후 발생한 오수를 회수하는 오수통, 이를 여과하는 필터부, 이를 살균하는 살균기 등 매우 복잡한 구조의 장치로 이루어져 있어 비용적 측면에서 경제적이지 못한 단점이 있다.On the other hand, the solvent used in the normal polyimide manufacturing process is often difficult to recycle because it is mixed with impurities even if it must be removed or recovered. In this regard, there is a patent related to a system for circulating distilled water, but in this case, a filter part for filtering raw water, a filter part for adsorption filtration of filtered water, a sewage bucket for recovering sewage generated after the reaction, and a filter part for filtering the same. In addition, since it consists of a device of a very complicated structure such as a sterilizer to sterilize it, there is a disadvantage that is not economical in terms of cost.
[선행기술문헌][Preceding technical literature]
[특허문헌] 한국등록특허 1,004,096호, 한국등록특허 449,798호, 한국등록특허 0717377호, 미국등록특허 7,053,168호, 국제특허출원 2012-091231호(WO2012/91231), 국제특허출원 PCT/JP2011/066144(WO 2012/008543), 한국등록특허 826,294호[Patent Documents] Korean Patent 1,004,096, Korean Patent 449,798, Korean Patent 0717377, US Patent 7,053,168, International Patent Application 2012-091231 (WO2012 / 91231), International Patent Application PCT / JP2011 / 066144 ( WO 2012/008543), Korean Patent No. 826,294
[비특허문헌] Polymer Science and Technology Vol. 24, No. 1, pp. 3-9, 박진영 외, 폴리이미드 기반 입자 제조 및 응용; Macromolecules 2002, 35, 2277-2281 Yasufumi Watanabe, Yoshimasa Sakai, Yuji Shibasaki, Shinji Ando, and Mitsuru Ueda Synthesis of Wholly Alicyclic Polyimides from N-Silylated Alicyclic Diamines and Alicyclic Dianhydrides; Journal of photopolymer Science and Technology Volume16,Number2(2003) Youshiyuki Oishi, Shu Ondera, Jan Oravec, Kunio Mori, Shinji Ando, Yoshiharu Terui, and kazuhiko Maeda Synthesis of Fluorine-Containing wholly Alicyclic Polyimide by In Situ Silylation Method; Macromolecules 2009, 42, 5892?5894 Dulce M. Munoz, Mariola Calle, Jose G. de la Campa, Javier de Abajo, and Angel E. Lozano An Improved Method for Preparing Very High Molecular Weight Polyimides; Macromolecular Research, Vol. 15, No. 2, pp 114-128 (2007) Anu Stella Mathews, Il Kim, and Chang-Sik Ha Synthesis, Characterization, and Properties of Fully Aliphatic Polyimides and Their Derivatives for Microelectronics and Optoelectronics Applications; High Performance Polymers,15:269-279, 2003 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimide Synthesis : Thermoset and Thermoplastic Examlpes; High Performance Polymers,18:31-44, 2006 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimides Synthesis II : Processable Aromatic Polyimide[Non-Patent Document] Polymer Science and Technology Vol. 24, No. 1, pp. 3-9, Jin Young Park et al., Preparation and application of polyimide based particles; Macromolecules 2002, 35, 2277-2281 Yasufumi Watanabe, Yoshimasa Sakai, Yuji Shibasaki, Shinji Ando, and Mitsuru Ueda Synthesis of Wholly Alicyclic Polyimides from N-Silylated Alicyclic Diamines and Alicyclic Dianhydrides; Journal of photopolymer Science and Technology Volume 16, Number 2 (2003) Youshiyuki Oishi, Shu Ondera, Jan Oravec, Kunio Mori, Shinji Ando, Yoshiharu Terui, and kazuhiko Maeda Synthesis of Fluorine-Containing wholly Alicyclic Polyimide by In Situ Silylation Method; Macromolecules 2009, 42, 5892-5894 Dulce M. Munoz, Mariola Calle, Jose G. de la Campa, Javier de Abajo, and Angel E. Lozano An Improved Method for Preparing Very High Molecular Weight Polyimides; Macromolecular Research, Vol. 15, No. 2, pp 114-128 (2007) Anu Stella Mathews, Il Kim, and Chang-Sik Ha Synthesis, Characterization, and Properties of Fully Aliphatic Polyimides and Their Derivatives for Microelectronics and Optoelectronics Applications; High Performance Polymers, 15: 269-279, 2003 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimide Synthesis: Thermoset and Thermoplastic Examlpes; High Performance Polymers, 18: 31-44, 2006 John Chiefari, Buu Dao, Andrew M. Groth and Jonathan H. Hodgkin Water as Solvent in Polyimides Synthesis II: Processable Aromatic Polyimide
본 발명에서는 종래 폴리이미드의 제조방법에서 유기용매를 사용함으로써 발생하는 환경오염, 제조 비용 상승, 잔류용매 등의 문제를 해결하고자 물을 분산매로 사용하는 새로운 제조방법을 제시하고자 한다. 또한 종래의 폴리이미드 제조방법에 비하여 반응온도 및 시간, 반응시약, 합성단계가 감소하여 매우 간편하고 제조비용이 감소한 새로운 제조방법을 제시하고자 한다. 아울러 본 발명에서는 종래의 합성방법으로 제조되는 고분자에 비하여 분자량이 매우 높아 우수한 기계적 물성을 가지며 높은 열적 특성을 가지는 폴리이미드를 제공하고자 한다. The present invention proposes a new production method using water as a dispersion medium in order to solve problems such as environmental pollution, an increase in manufacturing cost, residual solvent, and the like caused by using an organic solvent in a conventional method for producing polyimide. In addition, compared to the conventional polyimide manufacturing method, the reaction temperature and time, the reaction reagents, the synthesis step is reduced to propose a new manufacturing method which is very simple and reduced manufacturing costs. In addition, the present invention is to provide a polyimide having a very high molecular weight and excellent mechanical properties compared to the polymer prepared by the conventional synthesis method having a high thermal properties.
또한 본 발명에서는 분산매로 사용된 물을 회수하는 방법을 제공하고자 한다. In addition, the present invention is to provide a method for recovering the water used as a dispersion medium.
본 발명에서는 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시킨 후 밀봉된 압력용기 내에서 5℃ 이상의 온도 조건 및 압력이 가해진 상태에서 반응시켜 폴리이미드를 제조하는 방법을 제공함으로써, 종래의 방법에 비하여 간편하고 저렴하며 친환경적으로 폴리이미드를 제조할 수 있으며, 종래의 합성방법으로 제조되는 폴리이미드에 비하여 잔류용매의 문제가 없고 분자량이 매우 높아 우수한 기계적 물성을 가지며 높은 열적 특성을 가지는 폴리이미드를 제조할 수 있다. 또한 반응에 사용된 물을 용이하게 회수하여 재활용함으로써 보다 경제적인 제조가 가능하고 자원을 절약하여 환경오염을 줄일 수 있다.The present invention provides a method for preparing a polyimide by dispersing a dianhydride compound and a diamine compound in water and then reacting in a sealed pressure vessel under a temperature condition of 5 ° C. or higher and producing a polyimide. Compared to the polyimide produced by the conventional synthesis method, there is no problem of residual solvent and very high molecular weight. can do. In addition, by easily recovering and recycling the water used in the reaction, more economical manufacturing is possible and resources can be saved to reduce environmental pollution.
본 발명에서는 폴리이미드 제조 시 반응 분산매로 물을 사용함으로써 유기계 폐액이 발생하지 않아 친환경적이고, 제조비용이 저렴하며, 건조 후 잔류용매가 최소화되어 잔류용매에 의한 물성 저하 등의 문제가 없다는 장점이 있을 뿐만 아니라, 반응에 사용된 물을 용이하게 회수하여 재활용함으로써 물의 구입비용이 감소하여 폴리이미드 제조원가를 절감시켜 보다 경제적인 제조가 가능하고 자원을 절약하여 환경오염을 줄일 수 있는 장점이 있다. 아울러 본 발명에서는 폴리이미드 제조 시 압력을 가함으로써 종래의 제조방법에 비하여 반응온도가 낮고, 반응단계가 적으며 반응시간이 짧은 장점이 있으며, 제조된 폴리이미드는 종래의 방법에 의하여 제조된 폴리이미드에 비하여 열안정성이 높고, 분자량이 큰 장점이 있다. 또한, 전방향족(fully aromatic) 폴리이미드, 부분지환식(partially aliphatic) 폴리이미드 및 전지환식(fully aliphatic) 폴리이미드를 모두 용이하게 제조할 수 있는 장점이 있다.In the present invention, by using water as the reaction dispersion medium in the production of polyimide, there is an advantage that the organic waste solution does not occur, which is environmentally friendly, inexpensive to manufacture, and the residual solvent is minimized after drying so that there is no problem such as deterioration of physical properties due to the residual solvent. In addition, by easily recovering and recycling the water used in the reaction, the purchase cost of the water is reduced to reduce the polyimide manufacturing cost, thereby making it more economical and saving resources to reduce environmental pollution. In addition, the present invention has the advantage that the reaction temperature is low, the reaction step is short and the reaction time is short compared to the conventional manufacturing method by applying a pressure in the production of polyimide, the prepared polyimide is a polyimide prepared by the conventional method Compared with the thermal stability, the molecular weight is large. In addition, there is an advantage that can be easily prepared a fully aromatic polyimide, partially aliphatic polyimide and fully aliphatic polyimide.
도1은 실시예 1에 따른 피로멜리틱 다이안하이드라이드와 4,4'-옥시다이아닐린 폴리이미드의 FT-IR 스펙트럼; 도2는 실시예 2에 따른 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 4,4'-옥시다이아닐린 폴리이미드의 FT-IR 스펙트럼; 도3은 실시예 3에 따른 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 폴리이미드의 FT-IR 스펙트럼; 도4는 실시예 5에 따른 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.9605 g와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 폴리이미드의 FT-IR 스펙트럼; 도5는 비교예 1에 따른 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드와 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼; 도6은 비교예 2에 따른 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼; 도7은 비교예 3에 따른 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼; 도8은 비교예 4에 따른 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드와 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 폴리이미드의 FT-IR 스펙트럼이다.1 is an FT-IR spectrum of a pyromellitic dianhydride and a 4,4'-oxydianiline polyimide according to Example 1; 2 is an FT-IR spectrum of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 4,4′-oxydianiline polyimide according to Example 2; 3 is an FT-IR spectrum of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 4,4-methylenebis (2-methylcyclohexylamine) polyimide according to Example 3; 4 is an FT-IR spectrum of 5.9605 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 4,4-methylenebis (2-methylcyclohexylamine) polyimide according to Example 5; 5 is an FT-IR spectrum of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride and 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine polyimide according to Comparative Example 1 FIG. ; 6 is an FT-IR spectrum of 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine and 3- (aminomethyl) -3,5,5-trimethylcyclohexaneamine polyimide according to Comparative Example 2. FIG. ; 7 is an FT-IR spectrum of 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine and 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine polyimide according to Comparative Example 3. ; 8 is an FT-IR spectrum of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride and 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine polyimide according to Comparative Example 4. FIG. to be.
본 발명은 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시킨 후 이 혼합물을 압력용기에 넣고 밀봉한 후 반응온도 5℃ 내지 400℃의 범위에서 압력이 가해진 상태에서 반응시켜 폴리이미드를 제조하는 새로운 폴리이미드의 제조방법이다.The present invention is to prepare a polyimide by dispersing the dianhydride compound and the diamine compound in water and then placing the mixture in a pressure vessel and sealing the reaction under a pressure applied in the reaction temperature range of 5 ℃ to 400 ℃ It is a manufacturing method of a polyimide.
보다 구체적으로 본 발명은 a) 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시키는 단계; 및 b) 상기 분산액을 압력용기에 넣고 밀봉한 후, 5℃ 내지 400℃ 온도 및 가압 조건에서 다이안하이드라이드 화합물과 다이아민 화합물을 반응시키는 단계;를 포함하는 폴리이미드의 제조방법에 관한 것이다.More specifically, the present invention comprises the steps of: a) dispersing the dianhydride compound and the diamine compound in water; And b) sealing the dispersion in a pressure vessel, and reacting the dianhydride compound with the diamine compound at a temperature of 5 ° C. to 400 ° C. and pressurization conditions.
본 발명은 또한 a) 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시키는 단계; b) 상기 분산액을 압력용기에 넣고 밀봉한 후, 5℃ 내지 400℃ 온도 및 가압 조건에서 다이안하이드라이드 화합물과 다이아민 화합물을 반응시키는 단계; 및 (c) 상기 단계(b)에서 생성된 수증기를 (b)단계 종료 후 압력용기로부터 배출시켜 냉각 및 응축시킴으로써 물을 회수하는 단계를 추가로 포함하는, 폴리이미드의 제조방법에 관한 것이다.The present invention also provides a method for preparing a hydride compound comprising: a) dispersing a dianhydride compound and a diamine compound in water; b) after the dispersion is put in a pressure vessel and sealed, reacting the dianhydride compound and the diamine compound at a temperature of 5 ℃ to 400 ℃ and pressurized conditions; And (c) recovering water by cooling and condensing water vapor generated in step (b) from the pressure vessel after the completion of step (b).
본 발명에 따른 일 양태에서, (b)단계가 진행되는 동안 수증기가 발생할 수 있으며, 이 수증기를 냉각 및 응축시킴으로써 물을 회수할 수 있고, 여기에서 물은 증류수일 수 있다. In one aspect according to the invention, steam may occur during step (b), and water may be recovered by cooling and condensing the steam, wherein the water may be distilled water.
본 발명에 따른 일 양태에서, 상기 방법에 따라 제조된 폴리이미드는 전방향족(fully aromatic) 폴리이미드, 부분지환식(partially aliphatic) 폴리이미드 또는 전지환식(fully aliphatic) 폴리이미드일 수 있다.In one aspect according to the present invention, the polyimide prepared according to the method may be a fully aromatic polyimide, a partially aliphatic polyimide or a fully aliphatic polyimide.
본 발명에서 사용할 수 있는 다이안하이드라이드 화합물은 치환되거나 치환되지 않은 방향족 또는 지방족 다이안하이드라이드 화합물이다.Dianehydride compounds that can be used in the present invention are substituted or unsubstituted aromatic or aliphatic dianhydride compounds.
본 발명에 따른 일 양태에서, 다이안하이드라이드로 하기 화학식 1로 나타내어지는 치환된 또는 치환되지 않은 방향족 또는 지방족 다이안하이드라이드를 사용할 수 있다.In one embodiment according to the present invention, a substituted or unsubstituted aromatic or aliphatic dianhydride represented by the following formula (1) may be used as the dianhydride.
<화학식 1><Formula 1>
Figure PCTKR2014007426-appb-I000001
Figure PCTKR2014007426-appb-I000001
상기 화학식1에서 R1은,R 1 in Formula 1,
Figure PCTKR2014007426-appb-I000002
Figure PCTKR2014007426-appb-I000002
Figure PCTKR2014007426-appb-I000003
Figure PCTKR2014007426-appb-I000003
Figure PCTKR2014007426-appb-I000004
Figure PCTKR2014007426-appb-I000004
로 이루어진 그룹으로부터 선택될 수 있다. It may be selected from the group consisting of.
본 발명에 따른 일 양태에서, 다이안하이드라이드 화합물은 1종 또는 2종 이상의 다이안하이드라이드를 사용할 수 있다.In one embodiment according to the present invention, the dianhydride compound may use one or two or more dianhydrides.
본 발명에 따른 일 양태에서, 다이아민은 치환되거나 치환되지 않은 방향족 또는 지방족 다이아민일 수 있다.In one aspect according to the invention, the diamine may be substituted or unsubstituted aromatic or aliphatic diamine.
본 발명에 따른 일 양태에서, 다이아민은 하기 화학식2로 나타내어지는 치환된 또는 치환되지 않은 방향족 또는 지방족 다이아민일 수 있다.In one embodiment according to the present invention, the diamine may be a substituted or unsubstituted aromatic or aliphatic diamine represented by the following formula (2).
<화학식 2><Formula 2>
H2N-R2-NH2 H 2 NR 2 -NH 2
상기 화학식 2 에서 R2는,R 2 in Formula 2,
Figure PCTKR2014007426-appb-I000005
Figure PCTKR2014007426-appb-I000005
Figure PCTKR2014007426-appb-I000006
Figure PCTKR2014007426-appb-I000006
Figure PCTKR2014007426-appb-I000007
Figure PCTKR2014007426-appb-I000007
Figure PCTKR2014007426-appb-I000008
Figure PCTKR2014007426-appb-I000008
Figure PCTKR2014007426-appb-I000009
Figure PCTKR2014007426-appb-I000009
Figure PCTKR2014007426-appb-I000010
Figure PCTKR2014007426-appb-I000010
Figure PCTKR2014007426-appb-I000011
Figure PCTKR2014007426-appb-I000011
로 이루어진 그룹으로부터 선택될 수 있다. 그리고, 상기 x는 1≤x≤50을 만족하는 정수, 바람직하게는 3≤x≤20을 만족하는 정수일 수 있다. 또한 상기 식에서 n은 1 ~ 20 범위의 자연수이며, W, X, Y는 각각 탄소수 1 ~ 30 사이의 알킬기 또는 아릴기이고, Z는 에스테르기, 아미드기, 이미드기, 및 에테르기 중에서 선택된다.It may be selected from the group consisting of. And, x may be an integer satisfying 1≤x≤50, preferably an integer satisfying 3≤x≤20. In the above formula, n is a natural number in the range of 1 to 20, W, X, Y are each an alkyl group or an aryl group having 1 to 30 carbon atoms, and Z is selected from an ester group, an amide group, an imide group, and an ether group.
본 발명에 따른 일 양태에서, 다이아민 화합물은 1종 또는 2종 이상의 다이아민을 사용할 수 있다.In one aspect according to the present invention, the diamine compound may use one kind or two or more kinds of diamines.
본 발명에 따른 일 양태에서, 물로는 증류수, 탈이온수, 수돗물 등 어떠한 상태의 물이라도 사용할 수 있다.In one embodiment according to the present invention, water may be water in any state, such as distilled water, deionized water, tap water.
본 발명에 따른 일 양태에서, 반응온도는 5℃ 내지 400℃의 범위를 갖는 것이 바람직하다. 보다 구체적으로는 20℃ 내지 250℃이다. 반응 온도를 5℃ 미만으로 할 경우에는 반응속도가 너무 느려 폴리이미드 제조가 사실상 어려우며, 400℃를 초과하는 온도로 할 경우에는 단량체 또는 고분자의 열분해가 일어날 수 있다.In one embodiment according to the invention, the reaction temperature preferably has a range of 5 ℃ to 400 ℃. More specifically, it is 20 degreeC-250 degreeC. If the reaction temperature is less than 5 ℃ the reaction rate is too slow to make polyimide practically difficult, if the temperature exceeds 400 ℃ may cause thermal decomposition of the monomer or polymer.
본 발명에 따른 일 양태에서, b)단계의 반응시간은 5분에서 5일의 범위를 갖는 것이 바람직하다. 보다 구체적으로는 10분 내지 10시간, 보다 더 구체적으로 10분 내지 5시간 동안 반응시킬 수 있다. 반응시간을 5분 미만으로 할 경우에는 반응이 잘 진행되지 않으며, 5일 이상으로 할 경우에는 고분자의 가수분해가 일어날 수 있다.In one embodiment according to the invention, the reaction time of step b) is preferably in the range of 5 minutes to 5 days. More specifically, the reaction may be performed for 10 minutes to 10 hours, even more specifically for 10 minutes to 5 hours. If the reaction time is less than 5 minutes, the reaction does not proceed well, if more than 5 days may cause hydrolysis of the polymer.
본 발명에 따른 일 양태에서, b)단계의 가압조건은 1 bar 내지 1000 bar의 범위를 갖는 것이 바람직하다. 보다 구체적으로는 1 bar 내지 500 bar이다. 반응 압력을 1 bar 미만으로 할 경우에는 반응이 잘 진행되지 않으며, 1000 bar 이상으로 할 경우에는 반응용기의 손상을 초래할 수 있다.In one aspect according to the invention, the pressing conditions of step b) is preferably in the range of 1 bar to 1000 bar. More specifically, it is 1 bar to 500 bar. If the reaction pressure is less than 1 bar, the reaction does not proceed well, and if it is more than 1000 bar may cause damage to the reaction vessel.
본 발명에 따른 일 양태에서, 가압을 하는 방법은 압력용기 내부에서 수증기압이 형성되거나, 압력용기 내부에 불활성 기체를 주입하거나 또는 압력용기를 압축하는 방법 중에서 선택되는 한 가지 또는 두 가지 이상의 방법으로 구성된다. 여기에서 불활성 기체는 질소, 아르곤, 헬륨, 네온, 크립톤 및 크세논으로 구성된 그룹으로부터 선택되는 하나 이상의 기체인 것을 특징으로 한다.In one aspect according to the present invention, the method of pressurizing is composed of one or two or more methods selected from the method of forming water vapor pressure in the pressure vessel, injecting an inert gas into the pressure vessel, or compressing the pressure vessel. do. Wherein the inert gas is at least one gas selected from the group consisting of nitrogen, argon, helium, neon, krypton and xenon.
본 발명에 따른 일 양태에서, b)단계의 반응 생성물을 여과하고 건조시켜 폴리이미드를 수득하는 단계를 추가로 포함할 수 있다.In one embodiment according to the invention, the reaction product of step b) may further comprise the step of filtration and drying to obtain a polyimide.
본 발명에 따른 또 다른 일 양태에서, 상기와 같은 방법에 따라 제조된 폴리이미드를 유기용매에 용해시키고 그 용액을 기판에 도포하여 제조한 폴리이미드 필름이 제공된다. 여기에서, 유기용매로는 N-메틸-2-피롤리돈, N,N-다이메틸아세트아미드, N,N-다이메틸포름아미드, N-비닐피롤리돈, N-메틸카프로락탐, 디메틸술폭시드, 테트라메틸요소, 피리딘, 디메틸술폰, 헥사메틸술폭시드, 메타-크레졸, 감마-부티로락톤, 에틸셀로솔브, 부틸셀로솔브, 에틸카르비톨, 부틸카르비톨,에틸카르비톨 아세테이트, 부틸카르비톨 아세테이트, 에틸렌글리콜, 젖산에틸, 젖산부틸, 시클로헥사논 및 시클로펜타논으로 이루어진 그룹으로부터 선택되는 하나 이상의 용매가 사용될 수 있다. 또한 여기에서, 용액 내 폴리이미드의 농도는 1 내지 90 wt%일 수 있다. 만약 폴리이미드의 용해도가 낮아 폴리이미드 용액의 제조가 어려운 경우에는, 폴리아믹산을 유기용매에 용해시켜 기판에 도포한 후 열적 이미드화에 의해 폴리이미드 필름을 제조한다.In still another aspect according to the present invention, there is provided a polyimide film prepared by dissolving a polyimide prepared according to the above method in an organic solvent and applying the solution to a substrate. Here, as the organic solvent, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N-vinylpyrrolidone, N-methylcaprolactam, dimethyl sulfoxide Seed, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, meta-cresol, gamma-butyrolactone, ethylcellosolve, butylcellosolve, ethylcarbitol, butylcarbitol, ethylcarbitol acetate, butyl One or more solvents selected from the group consisting of carbitol acetate, ethylene glycol, ethyl lactate, butyl lactate, cyclohexanone and cyclopentanone can be used. Also here, the concentration of polyimide in the solution may be from 1 to 90 wt%. If the solubility of the polyimide is low and it is difficult to prepare a polyimide solution, the polyamic acid is dissolved in an organic solvent and applied to a substrate, thereby producing a polyimide film by thermal imidization.
본 발명에 따른 일 양태에서, 상기의 폴리이미드 또는 폴리아믹산 용액에 필요한 경우 젖음성 향상제 등의 첨가제를 소량 첨가할 수 있다. 첨가제는 폴리이미드 또는 폴리아믹산에 대하여 0.001 내지 5중량%를 첨가하는 것이 바람직하다. 보다 구체적으로는 0.01 내지 2중량%를 첨가할 수 있다.In one aspect according to the present invention, a small amount of an additive such as a wetting enhancer may be added if necessary for the polyimide or polyamic acid solution. The additive is preferably added 0.001 to 5% by weight based on the polyimide or polyamic acid. More specifically, 0.01 to 2% by weight can be added.
본 발명에 따른 일 양태에서, 폴리이미드 필름의 형성을 위한 폴리이미드 또는 폴리아믹산 조성물의 도포방법으로는, 스핀도포법, 침지법, 프렉소 인쇄법, 잉크젯인쇄법, 분사법, 포팅법, 스크린인쇄법 등이 사용될 수 있다. 이들 방법 중, 10 ㎛ 이상의 두꺼운 막을 얻는 방법으로는, 바코트도포법, 슬릿코팅도포법, 스크린인쇄법, 스핀도포법 등이 바람직하다.In one aspect according to the present invention, as a coating method of a polyimide or polyamic acid composition for forming a polyimide film, spin coating method, dipping method, flexo printing method, inkjet printing method, spraying method, potting method, screen A printing method or the like can be used. Among these methods, as a method for obtaining a thick film of 10 µm or more, the bar coat coating method, the slit coating coating method, the screen printing method, the spin coating method and the like are preferable.
본 발명에 따른 또 다른 일 양태에서, 상기와 같은 방법에 따라 제조된 폴리이미드를 압축성형, 사출성형, 슬러시성형, 중공성형, 압출성형 또는 방적 방법을 통해 성형한 성형품이 제공된다.In another aspect according to the present invention, there is provided a molded article formed by compression molding, injection molding, slush molding, blow molding, extrusion molding or spinning method of the polyimide prepared according to the above method.
본 발명의 제조방법으로 합성된 폴리이미드는 우주, 항공, 전기/전자, 반도체, 투명/유연 디스플레이, 액정 배향막, 자동차, 정밀기기, 패키징, 의료용 소재, 분리막, 연료전지, 2차전지 등 광범위한 산업분야에 이용될 수 있다. Polyimide synthesized by the manufacturing method of the present invention is a wide range of industries such as space, aviation, electrical / electronics, semiconductors, transparent / flexible displays, liquid crystal alignment film, automotive, precision equipment, packaging, medical materials, separators, fuel cells, secondary batteries It can be used in the field.
이하, 본 발명의 실시예 및 실험예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예 및 실험예는 본 발명의 이해를 돕기 위한 것이고 본 발명의 권리범위를 이로 한정하는 것을 의도하지 않는다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are intended to help the understanding of the present invention and are not intended to limit the scope of the present invention thereto.
실시예 1-1: 전방향족 폴리이미드의 제조Example 1-1 Preparation of Whole Aromatic Polyimide
피로멜리틱 다이안하이드라이드 22.6 g과 4,4’-옥시다이아닐린 21.13 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼(도 1)에서는 1775 cm-1와 1715 cm-1에서 이미드기의 C=O 흡수띠, 1367 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.22.6 g of pyromellitic dianhydride and 21.13 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with nitrogen gas, adjust the temperature to 135 ° C, and stir for 3 hours at a pressure of 60 bar. Mead was synthesized. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer (FIG. 1), the C = O absorption band of the imide group was observed at 1775 cm −1 and 1715 cm −1 , and the CN absorption band of the imide group was observed at 1367 cm −1 .
실시예 1-2. 전방향족 폴리이미드의 제조Example 1-2. Preparation of Whole Aromatic Polyimide
4,4’-(헥사플루오로아이소프로필아이덴)다이아닐린 11.106 g과 2,2’-비스(트리플루오로메틸)-4,4’-다이아미노바이페닐 8.005 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼에서는 1780 cm-1와 1718 cm-1에서 이미드기의 C=O 흡수띠, 1369 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.11.106 g of 4,4 '-(hexafluoroisopropylidene) dianiline and 8.005 g of 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with nitrogen gas, adjust the temperature to 135 ° C, and stir for 3 hours at a pressure of 60 bar. Mead was synthesized. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer, the C = O absorption band of the imide group was observed at 1780 cm −1 and 1718 cm −1 , and the CN absorption band of the imide group was observed at 1369 cm −1 .
실시예 2-1: 부분지환식 폴리이미드의 제조Example 2-1: Preparation of partially alicyclic polyimide
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.604 g과 4,4’-옥시다이아닐린 5.006 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼(도 2)에서는 1778 cm-1와 1716 cm-1에서 이미드기의 C=O 흡수띠, 1365 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.5.604 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.006 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with nitrogen gas, adjust the temperature to 135 ° C, and stir for 3 hours at a pressure of 60 bar. Mead was synthesized. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer (FIG. 2), the C = O absorption band of the imide group was observed at 1778 cm −1 and 1716 cm −1 , and the CN absorption band of the imide group was observed at 1365 cm −1 .
실시예 2-2: 부분지환식 폴리이미드의 제조Example 2-2: Preparation of partially alicyclic polyimide
4,4’-(헥사플루오로아이소프로필아이덴)다이아닐린 8.3565 g과 4,4’-옥시다이아닐린 5.604 g을 증류수 200 mL에 넣고 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼에서는 1779 cm-1와 1718 cm-1에서 이미드기의 C=O 흡수띠, 1362 cm--11에서 이미드기의 C-N 흡수띠가 관찰되었다.8.3565 g of 4,4 '-(hexafluoroisopropylidene) dianiline and 5.604 g of 4,4'-oxydianiline were added to 200 mL of distilled water and dispersed. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with nitrogen gas, adjust the temperature to 135 ° C, and stir for 3 hours at a pressure of 60 bar. Mead was synthesized. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer, the C = O absorption band of the imide group was observed at 1779 cm -1 and 1718 cm -1 , and the CN absorption band of the imide group was observed at 1362 cm -1 1.
실시예 2-3: 부분지환식 폴리이미드의 제조Example 2-3: Preparation of partially alicyclic polyimide
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.604 g과 4,4’-옥시다이아닐린 5.006 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 180℃로 맞춘 후 100 bar의 압력에서 10분 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼에서는 1778 cm-1와 1714 cm-1에서 이미드기의 C=O 흡수띠, 1365 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.5.604 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.006 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with nitrogen gas, adjust the temperature to 180 ° C, and stir for 10 minutes at a pressure of 100 bar. Mead was synthesized. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer, the C = O absorption band of the imide group was observed at 1778 cm −1 and 1714 cm −1 , and the CN absorption band of the imide group was observed at 1365 cm −1 .
실시예 2-4: 부분지환식 폴리이미드의 제조Example 2-4: Preparation of partially alicyclic polyimide
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.604 g과 4,4’-옥시다이아닐린 5.006 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 50℃로 맞춘 후 1.3 bar의 압력에서 3일 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼에서는 1776 cm-1 1716 cm-1에서 이미드기의 C=O 흡수띠, 1364 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.5.604 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.006 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with a nitrogen gas, adjust the temperature to 50 ° C., and stir at a pressure of 1.3 bar for 3 days. Mead was synthesized. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer, the C = O absorption band of the imide group was observed at 1776 cm −1 and 1716 cm −1 , and the CN absorption band of the imide group was observed at 1364 cm −1 .
실시예 2-5: 부분지환식 폴리이미드의 제조Example 2-5: Preparation of partially alicyclic polyimide
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.604 g과 4,4’-옥시다이아닐린 5.006 g을 증류수 200 mL에 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기에 고압의 질소기체를 주입하여 50 bar의 압력을 형성시키고 온도를 10℃로 맞춘 후 5일 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼에서는 1775 cm-1와 1717 cm-1에서 이미드기의 C=O 흡수띠, 1364 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.5.604 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.006 g of 4,4'-oxydianiline were dispersed in 200 mL of distilled water. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Then, a high pressure nitrogen gas was injected into the pressure vessel to form a pressure of 50 bar, and the temperature was adjusted to 10 ° C., followed by stirring for 5 days. To synthesize a polyimide. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer, the C = O absorption band of the imide group was observed at 1775 cm -1 and 1717 cm -1 , and the CN absorption band of the imide group was observed at 1364 cm -1 .
실시예 3 : 전지환식 폴리이미드의 제조Example 3 Preparation of Full Cyclic Polyimide
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.9605 g와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) MMCA 5.604 g을 증류수 200 mL에 넣고 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135℃로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼(도 3)에서는 1773 cm-1와 1712 cm-1에서 이미드기의 C=O 흡수띠, 1368 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.5.9605 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 5.604 g of 4,4-methylenebis (2-methylcyclohexylamine) MMCA were added to 200 mL of distilled water and dispersed. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with nitrogen gas, adjust the temperature to 135 ° C, and stir for 3 hours at a pressure of 60 bar. Mead was synthesized. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer (FIG. 3), the C = O absorption band of the imide group was observed at 1773 cm −1 and 1712 cm −1 , and the CN absorption band of the imide group was observed at 1368 cm −1 .
실시예 4 : 폴리이미드의 박막 제조Example 4 Preparation of Thin Films of Polyimide
박막 제조에 앞서 기판으로 사용할 실리콘 웨이퍼의 세정 공정을 실시하였다. 이 공정을 통하여 파티클(particle)이나 유기 오염물, 금속 오염물 그리고 자연 산화막 등의 다양한 오염물들이 제거된다. 황산과 과산화수소를 7:3의 비로 혼합한 피라나(Piranha)용액을 이용하여 120 ℃로 3시간 가열하여 오염물을 제거해 주었다. 그 후 합성된 폴리이미드 0.20 g을 2.0 mL의 N,N-디메틸아세트아마이드 또는 N,N-디메틸포름아마이드에 녹인 후 0.2 ㎛의 세공 크기를 갖고 있는 미세필터로 여과하여 세정된 기판에 500 rpm으로 10초, 1500 rpm으로 50초의 2단계 회전도포(spin coating)한 뒤 용매를 제거한 후 아닐링 과정을 거쳐 폴리이미드 박막을 제조하였다. 또 다른 방법으로서, 기판위에 폴리이미드 용액을 캐스팅(casting)하고, 용매 제거와 아닐링 과정을 거쳐 폴리이미드 박막을 제조하였다.Prior to thin film fabrication, a cleaning process of a silicon wafer to be used as a substrate was performed. This process removes various contaminants such as particles, organic contaminants, metal contaminants and natural oxide films. Contaminants were removed by heating at 120 ° C. for 3 hours using a Piranha solution in which sulfuric acid and hydrogen peroxide were mixed at a ratio of 7: 3. Thereafter, 0.20 g of the synthesized polyimide was dissolved in 2.0 mL of N, N-dimethylacetamide or N, N-dimethylformamide, filtered through a microfilter having a pore size of 0.2 μm, and then washed at 500 rpm. A polyimide thin film was prepared by annealing after removing the solvent after performing a two-stage spin coating of 10 seconds and 1500 rpm for 50 seconds. As another method, a polyimide thin film was prepared by casting a polyimide solution on a substrate and removing the solvent and annealing.
실시예 5 : 물의 재활용 및 회수Example 5 Recycling and Recovery of Water
실시예 3 에서 회수된 증류수 200 mL 에 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드 5.961 g와 4,4-메틸렌비스(2-메틸싸이클로헥실아민) 5.604 g을 넣고 분산시켰다. 상기 반응액을 교반기, 질소주입장치, 온도조절기를 부착한 500 mL 압력용기에 옮긴 후 압력용기의 공기를 질소기체로 치환하고 온도를 135로 맞춘 후 60 bar의 압력에서 3시간 동안 교반하여 폴리이미드를 합성하였다. 상기 반응이 종료한 후 압력용기로부터 수증기를 배출시켜 이송관과 냉각기를 순차적으로 통과시킴으로써 수증기를 냉각 및 응축시켜 약 180 mL의 증류수를 회수하였다. 회수된 증류수의 핵자기공명분석(NMR)결과 불순물이 존재하지 않음이 확인되었다. 합성된 중합체의 적외선흡수스펙트럼(도 4)에서는 1785 cm-1와 1718 cm-1에서 이미드기의 C=O 흡수띠, 1394 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.5.961 g of 1,2,4,5-cyclocyclohexanedicarboxylic dianhydride and 5.604 g of 4,4-methylenebis (2-methylcyclohexylamine) were added and dispersed in 200 mL of distilled water recovered in Example 3. The reaction solution was transferred to a 500 mL pressure vessel equipped with a stirrer, a nitrogen injector, and a temperature controller. Substitute the air of the pressure vessel with nitrogen gas, adjust the temperature to 135, and stir at a pressure of 60 bar for 3 hours. Was synthesized. After the reaction was completed, the water vapor was discharged from the pressure vessel and passed through the transfer tube and the cooler sequentially to cool and condense the steam to recover about 180 mL of distilled water. Nuclear magnetic resonance analysis (NMR) of the recovered distilled water confirmed that no impurities were present. In the infrared absorption spectrum of the synthesized polymer (FIG. 4), the C = O absorption band of the imide group was observed at 1785 cm −1 and 1718 cm −1 , and the CN absorption band of the imide group was observed at 1394 cm −1 .
비교예 1 : 전지환식 폴리이미드의 2단계 제조Comparative Example 1 Preparation of Two Stages of Battery Cyclic Polyimide
질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 10 mL을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.2028 g (2.00 mmol)과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.406 g (2.00 mmol)을 넣고 실온에서 24시간 반응시켰다. 4.2028 g (2.00 mmol) of 1,2,3,4-cycloclotane-tetracarboxylic dianhydride was added to 10 mL of N-methyl-2-pyrrolidone in a 50-mL two-neck round-bottom flask substituted with nitrogen gas. And 3.406 g (2.00 mmol) of 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine were added and reacted at room temperature for 24 hours.
화학적 이미드화 방법으로는 이 용액에 5 mL의 아세틱안하이드라이드와 3 mL의 피리딘을 넣고 170 ℃ 에서 5시간 동안 환류 시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 그리고 물 100 mL와 메틸알콜 100 mL로 세척 후 진공 건조하여 전지환식 폴리이미드를 합성하였다.As a chemical imidization method, 5 mL of acetic anhydride and 3 mL of pyridine were added to the solution, and the mixture was refluxed at 170 ° C. for 5 hours, cooled to room temperature, and reprecipitated using an excess of ice water. After washing with 100 mL of water and 100 mL of methyl alcohol, vacuum drying was performed to synthesize an all-cyclic polyimide.
열적이미드화 방법으로는 합성된 폴리아믹산 용액을 250~300℃로 오븐 또는 핫플레이트로 단계별로 승온하여 12시간 가열하는 방법을 사용하여 폴리이미드를 얻었다. 합성된 중합체의 적외선흡수스펙트럼(도 5)에서는 1774 cm-1와 1713 cm-1에서이미드기의 C=O 흡수띠, 1368 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.As a thermal imidization method, a polyimide was obtained by heating the synthesized polyamic acid solution step by step in an oven or a hot plate at 250 to 300 ° C. and heating it for 12 hours. In the infrared absorption spectrum of the synthesized polymer (FIG. 5), the C = O absorption band of the imide group at 1774 cm −1 and 1713 cm −1 , and the CN absorption band of the imide group at 1368 cm −1 .
비교예 2 : 전지환식 폴리이미드의 N-실릴레이션 방법에 의한 제조Comparative Example 2: Preparation by N-silylation method of full cyclic polyimide
지방족 디아미노폴리실록산을 합성하는 방법은 질소 가스로 치환한 100 mL 3구 둥근바닥 플라스크에 정제한 톨루엔 25 mL을 넣고 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 8.515 g (5.00 mmol)와 클로로트리메틸실레인 1.0864 g (10.0 mmol)을 넣고 5℃에서 30분간 반응시켰다. 이 용액에 트리메틸아민 0.5911 g (10.0 mmol) 을 천천히 적가하였다. 5℃ 에서 2시간 동안 반응 시킨 후 60℃까지 온도를 올려 24시간 동안 반응 시킨 후 진공 건조하여 지방족 디아미노폴리실록산을 합성하였다. 질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 10 mL을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.2028 g (2.00 mmol)과 위에서 합성된 지방족 다이아미노폴리실록산(2.00 mmol)을 넣고 실온에서 24시간 반응시켰다. 합성된 폴리이미드-실록산을 증류수를 사용하여 재침전을 하였다. 그리고 여과 후 진공 건조하여 폴리아믹산을 합성하였다. To synthesize aliphatic diaminopolysiloxane, 25 mL of purified toluene was added to a 100 mL three-necked round bottom flask substituted with nitrogen gas, and 8.515 g (5.00 of 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine was added. mmol) and 1.0864 g (10.0 mmol) of chlorotrimethylsilane were added and reacted at 5 ° C for 30 minutes. 0.5911 g (10.0 mmol) of trimethylamine was slowly added dropwise to this solution. After reacting at 5 ° C. for 2 hours, the reaction mixture was heated up to 60 ° C. for 24 hours, and then dried under vacuum to synthesize aliphatic diaminopolysiloxane. 4.2028 g (2.00 mmol) of 1,2,3,4-cycloclotane-tetracarboxylic dianhydride was added to 10 mL of N-methyl-2-pyrrolidone in a 50-mL two-neck round-bottom flask substituted with nitrogen gas. And aliphatic diaminopolysiloxane (2.00 mmol) synthesized above were added thereto and reacted at room temperature for 24 hours. The synthesized polyimide-siloxane was reprecipitated using distilled water. After filtration and vacuum drying, a polyamic acid was synthesized.
화학적 이미드화 방법으로는 이 용액에 5 mL의 아세틱안하이드라이드와 3 mL의 피리딘을 넣고 170 ℃ 에서 5시간 동안 환류시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 그리고 물 100 mL와 메틸알콜 100 mL로 세척 후 진공 건조하여 전지환식 폴리이미드를 합성하였다.In the chemical imidization method, 5 mL of acetic anhydride and 3 mL of pyridine were added to the solution, refluxed at 170 ° C. for 5 hours, cooled to room temperature, and reprecipitated using an excess of ice water. After washing with 100 mL of water and 100 mL of methyl alcohol, vacuum drying was performed to synthesize an all-cyclic polyimide.
열적이미드화 방법으로는 합성된 폴리아믹산 용액을 250~300℃로 오븐 또는 핫플레이트로 단계별로 승온하여 12시간 동안 가열하는 방법을 사용하여 폴리이미드를 수득하였다. 합성된 중합체의 적외선흡수스펙트럼(도 6)에서는 1778 cm-1와 1714 cm-1에서 이미드기의 C=O 흡수띠, 1368 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.As a method of thermal imidization, a polyimide was obtained by heating the synthesized polyamic acid solution step by step in an oven or a hot plate at 250 to 300 ° C. and heating it for 12 hours. In the infrared absorption spectrum of the synthesized polymer (FIG. 6), the C = O absorption band of the imide group was observed at 1778 cm −1 and 1714 cm −1 , and the CN absorption band of the imide group was observed at 1368 cm −1 .
비교예 3 : 전지환식 폴리이미드의 in-situ 실릴레이션 방법에 의한 제조Comparative Example 3: Preparation of in-situ silylation method of full cyclic polyimide
질소 가스로 치환한 50-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 (NMP) 10 mL을 넣고 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.406 g (2.00 mmol)를 넣은 후 0 ℃ 에서 클로로트리메틸실레인 0.43456 g (4.0 mmol)을 넣어준 후 2시간 동안 교반하였다. 그 후 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.2028 g (2.00 mmol)을 넣고 실온에서 24시간 반응시켰다. 합성된 다이아미노폴리실록산을 증류수를 사용하여 재침전을 하였다. 그리고 여과 후 진공 건조하여 폴리아믹산을 합성하였다. 10 mL of N-methyl-2-pyrrolidone (NMP) was added to a 50-mL two-necked round bottom flask substituted with nitrogen gas, and 3.406 g of 3- (aminomethyl) -3,5,5-trimethylcyclohexanamine 2.00 mmol) was added, and 0.43456 g (4.0 mmol) of chlorotrimethylsilane was added at 0 ° C., followed by stirring for 2 hours. After that, 4.2028 g (2.00 mmol) of 1,2,3,4-cyclopentane-tetracarboxylic dianhydride were added thereto, and the reaction was performed at room temperature for 24 hours. The synthesized diaminopolysiloxane was reprecipitated using distilled water. After filtration and vacuum drying, a polyamic acid was synthesized.
화학적 이미드화로는 이 용액에 5 mL의 아세틱안하이드라이드와 3 mL의 피리딘을 넣고 170 ℃ 에서 5시간 동안 환류 시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 그리고 물 100 mL와 메틸알콜 100 mL로 세척 후 진공 건조하여 전지환식 폴리이미드를 합성하였다.In chemical imidization, 5 mL of acetic anhydride and 3 mL of pyridine were added to the solution, and the mixture was refluxed at 170 ° C. for 5 hours, cooled to room temperature, and reprecipitated using excess ice water. After washing with 100 mL of water and 100 mL of methyl alcohol, vacuum drying was performed to synthesize an all-cyclic polyimide.
열적이미드화 방법으로는 합성된 폴리아믹산 용액을 250~300℃로 오븐 또는 핫플레이트로 단계별로 승온하여 12시간 동안 가열하는 방법을 사용하여 폴리이미드를 수득하였다. 합성된 중합체의 적외선흡수스펙트럼(도 7)에서는 1776 cm-1와 1714 cm-1에서 이미드기의 C=O 흡수띠, 1367 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.As a method of thermal imidization, a polyimide was obtained by heating the synthesized polyamic acid solution step by step in an oven or a hot plate at 250 to 300 ° C. and heating it for 12 hours. In the infrared absorption spectrum of the synthesized polymer (FIG. 7), the C = O absorption band of the imide group was observed at 1776 cm −1 and 1714 cm −1 , and the CN absorption band of the imide group was observed at 1367 cm −1 .
비교예 4 : 전지환식 폴리이미드의 메타-크레졸 합성방법에 의한 제조Comparative Example 4: Preparation by Meta-Cresol Synthesis of Battery Cyclic Polyimide
질소 가스로 치환한 50 mL-2구 둥근바닥 플라스크에 메타-크레졸 10 mL 을 넣고 1,2,3,4-싸이클로펜탄-테트라카복실릭 다이안하이드라이드 4.2028 g (2.00 mmol)과 3-(아미노메틸)-3,5,5-트리메틸사이클로헥산아민 3.406 g (2.00 mmol)을 넣고 100 ℃ 에서 12시간 150℃ 에서 4시간 그리고 200℃ 48시간 동안 반응시켰다. 합성된 용액을 상온까지 온도를 내린 후 메타-크레졸 100 mL과 메틸알콜 100 mL로 세척과 필터를 한 후 60℃에서 진공 건조하여 전지환식 폴리이미드를 합성하였다.합성된 중합체의 적외선흡수스펙트럼(도 8)에서는 1773 cm-1와 1712 cm-1에서 이미드기의 C=O 흡수띠, 1367 cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다.10 mL of meta-cresol was added to a 50 mL-2 neck round bottom flask substituted with nitrogen gas, and 4.2028 g (2.00 mmol) and 3- (aminomethyl 1,2,3,4-cyclopentane-tetracarboxylic dianhydride were added. 3.406 g (2.00 mmol) of 3,5,5-trimethylcyclohexanamine were added thereto, and the reaction was carried out at 100 ° C. for 12 hours at 150 ° C. for 4 hours and at 200 ° C. for 48 hours. The synthesized solution was cooled down to room temperature, washed with 100 mL of meta-cresol and 100 mL of methyl alcohol, filtered, and dried in vacuo at 60 ° C. to synthesize a cycloaliphatic polyimide. 8), the C = O absorption band of the imide group was observed at 1773 cm -1 and 1712 cm -1 , and the CN absorption band of the imide group was observed at 1367 cm -1 .
표 1
실시예1-1 실시예1-2 실시예2-1 실시예2-2 실시예2-3 실시예3 비교예1 비교예2 비교예3 비교예4
이미드화최고온도 135℃ 135℃ 135℃ 135℃ 180℃ 135℃ 300℃ 300℃ 300℃ 200℃
반응시간 3시간 3시간 3시간 3시간 10분 3시간 36시간 36시간 36시간 64시간
촉매사용 유무 사용 안함 사용 안함 사용 안함 사용 안함 사용 안함 사용 안함 사용함 사용함 사용함 사용안함
분산매 또는 용매종류 NMP NMP NMP m-cresol
반응단계 1 step 1 step 1 step 1 step 1 step 1 step 2 step 4 step 2 step 1 step
합성된 폴리이미드 열분해온도 >500℃ >500℃ 490℃ 490℃ 490℃ 450℃ 403℃ 407℃ 428℃ 434℃
합성된 폴리이미드 분자량(GPC) 측정 불가 285941 302381 342514 304513 198726 3054 9567 78265 10213
Table 1
Example 1-1 Example 1-2 Example 2-1 Example 2-2 Example 2-3 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
Imidization 135 ℃ 135 ℃ 135 ℃ 135 ℃ 180 ℃ 135 ℃ 300 ℃ 300 ℃ 300 ℃ 200 ℃
Reaction time 3 hours 3 hours 3 hours 3 hours 10 minutes 3 hours 36 hours 36 hours 36 hours 64 hours
Use of catalyst not used not used not used not used not used not used Used Used Used not used
Dispersant or solvent type water water water water water water NMP NMP NMP m -cresol
Reaction step 1 step 1 step 1 step 1 step 1 step 1 step 2 step 4 step 2 step 1 step
Synthesized Polyimide Pyrolysis Temperature > 500 ℃ > 500 ℃ 490 ℃ 490 ℃ 490 ℃ 450 ℃ 403 ℃ 407 ℃ 428 ℃ 434 ℃
Synthesized Polyimide Molecular Weight (GPC) Not measurable 285941 302381 342514 304513 198726 3054 9567 78265 10213
상기의 표 1에 나타내었듯이 본 발명의 실시예 1~3에서는 종래의 방법인 비교예 1~4에 비하여 이미드화 최고온도가 낮고, 반응시간이 짧으며, 반응단계가 적다. 또한 촉매와 유기용매를 사용하지 않고, 수중에서 반응이 진행되는 장점이 있다. 실시예 1~3에서 합성된 폴리이미드는 비교예 1~4에서 합성된 폴리이미드에 비하여 열분해 온도가 높고, 분자량이 매우 큰 것으로 확인되었다. 또한, 실시예5에 예시한 바와 같이 폴리이미드 제조에 사용되었던 물의 회수와 재활용이 가능하였다.As shown in Table 1, in Examples 1 to 3 of the present invention, the maximum imidization temperature is lower, the reaction time is shorter, and the reaction step is less than that of Comparative Examples 1 to 4, which is a conventional method. In addition, there is an advantage that the reaction proceeds in water without using a catalyst and an organic solvent. It was confirmed that the polyimide synthesized in Examples 1 to 3 had a higher pyrolysis temperature and a very high molecular weight than the polyimide synthesized in Comparative Examples 1 to 4. In addition, as illustrated in Example 5, it was possible to recover and recycle the water used to prepare the polyimide.
따라서 본 발명의 폴리이미드 합성방법은 종래의 방법에 비하여 간편하고 제조비용이 적게 들고 친환경적이며, 본 발명의 방법으로 합성되는 폴리이미드는 종래의 합성방법으로 제조되는 폴리이미드에 비하여 분자량이 매우 높아 우수한 기계적 물성을 가지며 높은 열적특성을 가진다는 점을 알 수 있다.Therefore, the polyimide synthesis method of the present invention is simpler, less expensive to manufacture and environmentally friendly than the conventional method, and the polyimide synthesized by the method of the present invention has a very high molecular weight compared to the polyimide prepared by the conventional synthesis method. It can be seen that it has mechanical properties and high thermal properties.
본 발명의 제조방법으로 합성된 폴리이미드는 우주, 항공, 전기/전자, 반도체, 투명/유연 디스플레이, 액정 배향막, 자동차, 정밀기기, 패키징, 의료용 소재, 분리막, 연료전지, 2차전지 등 광범위한 산업분야에 이용될 수 있다.Polyimide synthesized by the manufacturing method of the present invention is a wide range of industries such as space, aviation, electrical / electronics, semiconductors, transparent / flexible displays, liquid crystal alignment film, automotive, precision equipment, packaging, medical materials, separators, fuel cells, secondary batteries It can be used in the field.

Claims (24)

  1. a) 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시키는 단계; 및 b) 상기 분산액을 압력용기에 넣고 밀봉한 후, 5℃ 내지 400℃ 온도 및 가압 조건에서 다이안하이드라이드 화합물과 다이아민 화합물을 반응시키는 단계;를 포함하는 폴리이미드의 제조방법.a) dispersing the dianhydride compound and the diamine compound in water; And b) sealing the dispersion in a pressure vessel and reacting the dianehydride compound with the diamine compound at a temperature of 5 ° C. to 400 ° C. and pressurization conditions.
  2. a) 다이안하이드라이드 화합물과 다이아민 화합물을 물에 분산시키는 단계;a) dispersing the dianhydride compound and the diamine compound in water;
    b) 상기 분산액을 압력용기에 넣고 밀봉한 후, 5℃ 내지 400℃ 온도 및 가압 조건에서 다이안하이드라이드 화합물과 다이아민 화합물을 반응시키는 단계; 및b) after the dispersion is put in a pressure vessel and sealed, reacting the dianhydride compound and the diamine compound at a temperature of 5 ℃ to 400 ℃ and pressurized conditions; And
    c) 단계 b)에서 생성된 수증기를 압력용기로부터 배출시켜 냉각 및 응축하여 물을 회수하는 단계를 포함하는 것을 특징으로 하는, 폴리이미드의 제조방법.c) recovering water by cooling and condensing the water vapor generated in step b) from the pressure vessel.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    폴리이미드는 전방향족 폴리이미드, 부분지환식 폴리이미드 또는 전지환식 폴리이미드인 것을 특징으로 하는 폴리이미드의 제조방법.The polyimide is a wholly aromatic polyimide, a partially alicyclic polyimide or an all-cyclic polyimide.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    다이안하이드라이드 화합물은 치환되거나 치환되지 않은 방향족 또는 지방족 다이안하이드라이드인 것을 특징으로 하는 폴리이미드의 제조방법.The dianhydride compound is a method for producing a polyimide, characterized in that the substituted or unsubstituted aromatic or aliphatic dianhydride.
  5. 제4항에 있어서,The method of claim 4, wherein
    치환되거나 치환되지 않은 방향족 또는 지방족 다이안하이드라이드는 하기 화학식 1의 다이안하이드라이드인 것을 특징으로 하는 폴리이미드의 제조방법:Substituted or unsubstituted aromatic or aliphatic dianhydride is a process for producing a polyimide, characterized in that the dianhydride of formula (I):
    <화학식 1><Formula 1>
    Figure PCTKR2014007426-appb-I000012
    Figure PCTKR2014007426-appb-I000012
    여기서 R1Where R 1 is
    Figure PCTKR2014007426-appb-I000013
    Figure PCTKR2014007426-appb-I000013
    Figure PCTKR2014007426-appb-I000014
    Figure PCTKR2014007426-appb-I000014
    Figure PCTKR2014007426-appb-I000015
    Figure PCTKR2014007426-appb-I000015
    로 이루어진 그룹으로부터 선택된다.It is selected from the group consisting of.
  6. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    다이안하이드라이드 화합물은 1종 또는 2종 이상의 다이안하이드라이드를 사용하는 것을 특징으로 하는 폴리이미드의 제조방법.A dianhydride compound is a manufacturing method of the polyimide characterized by using 1 type (s) or 2 or more types of dianhydrides.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    다이아민 화합물은 치환되거나 치환되지 않은 방향족 또는 지방족 다이아민인 것을 특징으로 하는 폴리이미드의 제조방법.The diamine compound is a method for producing a polyimide, characterized in that the substituted or unsubstituted aromatic or aliphatic diamine.
  8. 제7항에 있어서,The method of claim 7, wherein
    치환되거나 치환되지 않은 방향족 또는 지방족 다이아민은 하기 화학식 2의 다이아민인 것을 특징으로 하는 폴리이미드의 제조방법:Substituted or unsubstituted aromatic or aliphatic diamine is a method for producing a polyimide, characterized in that the diamine of the formula (2):
    <화학식 2><Formula 2>
    H2N-R2-NH2 H 2 NR 2 -NH 2
    여기서, R2Where R 2 is
    Figure PCTKR2014007426-appb-I000016
    Figure PCTKR2014007426-appb-I000016
    Figure PCTKR2014007426-appb-I000017
    Figure PCTKR2014007426-appb-I000017
    Figure PCTKR2014007426-appb-I000018
    Figure PCTKR2014007426-appb-I000018
    Figure PCTKR2014007426-appb-I000019
    Figure PCTKR2014007426-appb-I000019
    Figure PCTKR2014007426-appb-I000020
    Figure PCTKR2014007426-appb-I000020
    Figure PCTKR2014007426-appb-I000021
    Figure PCTKR2014007426-appb-I000021
    Figure PCTKR2014007426-appb-I000022
    Figure PCTKR2014007426-appb-I000022
    로 이루어진 그룹으로부터 선택되며, Is selected from the group consisting of
    여기에서, x는 1≤x≤50을 만족하는 정수이고, n은 1 ~ 20의 자연수이며, W, X, Y는 각각 독립적으로 탄소수 1 ~ 30 사이의 알킬기 또는 아릴기이고, Z는 에스테르기, 아미드기, 이미드기, 및 에테르기 중에서 선택된다.Here, x is an integer satisfying 1≤x≤50, n is a natural number of 1 to 20, W, X, Y are each independently an alkyl group or an aryl group having 1 to 30 carbon atoms, Z is an ester group , Amide group, imide group, and ether group.
  9. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    다이아민 화합물은 1종 또는 2종 이상의 다이아민을 사용하는 것을 특징으로 하는 폴리이미드의 제조방법. The diamine compound uses the 1 type, or 2 or more types of diamine, The manufacturing method of the polyimide characterized by the above-mentioned.
  10. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    b) 단계의 반응은 20℃ 내지 250℃의 온도 조건에서 수행하는 것을 특징으로 하는 폴리이미드의 제조방법.b) the reaction of the step of producing a polyimide, characterized in that carried out at a temperature condition of 20 ℃ to 250 ℃.
  11. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    b) 단계의 반응은 5분 내지 5일간 수행하는 것을 특징으로 하는 폴리이미드의 제조방법.The reaction of step b) is a method for producing a polyimide, characterized in that performed for 5 minutes to 5 days.
  12. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    b) 단계의 반응은 10분 내지 10시간 동안 수행하는 것을 특징으로 하는 폴리이미드의 제조방법.The reaction of step b) is a method for producing a polyimide, characterized in that carried out for 10 minutes to 10 hours.
  13. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    b) 단계의 반응은 10분 내지 5시간 동안 수행하는 것을 특징으로 하는 폴리이미드의 제조방법.The reaction of step b) is a method for producing a polyimide, characterized in that carried out for 10 minutes to 5 hours.
  14. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    b) 단계의 가압 조건은 1 bar 내지 1000 bar 범위의 압력 조건인 것을 특징으로 하는 폴리이미드의 제조방법.Pressing conditions of step b) is a method for producing a polyimide, characterized in that the pressure conditions in the range of 1 bar to 1000 bar.
  15. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    b) 단계의 가압 조건은 1 bar 내지 500 bar 범위의 압력 조건인 것을 특징으로 하는 폴리이미드의 제조방법.Pressing conditions of step b) is a method for producing a polyimide, characterized in that the pressure conditions in the range of 1 bar to 500 bar.
  16. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    가압 조건은, 압력용기 내부에서 수증기압이 형성되거나, 압력용기 내부에 불활성 기체를 주입하거나 또는 압력용기를 압축하는 방법 중에서 선택되는 한 가지 또는 두 가지 이상의 방법에 의한 것임을 특징으로 하는, 폴리이미드의 제조방법.Pressurization conditions, the production of polyimide, characterized in that the water vapor pressure is formed in the pressure vessel, inert gas is injected into the pressure vessel, or by one or two or more methods selected from the method of compressing the pressure vessel. Way.
  17. 제16항에 있어서,The method of claim 16,
    불활성 기체는 질소, 아르곤, 헬륨, 네온, 크립톤 및 크세논으로 이루어진 그룹으로부터 선택되는 하나 이상의 기체인 것을 특징으로 하는 폴리이미드의 제조방법.The inert gas is at least one gas selected from the group consisting of nitrogen, argon, helium, neon, krypton and xenon.
  18. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    b) 단계 이후, b) 단계의 반응 생성물을 여과하고 건조시켜 폴리이미드를 수득하는 단계를 추가로 포함하는 것을 특징으로 하는 폴리이미드의 제조방법.after b), further comprising filtering and drying the reaction product of step b) to obtain a polyimide.
  19. 제1항 또는 제2항의 방법에 따라 제조된 폴리이미드.Polyimide prepared according to the method of claim 1.
  20. 제19항에 따른 폴리이미드를 유기용매에 용해시켜 용액을 제조하는 단계; 및Preparing a solution by dissolving the polyimide according to claim 19 in an organic solvent; And
    상기 용액을 기판에 도포하는 단계를 포함하는, 폴리이미드 필름의 제조방법.Method of producing a polyimide film comprising the step of applying the solution to a substrate.
  21. 제20항에 있어서,The method of claim 20,
    유기용매는, N-메틸-2-피롤리돈, N,N-다이메틸아세트아미드, N,N-다이메틸포름아미드, N-비닐피롤리돈, N-메틸카프로락탐, 디메틸술폭시드, 테트라메틸요소, 피리딘, 디메틸술폰, 헥사메틸술폭시드, 메타-크레졸, 감마-부티로락톤, 에틸셀로솔브, 부틸셀로솔브, 에틸카르비톨, 부틸카르비톨, 에틸카르비톨 아세테이트, 부틸카르비톨 아세테이트, 에틸렌글리콜, 젖산에틸, 젖산부틸, 시클로헥사논 및 시클로펜타논으로 이루어진 그룹으로부터 선택되는 하나 이상의 용매인 것을 특징으로 하는, 폴리이미드 필름의 제조방법. The organic solvent is N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N-vinylpyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetra Methyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, meta-cresol, gamma-butyrolactone, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, butyl carbitol acetate And at least one solvent selected from the group consisting of ethylene glycol, ethyl lactate, butyl lactate, cyclohexanone and cyclopentanone.
  22. 제20항에 있어서,The method of claim 20,
    용액 내 폴리이미드의 농도는 1 내지 90wt%인 것을 특징으로 하는 폴리이미드 필름의 제조방법.Method for producing a polyimide film, characterized in that the concentration of polyimide in the solution is 1 to 90wt%.
  23. 제20항 내지 제22항 중 어느 한 항의 방법에 따라 제조된 폴리이미드 필름.A polyimide film prepared according to the method of claim 20.
  24. 제19항에 따른 폴리이미드를 압축성형, 사출성형, 슬러시성형, 중공성형, 압출성형 및 방적 방법으로 이루어진 그룹으로부터 선택되는 방법을 통해 성형한 성형품.A molded article molded by the method according to claim 19, wherein the polyimide is selected from the group consisting of compression molding, injection molding, slush molding, blow molding, extrusion molding and spinning methods.
PCT/KR2014/007426 2014-06-10 2014-08-11 Method for preparing polyimide using water as dispersion medium and method for recovering water WO2015190645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480079787.3A CN106459411B (en) 2014-06-10 2014-08-11 Method for producing polyimide using water as dispersion medium and method for recovering water

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140070392A KR20150141839A (en) 2014-06-10 2014-06-10 Preparation method of polyimide using water as a dispersion medium
KR10-2014-0070392 2014-06-10
KR1020140101005A KR20160017460A (en) 2014-08-06 2014-08-06 Method for recycling water in the preparation of polyimide using water as a dispersion medium
KR10-2014-0101005 2014-08-06

Publications (1)

Publication Number Publication Date
WO2015190645A1 true WO2015190645A1 (en) 2015-12-17

Family

ID=54833719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007426 WO2015190645A1 (en) 2014-06-10 2014-08-11 Method for preparing polyimide using water as dispersion medium and method for recovering water

Country Status (2)

Country Link
CN (1) CN106459411B (en)
WO (1) WO2015190645A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080870A1 (en) * 2016-10-25 2018-05-03 Fujifilm Electronic Materials U.S.A., Inc. Polyimides
WO2018085087A1 (en) * 2016-11-01 2018-05-11 Fujifilm Electronic Materials U.S.A., Inc. Polyimides
CN112694614A (en) * 2020-12-29 2021-04-23 浙江清和新材料科技有限公司 Method for synthesizing polyimide in aqueous phase

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194792B (en) * 2020-06-16 2022-03-29 中国科学院长春应用化学研究所 High-strength low-thermal-expansion transparent polyimide and preparation method thereof
CN111925524B (en) * 2020-08-20 2021-05-28 吉林大学 Flexible high-temperature-resistant polyimide precursor gel, preparation method and application thereof, and polyimide flexible honeycomb structure
CN112625017B (en) * 2020-12-01 2023-12-19 中国科学院长春应用化学研究所 Amide dianhydride, preparation method and application thereof
CN112759763B (en) * 2021-01-20 2022-05-17 株洲时代新材料科技股份有限公司 Polyimide composite glue solution, black matte polyimide material, preparation and application
TW202244128A (en) * 2021-05-11 2022-11-16 南亞塑膠工業股份有限公司 Polyimide copolymer, polyimide film and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070112697A (en) * 2004-04-27 2007-11-27 가네카 텍사스 코포레이션 Multilayer printed circuit board
US20080300360A1 (en) * 2007-05-31 2008-12-04 The Boeing Company Water-entrained-polyimide chemical compositions for use in high-performance composite fabrication
KR20130072267A (en) * 2010-11-01 2013-07-01 바스프 에스이 Polyimides as dielectric
KR20140034868A (en) * 2011-06-13 2014-03-20 가부시키가이샤 가네카 Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide films obtained from these solutions, and use of polyimide films
KR20140063701A (en) * 2011-09-20 2014-05-27 로디아 오퍼레이션스 Thermoplastic (co)polyimides and synthesis methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989670A (en) * 1972-12-29 1976-11-02 General Electric Company Method for making polyetherimides
JP4461606B2 (en) * 2000-10-31 2010-05-12 宇部興産株式会社 Polyimide powder manufacturing method, polyimide powder, polyimide powder molded body and manufacturing method thereof
JP2005163016A (en) * 2003-11-12 2005-06-23 New Japan Chem Co Ltd Method for producing solvent-soluble silicone-modified polyimide resin
KR101225842B1 (en) * 2007-08-27 2013-01-23 코오롱인더스트리 주식회사 Colorless polyimide film
CN102120820B (en) * 2011-01-26 2016-03-30 上海三普化工有限公司 A kind of method of performing aqueous synthesis of thermosetting polyimide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070112697A (en) * 2004-04-27 2007-11-27 가네카 텍사스 코포레이션 Multilayer printed circuit board
US20080300360A1 (en) * 2007-05-31 2008-12-04 The Boeing Company Water-entrained-polyimide chemical compositions for use in high-performance composite fabrication
KR20130072267A (en) * 2010-11-01 2013-07-01 바스프 에스이 Polyimides as dielectric
KR20140034868A (en) * 2011-06-13 2014-03-20 가부시키가이샤 가네카 Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide films obtained from these solutions, and use of polyimide films
KR20140063701A (en) * 2011-09-20 2014-05-27 로디아 오퍼레이션스 Thermoplastic (co)polyimides and synthesis methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080870A1 (en) * 2016-10-25 2018-05-03 Fujifilm Electronic Materials U.S.A., Inc. Polyimides
US11939428B2 (en) 2016-10-25 2024-03-26 Fujifilm Electronic Materials U.S.A., Inc. Polyimides
WO2018085087A1 (en) * 2016-11-01 2018-05-11 Fujifilm Electronic Materials U.S.A., Inc. Polyimides
US20190129303A1 (en) * 2016-11-01 2019-05-02 Fujiflim Electronic Materials U.S.A. Inc. Polyimides
US11061327B2 (en) 2016-11-01 2021-07-13 Fujifilm Electronic Materials U.S.A., Inc. Polyimides
CN112694614A (en) * 2020-12-29 2021-04-23 浙江清和新材料科技有限公司 Method for synthesizing polyimide in aqueous phase

Also Published As

Publication number Publication date
CN106459411A (en) 2017-02-22
CN106459411B (en) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2015190645A1 (en) Method for preparing polyimide using water as dispersion medium and method for recovering water
KR101714980B1 (en) Preparation method of polyimide using water as a dispersion medium
KR101755251B1 (en) Method for recycling water in the preparation of polyimide using water as a dispersion medium
KR102198357B1 (en) Preparation method for polyimide
KR102050660B1 (en) Preparation method for polyimide
CN108822296B (en) Wholly aromatic colorless transparent polyimide film and preparation method thereof
KR101548877B1 (en) Preparation method for polyimide from salt of monomer and the polyimide thereby
WO2021101324A2 (en) Low-dielectric-constant polyimide composite powder, and method for producing same
KR102219892B1 (en) Manufacturing method of polyimide powder and polyimide power manufactured by the same
KR102203211B1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
KR20150141839A (en) Preparation method of polyimide using water as a dispersion medium
CN111303004B (en) Imide monomer as amino end cap, organic hybridization film and preparation method thereof
KR102203212B1 (en) Manufacturing method of polyimide powder and polyimide powder manufactured by the same
WO2021101323A1 (en) Thermally conductive polyimide composite powder and method for manufacturing same
WO2016047821A1 (en) Nanoporous micro-spherical polyimide aerogels and method for preparing same
KR101259543B1 (en) Polyimide film having excellent heat-stability
KR101728823B1 (en) The manufacturing method of polyimide
KR101709378B1 (en) Preparation method of polyimide under high pressure
CN111234218B (en) Preparation method of soluble polyimide containing amino phenylsulfonyl hexafluoropropane structure
CN114213657A (en) Intrinsic black polyimide and preparation method and application thereof
CN115703718A (en) Diamine monomer compound, preparation method thereof, resin, flexible film and electronic device
KR101259544B1 (en) Polyimide film
KR20160017460A (en) Method for recycling water in the preparation of polyimide using water as a dispersion medium
WO2016060340A1 (en) Polyimide preparation method carried out under pressurized conditions
CN114736372B (en) Polyimide film and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894458

Country of ref document: EP

Kind code of ref document: A1